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Abstract 

Background and aims: In several species exhibiting a rhythmic aerial growth, the 

existence of an alternation between root and shoot growth has been demonstrated. 

The present study aims at investigating the respective involvement of the emergence 

of new organs and their elongation in this phenomenon and its possible genotypic 

variation in young apple plants.  

Methods: Two apple varieties: X6407, recently named ‘Ariane’ and X3305 

(Chantecler x Baujade) were compared. Five plants per variety, issued from in vitro 

culture, were observed in minirhizotrons over 4 months. For each plant, root 

emergence and growth were observed twice per week. Growth rates were calculated 

for all roots with more than two segments and the branching density was calculated 

on primary roots (R1). On the aerial part, the number of leaves, leaf area and total 

shoot length were observed weekly.  

Key results: No significant difference was observed between varieties in any of the 

final characteristics of aerial growth. Increase in leaf area and shoot length exhibited 

a 3-weeks rhythm in X3305 while a weaker signal was observed in Ariane. The R1 

growth rate was homogeneous between the plants and likewise between the varieties, 

while their branching density differed significantly. Secondary roots (R2) emerged 

rhythmically, with a 3-week and a 2-week rhythm respectively in X3305 and Ariane. 

Despite a high intra-variety variability, significant differences were observed 

between varieties in the R2 life span and mean length. A synchronism between leaf 

emergence and primary root growth was highlighted in both varieties while an 

opposition phase was observed between leaf area increments and secondary root 

emergence in X3305 only.  
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Conclusion: A biological model of dynamics that summarises the interactions 

between processes and includes the assumption of a feedback effect of lateral root 

emergence on leaf emergence is proposed. 
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INTRODUCTION 

 

In perennial plants, organogenesis can occur throughout ontogeny due to the 

maintenance of cell divisions in meristems (Lyndon, 1998). The emergence of 

successive leaves is usually characterized by the time between two successive 

primordial, called plastochrone. On a longer time scale, many plants also exhibit 

rhythmic growth with an alternation of organogenesis and rest periods (Hallé et al., 

1978). At the whole plant scale, many studies devoted to growth rhythmicity have 

demonstrated the existence of an alternation between root and shoot growth, for 

instance in Pinus taeda (Drew and Ledig, 1980), Theobroma cacao (Greathouse et 

al., 1971), Ligustrum sp. (Kuehny and Halbrooks, 1993), and Hevea brasiliensis 

(Thaler and Pagès, 1996). This has been interpreted as the result of competition for 

assimilates between root and aerial growth, while root branching was promoted by 

leaf development (Aguirrezabal et al., 1993).  

 

In temperate fruit trees which exhibit rhythmic growth, a similar alternating pattern 

has been demonstrated in adult trees, on an annual time scale, for instance in peach 

trees (Williamson and Coston, 1989) and apple trees (Psarras and Merwin, 2000). 

However, these studies did not distinguish between organogenesis and elongation 

processes as previously done for other non fruiting species, probably because adult 

trees are too complex for this purpose. Because of the practice of grafting in the fruit 

industry, the interactions between root and aerial systems are of major interest. In the 

apple tree, which is commonly grown on dwarfing rootstocks, these interactions have 

been widely studied through the description of the effects of rootstock on the aerial 

part development (Schechter et al., 1991; Costes et al., 2001; Seleznyova et al., 
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2003), on fruiting (Avery, 1969; Larsen et al., 1992), or fruit characteristics (Drake, 

1988; Daugaard and Callesen, 2002). The effects of rootstock on biomass allocation 

have also been reported (Zhu et al., 1999), and competition during the emergence 

and expansion of new organs, including cambial growth, has been shown to interact 

with fruit development (Costes et al., 2000; Berman and DeJong, 2003). However, 

less information is available regarding the patterns in aerial and root growth within a 

growth cycle. In addition, little information is available regarding the apple tree root 

system structure, i.e. the combination of root growth, branching and life span 

characteristics for several successive branching orders. This is probably due to the 

difficulty in observing in situ root systems (Atkinson, 1974 and 1983). Because the 

root systems develop in an environment with less variation in temperature than the 

air but which is physically heterogeneous, roots were often viewed as opportunist in 

their development (Lynch, 1995). However, like the aerial part, roots have been 

shown to develop according to architectural rules, by the architectural comparison of 

both aerial and root systems of tropical trees (Atger and Edelin, 1994).  
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The main aims in the present study were to investigate (i) whether the growth of the 

roots and shoots of the apple tree are coordinated and/or alternate, and when the 

emergence of new organ and elongation are involved in this phenomenon (ii) the 

characteristics of roots belonging to at least two successive branching orders. In these 

two investigations, particular focus was given to the comparison between two 

varieties in order to highlight which process could depend on genetic factors. This 

study was carried out on young self-rooted trees issued from in vitro culture which 

were small enough to observe the variations in new organ emergence and elongation 

in both root and shoot growth. 
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MATERIALS AND METHODS 

 

Two newly released apple varieties which both showed scab resistance and offered 

good fruit quality were studied: X6407, named ‘Ariane’ after selection by INRA 

Angers; and X3305 (Chantecler x Baujade) selected by INRA Bordeaux (Roche et 

al., 2003). 

 

Both varieties were propagated vegetatively by in vitro culture on a culture medium 

adapted from Murashige (1962). Roots were induced with an IBA application (5g/l) 

and the plants were placed in darkness at 18°C for 5 days. The plants were then left 

without any hormone in the culture medium for three weeks. After a total period of 

three months of in vitro culture, five plants per variety, as homogeneous as possible 

in their development, were selected to be transplanted in root observation boxes 

(minirhizotron). The minirhizotrons were built as described in previous studies  

(Neufeld et al., 1989; Thaler and Pagès, 1996). The box dimensions were 0,50 x 0,22 

x 0,03 m3. The back and sides were made of opaque PVC while the front, for 

observation purpose, was transparent. This side was covered by black plastic to keep 

the roots in the dark. The boxes were filled first with gravel to 3cm and then with 

sterilized compost. The roots were kept separated from the substratum and 

sandwiched against the transparent side by nylon mesh (Neufeld et al., 1989).  

 

Immediately after transplantation, the ten observed plants were placed in a climatic 

chamber at 25°C, with 100% relative humidity and light of 55 µmoles m²/s in PAR 

for fourteen hours per day. During the first week after transplantation, they were 

provided with the nutritive solution that was in the in vitro medium, but without 
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growth regulators. After one week and during the experimentation follow-up, the 

plants were watered twice per week. Fungicide treatments against powdery mildew 

were applied only if necessary. 

 

After transplantation, all the roots initiated during in vitro culture died and turned 

brown. Within fourteen days, new white roots developed from the dead roots and 

grew straight downwards. In the following, these new roots are referred as R1, their 

lateral roots as R2 and the laterals borne on R2, if any, are called R3. To avoid root 

growth constraints, the growth dynamics of both the aerial and root systems were 

observed until the longest R1 roots reached the box bottom. This led us to observe 

the plants for 111 days after transplantation. The root growth dynamics were 

recorded twice per week on a transparent plastic sheet by drawing the roots with 

different coloured permanent markers (Neufeld et al., 1989). 

 

The drawings were then digitised in 2D using Rhizodigit 1.2 software developed at 

CIRAD, France, by Jourdan and Mailhe. During digitising, each new root was 

labelled with a specific number, and its type and initial 2D coordinates were recorded 

at its insertion point. On each segment corresponding to the root length developed 

between two observation dates, the top spatial coordinates and the observation date 

were recorded. After digitising, different variables were computed with macro 

functions developed in Excel software. For each plant, the number of newly 

developed roots was counted per unit of time and per type (R1, R2 and R3). The 

growth rate was calculated for all roots with more than two segments as the ratio 

between the length and the difference in the number of days between the first and the 
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last observation dates. The branching density was calculated as the ratio between the 

number of lateral roots per unit length of the parent root.  

 

On the aerial part, at each observation day, the number of nodes and leaves, and the 

total shoot length were noted. The length and width of each leaf were measured once 

per week. Then, leaf area was precisely measured on a sub-sample of leaves. A linear 

relationship was then calculated to correlate the length and width to the area (data not 

shown). A single relationship (y = 0.69 x) was proved to be suitable to represent both 

cultivars with an acceptable r² coefficient (0.88). 

 

Because of the low number of plants per variety, intra- and inter-variety variations in 

the final characteristics were analysed by a Kruskal-Wallis non-parametric ANOVA 

using Statistica version 6.0. At the end of the observation period, the aerial growth 

was characterised by four variables: the total shoot length, number of leaves, leaf 

area and the basal diameter. R1 were characterised by their total length, mean growth 

rate and mean branching density. R2 roots were characterised by their length and life 

span, and by the percentage of R2 roots with more than one segment (poly-

segmented R2 roots).  

 

Growth dynamics were studied with time series analysis methods on three variables 

on the aerial system, i.e. weekly increase in the number of leaves, leaf area and shoot 

length using the statistical module of AMAPmod software (Godin et al., 1997) . Five 

variables were considered on the root systems in order to compare their development 

and dynamics to the aerial part: mean total length and growth rates of both R1 and 

R2 roots, and weekly increase in number of R2 roots.  For analysing the relationships 
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between growth and branching in primary roots, the only R1 selected were those 

which emerged during the first month after transplantation, grew all along the 

observation time and reached at least 30 cm. One to seven roots per plant 

corresponded to these three criteria. On these roots, the number of R2 roots per week 

and the growth rate of the parent R1 during the corresponding week were analysed as 

time series.  

 

For analysing the rhythmic variations of variables, trends i.e. long-term changes in 

the mean level, were removed in order to obtain stationary time series (Chatfield, 

2003). Different filtering procedures were tested based on either first-order 

differencing or symmetric smoothing filters such as the binomial distributions B(n, 

p) with p = 0.5. Residual values, i.e. (original value – smoothed value) for each rank, 

were then extracted with a symmetric smoothing filter corresponding to the 

probability mass function of the binomial distribution B(4, 0.5). As proposed by 

Brockwell and Davis (2002), the first and the last terms of the series were repeated 

when applying this symmetric smoothing filter in order to overcome end-effect 

problem. Sample autocorrelation and cross-correlation functions were then computed 

on residual values. Given τ observations in a sequence,  ,,,1 τxx K k−τ  pairs of 

observations 

18 

( ) ( ) ( )ττ xxxxxx kkk ,,,,,, 2211 −++ K  can be formed, considering the first 

observation in each pair as one variable, denoted by , and the second observation 

19 

20 ( )1X

as a second variable, denoted by . The autocorrelation coefficient at lag k for a 

single sequence of length τ is thus given by (Chatfield, 2003; Brockwell and Davis, 

2002). 
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where τµ τ /
1∑ =

=
t tx . When generalizing to a sample of sequences, the 

autocorrelation at lag k is computed from the 

1 

( )∑ −
i i kτ  pairs of observations 

extracted from all the sequences. The usual rule of thumb to indicate the uncertainty 

in an autocorrelation coefficient is that under the null condition of no correlation 

(purely random sequence), the autocorrelation coefficient at lag k has standard error 

which is roughly 

2 

3 

4 

5 

( )∑ −
i i kτ± 96.1  in the case of a sample of sequences (Diggle et 

al., 2002). 
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Correlation properties of multivariate sequences can be investigated by sample cross-

correlation functions which are a direct generalization of sample autocorrelation 

functions in which the pair of variables is either  and Y  or Y  and  

(Chatfield, 2003; Diggle, 1990). Hence, while the sample autocorrelation function is 

an even function of the lag in that 

( )1X ( 1+k ( )1 ( )1+kX

( ) ( )krkr −= , the sample cross-correlation 

function is not an even function of the lag. 
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Since the application of linear filters for trend removal induces an autocorrelation 

structure (Diggle, 1990), we chose to show the autocorrelation function induced by 

the selected filter on the reference model (deterministic trend + white noise). A white 

noise series is a series of independent Gaussian random variables with zero mean and 

common variance parameter. The following convention was chosen to compute 

cross-correlation functions between variables 1 and 2: variable 1 was considered as 

reference and variable 2 shifted for increasing and decreasing lags. Consequently, the 

number of pairs of observations decreased with increasing absolute lag values and 

the maximum absolute lag value considered was fixed at 10. 
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RESULTS 

 

Shoot growth 

 

No significant difference was observed between the two varieties regarding the final 

mean values of the variables selected to characterise their aerial growth (Table 1). 

However, at the end of the observation period, Ariane exhibited more variability in 

all variables than X3305.  

 

Sample autocorrelation functions showed significant coefficients at different lags 

depending on both the variable and variety (Fig. 1). In X3305, a rhythmic and 

particularly stable pattern appeared for both leaf area and shoot length (Fig. 1a). 

Significant and positive coefficients were observed at lags 3 and 6, while negative at 

lags 4 and 7. Thus, the variations in leaf area and shoot length were synchronised 

with  a rhythm of three weeks, and were in opposition phase the following week. No 

significant autocorrelation coefficients were observed for the number of new leaves. 

In Ariane, the number of new leaves tended to alternate, i.e. exhibited a two-week 

rhythm, but only the first autocorrelation coefficients were significant and the pattern 

died out rapidly (Fig. 1b). The variations in leaf area and shoot length were only 

negatively correlated at lag 2 and those in leaf area tended to be synchronised each 

three weeks. Finally, in X3305, the elongation variables had higher autocorrelation 

coefficients than the number of new leaves and exhibited a similar rhythm of three 

weeks. By contrast, in Ariane, leaf emergence had higher autocorrelation coefficients 

than leaf and shoot elongation, and tended to alternate. 
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In X3305, the cross-correlation function between the variations in leaf area and shoot 

length appeared to be an even function of the lag since r(k) ≅ r(-k) (Fig. 2a). Indeed, 

the cross-correlation coefficient was highly significant at lag 0 while, at higher 

positive or negative lags, the coefficients were successively positive and negative 

with a symmetric rhythm of three weeks (negative at lags ±1, ±4, ±7, positive at lags 

±3, ±6). This remarkable structure indicates that these two variables followed a 

similar rhythm. Their respective cross-correlation functions with the number of new 

leaves (Fig. 2b) were also quite similar with significant coefficients observed for 

positive lags while few or no significant coefficients were observed for negative lags. 

This dissymmetry of the cross-correlation function indicates that the elongation 

processes is correlated to the number of leaves that emerged in the weeks before 

while the inverse is not true. The elongation process, in both leaves and shoots, was 

positively correlated with the number of leaves emerged one week before (positive 

coefficients at lags 1) while in opposition phase with the number of leaves emerged 

two weeks before (negative coefficients at lags 2). This pattern tended to repeat with 

a three-week rhythm. In Ariane, the variations in leaf area and shoot length were 

synchronised in the current week and four weeks before, with an opposition phase 

the week after the synchrony (Fig. 2c). The number of new leaves and the variations 

in both leaf area and shoot length were not significantly correlated regardless the lag 

value and sign (Fig. 2d). 

 

Root growth 

  

Seven to forty roots per plant developed directly from the in vitro dead roots and 

were labelled R1. The total number of secondary roots per plant, labelled R2, also 

 13



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

exhibited a large variation between plants (Table 2). A six-fold coefficient was 

observed between the plants that had the lowest and largest number of secondary 

roots. Basically, the fewer the leaves, the fewer the roots each plant had. The 

converse was also true. Few tertiary roots developed for any plant (Table 3) and most 

had only one segment, which meant that they lived less than one week. Thus, these 

roots were not analysed in the following. 

 

Root system architecture. Among R1, a large variation was observed in the final 

length. However, the selected roots were homogeneous in their growth rate between 

plants and no difference was observed between varieties (Table 2). By contrast, their 

mean branching density was significantly different between X3305 and Ariane, with 

a higher density observed in X3305. As a consequence, the total number of R2 per 

plant as well as the mean number of R2 per selected R1 root was significantly lower 

in Ariane than in X3305 (Table 2). About 50% of R2 stopped growing during their 

first three days of growth, these roots developing a single segment. The number of 

R2 which were still growing from one observation date to the following decreased 

exponentially. Because of this exponential decrease, R2 life span was analysed 

through median and centiles values. In both varieties, significant differences were 

observed between plants (Table 3). Despite this intra-variety heterogeneity, 

significant differences were also observed between varieties: the R2 life span was 

significantly shorter in Ariane than in X3305. R2 mean length was also significantly 

different between both plants and varieties, with R2 slightly longer in Ariane than in 

X3305. The mean R2 growth rate, life span and total length were calculated on the 

sub-sample of R2 which developed more than 2 segments (Table 3). In both 

varieties, these R2 grew nearly twice as slowly as R1 and their growth rate was 
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significantly higher in Ariane than in X3305. Their total length was also significantly 

different between varieties, while their life span was not different (data not shown).  

Finally, the differences in R2 between varieties can be summarized as follows: in 

X3305, the R2 were more numerous than in Ariane and more than 50% developed at 

least during two successive observations (i.e. more than 3 days), these roots growing 

relatively slowly and remaining quite short. By contrast, in Ariane, few R2 

developed, less than 50% of them remained alive for more than 3 days but these 

roots grew faster and became longer. 

 

Root growth dynamics. The growth dynamics of primary and secondary roots were 

studied per plant through five variables which were calculated weekly: (i) the mean 

total length and the mean growth rate of both R1 and R2, and (ii) the number of new 

R2. In both varieties, the sample autocorrelation functions of the variables related to 

R1 did not show a clear pattern and few or no coefficients were significant regardless 

of the lag (cross-correlation functions not shown). By contrast, sample 

autocorrelation functions of the variables related to R2 showed rhythmic patterns 

with significant coefficients (Fig. 3). In both varieties, R2 emerged rhythmically. 

Only one significant coefficient was observed at lag 3 in X3305 while an alternation, 

i.e. a two-week rhythm with significant coefficients until lag 5, was observed in 

Ariane. R2 growth rates exhibited a quite similar pattern in both varieties with an 

opposition phase observed each two weeks (negative coefficients at lag 2). In X3305, 

a synchrony was also observed each 3 weeks for this variable. In both varieties, the 

mean length of R2 did not show significant autocorrelation coefficients. 
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In both varieties, the cross-correlation functions between the mean length and mean 

growth rate of R1 did not show significant coefficients and these two variables were 

also poorly correlated to the equivalent variables in R2 (cross-correlation functions 

not shown). By contrast, the cross-correlation functions between the three variables 

considered on R2 showed significant coefficients (Fig. 4). In X3305, these three 

variables were synchronous in the current week (Fig. 4a). The cross-correlation 

function between R2 growth and both the number of R2 and their mean total length 

were dissymmetric, with higher coefficients for negative than positive lags. Thus, the 

variations in R2 growth rate were correlated to the two other variables observed in 

the weeks before, with a rhythm of three weeks (negative coefficients at lags -1, -4 

and -7 and positive coefficients at lags -3, -5 and -8). The cross-correlation function 

between the number of R2 and their mean total length exhibited an even structure, 

with a rhythm of three weeks until lags ±3 or ±4, and which rapidly died out at 

higher lags. This particular structure was also observed on the cross-correlation 

function between the number of R2 and their mean total length in Ariane (Fig. 4c), 

even though the coefficients were less significant and the rhythm was different (two-

week). 

 

In X3305, the emergence of new R2 was correlated to both the R1 growth rate and 

mean length for negative lags only (Fig. 4b). A positive correlation was observed in 

the current week and three weeks before (lags 0 and -3), while an opposition phase 

was observed one week after (negative coefficients at lags -2 and 1). In Ariane, the 

number of R2 was significant correlated only to the R1 mean length and for negative 

lags (Fig. 4d). A positive coefficient was observed in the current week and with a 

four-week rhythm towards negative lags. In both varieties, high correlation 
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coefficients were observed for high negative lags suggesting relatively long term 

effects of the R1 growth rate in X3305 and the R1 total length in Ariane, on the 

number of new R2. 

Comparison between aerial and root system dynamics 

 

This comparison was performed at the whole plant scale. The three variables studied 

in the aerial part were plotted against the five variables studied on root systems, and 

cross-correlation functions were considered for each pair of variables. Since the 

cross-correlation functions were too numerous, we chose to present only the main 

results. 

 

In both varieties, the variables related to R1 were not correlated to the variations in 

leaf area and shoot length (cross-correlation functions not shown). By contrast, 

significant cross-correlation coefficients were observed with the number of new 

leaves (Fig. 5). In X3305, the number of leaves was positively correlated to the R1 

mean length and growth rate that occurred one week after leaf emergence (lag -1) 

and this repeated with a three-week rhythm. However,  the pattern died quite rapidly 

with increasing lags (Fig. 5a, b) . In Ariane (Fig. 5c), the number of new leaves was 

alternatively positively and negatively correlated to the R1 mean length for negative 

lags, with a rhythm of two weeks beginning from a synchrony in the current week. 

Cross-correlation coefficients with the R1 growth rate were not significant (Fig. 5d). 

Finally, leaf emergence was synchronised with the R1 mean length in both varieties, 

and with the R1 growth rate only in X3305.  
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Regarding the variables related to R2, in both varieties, the cross-correlation 

functions between the number of new leaves and the number of new R2 exhibited a 

rhythmic pattern, with significant coefficients only for positive lags (Fig. 6a, c). 

Thus, leaf emergence was correlated to the number of new R2 that developed before 

them, with a rhythm of three weeks in X3305 and two weeks in Ariane. In X3305, no 

significant correlation was observed in the current week and the pattern died out after 

lag 5. In Ariane, leaf and R2 emergence were synchronous in the current week and 

each two weeks afterwards, with significant coefficients until high positive lags. The 

cross-correlation functions between the number of new leaves and R2 growth rate 

showed a rhythmic pattern only in X3305, with a three-week rhythm (Fig. 6b). 

Similarly, higher correlation coefficients were observed between the R2 variables 

and the variations in both leaf area and shoot length in X3305 than in Ariane (cross-

correlation functions shown for leaf area only, Fig. 6). In X3305, the cross-

correlation function between the leaf area and the number of R2 exhibited an 

rhythmic pattern for both positive and negative lags. These variables were negatively 

correlated in the current week and were positively correlated the week after, this 

pattern repeating each three weeks afterwards (negative coefficients at lags 0, ±3 and 

-6, positive at lags ±2 and ±5). Significant coefficients were observed between the 

shoot length and both the number of R2 and R2 growth rate, but only for negative 

lags and still with a three-week rhythm (cross-correlation functions not shown).  
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DISCUSSION 

 

The present study highlighted the existence of rhythmic patterns on the studied 

plants, which involved different processes and periods depending on the variety. A 

three-week rhythm was observed in X3305 and concerned mainly the elongation 

processes in the aerial part (leaf expansion and increases in shoot length, Fig. 1) 

while a two-week rhythm was observed in Ariane, mainly in R2 emergence and in a 

lesser extent in leaf emergence (Fig. 1 and 3). However, due to the low number of 

studied plants and to the development stage of the young plants that were just issuing 

from in vitro culture and still in acclimation phase, the fluctuations in growth 

observed in the present study are not equivalent to previous observations in the field 

(for instance Abbott, 1984 or Costes and Lauri, 1995). In particular, the number of 

leaves developed as well as their rhythm of emergence were very low. In Ariane, the 

fact that the successive leaves tended to emerge each two weeks while the total 

number of leaves per plant was not different between the varieties indicates that the 

number of new leaves which developed at once, and consequently the “signal” 

recorded, was particularly low. On the other hand, leaves emerged more 

synchronously in Ariane than in X3305. The differences in the leaf emergence 

rhythm between varieties are consistent with a stable leaf emergence rate for a given 

variety as demonstrated previously in peach (Kervella et al., 1995).  These 

differences could also be due to different adaptations of the varieties to the 

experimental conditions. Indeed, environmental conditions such as temperature, 

light, water and nitrogen supply have been shown to influence growth components in 

many crops (Médiène et al., 2002; Zhu et al., 1999). The interaction between 
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environmental conditions and variety behaviour could thus be further investigated 

since, in the present study, different environmental conditions were not compared. 

 

The variations in leaf area and shoot length were rhythmic only in X3305, with a 

three-week rhythm (Fig.1). In Ariane, these processes were in opposition phase every 

two weeks. In both varieties, leaf and shoot elongation occurred synchronously (Fig. 

3). This synchrony was symmetric and very clear in X3305 while it was only a 

tendency in Ariane. Increase in leaf area and shoot length occurred with a delay of 

one week after leaf emergence in X3305 while no clear synchronism between leaf 

emergence and elongation processes appeared in Ariane. This lack of synchronism in 

Ariane may be due to the weakness of the leaf emergence signal. The existence of 

dependency between leaf emergence and shoot elongation was established many 

years ago through defoliation experiments which suppressed further shoot elongation 

(Abbott, 1984). Further investigations have shown the role of hormones in this 

dependency, in particular auxin and gibberellins (Steffens and Hedden, 1992; Zhao et 

al., 2002). The present study provides information on the relative timing of the 

processes and suggests that both this timing and the intensity of the signal could be 

variety dependent.  

 

The growth rate observed in primary roots varied from 0.2 to 1 cm per day without 

any significant difference between varieties. These values are similar to those found 

in young citrus trees (Bevington, 1985), peach trees (Pagès et al., 1993) and oil 

palms (Jourdan and Rey, 1997) but lower than those observed in rubber tree taproots 

(Thaler and Pagès, 1996). In many other studies, root growth rates have been 

measured using different methods such as the selective placement of 32P (Atkinson, 
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1974) or the dried and fresh weight (Kuehny and Halbrooks, 1993; Zhu et al., 2003) 

which would not have allowed us to do a direct comparison of the results. The 

1 

2 

growth rate of secondary roots was about half as low as that of primary roots. This 

decrease in growth rates with the successive branching orders is consistent with 

previous observations carried out in different species, for instance on oak tree 

(Riedacker et al., 1982), peach tree (Pagès et al., 1993) or oil palm (Jourdan and Rey, 

1997).  
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In addition, our results highlighted a significant difference in the growth rate of 

secondary roots between the two studied varieties even though a large heterogeneity 

between plants of the same variety was also observed. On average, secondary roots 

grew faster in Ariane than in X3305. Similarly, the life span of the secondary roots 

was different between the two varieties. In Ariane the secondary roots had a slightly 

lower longevity than those of X3305. In both varieties, the life span of secondary 

roots decreased exponentially over time and, consequently, most of the secondary 

roots died within the first seven days of emerging. Despite different experimental 

conditions, the range of life spans of the secondary roots is consistent with previous 

studies and with about 20% of secondary roots surviving more than 14 days, apple 

secondary roots appear to have a low to intermediate longevity, as previously stated 

for fine roots by Wells and Eissenstat (2001). For comparison, 40% and 6% of the 

roots survived more than fourteen days in Prunus avium and Picea sitchensis 

respectively (Black et al., 1998).  

 

The branching density, calculated along selected primary roots which grew 

throughout the observation period, was also significantly different between the two 
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studied varieties. The values obtained in the present study varied from 0.8 to 0.4 

secondary roots per cm on average, according to the variety, and were in the same 

range of values as those for the peach tree, as mentioned by Pagès et al. (1993). The 

difference in root branching density between varieties showed that the root systems 

of Ariane plants were half as branched than those of X3305 plants. This result 

combines with the difference in growth rate to show that each variety has specific 

rules that lead to a different hierarchy between the primary and secondary roots and 

thus to different root architecture. These structural differences may lead to different 

capabilities in terms of soil exploration and possibly in nutrient uptake since fine root 

physiology has been shown to depend upon root age and branching order (Wells and 

Eissenstat, 2003; Comas and Eissenstat, 2004). Moreover, recent studies have 

demonstrated that different internal hormone concentrations and transports, as well 

as external concentrations in ions and plant susceptibility could explain differences in 

root system architecture (Bhalerao et al., 2002, Lopez-Bucio et al., 2003). Our 

experimentation was designed to provide similar nutrient availability to all plants, 

ensuring a negligible effect of external concentrations of ions on root elongation and 

lateral root initiation. Thus, two main assumptions remain: that there are differences 

in variety susceptibility to external concentrations in ions and differences in hormone 

concentration or transport. However, we are not able at this stage of our investigation 

to focus on one particular hormone among those possibly involved, i.e. auxin, 

cytokinines, ABA and gibberellins (e.g. Casson and Lindsey, 2003). 

 

In terms of the dynamics of root growth, fluctuations were observed in the number of 

R2 and in their growth rates, in both varieties, while R1 growth did not exhibit any 

evident rhythm (Fig. 3). Even though, as far as we know, no study on apple tree roots 
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has focused on the root dynamics depending on branching order, similar fluctuations 

in root growth rates were observed in other perennial species (Drew and Ledig, 1980; 

Kuehny and Halbrooks, 1993; Thaler and Pagès, 1996). The relationships between 

the emergence of secondary roots and the fluctuations in the growth of primary roots 

was indicated mainly through positive cross-correlation coefficients between the 

number of new R2 and the R1 mean length during the current week (Fig. 4). Such 

relationships between growth and branching of primary roots are consistent with 

previous results obtained in the peach tree (Pagès et al., 1993).  

 

The fluctuations in R1 length were synchronous with the emergence of leaves but 

with different rhythms and synchronisms between varieties (Fig. 5). The existence of 

synchronisms between these two processes in the current week in Ariane, or in the 

week before R1 elongation in X3305, suggests that leaf emergence may be involved 

in the timing of primary root elongation. Furthermore, R2 emergence also exhibited a 

rhythmic synchronism with leaf emergence but their cross-correlation coefficients 

were higher for positive lags than for negative lags (Fig. 6). Thus, in contrast to 

primary roots, secondary roots were synchronous with the leaf emergence that 

occurred after them or inversely new leaves were correlated to the number of new R2 

developed in the previous weeks. This suggests that new secondary roots enhanced 

the emergence of new leaves, possibly via a feedback effect which could result from 

an increase in water and nutrient uptake and supply towards the aerial part. 

 

R2 emergence also showed significant cross-correlation coefficients with the 

variations in leaf area (Fig. 6). This relationship was more pronounced in X3305 than 

in Ariane, the lack of clear synchronism in Ariane being interpreted previously as a 
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consequence of the weakness of the aerial signals. In X3305, an opposition phase 

between the variations in leaf area and both the R2 emergence and growth rate was 

observed in the current week. This result is consistent with a previous study carried 

out in the rubber tree by Thaler and Pagès (1996) and with the assumption of a 

possible dependence between root branching and leaf development. Indeed, the 

initiation of secondary roots may be enhanced by growth factors synthesised in 

growing leaves such as auxin (Pagès et al., 1993) which has also been reported to be 

involved in shoot-root relationships in apple trees, especially via xylem 

differentiation (Soumelidou et al., 1994; Kamboj, 1997). 

 

In conclusion,  the synthesis of the results obtained in the present study led us to 

propose a conceptual model which represents the root-shoot relationship as a cyclic 

process including three steps (Fig. 7). Indeed, leaf emergence was followed by 

variations in R1 length (or synchronous with them in Ariane) which was followed by 

new R2 emergence, while this latter event impacted on further leaf emergence. A 

parallel loop concerns the fluctuations in leaf area which follow leaf emergence and 

may, as R1 growth, enhance R2 emergence. This integrated view of the plant is 

consistent with the existence of a functional equilibrium between shoots and roots at 

the whole plant scale which is usually interpreted as a consequence of water status 

(Diaz-Perez et al., 1995), limitation in carbon acquisition (Drew, 1982) or carbon 

and nitrogen partitioning (Marcelis, 1996). This equilibrium has also been assumed 

to develop models of partitioning (e.g. Minchin and Thorpe, 1996; Thornley, 1998). 

Even though the proposed scheme needs further confirmation at the adult stage, on 

other crops and in other environmental conditions, it supports the assumption that the 
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root-shoot equilibrium could involve the relative dynamics of both aerial and root 

parts and could have consequences on the structural organisation of the root system. 
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TABLE 1: Total number of leaves, leaf area (LA), shoot length, basal diameter and 
number of primary roots per plant, of young ‘X3305’ and ‘Ariane’ apple plants 
sixteen weeks after transfer from in vitro culture. Standard deviation are indicated in 
italics between brackets. Significant differences between varieties were tested by a 
Kruskal-Wallis non-parametric ANOVA (ns: non-significant; * : significant with p < 
0.05; ** : significant with p < 0.01). 

 
Variety  Nb of leaves Leaf area 

(mm²) 
Shoot length 

(mm) 
Basal diameter 

(mm) 
Nb of R1 

 
X3305 

  
16 (4.85) 

 
122.82 (86.42)

 
56.70 (41.90)

 
3.10 (0.41) 

 
19.2 (12.95)

Ariane  19 (5.61) 122.36 (102.99) 49.16 (47.93) 2.84 (0.47) 18.6 (9.02) 
       
Varietal effect ns ns ns ns     ns 

 

 
 
 
 
 
TABLE 2: Mean length, growth rate, branching density, and number of secondary 
roots of a selection of primary roots (R1), which grew all over the observation period 
(sixteen weeks after transfer from in vitro culture), on young ‘X3305’ and ‘Ariane’ 
apple plants. Standard deviations are indicated in italics. Significant differences 
between plants and varieties were tested by a Kruskal-Wallis non-parametric 
ANOVA (ns: non-significant; *: significant with p < 0.05; **: significant with p < 
0.01). 
 
 

 
 

Cv   Nb of 
Selected R1 

Total Length 
(cm) 

Growth rate
(cm/day) 

Branching 
density 

(nb R2 / cm)

Nb of R2 

    M Std M Std M Std Total nb  
per plant 

Mean nb per 
R1 

Std 

X3305  16 43.64 8.55 0.51 0.11 0.8 0.4 747 34.00 17.61
Plant effect  ns ns ns  ns     
Ariane      19 40.42 8.14 0.46 0.10 0.4 0.3 519 16.95 12.95 
Plant effect   ns ns ns  ns     
 
Varietal effect 
 

 ns ns **  ** 
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TABLE 3: Total number of secondary (R2) and tertiary roots (R3) per plant. Mean 
and standard deviation of the total length (mm), median and centiles (25% and 75%) 
of the life span (days) are indicated for all R2 roots. The mean growth rate (mm/day) 
was calculated for R2 roots with more than one segment (Standard deviations in 
italics). Significant difference between plants and varieties were tested by a Kruskal-
Wallis non-parametric ANOVA for the life span and by a hierarchic ANOVA with 
plant effect within the variety effect, for both length and growth rate (ns: non-
significant, * : significant with p < 0.05; ** : significant with p < 0.01). 
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Cv  Total 
Nb of 

R2 

Total Length  
(cm) 

Life span 
(days) 

Nb of R2 with 
more than 1 

segment 

Growth rate
(cm/day) 

Total  
nb of R3  

   M Std Med Cent.  M Std  
X3305 747 2.01 1.63 3 0-10 410 0.24 0.13 24 
Ariane 519 2.34 2.76 0 0-8 242 0.30 0.16          20 

Variety      *         **  Hierarchic 
ANOVA Plant(Variety)     **         **  

Kruskal-
Wallis  
 
ANOVA 

Plant effect (X3305) 
Plant effect (Ariane) 
 
Varietal effect 

      ** 
      ** 
 
        * 
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FIGURE CAPTIONS 
 
FIG. 1.Sample autocorrelation functions of the variables characterising the aerial 
growth: number of new leaves (nb N), variations in leaf area d(LA), and shoot length 
d(L) calculated per plant, for two apple varieties, X3305 (a) and Ariane (b). Each 
unit on the x-axis corresponds to one lag of seven days. Autocorrelation function 
induced by the selected filter on the reference model, i.e. deterministic trend + white 
noise (        ) and randomness 95% confidence limits (---) are indicated with dashed 
lines. 
 
FIG. 2. Cross-correlation functions between variables of aerial growth calculated per 
plant and for two apple varieties: between leaf area d(LA) and shoot length d(L) for 
X3305 (a) and Ariane (c); between leaf area d(LA) or shoot length d(L) and the 
number of new leaves (nb N), for X3305 (b) and Ariane (d). Each unit on the x-axis 
corresponds to one lag of seven days. Randomness 95% confidence limits (---) are 
indicated with dashed lines. 
 
FIG.3. Sample autocorrelation functions of the variables characterising secondary 
roots, for two apple varieties X3305 (a) and Ariane (b): Number of new secondary 
roots (nbR2), their growth rate (GR R2) and mean total length (long R2). Each unit 
on the x-axis corresponds to one lag of seven days. Autocorrelation function induced 
by  the selected filter on the  reference  model, i.e.  deterministic trend  +  white noise   
(        ) and randomness 95% confidence limits (---) are indicated with dashed lines. 
 
FIG. 4. Cross-correlation functions between root variables: between the number of 
new secondary roots (nb R2), their growth rate (GR R2) and mean total length (long 
R2), calculated on selected primary roots for two apple varieties X3305 (a) and 
Ariane (c); between the number of new secondary roots (nb R2)  and the growth rate 
of primary roots (GR R1) and their mean total length (long R1), for X3305 (b) and 
Ariane (d). Each unit on the x-axis corresponds to one lag of seven days. 
Randomness 95% confidence limits (---) are indicated with dashed lines. 
 
FIG. 5. Cross-correlation functions between the number of new leaves (nbN) and the 
mean total length of primary roots (long R1) for two apple varieties X3305 (a) and 
Ariane (c); between the number of new leaves (nbN) and the growth rate of primary 
roots (GR R1) for X3305 (b) and Ariane (d). Each unit on the x-axis corresponds to 
one lag of seven days. Randomness 95% confidence limits (---) are indicated with 
dashed lines. 
 
FIG. 6. Cross-correlation functions between variables characterising the aerial 
systems and secondary roots: between the number of new leaves (nbN), leaf area 
d(LA), and number of new secondary roots (nb R2), for two apple varieties X3305 
(a) and Ariane (c); between the same variables of aerial systems and the growth rate 
of secondary roots  (GR R2), for X3305 (b) and Ariane (d). Each unit on the x-axis 
corresponds to one lag of seven days. Randomness 95% confidence limits (---) are 
indicated with dashed lines. 
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FIG. 7. Schematic representation of cyclic succession of events between aerial and 
root systems with the corresponding time delays which were highlighted in time-
series analysis (in italics). 
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(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 1. Sample autocorrelation functions of the variables characterising the aerial 
growth: number of new leaves (nb N), variations in leaf area d(LA), and shoot length 
d(L) calculated per plant, for two apple varieties, X3305 (a) and Ariane (b). Each 
unit on the x-axis corresponds to one lag of seven days. Autocorrelation function 
induced by the selected filter on the reference model, i.e. deterministic trend + white 
noise  (        )  and randomness 95% confidence limits (---) are indicated with dashed 
lines. 
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 (b)  Ariane
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FIG.3. Sample autocorrelation functions of the variables characterising secondary 
roots, for two apple varieties X3305 (a) and Ariane (b): Number of new secondary 
roots (nbR2), their growth rate (GR R2) and mean total length (long R2). Each unit 
on the x-axis corresponds to one lag of seven days. Autocorrelation function induced 
by  the selected filter on the  reference  model, i.e.  deterministic trend  +  white noise   
(        ) and randomness 95% confidence limits (---) are indicated with dashed lines. 
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FIG. 7. Schematic representation of cyclic succession of events between aerial and 
root systems with the corresponding time delays which were highlighted in time-
series analysis (in italics). 
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