
HAL Id: hal-00018848
https://hal.science/hal-00018848

Submitted on 10 Feb 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PLTL Partitioned Model Checking for Reactive Systems
under Fairness Assumptions

Samir Chouali, Jacques Julliand, Pierre-Alain Masson, Françoise Bellegarde

To cite this version:
Samir Chouali, Jacques Julliand, Pierre-Alain Masson, Françoise Bellegarde. PLTL Partitioned Model
Checking for Reactive Systems under Fairness Assumptions. ACM Transactions on Embedded Com-
puting Systems (TECS), 2005, 4(2), pp.267-301. �10.1145/1067915.1067918�. �hal-00018848�

https://hal.science/hal-00018848
https://hal.archives-ouvertes.fr

cc
sd

-0
00

18
84

8,
 v

er
si

on
 1

 -
 1

0
F

eb
 2

00
6

PLTL Partitioned Model Checking

for Reactive Systems

under Fairness Assumptions

S. Chouali, J. Julliand, P.-A. Masson and F. Bellegarde

Laboratoire d’Informatique de l’Université de Franche-Comté,

FRANCE - LIFC FRE CNRS 2661

ACM Transactions on Embedded Computing Systems (TECS), 4(2):267–301, May 2005

Abstract

We are interested in verifying dynamic properties of finite state reactive systems under fairness as-

sumptions by model checking. The systems we want to verify are specified through a top-down refinement

process.

In order to deal with the state explosion problem, we have proposed in previous works to partition the

reachability graph, and to perform the verification on each part separately. Moreover, we have defined a

class, called Bmod, of dynamic properties that are verifiable by parts, whatever the partition. We decide if

a property P belongs to Bmod by looking at the form of the Büchi automaton that accepts ¬P . However,

when a property P belongs to Bmod, the property f ⇒ P , where f is a fairness assumption, does not

necessarily belong to Bmod.

In this paper, we propose to use the refinement process in order to build the parts on which the

verification has to be performed. We then show that with such a partition, if a property P is verifiable

by parts and if f is the expression of the fairness assumptions on a system, then the property f ⇒ P is

still verifiable by parts.

This approach is illustrated by its application to the chip card protocol T=1 using the B engineering

design language.

keywords. Refinement design, PLTL model checking, fairness assumptions, out-of-core model checking.

1 Motivations

This paper is about the verification of dynamic properties of finite state systems. In our approach, reactive
systems are modeled by transition systems expressed as event systems, for example in B [Abr96], and are
specified through a top-down refinement process. We propose to express the dynamic properties (safety,
liveness) as formulae of the Propositional Linear Temporal Logic (PLTL) [MP92, AM98], and to verify them
by model checking [QS82, CES86, CGP99].

It is well known that the main drawback of the PLTL model checking [LP85, VW86] is that it cannot
handle very large finite systems. To avoid the model checking explosion, many solutions have been proposed,
such as partial order [KP88, WG93], abstraction [CC77, CGL94, DF95] and symbolic representation by BDD
[BCMD90, McM93]. For a class of PLTL properties, we propose another solution which is compatible with
the previous ones.

1.1 Our Propositions

In order to deal with the problem of the exponential blow up of the PLTL model checking, we have proposed
in [JMM01, MMJ00] a method that relies on a partitioning of the transition system into several parts. The

1

properties are verified on each part separately by an out-of-core [Tol99] model checking technique. As every
part is verified separately from the others, the other parts can be stored on disks while the part of interest
is in the main memory. We call verifiable by parts the properties that are such that if they hold on every
part of a transition system (whatever the partitioning), then they hold on the whole transition system. A
sufficient condition C on the Büchi automaton which accepts the ω-language of the negation of a property
¬P allows us to decide if P is verifiable by parts. C is a syntactic condition on the Büchi automata. Safety
and liveness properties such as 2(p ⇒ ©q), 2(p ⇒ ♦q) and 2(p ⇒ rUq) are verifiable by parts.

The fact that a property P is verifiable by parts does not depend on the way the parts are constructed.
But, when verifying P by parts, the fact that P holds on every part does depend on it. We have proposed
a partitioning based on the refinement process.

Notice that choosing a partitioning method allows more PLTL properties to be verifiable by parts. Some
PLTL properties that are not verifiable by parts for all possible partitionings might become verifiable by
parts under the hypothesis of this particular partitioning.

In this paper, we extend our verification method to liveness properties on transition systems provided
with fairness assumptions. To verify a property P under the fairness assumptions f , it is necessary to verify
that f ⇒ P holds on the transition system. The problem for verifying f ⇒ P by parts is that even if P
is verifiable by parts for all partitionings, the Büchi automata of ¬(f ⇒ P) does not in general satisfy the
condition C. However, with the fair refinement based partitioning proposed in the paper, it is enough that
a property P is verifiable by part for all partitionings, i.e. satisfy C, for having f ⇒ P verifiable by this
particular partitioning.

1.2 Related Works

The component verification of a multiprocess system is achieved by verifying the properties separately on
each component. Then, the compositionality with respect to parallel composition ensures that the properties
hold on the whole system (see [CLM89, KL93, KV98, AdAHM99, KKPR99]). Generally, this method allows
verifying safety properties because a component extracted from its environment is an abstraction of the
parallel system. For example, [KL93] proves that C1‖C2 satisfies an invariant I1∧I2 by proving that I2 ⇒ I1

holds on C1, and that I1 ⇒ I2 holds on C2. These methods are called assume guarantee paradigm. Some
methods, like in [CGK97], use also a component verification of liveness properties. In our approach, a part is
not a component of a parallel composition. Our partitioned method is additive whereas the compositionality
is multiplicative.

In this paper we present a fair refinement that can be compared with the works on fair simulation
presented in [HKR97, GL94, KV96, DHWT91]. The fair refinement differs from the fair simulation in the
following points:

• The fair refinement concerns fair transition systems which models action systems, whereas the fair
simulation is concerned by the “state systems” modeled as Kripke structures. In the fair refinement,
fairness assumptions are expressed on transitions. In Kripke structure, fairness assumptions are ex-
pressed on states.

• The fair refinement is a fair τ -simulation because we add new actions in the refined system which are
not observable (τ -actions) in the abstract one.

• The fair refinement is a state simulation, as is the fair simulation, but it is also an action simulation,
i.e. the sequence of abstract actions is a τ -simulation of the sequence of refined actions. This means
that the refined sequence of actions is identical to the sequence of abstract actions, in which finite
sub-sequence of τ -actions are interleaved.

• The verification of the fair refinement is linear in the size of the refined system, but the verification of
the fair simulation is polynomial [HKR97].

2

Our method can be combined with the parallel composition of components. We have proved in [BJK02]
that the parallel composition is compatible with the refinement, i.e. if C1 is refined by C3 then C1 ‖ C2 is
refined by C3 ‖ C2.

Paper Organization. The paper is organized as follows. The preliminaries (Section 2) presents the
notation and the concepts of fair transition systems, PLTL and Büchi automata. After a presentation of our
refinement relation in Section 3, we explain the partitioned model checking technique in Section 4. Section 5
studies the extension of the partitioned verification principles to fair transition systems. Section 6 gives
an example of an application to this technique, and some experimental results are discussed in Section 7.
Finally, we situate our concerns and give some ideas about future works in Section 8.

2 Preliminaries

2.1 Transition systems

We introduce a finite set of variables x ∈ V with their respective finite domains Dx. Let APV
def

= {x = v |
x ∈ V, v ∈ Dx} be a set of atomic propositions over V .

Definition 2.1 (Transition System) Let Act be a nonempty alphabet of labels (names of actions). A

transition system TS
def

= 〈S0, S, Act,→, L〉 interpreted over V has a set of initial states S0 included in a finite
set of states S, a labelled transition relation →⊆ S×Act×S that must be total, and a state labelling function
L : S → 2APV .

This is a labelled and interpreted transition system. A labelled transition relation → is a set of triples
(s, a, s′) (written as “s

a
→ s′”). It is an interpreted transition system because each state is decorated with a

set of atomic propositions. Notice that the set of atomic propositions which is associated to a state s must
be consistent, i.e. if x = v ∈ L(s) and x = v′ ∈ L(s) then v = v′.

Remark 2.2 As the transition relation is total, there can be no deadlock in a transition system. If a state

s has no successor, a transition s
Skip
→ s (where Skip does not belong to Act) is added to obtain a transition

system.

Definition 2.3 (Execution) An execution of a transition system 〈S0, S, Act,→, L〉 is an infinite alternating

sequence σ
def

= s0
a0→ s1

a1→ s2 · · · si
ai→ si+1 · · · of states and actions such that s0 ∈ S0 and for every i ≥ 0, we

have si
ai→ si+1 ∈→ [KLM+02].

We denote by ΣTS the set of all the executions of a transition system TS.

Definition 2.4 (Fragment of an execution) We say that σ′ is a fragment of an execution σ (written as
σ′ ⊂ σ) if the sequence of transitions (finite or infinite) executed in σ′ is also executed in σ.

We note s
∗
→ s′ (resp. s

+
→ s′) the fragments of executions leading from s to s′ by executing zero (resp.

one) or many transitions.

Definition 2.5 (Cycle) A cycle of a transition system TS is a finite fragment c
def

= s0
a0→ s1

a1→ · · ·
an−1

→ sn

of an execution of TS, such that sn = s0 and for all 0 ≤ i, j < n, if i 6= j then sj 6= si.

We extend a finite fragment σ′ def

= si
ai→ si+1 · · · sk−1

ak−1

→ sk to an execution σ
def

= si
ai→ si+1 · · · sk−1

ak−1

→

sk
Skip
→ sk

Skip
→ sk · · · and we call it an extension.

Definition 2.6 (Trace of (a fragment of) an execution) The trace of an execution or a fragment of
an execution σ, written as tr(σ), is the sequence of the labels of the transitions executed in σ.

3

Let TS2 be a transition system. The τ -transition system of TS2 on Act1, written as τ -TS2, is a transition
system identical to TS2 where the names of the actions of Act2 which do not belong to Act1 are named τ .

Definition 2.7 (τ-transition system) Let Act1 bet a set of actions. Let TS2 = 〈S02
, S2, Act2,→2, L2〉

be a transition system, such that Act1 ⊆ Act2. We call τ-transition system of TS2 on Act1, the transition
system τ-TS2 = 〈S02, S2, Act1τ ,→2τ , L2〉 such that Act1τ = Act1 ∪ {τ}, and the relation →2τ is defined as:

→2τ
def

= {s2
τ
→ s′2 | s2

a2→ s′2 ∈→2 ∧ a2 ∈ Act2 ∧ a2 6∈ Act1} ∪ {s2
a1→ s′2 | s2

a1→ s′2 ∈→2 ∧ a1 ∈ Act1}.

Any cycle c such that tr(c) ∈ τ∗ is called a τ -cycle.

2.2 Fair transition systems

We note Infs(σ) the set of states occurring infinitely often in an execution σ. We note Inft (σ) the set of
transitions occurring infinitely often in σ. We note In(T) the set of states which are source of transitions in
a set of transitions T . That is,

• Infs(σ)
def

= {s | σ = s0
a0→ s1 · · · si

ai→ si+1 · · · ∧ s = si for infinitely many i},

• Inft(σ)
def

= { t | σ = s0
a0→ s1 · · · si

ai→ si+1 · · · ∧ t = si
ai→ si+1 for infinitely many i},

• In(T)
def

= {s | s
a
→ s′ ∈ T }.

Notice that in [MP95], fairness requirements are expressed on transitions. Here, we express fairness
requirements on actions. Fair transition systems model fair action systems. Therefore, the user expresses
fairness constraints in the form of fair actions. In a fair transition system, a fair action is expressed by a set
Fi of the transitions which have the name of this action as a label.

Definition 2.8 (Fair transition system) Let TS = 〈S0, S, Act,→, L〉 be a transition system. Let F be
a set of fairness constraints {F1, F2, · · · , Fm} where every Fi ⊆→ is a set of the transitions expressing
one fairness constraint. The fair transition system FTS is the tuple 〈S0, S, Act,→, L,F〉 (often written as
〈TS,F〉) such that

(a) (s1
a
→ s′1 ∈ Fi ∧ s2

b
→ s′2 ∈ Fi) ⇒ (a = b),

(b) (s
+
→ s′ ∈→+ ∧ s

a
→ s′ ∈ Fi) ⇒ ∃(s1, s

′
1) · (s

+
→ s′ = s

∗
→ s1

a
→ s′1

∗
→ s′ ∧ s1

a
→ s′1 ∈ Fi),

(c) (s
a
→ s′ ∈ Fi ∧ s

a
→ s′′ ∈ →) ⇒ (s′ = s′′).

Let us comment on the three constraints (a), (b) and (c).

(a) Each element Fi of F expresses one fairness assumption involving one fair action. Therefore, all the
transitions of Fi have the same label.

(b) For each transition s
a
→ s′ of Fi, there does not exist a fragment of execution beginning in s and ending

in s′ that does not contain a fair transition of Fi. This constraint allows expressing fairness as a PLTL
property (see Section 2.4)

(c) We require determinism for a fair action since it comes from the environment. So, for each transition

s
a
→ s′ of Fi, there does not exist another transition s

a
→ s′′, such that s′ 6= s′′. This constraint allows

verifying the refinement in linear time (see Section 3.3)

We call fair transition a transition of a set Fi ∈ F .

Definition 2.9 (Fair execution (computation)) An execution of FTS = 〈TS,F〉 (also called a compu-
tation in [MP95]), obeys the fairness requirements F , which means that: (i ∈ [1..m] ∧ s ∈ Infs(σ) ∧ s ∈

In(Fi)) ⇒ ∃(s′, a, s′′) · (s′
a
→ s′′ ∈ Fi ∧ s′

a
→ s′′ ∈ Inft(σ)).

4

The set ΣFTS only contains computations. In other words, an execution σ is fair if it is true that “if
some transition of any Fi is enabled infinitely often by σ, then some transition of Fi is taken infinitely often
by the execution σ”.

The executions of a transition system which do not satisfy fairness requirements are called unfair execu-
tions.

Property 2.10 An execution σ that contains infinitely often two states s and s′ which are in relation by
a fair transition s

a
→ s′ in Fi is a computation. So, (s ∈ Infs(σ) ∧ s′ ∈ Infs(σ) ∧ s

a
→ s′ ∈ Fi) ⇒

∃(s1, s
′
1) · (s1

a
→ s′1 ∈ Fi ∧ s1

a
→ s′1 ∈ Inft(σ)).

Proof. Let σ be an execution that contains s and s′ infinitely often. By the constraint (b) in Definition 2.8,
σ contains a fair transition labelled by a infinitely often. Therefore, σ is a computation. 2

Definition 2.11 (Fair Exiting Cycle) Let c = s0
a0→ s1

a1→ · · ·
an−1

→ s0 be a cycle of a fair transition

system. The cycle c is a fair exiting cycle if there exists a transition t = si
a
→ s′ of a fairness constraint Fj ,

such that s′ 6= si, with i ∈ [0 · · ·n] and j ∈ [1 · · ·m].

We call such a transition t an exit transition for a cycle c. By this definition we deduce that the
computations of a system do not run around fair exiting cycles infinitely many times because they must take
exit transitions.

2.3 Gluing Invariant

Let SPV be a set of state propositions over V defined by the grammar

p ::= ap | p ∨ p | ¬p where ap ∈ APV .

Definition 2.12 (Validity of a state proposition) A state proposition p ∈ SPV is valid1 for a state s of
a (fair) transition system (written as s |= p) if

• s |= ap iff ap ∈ L(s),

• s |= p1 ∨ p2 iff s |= p1 or s |= p2,

• s |= ¬p iff it is not true that s � p, written as s 2 p.

Let V1 and V2 be respectively the sets of variables of two transition systems TS1 and TS2. Let SPV12
be

a set of state propositions over V1 and V2 defined by the following grammar:

q ::= ap1 | ap2 | x1 = x2 | q ∨ q | ¬q where ap1 ∈ APV1
, ap2 ∈ APV2

, x1 ∈ V1 and x2 ∈ V2.

Definition 2.13 (Validity of a state proposition on a pair of states) A proposition q ∈ SPV12
is valid

for a pair of states (written as (s1, s2) |= q) if

• (s1, s2) |= ap1 iff ap1 ∈ L1(s1),

• (s1, s2) |= ap2 iff ap2 ∈ L2(s2),

• (s1, s2) |= x1 = x2 iff
∃v · (v ∈ Dx1

∧ v ∈ Dx2
∧ (x1 = v) ∈ L1(s1) ∧ (x2 = v) ∈ L2(s2)),

• (s1, s2) |= q1 ∨ q2 iff (s1, s2) |= q1 or (s1, s2) |= q2,

• (s1, s2) |= ¬q iff it is not true that (s1, s2) |= q.

1we also say that “p holds on s”

5

We call gluing invariant, a state proposition of SPV12
which expresses how the variables from the abstract

and the refined transition systems are linked together.

Definition 2.14 (Gluing invariant) A state proposition I12 ∈ SPV12
is a gluing invariant of two (fair)

transition systems (F)TS1 over V1 and (F)TS2 over V2, if I12 is an invariant on S1×S2 (i.e. (s1, s2) |= I12

for all pairs (s1, s2) of S1 × S2), and I12 is a total function from S2 to S1.

We require I12 to be a total function from S2 to S1 because it allows partitioning TS2 (see Section 3.1).

2.4 PLTL

Here, we define all future PLTL formulas with the two temporal operators, Next (©) and Until (U). We
also use the following notations: ♦P (eventually P) defined as true U P , 2P (always P) defined as ¬♦¬P ,
and P1 ⇒ P2 defined as ¬P1 ∨ P2. The composition of the temporal operators 2♦ means infinitely often.

In order to verify PLTL formulas on a (fair) transition system (F)TS, we extend Definition 2.12 to the
PLTL semantics on the executions (or computations) in a standard way.

Definition 2.15 (PLTL) Given PLTL formulas P, P1, P2 and an execution σ (or computation), we define

P to be valid at the state sj, j ≥ 0, on an execution σ = s0
a0→ s1

a1→ · · · , sj

aj

→ · · · (written as (σ, j) |= P) as
follows:

• (σ, j) |= ap iff ap ∈ L(sj),

• (σ, j) |= ¬P iff it is not true that ((σ, j) |= P), written as (σ, j) 6|= P ,

• (σ, j) |= P1 ∨ P2 iff (σ, j) |= P1 or (σ, j) |= P2,

• (σ, j) |= ©P iff (σ, j + 1) |= P,

• (σ, j) |= P1UP2 iff ∃k · (k ≥ j ∧ (σ, k) |= P2 ∧ ∀i · (j ≤ i < k ⇒ (σ, i) |= P1)).

When (σ, 0) |= P we say that “P holds on σ” and we note σ |= P .
Now, we extend Definition 2.15 to transition systems.

Definition 2.16 (Validity of a PLTL formula on a (fair) transition system) A PLTL formula P is
valid for a (fair) transition system (F)TS, written as (F)TS |= P , if ∀σ · (σ ∈ Σ(F)TS ⇒ σ |= P).

The PLTL allows expressing many dynamics properties such as safety, liveness and fairness. Fairness
assumptions expressed by the set F are described by the PLTL formula

f
def

=

m∧

i=1

2(23

∨

s
a
→s′∈Fi

(
∧

ap∈L(s)

ap) ⇒ 3

∨

s
a
→s′∈Fi

(
∧

ap′∈L(s′)

ap′)) (1)

which means that if a transition t = s
a
→ s′ of a fairness constraint Fi is infinitely often enabled, then a

transition of Fi must be taken infinitely often. This description is correct because of Property 2.10.
It is important to notice that the verification of a PLTL formula is the same on a transition system TS

and on a τ -transition system τ -TS.

Property 2.17 τ-TS |= P iff TS |= P .

Proof. The sequences of states which compose the executions in Στ−TS and ΣTS are the same by Defi-
nition 2.7. Since the PLTL satisfaction in Definition 2.15 is verified only on the sequences of states of the
executions, Property 2.17 holds. 2

A property of a system expressed as a PLTL formula is referred to as a PLTL property.

6

2.5 Büchi Automata and Executions Acceptance

We associate to a PLTL formula P a Büchi automaton denoted BP . The automaton BP accepts all the
executions on which P holds.

Definition 2.18 (Büchi automaton) A Büchi automaton is a 5-tuple B = 〈q0, Q, SPV ,→B, A〉 where:

• Q is a finite set of states (q0 ∈ Q is the initial state),

• →B is a finite set of transitions labelled by elements of SPV : →B⊆ Q × SPV × Q,

• A ⊆ Q is the set of accepting states of the automaton.

Similarly to the notion of execution of a transition system, an infinite alternating sequence of states of B
and state propositions in SPV is called a run of B. We denote by ΣB the set of all the runs of B. A run of
B is accepting if at least one of the accepting states appear infinitely often in the run.

Definition 2.19 (Execution Acceptance) An execution σ = s0
a0→ s1 · · · si

ai→ si+1 · · · ∈ ΣTS is accepted

by a run π = q0
p0
→ q1 · · · qi

pi
→ qi+1 · · · ∈ ΣB if

i) π is a run of B on σ: ∀i · ((0 ≤ i ∧ qi
pi
→ qi+1 ∈→B) ⇒ si |= pi),

ii) the run is accepting: Infs(π) ∩ A 6= ∅.

3 Refinement

In this section, we express the refinement semantics as a relation between fair transition systems because
we want to verify PLTL properties under fairness assumptions during the development by the refinement
process. We improve the refinement relation between transition systems defined in [BJK00] by the fairness
preservation clause in order to obtain the fair refinement relation.

We define the refinement relation as a state and action simulation which allows us to exploit a partition
of the refined transition system state space into parts. With such a partition we are able to deal with the
model checking blow-up by verifying PLTL properties of the refined system in a partitioned way. Moreover
the fairness constraints of the environment make some abstract system behaviors fair, and these fairness
constraints are preserved during the refinement steps. So, we want to verify PLTL properties under fairness
assumptions in a partitioned way at the refined level.

3.1 Gluing Relation and State Space Partition

In this section, we consider two fair transition systems FTS1 = 〈S01
, S1, Act1,→1, L1,F1〉 over V1 and

FTS2 = 〈S02
, S2, Act2,→2, L2,F2〉 over V2 giving the operational semantics of a system at two levels of

refinement. The relation between the variables V1 and V2 is defined using a gluing invariant I12. Our goal
is to verify that FTS1 is refined by FTS2 (written as FTS1 ⊑f FTS2) according to I12.

In our approach, the refinement main features are as follows.

1. The refinement introduces new actions, so Act1 ⊆ Act2.

2. The refinement renames variables, so V1 ∩ V2 = ∅.

3. The refinement introduces a gluing invariant, I12.

Before defining the refinement relation, we define the gluing relation µ as a total function from S2 to S1.
The refinement relation is the gluing relation restricted by additional clauses.

7

3.1.1 Gluing Relation and State Space Partition

We define a binary relation µ ⊆ S2 × S1 allowing us to express the relation between the states of two
transition systems TS1 and TS2.

Definition 3.1 (Glued states) Let I12 be the gluing invariant. The state s2 ∈ S2 is glued to s1 ∈ S1 by
I12, written s2 µ s1, if (s1, s2) |= I12.

Since µ is a total function from S2 to S1, we can define an equivalence relation ∼µ between states of the
refined transition system.

Definition 3.2 (Equivalence class) Consider a state s1 ∈ S1. EC(s1) is an equivalence class of S2/∼µ

if, for every state s2 ∈ EC(s1), we have s2 µ s1.

3.2 Refinement Relation

In this section, we define the refinement of two fair transition systems as a particular kind of simulation and
we view it as computations containment. For that, we restrict µ into a function ρf which relates a refined
fair transition system to one of its abstractions.

This relation allows us to distinguish some elements of the state space partition that we call parts. This
partition is used either to prove an invariant of a part or to verify state propositions of a PLTL formula
which are verified on a part (see Section 4). In order to describe the refinement, we keep the transitions of
FTS2 labelled over Act1 but the new ones (from Act2 \Act1) introduced by the refinement are considered as
non observable τ moves. These τ moves hide the transitions of the parts viewed as transition systems (see

Fig. 1). Let Act1τ
def

= Act1 ∪ {τ}. In the above parts, it is certainly not desirable that τ moves take control
forever. Therefore, infinite τ -executions are forbidden.

Let Sc2 be the set of the states of S2 (see Fig. 1) which are targets of a transition labelled by an abstract
action, and are glued with the states of S1 sources of at least a transition in a fairness constraint Fi. For
example, Sc2 is the set {s2, w} in Fig. 1. Any cycle at the refined level refining an abstract fair exiting cycle
contains a state of the set Sc2. Let σ be a computation which runs around such a cycle c infinitely many
often – this means it reaches a state of Sc2. The computation σ must leave c infinitely often in order to
preserve the fairness constraints of the abstract level.

Sc2 = {s2 | ∃(s, a′
1).(s

a′

1→ s2 ∈→2) ∧ ∃(s1, s′1, a1).(s1
a1→ s′1 ∈

⋃m1

i=1 F1i) ∧ F1i ∈ F1 ∧ s2µs1}.

Let T1 : Sc2 → 2→1 be a total function. We denote by T1(s2) the set of the abstract fair transitions, such
that their source states are glued with the state s2 by the relation µ. For example, T1(s2) is the set {t1}
and T1(w) is the set {t} in Fig. 1. The computations in which the state s2 appears infinitely often, execute
infinitely often the transitions of →2 which refine the transitions of T1(s2).

T1(s2) = {t1 | t1 = s1
a1→ s′1 ∧ t1 ∈

m1⋃

i=1

F1i ∧ F1i ∈ F1 ∧ s2 µ s1}.

Let τ -FTS2 = 〈S02
, S2, Act1τ ,→2τ , L2,F2〉 be the fair transition system resulting from FTS2 and Act1.

Let s1 be a state of FTS1 (s1 ∈ S1) and s2 be a state of FTS2. Let a be a name of action of FTS1, a ∈ Act1.

Definition 3.3 (ρf relation) Let FTS1 and τ-FTS2 be respectively two fair transition systems provided
with a gluing invariant I12. The relation ρf ⊆ S2 × S1 is defined from I12 as the greatest binary relation
included into µ satisfying the following clauses:

1. strict refinement of abstract transition

(s2 ρf s1 ∧ s2
a
→2τ s′2) ⇒ ∃s′1 · (s1

a
→1 s′1 ∧ s′2 ρf s′1),

8

��
��
��

��
��
��

µ s

v

w

 s’

a1

 1
a’ 1

1 s

a1

1

a’’ 1

a’

2 s

 2 s’

 2 s’’

 u

τ

τ

µ

µ

µ

µ

µ

µ

µ

µ

s’ 1

 1

τ

a

a’’

1 a

τ

τ

Figure 1: Refinement of a fair exiting cycle. The fair transitions at the abstract level are: t = s
a1→ s′ and

t1 = s1
a1→ s′1, such that F1i = {t, t1}, i ∈ [1 . . .m1] and F1 = {F1i}. The transitions t and t1 are the exit

transitions of the cycle at the abstract level. At the refined level the state s2 belongs to the set Sc2. So, it is
linked by the relation ρf to a state s1 which is a source state of the fair transition t1 (t1 ∈ F1i). Therefore
T1(s2) = {t1}.

2. τ-divergence freeness

∀σ · (σ ∈ Στ−FTS2
⇒ ∀m · (m ∈ Act1

∗

τ ⇒ tr(σ) 6= m · τω)),

3. stuttering of τ-transitions

(s2 ρf s1 ∧ s2
τ
→2τ s′2) ⇒ s′2 ρf s1,

4. abstract fairness preservation (see Fig. 1)

s2 ρf s1 ∧ s2 ∈ Sc2 ∧ s1
a1→ s′1 ∈ T1(s2) ∧ i ∈ [1 . . .m1] ∧ s1

a1→ s′1 ∈ F1i ∧ s2 ∈ Infs(σ2) ∧ σ2 ∈

ΣFTS2
⇒ ∃(s, s′, u, v).(s

a1→ s′ ∈ F1i ∧ u
a1→ v ∈ Inft(σ2) ∧ u ρf s ∧ v ρf s′),

5. non reduction of the abstract fairness constraints (see Fig. 1) s2 ρf s1 ∧ s2 ∈ Sc2 ∧ s1
a1→

s′1 ∈ T1(s2) ⇒ ∃(σ2, s
′
2, s

′′
2).(σ2 ∈ ΣFTS2

∧ s′2
a1→ s′′2 ∈→2 ∧ s′2ρfs1 ∧ s′′2ρfs′1 ∧ (s2 ∈ Infs(σ2) ⇒

s′2
a1→ s′′2 ∈ Inft(σ2))).

Clauses 1-3 are already defined in [BJK00] in order to define the refinement relation between two tran-
sition systems. In this paper, we have added Clause 4 in order to define the refinement relation between
fair transition systems. Notice that the presence of Clause 2 guarantees the monotonicity of an iterative
construction of the relation ρf and, this way, the existence of this relation.

Clauses 1-3 of Definition 3.3 imply that all the τ -fragments (i.e. sequences of τ -transitions) are finite and
are followed by a transition labelled in Act1. Therefore, τ -livelocks are forbidden. In fair transition systems,
the executions which run around τ -cycles infinitely many times without taking their exit transition infinitely
often, are called τ -executions. New fairness assumptions must be introduced in the refined level in order to
forbid τ -executions.

The aim of Clause 4 and Clause 5 is to preserve the abstract fairness constraints. At the abstract level,
fairness constraints express restrictions in some executions of the system. The excluded executions are those

9

· · · • • •
a

// •
b

// • • • · · ·

· · · •
τ

//

ρf

777w7w7w7w7w7w7w7w7w
•

τ

??

?�
?�

?�
?�

•

ρf

OO

O�
O�
O�

a
// •

ρf

OO

O�
O�
O�

τ
// •

__

_�
_�

_�
_�

τ
•

ρf

gg g' g' g' g' g' g' g' g' g' b
// •

ρf

gg g' g' g' g' g' g' g' g' g'
· · ·

Figure 2: Included computations

which run around fair exiting cycles infinitely many times without taking their exit transitions infinitely
often, they are not computations.

Clause 4 and Clause 5 are illustrated by Fig. 1 which represents the refinement of a fair exiting cycle.
In this case, the relation ρf between τ -FTS2 and FTS1 satisfies Clause 4 if and only if every execution
σ of τ -FTS2 in which the state s2 (or the state w)occurs infinitely often (s2 belongs to a fair exiting
cycle) activates infinitely often a transition of τ -FTS2 which is simulated 2 by a transition in F1i (because

t1
def

= s1
a1→ s′1 ∈ F1i). Therefore, computations must activate infinitely often either the transition s′2

a1→ s′′2
(see Fig. 1) (this transition is simulated by the transition t1), or the transition u

a1→ v (this transition is

simulated by the transition t and t
def

= s
a1→ s′ ∈ F1i).

The relation ρf between τ -FTS2 and FTS1 satisfies Clause 5 if and only if there exists executions of
τ -FTS2 which reaches infinitely often the states of SC2, i.e. s2 and w respectively (they are simulated by
the states sources of the fair transitions t1 and t respectively), and activates infinitely often the transitions
of τ -FTS2 which are simulated by t1 and t respectively.

So, Clauses 4 and 5 show that any cycle c2 of τ -FTS2 which is simulated by a fair exiting cycle c1, must
satisfy the following conditions:

• c2 must be a fair exiting cycle,

• if the exit transitions of c1 are the transitions t and t1 (see Fig. 1), then the computations which run

around c2 infinitely often, must activate infinitely often the transition u
a1→ v or the transition s′2

a1→ s′′2
because they are simulated respectively by t and t1,

• the cycle c2 must have at least the same number of exit transitions as c1.

Clause 4 and Clause 5 ensure that we have a refinement relation which preserves the abstract fairness
constraints, and which also preserves the PLTL properties. It means that, a PLTL property satisfied at the
abstract level is also verified at the refined level. For this, it is necessary that each computation of the refined
level is simulated by a computation of the abstract system. This is guaranteed by Clauses 4 and 5. Abstract
fairness assumptions are reformulated and introduced at the refined level in order to satisfy Clauses 4 and 5.

When the fair refinement relation holds between two fair transition systems FTS1 and FTS2, the exe-
cutions of TS2 which satisfy fairness assumptions also satisfy Clause 2 and Clause 4.

Remark 3.4 Intuitively, the relation ρf implies computations containment. Given ΣFTS1
and Στ−FTS2

,
Clauses 1, 2 and 3 of Definition 3.3 mean that every execution of Στ−FTS2

is linked to some execution in
ΣFTS1

(see Fig. 2). In other words, to every transition labelled a in FTS1 corresponds a fragment σ′ of an
execution of FTS2 where σ′ is composed of a sequence of τ-transitions followed by a transition labelled by a.

Definition 3.5 (Refinement) A fair transition system FTS1 = 〈S01
, S1, Act1,→1, L1,F1〉 is refined by

a fair transition system FTS2 = 〈S02
, S2, Act2,→2, L2,F2〉 provided with a gluing invariant I12, written

FTS1 ⊑f FTS2, if ∀s2 · (s2 ∈ S02
⇒ ∃s1 · (s1 ∈ S01

∧ s2 ρf s1)).

Often initial states are designed (S0i
⊆ Si). Then it is enough that ρf holds on the reachable state spaces

of both systems. If there exist τ -cycles, they must be forbidden by the new fairness assumptions.

2we say that a transition s2
a
→ s

′
2 is simulated by a transition s1

a
→ s

′
1 when s2ρf s1 and s

′
2ρf s

′
1.

10

3.3 Analysis of the refinement verification

The algorithmic verification of refinement of finite transition systems can be effectively done by a joined
exploration of the reachable state spaces. We have given a verification algorithm of the fair refinement in
[CJ03, Cho03] (the proof of the algorithm was also given).

Let | TS1 | and | TS2 | be respectively the sizes of the transition system and one of its refinement.
Suppose µ is a function. Verifying Clauses (1),(3) requires a parallel exploration of the systems TS1 and
TS2. Same goes for Clauses (4),(5) because of the constraint (c) in Definition 2.8. Therefore, the complexity
is O(|TS1 | + |TS2 |) ≃ O(|TS2 |) (because generally |TS2 |>|TS1 |). For a finite TS2, verifying Clause (2)
requires a search for τ -cycles by exploring paths, of TS2, and by following fair transitions. This verification
does not change the complexity (O(|TS2 |)).

However, if µ is not a function, the verification necessitates a joint enumeration of both systems. The
complexity becomes in O(|TS2 | × |TS1 |).

In the next section, we give an overview of how to verify PLTL properties without considering environment
fairness constraints, by a partitioned model checking, as it is presented in [MMJ00, JMM01, Mas01].

4 Partitioned Model Checking

In this Section, we present the main results of an out-of-core model checking technique that we have developed
in order to face the state explosion problem for the PLTL model checking. This technique has been presented
in [MMJ00, JMM01] for transition systems without fairness assumptions.

In order to perform model checking on large transition systems, the partitioned verification technique
relies on a simple idea: why not split the transition system into several smaller pieces, and perform the
verification on each piece separately? The pieces are called parts. Parts are transition systems as well. The
initial transition system is called the global transition system.

In order to have every transition in one part, the parts are constructed by partitioning the transitions of
the global transition system. Some states may belong to two distinct parts: they can be the target state of
a transition t in one part, and the initial state of a transition t′ in another part.

To perform a partitioned verification is to verify a property on each part separately, and to conclude that
it is globally true when it is true on every part.

Section 4.1 defines what is a property verifiable by parts, and exhibits a class of such PLTL properties.
Section 4.2 proposes a partitioning of a transition system based on the refinement.

4.1 Properties Verifiable by Parts

4.1.1 Definition of a Property Verifiable by Parts

Consider a transition system split into a set of parts (transition systems) according to a partition of its set
of transitions. Actually, it is enough that the parts are obtained by an overlapping of the transitions. Some
PLTL properties have the property to be globally true when they are true on every part. We call such
properties verifiable by parts.

Definition 4.1 (Property verifiable by parts) Let P be a PLTL property. Let TS be a transition system,
and let M be a partitioning of TS. The property P is verifiable by parts on TS if

∀M · (M ∈ M ⇒ M |= P) ⇒ TS |= P. (2)

Remark 4.2 We simply say P is verifiable by parts, instead of P is verifiable by parts on TS.

4.1.2 A Class of PLTL Properties Verifiable by parts

Before we perform a partitioned verification, we have to make sure that the properties that we want to verify
are verifiable by parts. That is, we have to prove (2) on every property. Let P be a PLTL property. Notice

11

that to prove “if P is true on every part, then it is true on the global transition system” is equivalent to
prove “if P is false on the global transition system, then it is false on one part at least”. That is, to prove (2)
is equivalent to prove (3):

¬(TS |= P) ⇒ ∃M · ∃σ · (M ∈ M ∧ σ ∈ ΣM ∧ σ |= ¬P). (3)

By using Büchi automata, we give a sufficient condition for when a PLTL property is verifiable by parts.
Consider a property P , and an execution σ on which P does not hold. Suppose that there is a state s in
σ such that every fragment of σ starting in s violates P . Then the part containing s violates P since it
contains a fragment of σ starting in s. The same idea works when a unique transition is the cause of such
a violation of the property. Because every state (and every transition) necessarily belongs to one part, we
know that the property does not hold on the part that contains this state (or transition).

We define a class Bmod of Büchi automata, and we prove that every PLTL property whose negation defines
a language that is recognized by an automaton in Bmod is a property verifiable by parts. An automaton in
Bmod has every accepting state leading only to an accepting state, and there is at most one intermediate
state between the initial state and any accepting state. Moreover, there is a loop labelled by True on the
initial state.

Definition 4.3 (Class Bmod of Büchi automata) Let B = 〈q0, Q, SPV ,→B, A〉 be a Büchi automaton.
We have B ∈ Bmod if

1. there is a loop labelled True on the initial state: q0
True
→ q0 ∈→B,

2. for any run π = q0
p0
→ q1

p1
→ q2 . . . qi

pi
→ qi+1 . . . ∈ ΣB

∃k · (k > 0 ∧ ∀i · ((0 ≤ i < k ⇒ qi = q0) ∧ (i > k ⇒ qi ∈ A))), (4)

3. ∀(q, p, q′) · (q
p
→ q′ ∈→B ∧q′ ∈ A ⇒ ∃(p′, q′′) · (q′

p′

→ q′′ ∈→B ∧p ⇒ p′)).

Theorem 4.4 All the PLTL properties whose negation defines a language that is recognized by a Büchi
automaton in the class Bmod are properties verifiable by parts.

Proof. Let P be a PLTL property and let TS be a transition system on which P does not hold. We have
¬(TS |= P), that is:

∃σ · (σ ∈ ΣTS ∧ σ |= ¬P).

Let B¬P ∈ Bmod be a Büchi automaton that recognizes the language of ¬P . There exists a run π = q0
p0→

q1
p1
→ q2 . . . qi

pi
→ qi+1 . . . ∈ ΣB¬P

of B¬P on σ on which (4) holds. With an index k as defined in Formula (4),
we consider sk−1 and sk, respectively the (k−1)-th and k-th states in the execution σ. With any partitioning

of TS, the transition sk−1
ak−1

→ sk necessarily belongs to a part M , and the state sk−1 is reachable with
transitions of M from an initial state s′0 of M . Let

σ′ = s′0
a′

0→ s′1 · · · sk−1
ak−1

→ sk · · ·

be a fragment of an execution of TS such that the suffix sk−1
ak−1

→ sk · · · is common to σ and σ′, and such

that all the transitions appearing in the prefix s′0
a′

0→ s′1 · · · sk−1
ak−1

→ sk of σ′ are transitions of M .
Consider the run

π′ = q0
True
→ q0 · · · q0

True
→ qk−1

pk−1

→ qk
pk→ qk+1 · · ·

of B¬P where the suffix qk−1
pk−1

→ qk · · · is common to π and π′. Such a run exists as B¬P ∈ Bmod and as
qk−1 = q0 by construction. Moreover, the run π′ is accepting on σ′ because it “stays” on q0 until it accepts

the suffix sk−1
ak−1

→ sk · · · the same way it accepted it in σ.
There are two cases.

12

0 1 2p :qTRUE TRUE
(a)
B¬2(p⇒©q)

0 1p ^ :qTRUE :q
(b) B¬2(p⇒♦q)

0 1 2p ^ :r :q ^ :rp ^ :q ^ :rTRUE
:r

TRUE
(c) B¬2(p⇒q U r)

0 1 23 4
vrai :p :p ^ r ^ :sr ^ :s

:p ^ r ^ :s
:p ^ :s

:p :p ^ :s
:s q ^ :sq ^ :s:s :p ^ :s

(d) B¬(2(2♦p⇒♦q)⇒2(r⇒♦s))

Figure 3: Some Büchi automata

1. σ′ is an execution of M . Then σ′ is accepted by B¬P and so ¬(M |= P).

2. σ′ is not an execution of M : there is a state sc (c ≥ k) such that the prefix s′0
a′

0→ s′1 · · · sk−1
ak−1

→

sk · · · sc−1
ac−1

→ sc of σ′ is a fragment of an execution

σ′′ = s′0
a′

0→ s′1 · · · sk−1
ak−1

→ sk · · · sc−1
ac−1

→ sc
Skip
→ sc

Skip
→ sc · · ·

of M . The transition sc
ac→ sc+1 is not in M .

Consider

π′′ = q0
True
→ q0 · · · qc

pc
→ qc+1

p′

0→ q′1
p′

1→ q′2 · · ·

an accepting run of B¬P where the prefix q0 · · · qc+1 is common to π′ and π′′. As B¬P ∈ Bmod, then
∀j · (j ≥ 1 ⇒ q′j ∈ A). Moreover, from Clause 3 in Definition 4.3, pc ⇒ p′0 and ∀j · (j ≥ 1 ⇒
(p′j−1 ⇒ p′j)). As a consequence, ∀j · (j ≥ 0 ⇒ (pc ⇒ p′j)). Thus, π′′ is an accepting run on σ′′, i.e.
∀i · (i ≥ k − 1 ∧ i ≤ c ⇒ si |= pi) ∧ ∀j · (j ≥ 1 ⇒ sc |= p′j). As the execution σ′′ is accepted by B¬P ,
then ¬(M |= P).

2

The class Bmod contains some safety properties such as 2p or 2(p ⇒ ©q) (see Fig. 3(a)), all reachability
properties such as 2¬p, and some liveness properties such as 2(p ⇒ ♦q) and 2(p ⇒ qU r) (see Fig. 3(b) and
Fig. 3(c)). However it does not contain liveness properties under fairness assumptions such as 2(2♦p ⇒
♦q) ⇒ 2(r ⇒ ♦s) (see Fig. 3(d)).

4.2 A partitioning based on refinement

Consider a property P that is verifiable by parts, and a transition system TS on which P globally holds.
Actually, it is very likely that with an inappropriate partitioning M of TS, there is a part M of M on which
P does not hold. In this case, we can not conclude that P is globally true from the partitioned verification.
In other words, the fact that a property globally true is also true on every part depends on the way the
global transition system is partitioned.

13

As an heuristic to the choice of an appropriate partitioning, we propose to partition a transition system
according to the refinement process.

At every step of the refinement, the specifier introduces new actions and refines the old ones. We propose
that the specifier also introduces the PLTL properties that can be observed thanks to these new actions at
this very level of refinement. The properties verified at the former levels of refinement need not to be verified
again since PLTL properties are preserved by refinement [DJK03].

The new properties are likely to be observed on the “successions” of new actions, that is on the τ -
executions. Intuitively, a property that could be observed on a succession of more than one old action is not
a new property.

According to this idea, we propose that the parts contain the τ -executions of a refined system. Parts
constructed in this way are called refinement based parts. We have proposed in [JMM01] a definition of such
parts. The parts are built as follows (see Remark 3.4): to every state of the abstract system corresponds a
part in the refined system. Let s1 be a state of the abstract system. The part corresponding to s1 is made
of all the transitions of the refined system that have a state of EC(s1) as a source state. The target state s′

of such a transition is

• either a state itself glued to s1 – then the transition represents the occurrence of a new event, or of an
old event if it refines an abstract transition s1

a
→ s1,

• or a state not glued to s1 – then the transition represents the occurrence of an old event, and means
that the “end” of the module is reached: s′ has no successor in the part other than itself by the virtual
transition labelled Skip (see Remark 2.2).

The definition that we propose in this paper is slightly different because we are in the context of the
refinement of fair transition systems. Thus, Definition 4.5 defines a part of a refined fair transition system
according to the fair refinement relation ρf . A part is a transition system.

Let us first give the intuition of what are the initial states, the states and the transitions of such a part.
Consider an abstract fair transition system FTS1 and a fair transition system FTS2 that refines FTS1. Let
s1 be a state of FTS1. We define the part TSM corresponding to s1. We define Y as being the greatest set
of states of FTS2 that are successors of a state in EC(s1) by taking a transition labelled with an abstract

action: Y = { s′ | s2
a
→ s′ ∈ →2 ∧ s2 ∈ EC(s1) ∧ s′ 6∈ EC(s1)}. We define FS(Y) as being the greatest set

of states of FTS2 that are reachable from a state of Y by taking only fair transitions: FS(Y) = {sj | 1 ≤

j ≤ n ∧ ∃σ · (σ ∈ ΣFTS2
∧ (s0

a0→ s1
a1→ . . .

ai−1

→ si . . .
an−1

→ sn) ⊂ σ ∧ s0 ∈ Y ∧ ∀i · (si
ai→ si+1 ∈

⋃m2

j=1 F2j))}.
The initial states of TSM are the states of EC(s1) that are either initial states of FTS2, or target states

of a transition labelled with an abstract action whose source state is not in EC(s1).
The transitions of TSM are:

• the transitions of FTS2 that have a state of EC(s1) as a source state,

• the fair transitions of FTS2 that have a state of Y ∪ FS(Y) as a source state,

• the transitions labelled with Skip that are added as loops on the states of TSM which have no successors
among the states of TSM .

Definition 4.5 (Refinement Based Part of a Fair Transition System) Let FTS1 = 〈S01
, S1, Act1,→1

, L1,F1〉 be a fair transition system which is refined by a fair transition system FTS2 = 〈S02
, S2, Act2,→2

, L2,F〉 (FTS1 ⊑f FTS2). Consider s1 ∈ S1 and EC(s1), an equivalence class of S2/∼µ
. The part based

on EC(s1) is a transition system TSM = 〈S0M
, SM , ActM ,→M , LM 〉 such that:

• S0M
= {s2 ∈ EC(s1) | s2 ∈ S02

∨ ∃s · ∃a · (s
a
→ s2 ∈→2 ∧ s 6∈ EC(s1))}.

• SM = {s2 ∈ EC(s1)} ∪ Y ∪ FS(Y).

• →M= {s2
a
→ s′ ∈ →2 | s2 ∈ EC(s1)} ∪ {s

a
→ s′ ∈→2 | s ∈ (Y ∪ FS(Y)) ∧ s′ ∈ FS(Y)} ∪ {s

Skip
→

s | s ∈ SM ∧ ∀(s′, a) · (s
a
→ s′ ∈→2 ⇒ s′ 6∈ SM)}.

14

r1

skip

skip

part y1

a
b

c

d

s0

1s

s2

b a
d

c

r0

r2
r3

r4 r5

τ

τ

τ

τ

τ

τ

r r1

r

r

0

3

5

skip

skip

r

r r

r

r

r r

0

2 3

5

0

4 5

τ

τ

τ

τ τ

τ

a

c

b

c

0 part y2part y

Abstract transition system Refined transition system

d

Figure 4: Example of a refinement based parts

• ActM is the restriction of Act2 to the labels of →M , augmented with Skip.

• LM is the restriction of L2 on the states of SM .

Notice that there are at most as many parts in the refined transition system as states in the abstract
transition system. As a consequence, the number of states of the abstract model can be used as a parameter
for the user to control either the number, or the size of the parts to be model-checked.

Remark 4.6 The properties that are not verifiable by parts for all possible partitionings, but only relatively
to the partitioning as presented in Definition 4.5, are called verifiable by refinement based parts.

Example of refinement based partition according to Definition 4.5

In Fig. 4, we present an example of three parts y0, y1, and y2 obtained according to Definition 4.5 from
the refined transition system. We suppose that the states of the refined system and the abstract system are
glued as : r0 and r1 with s0, r2 and r3 with s1, and r4 and r5 with s2. The fair transitions are represented
by dashed arrows in Fig. 4.

For example the part y0 is the transition system composed of the states EC(s0) = {r0, r1}, Y = {r3}
and FS(Y) = {r5}. It has one initial state r0. It contains all τ -transitions between the states of EC(s0),

the exit transition r1
a
→ r3, and the fair transition r3

c
→ r5. As this transition system deadlocks in r5, we

extend it with the transition r5
Skip
→ r5.

Next section describes how the partitioned verification applies for the verification of PLTL properties
under fairness assumptions.

15

5 Partitioned Model Checking under Fairness Assumptions

This section contains the main contribution of the paper. We study the verification by the partitioned model
checking of PLTL properties when the description of the environment uses fairness constraints. We show
that partitioned model checking on transition systems can be used under fairness assumptions.

We do not include the fairness of the environment in the transition system, but it is integrated as an
assumption of the property to verify.

The verification by model checking of a PLTL property P under fairness assumptions expressed by a
PLTL formula f , on a transition system TS, supposes verifying by model checking the property f ⇒ P on
TS. The question “does TS provided with fairness assumptions f satisfies P ?” is written as: TS |= f ⇒ P ?

The Büchi automaton of ¬(f ⇒ P) does not satisfy the sufficient condition allowing its verification in a
partitioned way (see Section 4 and Fig. 3d). However, we prove that the verification of the formula f ⇒ P
becomes verifiable by refinement based parts (see Definition 4.5) , i.e. ∀M.(M is a refinement based part ⇒
M |= f ⇒ P) ⇒ TS |= f ⇒ P when P is verifiable by parts. This is equivalent to say that if, for all M
such that M is a refinement based part, each computation of M satisfies P then all the computations of TS
satisfies P . Indeed, since the unfair executions of M and TS satisfy the formula f ⇒ P because they do not
satisfy f , we deduce that the verification of f ⇒ P on M (refinement based part) and on TS requires only
the verification of P on the computations (fair executions) of M and TS.

Now, let us prove that each computation of TS is a concatenation of fragments which are all prefix of
computations in refinement based parts.

Lemma 5.1 Suppose FTS1 ⊑f FTS2. Each computation σ of FTS2 can be decomposed into fragments
which are prefix of computations in refinement based parts of FTS2. More precisely, such a computation is,
either a suffix of σ, or is a fragment of σ which ends by a finite sequence of fair transitions followed by an
infinite sequence of skip transitions.

Proof. As the fair refinement is a τ -simulation of τ -FTS2 by FTS1, each computation σ of τ -FTS2 is such
that

σ = s0
τ∗
→ si1−1

ai1→ si1
τ∗
→ si2−1

ai2→ si2
τ∗
→ si3−1

ai3→ si3 . . .

where aij
are abstract actions. The decomposition by Definition 4.5 is such that each finite fragment of σ,

ϕf = sij−1

τ∗
→ sij−1

aij

→ sij
is a prefix of a computation of a refinement based part such as, either

• σ′ = sij−1

τ∗
→ sij−1

aij

→ sij

c∗
→ sc

τ∗
→ sij−1

aij

→ sij

c∗
→ sc . . ., where c ∈ Act1 ∪ {τ} and sij

c∗
→ sc is a

finite sequence of fair transitions and states sc are not source states of a fair transition -here σ′ refines
a suffix of a computation of a global system in the abstract level which run around a cycle infinitely
many times -, or

• σ′′ = sij−1

τ∗
→ sij−1

aij

→ sij

c∗
→ sc

Skip
→ sc

Skip
→ sc

Obviously σ′ is a computation since σ is a computation and σ′ is a suffix of σ. Also σ′′ is a computation
since, by construction, it is a fragment of the computation σ prolongated by a finite sequence of fair transitions
followed by an infinite sequence of skip transitions. 2

Correctness of the Partitioned Model Checking under Fairness Assumptions

In this section, we show that model checking by parts under fairness assumptions is sound. For that it is
necessary that the parts are obtained according to Definition 4.5.

Theorem 5.2 Let FTS = 〈TS,F〉 be a fair transition system which refines an abstract fair transition
system. Let M be the set of refinement based parts accordingly to Definition 4.5. Let f be the PLTL formula
which expresses the fairness assumptions of FTS. If P is a PLTL formula such that B¬P ∈ Bmod (as such,
it is verifiable by parts on TS), then the property f ⇒ P is verifiable by refinement based parts on TS.

16

Proof. Recall that in order to prove that the formula f ⇒ P is verifiable by refinement based parts on
TS, we must prove the following: if, for all M such that M is refinement based part, each computation of
M satisfies P then all the computations of TS satisfies P .

Let σ be a computation of TS. By Lemma 5.1, each fragment of a computation σ prefixes a computation
like σ′ or σ′′ of a refinement based part. Therefore all the computations of a refinement based parts are
extensions of all the fragments of the computations belonging to a global system.

In the proof of Theorem 4.4 in Section 4.1.2 it is shown that when a property P belong to the class
of properties verifiable by parts, and if the extensions of all the fragments of an execution σi (in a global
system) satisfy P , then P holds on σi.

So, when each computation of a refinement based part satisfies P and since P is verifiable by parts, we
conclude by Theorem 4.4 that P holds on σ. Which means that f ⇒ P is verifiable by refinement based
parts on TS. 2

6 Example of the Protocol T=1

In this section, we present the example of the protocol T=1 [edNE92] in order to illustrate how to verify
PLTL properties under fairness assumptions in a partitioned way. We also defined how to express the fairness
of an environment in a B event system. We give the B event systems enriched with fairness assumptions,
of the protocol at the abstract and at the refined level. We also give the fair transition system which is the
semantics of the abstract event system and the fair transition system which expresses the semantics at the
refined level.

We also use this example to show that without using fair refinement to obtain the set of parts, the PLTL
properties under fairness assumptions are not verifiable by parts.

6.1 Abstract Specification under Fairness Assumptions

Figure 5 represents the abstract B event system of a half duplex communication protocol between a chip
integrated card and a card reader. At this level of specification, we consider only the alternation of exchange
of messages between the chip card and the reader.

Figure 6 represents the abstract transition system of the protocol. In this figure, each state is decorated
with the value of the state variables. Cstatus1 indicates if the chip card is inserted or not in the reader.
Sender1 indicates the device which will send the next message, the chip card or the reader. The character
’?’ or ’ !’ in the reader indicates respectively that the reader is the receiver or the sender device. The state
labelling function, called L1 is the following: L1 = {

s0 7→ {Cstatus1 = in, Sender1 = reader},

s1 7→ {Cstatus1 = in, Sender1 = card},

s2 7→ {Cstatus1 = out, Sender1 = card},

s3 7→ {Cstatus1 = out, Sender1 = reader}}.

At the initial state, the chip card is inserted in the reader, and sending a message must be done by the
reader. The protocol evolves by the action of four events:

• Rsends: the reader sends a message,

• Csends: the chip card sends a message,

• Eject: the chip card is ejected,

• Cinsert: the chip card is inserted.

17

MACHINE teg1
SETS

SENDER = {card, reader}; CARD − STATE = {in, out}

VARIABLES

Sender1, Cstatus1

INVARIANT

Sender1 ∈ SENDER ∧ Cstatus1 ∈ CARD − STATE

INITIALISATION

Sender1 := reader ‖ Cstatus1 := in

EVENTS

Rsends =̂ SELECT Sender1 = reader ∧ Cstatus1 = in

THEN Sender1 := cardEND;
Csends =̂ SELECT Sender1 = card ∧ Cstatus1 = in

THEN Sender1 := reader END;
Eject =̂ SELECT Cstatus1 = in

THEN Cstatus1 := out END;
. Cinsert =̂ SELECT Cstatus1 = out

THEN Sender1 := reader ‖ Cstatus1 := in END;
FAIRNESS= {Eject };

END

Figure 5: Abstract B specification of the protocol T=1 under fairness assumptions

Eject

Csends

EjectRsends

? ? ! !

s s 0s s2 1 3

Cinsert

Cinsert

Figure 6: Abstract fair transition system of the protocol T=1

We assume that all the applications which use the protocol do not request the transport of an infinite
sequences of messages. This is a fairness constraint which comes from the environment. It ensures that the
transmission of the messages between the card and the reader terminates by the ejection of the card.

In B event systems we proposed the following extension. The fairness assumptions are written (e if p)
[BCJK01], where e is the name of an event and p is a predicate characterizing the states in which e cannot
be avoided when it is enabled infinitely often. When an event must always be fair, the fairness assumption
is only the event name.

The fairness assumption on the environment protocol is defined by the clause FAIRNESS={Eject } (see
Fig. 5). In the abstract fair transition system of the protocol, the fairness assumption is expressed by the

set F1 = {F11} where F11 = {s0
Eject
→ s3, s1

Eject
→ s2}.

The set of states {s0, s1} is defined by the following expression : Cstatus1 = in. The expression
Cstatus1 = out defines the set of states {s2, s3}. So, the verification of a PLTL property P on the transition
system must be done under this fairness assumption which is expressed by the PLTL formula:

2(23 (Cstatus1 = in) ⇒ 3 (Cstatus1 = out)).

This formula is a simplification of the formula obtained from the general formula 1 presented in Section 2
that would be:

18

2(23 (Cstatus1 = in ∧ Sender1 = reader)∨ (Cstatus1 = in ∧ Sender1 = card)) ⇒ 3 ((Cstatus1 =
out ∧ Sender1 = reader) ∨ (Cstatus1 = out ∧ Sender1 = card)).

6.2 Refined Specification under Fairness Assumptions

Figure 7 describes the refined B event specification of the protocol. At this level of specification, we view the
messages as a sequence of blocks ended by a last block (value lb). A block sent (value bl) is acknowledged
by an acknowledgement block (value ackb). We call frame these three types of exchanged information.

After a last block is sent by one of the devices, the other device answers with a sequence of blocks ending
by a last block unless the card is ejected. These exchanges of messages alternate until the card is ejected.

The fair transition system shown in Fig. 8 describes the refined behavior of the protocol. The states of
the transition system are decorated by the value of variables CardF2 and ReaderF2 which describe the type
of the last frame sent respectively by the chip card and the reader, SenderF2 which describes the device
that will send the next frame, and Cstatus2 which does the same thing as the variable Cstatus1.

The gluing invariant is a part of the invariant in Fig. 7:
I12 = ((Cstatus2 = Cstatus1) ∧
((ReaderF2 = bl ∨ ((CardF2 = ackb ∨ CardF2 = lb) ∧ SenderF2 = reader)) ⇔ (Sender1 = reader)) ∧
((CardF2 = bl ∨ ((ReaderF2 = ackb ∨ ReaderF2 = lb) ∧ SenderF2 = card)) ⇔ (Sender1 = card))).

With this gluing invariant, the states of the two transition systems in Fig. 6 and Fig. 8 are glued as
follows:

• r0, r2, r3, r4, r10 are glued with the state s0,

• r5, r7, r8, r9, r12 are glued with the state s1,

• r6, r13 are glued with the state s2,

• r1, r11 are glued with the state s3.

From these four equivalence classes (see Section. 4.2) we construct the four parts described in Fig. 9, Fig. 10,
Fig. 11 and Fig. 12 (see the appendix).

The state labelling function, called L2 is the following:L2 = {

r0 7→ {Cstatus2 = in, SenderF2 = reader, ReaderF2 = lb, CardF2 = lb},

r1 7→ {Cstatus2 = out, SenderF2 = reader, ReaderF2 = lb, CardF2 = lb},

r2 7→ {Cstatus2 = in, SenderF2 = card, ReaderF2 = bl, CardF2 = lb},

. . . }.

The old events Rsends and Csends terminate the emission of a message by sending the last block. We
have reinforced the guard of the event Eject in order to forbid the ejection of the chip card during the
transmission of a message. We have introduced four new events to take the transmission of blocks and
acknowledgement into account:

• Rblocksends: the reader sends a block,

• Cblocksends: the card sends a block,

• Racksends: the reader sends an acknowledgement,

• Cacksends: the card sends an acknowledgement.

19

The fairness assumptions in the refined level are defined by the declaration set FAIRNESS={Eject,

Csends if (CardF2 = bl), Rsends if (ReaderF2 = bl)}. The fairness assumption h1
def

= Eject reformulates
the abstract fairness assumption. It indicates that the end of the transmission is unavoidable. The fairness

assumptions h2
def

= Csends if (CardF2 = bl) and h3
def

= Rsends if (ReaderF2 = bl) are new fairness
assumptions which express that the messages sent by the chip card or the reader contain a finite number of
blocks. They allow to go out of livelocks as shown in Fig. 8. These assumptions must be satisfied by all the
possible environments of the protocol.

The verification of a PLTL property P on the transition system must be done under these fairness as-
sumptions, expressed by the following PLTL formulae:

• f ′
1

def

= 2(2 3 (Cstatus2 = in ∧ ((SenderF2 = reader ∧ CardF2 = lb) ∨ (SenderF2 = card ∧
ReaderF2 = lb))) ⇒ 3 Cstatus2 = out) expresses h1,

• f21
def

= 2(2 3(SenderF2 = card ∧ CardF2 = bl) ⇒ 3 CardF2 = lb) expresses h2,

• f22
def

= 2(2 3 (SenderF2 = reader ∧ ReaderF2= bl) ⇒ 3 ReaderF2 = lb) expresses h3.

The fairness assumptions are defined by the sets of fair transitions (represented in Fig. 8 by the dashed
arrows) F2 = {F ′

1, F21, F22} where :

• F ′
1

def

= {r0
Eject
→ r1, r10

Eject
→ r11, r12

Eject
→ r13, r5

Eject
→ r6} which formalizes h1,

• F21
def

= {r8
Csends
→ r10} which formalizes h2,

• F22
def

= {r3
Rsends
→ r5} which formalizes h3.

6.3 Example of the verification by parts

In this section, we present an application of partitioned model checking on the example of the protocol
T=1. We use the tool SPIN [Hol91] for the verification by model checking. The test consists in splitting the
transition system of the protocol T=1, and in choosing a PLTL property P verifiable by parts. Then, we
verify P under fairness assumptions f on the global system, and on each part. Our goal is to illustrate that
the property f ⇒ P is verifiable in a partitioned way.

Figures 9 to 12 (see the appendix) represent the parts which are obtained by splitting the global transition
system in Fig. 8 at the refined level from Definition 4.5.

Let us verify P
def

= 2(CardF2 = bl ⇒ 3(CardF2 = lb ∧ SenderF2 = reader)) which expresses that
when a card sends a block, then it will inevitably send a last block. We verify P by refinement based parts
under the fairness assumptions f ′

1, f21, f22. The PLTL formula which expresses the fairness assumptions is

f
def

= f ′
1 ∧ f21 ∧ f22. The property to be verified is Q

def

= f ⇒ P .
First, we checked that Q is satisfied on the global system of the T=1 protocol by the tool SPIN. Second,

we verified Q on each part in the following way. Before checking Q on the part s0 such as described in
the Fig. 9, we simplified Q because the part s0 is only concerned with the fairness assumptions f22. This
part does not contain a cycle, which is forbidden by the fairness assumptions f ′

1 or f21, therefore these

assumptions are useless to check Q in this part. Thus we simplified Q in Q1
def

= f22 ⇒ P . We used SPIN to
check that Q1 is satisfied on the part s0, therefore Q is satisfied on s0. The part s1 in Fig. 10 is concerned

with the fairness assumptions f21. So we simplified Q in Q2
def

= f21 ⇒ P . The property Q2 is satisfied on the
part s1, therefore the property Q is satisfied on s1. The parts s2 in Fig. 11 and s3 in Fig. 12 do not contain
cycles forbidden by the fairness assumptions, all their executions are fair. Thus they are not concerned with

fairness assumptions. So, we simplified Q in Q3
def

= P . The property Q3 is satisfied on the parts s2 and s3,

20

REFINEMENT teg1ref REFINES teg1
SETS

F RAME = {bl, lb, ackb}

VARIABLES

SenderF2, Cstatus2, CardF2, ReaderF2

INVARIANT

SenderF2 ∈ SENDER ∧ CardF2 ∈ F RAME ∧ ReaderF2 ∈ F RAME ∧ Cstatus2 = Cstatus1 ∧

(ReaderF2 = bl ∨ ((CardF2 = ackb ∨ CardF2 = lb) ∧ SenderF2 = reader)) ⇔ (Sender1 = reader) ∧

(CardF2 = bl ∨ ((ReaderF2 = ackb ∨ ReaderF2 = lb) ∧ SenderF2 = card)) ⇔ (Sender1 = card)
INITIALISATION

SenderF2 := reader ‖ Cstatus2 := in ‖ CardF2 := lb ‖ ReaderF2 := lb

EVENTS

Rsends =̂ SELECT (SenderF2 = reader ∧ Cstatus2 = in

∧ (CardF2 = ackb ∨ CardF2 = lb))
THEN SenderF2 := card ‖ ReaderF2 := lb END;

Csends =̂ SELECT (SenderF2 = card ∧ Cstatus2 = in

∧ (ReaderF2 = ackb ∨ ReaderF2 = lb))
THEN SenderF2 := reader ‖ CardF2 := lb END;

Eject =̂ SELECT ((SenderF2 = card ∧ ReaderF2 = lb) ∨ (SenderF2 = reader ∧ CardF2 = lb)) ∧

Cstatus2 = in

THEN Cstatus2 := out END;
Cinsert =̂ SELECT Cstatus2 = out

THEN SenderF2 := reader ‖ Cstatus2 := in ‖ CardF2 := lb ‖ ReaderF2 := lb END;
Rblocksends =̂ SELECT (SenderF2 = reader ∧ Cstatus2 = in ∧ (CardF2 = ackb ∨ CardF2 = lb))

THEN SenderF2 := card ‖ ReaderF2 := bl END;
Cblocksends =̂ SELECT (SenderF2 = card ∧ Cstatus2 = in ∧ (ReaderF2 = ackb ∨ ReaderF2 = lb))

THEN SenderF2 := reader ‖ CardF2 := bl END;
Racksends =̂ SELECT (SenderF2 = reader ∧ Cstatus2 = in ∧ CardF2 = bl)

THEN SenderF2 := card ‖ ReaderF2 := ackb END;
Cacksends =̂ SELECT (SenderF2 = card ∧ Cstatus2 = in ∧ ReaderF2 = bl)

THEN SenderF2 := reader ‖ CardF2 := ackb END;
FAIRNESS={Eject , Csends if (CardF2 = bl), Rsends if (ReaderF2 = bl)};
END

Figure 7: Refined B specification of the protocol T=1 under fairness assumptions

21

r1

Rblocksends

Eject

Eject

Rsends
Eject

Cblocksends

Rsends
Rblocksends

Csends

Eject

Csends

Csends

Cblocksends

Rblocksends

Cacksends

Racksends

Cacksends

Cinsert

Cinsert

Cinsert

Cinsert

ackb

lb

bl

?

?

? ?

? ??

!! !

! !

!

!

Légende

transition
équitable

Racksends

Cblocksends

Rsends

r13

r6

r0

r0

r9

r8

r7

r12

r5

r10

r0

r2

r3

r4

r11

Figure 8: Refined fair transition system of the protocol T=1

22

therefore the property Q is satisfied also on these parts. Accordingly to Theorem 5.2, the property Q is
verifiable by refinement based parts (see Definition 4.5). Since all the parts satisfy Q, the global system of
the protocol T=1 satisfies Q.

6.4 Counter example if the condition of decomposition by refinement does not

holds

In this section, we give an example that shows that the approach of verifying by parts PLTL property
under fairness assumptions is not correct, when the condition (see Definition 4.5) of the decomposition by
refinement is not satisfied. We propose a decomposition of the system so that the executions of the parts
cannot leave the τ -cycles and fair exiting cycles, contained in the parts resulting from the decomposition. In

this example, we note (ri
ai→ . . .

ai+n
→ ri)

∗ a finite fragment of an execution which runs around a cycle finitely

many times. We note (ri
ai→ . . .

ai+n
→ ri)

ω an infinite fragment of an execution which runs around a cycle
infinitely many times.

Figures 13 and 14 represent the parts s′1 and s′2 obtained by splitting the global system of the protocol
T=1, without using the refinement. Notice that, we have not used a refinement based partitioning but the
partition of the transitions of the system.

Let us verify the PLTL property P ′ def

= 2(SenderF2 = reader ∧ ReaderF2 = lb ∧ Cstatus2 = in ⇒
3(ReaderF2 = lb ∧ Cstatus2 = out)), which expresses that if the reader sends a last block then the card
eventually will eject. We verify P ′ under the fairness assumptions f = f ′

1 ∧ f21 ∧ f22. Notice that P ′

is verifiable by parts, because the Büchi automaton of ¬P ′ belongs to the class Bmod. The property to be

verified by parts is Q′ def

= f ⇒ P ′.
We verified Q′ on the global system of the protocol T=1 using SPIN. Then, we verified Q′ on each part,

s′1 and s′2. The results are that Q′ is violated on the global system and satisfied on the parts. In the part

s′2, the executions are not fair. Since f is false on s′2 then Q′ def

= f ⇒ P ′ is satisfied on s′2. Q′ is satisfied
on the part s′1 because the only computations of this part are those which reach infinitely many times the
states r0 and r1 in Fig. 13. These executions satisfy Q′. The other executions of s′1 are not fair, therefore
they satisfy Q′. Consequently, the property Q′ is not verifiable by parts although the Büchi automaton of
¬P ′ belongs to the class Bmod, i.e. is verifiable by parts. We recall that a PLTL property P under fairness
assumptions f ⇒ P is verifiable by parts under the following condition : ”if the property is not satisfied on
the global system, then there is a part which violates the property”.

With such a decomposition of the global system, the method of verifying by parts is not correct because
the parts do not contain fragments of some computations of the global system. For example, the computation

σ1
def

= (r0
Rblocksends

→ r2
Cacksends

→ (r3
Rblocksends

→ r4
Cacksends

→ r3)
∗ Rsends

→ r5
Eject
→ r6

Cinsert
→ r0)

ω

in Fig. 8, does not have fragments in the parts s′1 and s′2. Indeed the executions

σ2
def

= r0
Rblocksends

→ r2
Cacksends

→ (r3
Rblocksends

→ r4
Cacksends

→ r3)
ω

in the part s′1 and

σ3
def

= (r0
Rsends
→ r12

Csends
→ r0)

ω

in the part s′2, are not extensions of fragments of the execution σ1. As σ2 and σ3 are not fair, then they satisfy
the property Q′. The method fails because there are computations of the global transition system which are
not verified in the parts. This because their fragments do not exist in the computations of the parts. On
the other hand the decomposition by refinement ensures that all the fragments of all the computations of
the global system are in the parts. For example, the computation σ1 is broken into two fragments which we
find in the computations of the parts obtained by refinement. The first fragment of σ1 is

ϕ1
def

= r0
Rblocksends

→ r2
Cacksends

→ (r3
Rblocksends

→ r4
Cacksends

→ r3)∗
Rsends
→ r5

Eject
→ r6

23

which is a prefix of the computation

σ4
def

= r0
Rblocksends

→ r2
Cacksends

→ r3
Rblocksends

→ (r4
Cacksends

→ r3
Rblocksends

→ r4)
∗ Rsends

→ r5
Eject
→ (r6

skip
→ r6)

ω

in the part s0 in Fig. 9. We find also the second fragment

ϕ2
def

= r6
Cinsert
→ r0

as a prefix of the computation

σ5
def

= r6
Cinsert
→ r0

Eject
→ (r1

skip
→ r1)

ω

in the part s2 in Fig. 11. Let us note that σ1 is the concatenation of these two fragments. The two executions
σ4 and σ5 which contain the fragments ϕ1 and ϕ2 are fair, therefore they satisfy f . Since σ4 and σ5 satisfy

also Q
def

= f ⇒ P as verified previously – Q is the property verified by parts with a decomposition by
refinement in Section 6.3 – therefore they satisfy P . Since P is verifiable by parts, then the proof that P is
satisfied on σ4 and σ5 is a proof that P is satisfied on σ1.

7 Performance of the approach of the verification by part

In this section, we show the experimental results of the approach of the verification by refinement based
parts. The expected performance is the capacity of this approach to verify a large set of different type of
properties at the refined level. So, we verify two examples of applications. The first example is the protocol
T=1, the second one is the car wind-screen wipers system. For each example we choose different PLTL
properties to verify. The properties must express the general behaviors of the systems.

At the end of this section, we compare our approach with the Pnueli’s approach [KPR98, KPRS01], that
is another verification approach under fairness assumptions.

The protocol T=1 at the refined level is described in the last section. We propose to verify by parts the
following PLTL properties which express the main behaviors of the protocol :

• These properties express that always when a device send a block then it will inevitably send a last
block:

P1
def

= 2(CardF2 = bl ⇒ 3(CardF2 = lb)). P2
def

= 2(ReaderF2 = bl ⇒ 3(ReaderF2 = lb)).

• These properties express that always when a device send a block then the other device will inevitably
send an acknowledgment block:

P3
def

= 2(CardF2 = bl ⇒ 3(ReaderF2 = ackb)). P4
def

= 2(ReaderF2 = bl ⇒ 3(CardF2 = ackb)).

• This property expresses that when the card sends a block and the reader sends an acknowledgment
block, the card and the reader will respectively send an acknowledgment block and a block:

P5
def

= 2(CardF2 = bl ∧ ReaderF2 = ackb ⇒ 3(CardF2 = ackb ∧ ReaderF2 = bl)).

• This property expresses the alternation of sending of the messages between the card and the reader:

P6
def

= 2(SenderF2 = card ⇒ 3(SenderF2 = reader)).

The second application verified is the car wind-screen wipers system. At the refined level the system is
composed of a control level, a rain sensor and two (left and right) wind-screen wipers. The control level can
select the mode - automatic or manual- of the wiper system. The left and the right wipers have the same
behavior. The rain sensor can detect the rain amount (no rain, small rain, strong rain). We have verified
six properties on this application. The results are shown in the following section.

24

7.1 Results of the verification

The following table indicates the results. We give the number of properties to verify, how many are globally
true, how many globally false, and how many have been successfully verified by refinement based parts.

Example Properties Globally true Globally false Verified by parts

protocol T=1 6 5 1 4

wind-screen wipers 6 6 0 4

These results show that we have successfully verified four properties by parts amongst the six that were
expressed, on the protocol T=1 system and the car wind-screen wipers system. In the case of the protocol
T=1, the verification failed for properties P5 and P6. As P5 is globally false, then there is at least a part on
which it is false, that is s0. In contrast the property P6 is globally true and our method failed to prove it by
refinement based parts (it is false on parts s0 and s1). This is due to the fact that P6 is not a new property.
It expresses an abstract behavior of the system, and should have been verified by parts at a former level of
refinement. Properties P1, P2, P3 and P4 express new behaviors of the system at the refined level, and as
expected, they have been successfully verified by parts.

We obtained the same results for the verification of the car wind-screen wipers system. The approach
of the verification by parts fails in verifying two properties that have been verified at the abstract level.
However, the approach succeeds in verifying properties that express the new behaviors of the system at the
refined level.

These results show that as it would be interesting to study the relation between our approach of ver-
ification, the new properties at the refined level, and the abstract properties in order to characterize the
properties for which a verification by parts is suited.

7.2 Comparison with Pnueli’s approach of verification

An interesting method was proposed in [KPR98, KPRS01], this is a symbolic model checking of PLTL
properties under fairness assumptions. This approach removes the fairness assumptions from the formula to
verify. It deals with a fairness assumptions at the algorithmic level instead of specifying them as of a part
of the formula to be verified. Fairness assumptions are expressed as Büchi (for weak fairness) and Street
(for strong fairness) automata acceptance conditions. So, this algorithm verifies the property P instead of
verifying f ⇒ P . The verification consists of the emptiness checking which is implemented with BDD.

This approach treats the problem of the combinatorial explosion of model checking by simplifying the
formula to verify under fairness approach. In our case we treats the problem of the combinatorial explosion
by the following way. We partition the transition system and we verify a property separately on each part.
Another difference is that we adapted the automata algorithm of Vardi and Wolper [VW86] instead of a
symbolic algorithm. However, we can combine our approach with Pnueli’s approach. So in order to verify a
property P under fairness assumptions f , we verify the simplified formula P by the partitioning way. So we
will use Pnueli’s approach to express fairness assumptions by Street and Büchi automata conditions on each
transition system of the parts. Then we will exploit our approach to split the global transition system using
the fair refinement relation. Finally we will verify P on each part using symbolic model checking instead of
verifying f ⇒ P on the global system.

8 Conclusion and Future Works

In this paper, we extend the partitioned model checking technique presented in [JMM01] to handle the fairness
constraints of the system environment. Our goal is to verify the PLTL properties under fairness assumptions
by part. When the fairness constraints of the environment are expressed by fairness assumptions, the
verification by model checking of a partitioned property P under fairness assumptions f supposes verifying

25

by model checking the new property Q
def

= f ⇒ P on the transition system. However, the property Q does
not necessarily belong to the class of properties verifiable by part.

Our contribution in this paper is to prove that the split of the transition system into parts, using the
fair refinement relation, makes the property Q verifiable by refinement based parts when P is verifiable by
part. The use of the fair refinement to split a transition system allows us to obtain refinement based parts
which contains computations. This is a sufficient condition to verify by refinement based parts the property

Q
def

= f ⇒ P . To handle the fairness constraints, we have proposed to use a fair transition system to model
a reactive system and its fairness environment. This framework is a transition system which contains only
computations.

The complexity of the refinement verification is linear in the size of the refined system, because it
necessitates only an enumeration of the refined model when the gluing relation is a function. Therefore
the verification by parts is interesting because the additive decomposition of a system comes for free from
the refinement verification.

In the future, we plan to implement the partitioned model checking technique so that we can evaluate
its performance on industrial applications. As we saw in the example of the protocol T=1, we can simplify
the fairness assumptions on each part because all the assumptions do not concern every part. So, the
simplification process needs to be further studied. We plan also to combine the approach of model checking by
part to the approach [CJ03] of model checking under fairness assumptions which exploits the fair refinement
in order to reduce the size of the formula to be verified under fairness assumptions.

Also, we must give simplification rules to translate fairness assumptions, as expressed in the event systems,
into PLTL formulae, as used by the usual model checking algorithms. We plan to study a variation of this
method which does not requires the condition (b) in Definition 2.8. In this case the fairness assumptions are
not expressible in PLTL, but in a logic of actions as the µ-calculus [CGP99].

References

[Abr96] J.-R. Abrial. Extending B without changing it (for developing distributed systems). In 1st
Conference on the B method, pages 169–190, Nantes, France, November 1996.

[AdAHM99] R. Alur, L. de Alfaro, T. A. Henzinger, and F. Y. C. Mang. Automating modular verification.
In Proc. of the 10th Conf. on Concurrency Theory, volume 1664 of Lecture Notes in Computer
Science, pages 82–97. Springer-Verlag, July 1999.

[AM98] J.-R. Abrial and L. Mussat. Introducing dynamic constraints in B. In 2nd Conference on the
B method, France, volume 1393 of Lecture Notes in Computer Science, pages 83–128. Springer
Verlag, April 1998.

[BCJK01] F. Bellegarde, S. Chouali, J. Julliand, and O. Kouchnarenko. Comment limiter la spécification
de l’équité dans les systèmes d’événements B. In Approches Formelles dans l’Assistance au
Développement de Logiciels (AFADL’01), pages 205–220, Nancy, France, 2001.

[BCMD90] J. R. Burch, E. M. Clarke, K. L. McMillan, and L. J. Dill, D. L.and Hwang. Symbolic model
checking : 1020 states and beyond. In Proc. of the 5th Annual IEEE Symposium on Logic in
Computer Science, pages 428–439, Philadelphia, Pensylvania, USA, June 1990. IEEE Computer
Society Press.

[BJK00] F. Bellegarde, J. Julliand, and O. Kouchnarenko. Ready-simulation is not ready to express
a modular refinement relation. In Proc. Int. Conf. on Fondamental Aspects of Software En-
gineering, FASE’2000, volume 1783 of Lecture Notes in Computer Science, pages 266–283.
Springer-Verlag, April 2000.

[BJK02] F. Bellegarde, J. Julliand, and O. Kouchnarenko. Synchronized parallel composition of event
systems in B. In Didier Bert, Jonathan P. Bowen, Martin C. Henson, and Ken Robinson,

26

editors, Formal Specification and Development in Z and B, proc. of the 2nd Int. Conf. of B and
Z Users, (ZB 2002), volume 2272 of LNCS, pages 436–457, Grenoble, France, January 2002.
Springer.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In 4th ACM Symp. on Principles
of Programming Languages (POPL’77), pages 238–252, Los Angeles, California, USA, 1977.
ACM Press.

[CES86] E. M. Clarke, E. A. Emerson, and P. Sistla. Automatic verification of finite-state concurrent
systems using temporal logic specification. In ACM transactions on Programming Languages
and Systems, volume 2, pages 244–263, 1986.

[CGK97] S.C. Cheung, D. Giannakopoulou, and J. Kramer. Verification of liveness properties using com-
positional reachability analysis. In ESEC/SIGSOFT FSE, 6th European Software Engineering
Conference, volume 1301 of Lecture Notes in Computer Science, pages 227–243. Springer-Verlag,
November 1997.

[CGL94] E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 16(5):1512–1542, 1994.

[CGP99] E. M. Jr Clarke, O Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[Cho03] S. Chouali. Contribution du raffinement à la vérification de systèmes sous hypothèses d’équité.
PhD thesis, Université de Franche-Comté, Besançon, France, December 2003.

[CJ03] S. Chouali and J. Julliand. Model checking des propriétés dynamiques sous hypothèses d’équité,
exploitant le raffinement. In Approches Formelles dans l’Assistance au Développement de Logi-
ciels (AFADL’03), pages 277–291, Rennes, France, 2003.

[CLM89] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional Model Checking. In Proc.
of the 4th Annual Symposium on Logic in Computer Science, pages 353–362, Pacific Grove,
California, USA, 1989. IEEE Computer Society Press.

[DF95] J. Dingel and T. Filkorn. Model checking for infinite state systems using data abstraction,
assumption-commitment style reasoning and theorem proving. In Computer Aided Verification,
CAV’95, volume 939 of Lecture Notes in Computer Science, pages 54–69, Liège, Belgique, July
1995. Springer-Verlag.

[DHWT91] D.L. Dill, A.J. Hu, and H. Wong-Toi. Checking for language inclusion using simulation relation.
In proc. of Computer Aided Verification (CAV’91), volume 575 of LNCS, pages 255–265, 1991.

[DJK03] C. Darlot, J. Julliand, and O. Kouchnarenko. Refinement preserves PLTL properties. In 3rd
Int. Conf. of B and Z Users, ZB’03, volume 2651 of LNCS, pages 408–420, Turku, Finland,
September 2003.

[edNE92] Comité européen de Normalisation. En27816-3. European standard - identification cards -
integrated circuit(s) card with contacts - electronic signal and transmission protocols. Technical
Report ISO/CEI 7816-3, ISO, 1992.

[GL94] O. Grumberg and David E. Long. Model checking and modular verification. ACM Transactions
on Programming Languages and Systems, 16(3):843–871, May 1994.

[HKR97] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc. of the 8th Con-
ference on Concurrency Theory, volume 1243 of LNCS, pages 273–287, Warsaw, Poland, July
1997. Springer-Verlag.

27

[Hol91] G. Holzmann. Design and validation of computer protocols. Prentice hall software series, 1991.

[JMM01] J. Julliand, P.-A. Masson, and H. Mountassir. Vérification par model-checking modulaire des
propriétés dynamiques introduites en B. Technique et Science Informatiques, 20(7):927–957,
September 2001.

[KKPR99] Y. Kesten, A. Klein, A. Pnueli, and G. Raanan. A perfecto verification: combining model
checking with deductive analysis to verify real-life software. In Formal methods’99, Toulouse,
France, volume 1708 of Lecture Notes in Computer Science, pages 173–194. Springer-Verlag,
October 1999.

[KL93] R. P. Kurshan and L. Lamport. Verification of a multiplier: 64-bits and beyond. In Proc. of the
5th Int. Conf. on Computer Aided Verification (CAV’93), volume 697 of LNCS, pages 166–179,
Elounda, Greece, 1993. Springer-Verlag.

[KLM+02] R. Kurshan, V. Levin, M. Minea, D. Peled, and H. Yenign. Combining software and hardware
verification techniques. Formal Methods in System Design, 21:251–280, 2002.

[KP88] S. Katz and D. A. Peled. An efficient verification method for parallel and distributed programs.
In Workshop on Linear Time, Branching Time and Partial Order in Logics and Models for
Concurrency, volume 354 of LNCS, pages 489–507. Springer-Verlag, 1988.

[KPR98] Y. Kesten, A. Pnueli, and L. Raviv. Algorithmic verification of linear temporal logic spec-
ifications. In Proc. of the 25th Int. Colloquium on Automata, Languages, and Programming
(ICALP 1998), volume 1443 of LNCS, pages 1–16. Springer-Verlag, 1998.

[KPRS01] Y. Kesten, A. Pnueli, L. Raviv, and E. Shahar. Model checking with strong fairness. Technical
Report MCS01-07, Weizmann Institute of Science, March 2001.

[KV96] O. Kupferman and M.Y. Vardi. Verification of fair transition systems. In Proc. 8th Int. Conf. on
Computer Aided Verification (CAV’96), volume 1102 of LNCS, pages 372–382. Springer-Verlag,
1996.

[KV98] O. Kupferman and M. Y. Vardi. Modular model checking. In Compositionality Workshop,
COMPOS’97, volume 1536 of Lecture Notes in Computer Science, pages 381–401. Springer-
Verlag, 1998.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. of the 12-th ACM Symp. on Principles of Programming Languages
(POPL’85), pages 97–107, New Orleans, USA, 1985.

[Mas01] P.-A. Masson. Vérification par model-checking modulaire de propriétés dynamiques PLTL ex-
primées dans le cadre de spécifications B événementielles. PhD thesis, Université de Franche-
Comté, December 2001.

[McM93] Ken McMillan. Symbolic model-checking. Kluwer Academic Publishers, 1993.

[MMJ00] P.-A. Masson, H. Mountassir, and J. Julliand. Modular verification for a class of PLTL prop-
erties. In Proc. of the 2nd Int. Conf. on Integrated Formal Methods (IFM 2000), volume 1945
of LNCS, pages 398–419, Dagstuhl Castle, Germany, november 2000. Springer-Verlag.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer-Verlag - ISBN 0-387-97664-7, 1992.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems :Safety. Springer-Verlag
- ISBN 0-387-94459-1, 1995.

28

[QS82] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR. In
Proc. of the Int. Symp. on Programming, volume 137 of LNCS, pages 337–351, Turin, Italy,
April 1982. Springer-Verlag.

[Tol99] Silvan Toledo. A survey of out-of-core algorithms in numerical linear algebra. External Memory
Algorithms and Visualization, 1999.

[VW86] M. Y. Vardi and P. Wolper. An automata theoretic approach to automatic program verification.
In Proc. of the 1st IEEE Symp. on Logic in Computer Science (LICS’86), pages 332–344,
Cambridge, USA, June 1986.

[WG93] P. Wolper and P. Godefroid. Partial-order methods for temporal verification. In Proc. of
the Int. Conf. on Concurrency Theory (CONCUR’93), volume 715 of LNCS, pages 233–246,
Hildesheim, August 1993. Springer-Verlag.

29

Appendix

Rblocksends

Eject

Rsends
Rblocksends

Eject

Rblocksends

Cacksends

Cacksends

?

?

? ?

! !

!

!Eject

Eject

?

?

skip

skip

skip

skip

Rsends

r13

r6

r12

r5

r10

r0

r2

r3

r4

r11

!

r1

Rsends

Figure 9: The part s0 of the protocol T=1

30

r13

Eject

Eject

Cblocksends

Csends

Cblocksends

Csends

Csends

Cblocksends

Racksends

Racksends

?

?

??

!!

!

!

Eject

Eject

skip

skip

!

!

skip

skip

?

r6
r5

r12

r7

r8

r9 r10

r0

r11

r1

Figure 10: The part s1 of the protocol T=1

!

Cinsert

Eject
!

skip

Cinsert
r1

r0

?

r13

?

r6

Figure 11: The part s2 of the protocol T=1

31

!

! !

Cinsert

Cinsert

Eject

r0

r11

r1

Figure 12: The part s3 of the protocol T=1

Rblocksends

Eject

Eject

Eject

Cblocksends

Rblocksends

Cblocksends

Eject

Csends

Cblocksends

Rblocksends

Cacksends

Racksends

Racksends

Cacksends

Cinsert

Cinsert

Cinsert

Cinsert

?

?

? ?

? ??

!! !

! !

!

!

r0

r0

r13

r6
r5

r12

r7

r

r9 r10

r0

r11

r1

r2

r3

r4

8

Figure 13: The part s′1 of the protocol T=1

32

Rsends

Rsends

Csends

Rsends

Csends

Csends

?

?

?

!

!

!

r8

r12

r5

r10

r0

r3

Figure 14: The part s′2 of the protocol T=1

33

