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Abstract. In this article we study the continuity properties of trajec-
tories for some random series of functions,

∑∞

k=0 akf(αXk(ω)) where
(ak)k>0 is a complex sequence, (Xk)k>0 is a sequence of real indepen-
dent random variables, f is a real valued function with period one and
summable Fourier coefficients. We obtain almost sure continuity results
for these periodic or almost periodic series for a large class of functions
f , where the ”almost sure” does not depend on the function. The proof
relies on gaussian randomization. We show optimality of the results in
some cases.

SERIES DE FONCTIONS ALEATOIRES ET APPLICATIONS

Abstract. (Résumé) Dans ce travail, nous étudions des propriétés
de continuité de trajectoires de séries de fonctions aléatoires du type
∑∞

k=0 akf(αXk(ω)) où (ak)k>0 est une suite de nombres complexes,
(Xk)k>0 une suite de variables aléatoires réelles et indépendantes, f une
fonction 1-périodique à coefficients de Fourier sommables. Nous mon-
trons que, presque sûrement, ces séries de fonctions aléatoires (périodiques
ou presque périodiques) sont à trajectoires continues pour une grande
classe de fonctions f . Le ”presque sûr” est indépendant de f . Les
preuves s’appuient sur un procédé de randomisation gaussien. Dans
certains cas, nous montrerons l’optimalité des résultats obtenus.

Keywords : random fourier series, almost sure continuity of trajectories, gaussian ran-
domization, almost periodic functions, random trigonometric polynomial
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1. Introduction. Main results

In [1], Berkes studies the almost sure convergence of series defined by :
∑

k>1

akf(αnk)

where the sequence (nk) is lacunary and the function f verifies :

f(x + 1) = f(x)

∫ 1

0
f(x)dx = 0

∫ 1

0
f2(x)dx = 1

He shows that the important property of f to ensure the almost sure con-
vergence is f ∈ Lip(γ) with γ > 1/2 and

∑

k>1 |ak|2 < +∞. In his case,
the nk are strictly lacunary, more precisely, they satisfy the Hadamard gap
condition :

nk+1

nk
> q > 1

We can naturally adress the question whether the convergence still holds
when nk is polynomial, and for which class of functions. We are going to
answer the question when the sequence (nk) is randomly generated.
Let us mention that the result exists when (nk) is a deterministic polynomial
sequence and (ak) is randomly distributed (see [5] and [6]).
We want to study the convergence properties of series of functions sampled
by a random process. More precisely, consider the torus T = R/Z and define
A(T) as the set of complex valued functions whose Fourier coefficients are
absolutely summable :

A(T) = {f : T→ C, f(α) =
∑

j∈Z f̂(j) exp (2iπαj),
∑

j∈Z |f̂(j)| < +∞}

(ak)k>0 will denote a sequence of real numbers and (Xk)k>0 a sequence of in-
dependent real random variables defined on the probabilised space (Ω,A, P).
Our aim is to study the convergence, when ω ∈ Ω is fixed, of the series of
functions

∀α ∈ R, F (α, ω) =

∞
∑

k=0

akf(αXk(ω))

Is it possible to give conditions on the sequence (ak)k>0 in order to find a
A−measurable set Ω0 independent of the function f , such that P(Ω0) = 1,
on which the series uniformly converges?
Note that when Xk does not take integer values, F is not a periodical func-
tion of the torus. For us, α will be real and we will deal with this ”almost
periodical” case. That is why we have to study the properties of F on a
compact [−M,M ] and not only [0, 1] (see for example [3])
For all f ∈ A(T), define

||f || :=
∑

j∈Z |f̂(j)| < +∞ .
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|||f ||| :=
∑

j∈Z |f̂(j)|
√

log (|j| + 3) < +∞ .

and

B(T) = {f : T→ C, f(α) =
∑

j∈Z f̂(j) exp (2iπαj), |||f ||| < +∞}

Remark that B(T) ⊂ A(T).
In the following, we will give conditions for α 7→ F (α, ω) to have continuous
trajectories P−almost surely.
We will denote by ϕX the characteristic function of the random variable X

∀t ∈ R, ϕX(t) = E(e2iπtX)

Theorem 1.1. Let (Xk)k>0 be a sequence of independent real valued random
variables and let (ak)k>1 be a sequence of complex numbers such that, for
any compact K which does not contain 0:

(H) ∀ε > 0,∃N > 0, sup
m>n>N

sup
α∈K

sup
j∈Z−{0}

∣

∣

∣

∣

∣

m
∑

k=n

akϕXk
(jα)

∣

∣

∣

∣

∣

< ε .

Assume moreover that:
case 1:(polynomial) there exists β > 0 and d > 0 with E|Xk|β = O(kd)
and

(1)
∑

n>1

√

∑

k>n |ak|2

n
√

log n
< +∞

case 2:(subexponential) there exists β > 0 and γ ∈]0, 1[ with E|Xk|β =
O(2kγ

) and

(2)
∑

n>1

√

∑

k>n |ak|2

n1− γ
2

< +∞

then in both cases, there exists a measurable set Ω0 with P(Ω0) = 1 such that
for all ω ∈ Ω0, for any f ∈ B(T) such that

∫T f(t)dt = 0 : for α ∈ R−{0},
F (α, ω) is well defined, α 7→ F (α, ω) is continuous and the series defining
F converges uniformly on every compact which does not contain {0}.
Remark 1.1.

(1) It is worth noticing that the set Ω0 does not depend on the class of
functions f (A(T) or B(T)).

(2) when (Xk)k>0 takes integer values, condition |||f ||| < ∞ becomes
||f || < ∞.

(3) we will give conditions on the law of the process (Xk)k>0 to fulfill
hypothesis (H).

(4) For example, when |ak| = O(k−δ), in case 1, if δ > 1/2, then condi-

tion 1 holds and in case 2, if δ > γ+1
2 , then condition 2 holds.
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(5) Concerning case 2, if γ > 1 (E|Xk|β growths exponentially), one can
prove using remark 2.1 that the series

∑

ak has to converge. The
function F is then obviously well defined using only Cauchy Schwarz
inequality.

In case condition (H) is hard to check, it is possible to split up the hypoth-
esis on the sequence (ak) and the characteristic function ϕXk

either using
Abel’s summation method or using Cauchy Schwarz inequality.
Define:

cn =

{

1 +
√

log n in the polynomial case

n
γ
2 in the subexponential case

Corollary 1.2. Let (Xk)k>0 be a sequence of independent real valued ran-
dom variables

Assume that, for any compact K which does not contain 0 :

(H′) sup
N>1

sup
α∈K

sup
j∈Z−{0}

|
N
∑

k=0

ϕXk
(jα)| < ∞ .

Let (ak)k>1 be a sequence of complex numbers enjoying the following prop-
erties

(1)
∑

n>1

√
∑

k>n |ak|2

ncn
< +∞

(2)
∑

k>1 |ak − ak+1| converges

then there exists a measurable set Ω0 with P(Ω0) = 1 such that for all ω ∈ Ω0,
for any f ∈ B(T) such that

∫T f(t)dt = 0: for α ∈ R− {0}, F (α, ω) is well
defined, α 7→ F (α, ω) is continuous and the series defining F converges
uniformly on every compact which does not contain {0}.
Corollary 1.3. Let (Xk)k>0 be a sequence of independent real valued ran-
dom variables

Assume that, for any compact K which does not contain 0 :

(H′′) ∀ε > 0,∃N > 0, sup
m>n>N

sup
α∈K

sup
j∈Z−{0}

(

m
∑

k=n

|ϕXk
(jα)|2

)

< ε .

Let (ak)k>1 be a sequence of complex numbers enjoying

∑

n>1

√

∑

k>n |ak|2

ncn
< +∞

then there exists a measurable set Ω0 with P(Ω0) = 1 such that for all ω ∈ Ω0,
for any f ∈ B(T) such that

∫T f(t)dt = 0: for α ∈ R− {0}, F (α, ω) is well
defined, α 7→ F (α, ω) is continuous and the series defining F converges
uniformly on every compact which does not contain {0}.
Remark 1.2.
The previous corollaries will be useful for example when the law of Xk

is obtained by convolution product (see corollary 4.2). As the condition
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∑

k>1 |ak − ak+1| is often hard to check, corollary 1.3 is sometimes better to
use.

The proof of theorem 1.1 will start by looking separately at F (α, ω) −E(F (α, .)) and E(F (α, .)). It turns out that hypothesis (H) will be used
only to deal with the expectation. That is why we think interesting to state
the result for:

F (α, ω) − E(F (α, .)) :=
∑

k

ak[f(αXk(ω) − E(f(αXk))

Theorem 1.4. Let (Xk)k>0 be a sequence of independent real valued random
variables such that there exists β > 0 and d > 0 with E|Xk|β = O(kd)
or γ ∈]0, 1[ with E|Xk|β = O(2kγ

). Let (ak)k>1 be a sequence of complex
numbers enjoying the following property

∑

n>1

√

∑

k>n |ak|2

ncn
< +∞

then there exists a measurable set Ω0 with P(Ω0) = 1 such that for all ω ∈ Ω0,
for any f ∈ B(T) such that

∫T f(t)dt = 0 : for α ∈ R, F (α, ω)−E(F (α, .))
is well defined, α 7→ F (α, ω) − E(F (α, .)) is continuous, the series defining
F − E(F ) converges uniformly on every compact and there exists Cω > 0
such that for all α ∈ R:

|F (α, ω) − E(F (α, .))| 6 Cω|||f |||
√

log(|α| + 2)

Remark 1.3.

(1) We also discuss the optimality of hypothesis on (ak) of theorem 1.4
in section 2.

(2) We also have:E sup
T>1

√

∫ T
0 |F (t, ω) − E(F (t, .))|2dt

√
T log T

< ∞

This result relies on uniform estimations of the size of some trigonometric
polynomials, more precisely on the following :
Recall that log+ = max(log, 0).

Theorem 1.5. Let λ and Λ be two integers with λ 6 Λ, (Xk)k>0 be a
sequence of independent real valued random variables such that there exists

β > 0 such that, ∀N > 0, E|Xβ
N | < ∞. Define

∀N > 0,Φβ(N) = 2 + max(N,E|Xβ
N |)

Let M > 1 and IM = [−M,M ]. Let (ak)k>1 be a sequence of real or complex
numbers.

Define

Aλ,Λ,M =

√

√

√

√log (MΦβ(Λ))

Λ
∑

k=λ

|ak|2,
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thenE sup
j∈Z sup

λ>1
sup
Λ>λ

sup
α∈IM

∣

∣

∣

∣

∣

∣

∑Λ
k=λ ak [exp 2iπαjXk(ω) −E exp 2iπαjXk ]

√

A2
λ,Λ,M log (|j| + 3)

∣

∣

∣

∣

∣

∣

< ∞

Remark 1.4. When(Xk)k>0 takes integer values, the proof of theorem 1.5
is easier. Namely, using the fact that α 7→ jα (mod 1) is onto for j 6= 0, we
get

sup
j∈Z∗

sup
α∈T ∣∣∣∣∣ Λ

∑

k=λ

ak [exp 2iπαjXk(ω) − E exp 2iπαjXk ]

∣

∣

∣

∣

∣

= sup
α∈T ∣∣∣∣∣ Λ

∑

k=λ

ak [exp 2iπαXk(ω) − E exp 2iπαXk ]

∣

∣

∣

∣

∣

the result of theorem 1.5 becomes then :E sup
λ>1

sup
Λ>λ

sup
α∈IM

∣

∣

∣

∣

∣

∣

∑Λ
k=λ ak [exp 2iπαXk(ω) −E exp 2iπαXk]

√

A2
λ,Λ,M

∣

∣

∣

∣

∣

∣

< ∞

When (Xk)k>1 takes real values, the proof is more tedious. It relies on a
fine inequality about decoupling gaussian random functions (see section 3.).
We can see here why, for integer-valued Xk, we can work with the functional
space A(T), whereas for real-valued Xk, we need to introduce the space B(T).

2. Proof of theorem 1.1 and corollary 1.2

First, we split F into two parts as follows :
∑

k

akf(αXk(ω)) =
∑

k

ak[f(αXk(ω) − E(f(αXk)) +
∑

k

akE(f(αXk))

-Step 1 : (first part of the sum)
Let (Nk)k>1 be a strictly increasing sequence of integers and define

∀k > 1, Pk(α) =

Nk+1
∑

l=Nk+1

al [f(αXl(ω)) − Ef(αXl)]

where f ∈ B(T). We want to study the following series, for all M > 1 :
∑

k

sup
α∈[−M,M ]

|Pk(α)|

We have :

|Pk(α)| ≤
∑

j∈Z |f̂(j)|

∣

∣

∣

∣

∣

∣

Nk+1
∑

l=Nk+1

al[exp (2πjαXl(ω)) − E exp (2πjαXl)]

∣

∣

∣

∣

∣

∣
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Hence, using theorem 1.5, there exists a positive integrable random variable
ξ such that

(3) sup
α∈[−M,M ]

|Pk(α)| ≤ ξ|||f |||

√

√

√

√

√log (MΦβ(Nk+1))

Nk+1
∑

j=Nk+1

|aj |2

where

ξ = sup
j∈Z sup

k>1
sup

α∈IM

∣

∣

∣

∣

∣

∣

1
√

A2
k,M log (|j| + 3)

Nk+1
∑

l=Nk+1

al

[

e2iπαjXl(ω) −Ee2iπαjXl

]

∣

∣

∣

∣

∣

∣

with

A2
k,M = log (MΦβ(Nk+1))

Nk+1
∑

l=Nk+1

|al|2

First, in the polynomial case, that is to say when there exists d > 0 with

Φβ(N) = O(Nd)

then we choose Nk = 22k
and we need to prove that

∑

k

2k/2





22k+1

∑

l=22k+1

|al|2




1/2

< +∞

now we use the following equivalent:

22k+1

∑

l=22k+1

1

l(log(l))1/2
≈ 2k/2

which may be computed by comparing series and integral, hence :

2k/2





22k+1

∑

l=22k +1

|al|2




1/2

6 C

22k+1

∑

l=22k +1

1

l(log(l))1/2





∞
∑

l=22k +1

|al|2




1/2

6 C

22k+1

∑

l=22k +1

(

∑∞
j=l |aj |2

)1/2

l(log(l))1/2

and, using condition 1 :

∑

k

2k/2





22k+1

∑

l=22k +1

|al|2




1/2

6
∑

k

C

22k+1

∑

l=22k +1

(

∑∞
j=l |aj|2

)1/2

l(log(l))1/2

6
∑

n>2

√

∑

k>n |ak|2

n
√

log n
< +∞
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this implies :
∑

k>1

sup
α∈[−M,M ]

|Pk(α)| < ∞

almost everywhere on the measurable set Ωo = {ω ∈ Ω, ξ(ω) < ∞}. By
construction, this set does not depend on the choice of f .
Secondly, in the subexponential case, that is when there exists γ ∈]0, 1[ with

Φβ(N) = O(2Nγ

)

we choose Nk = 2k and we need to prove that

∑

k

2γk/2





2k+1
∑

l=2k+1

|al|2




1/2

< +∞

Using the following equivalent:

2k+1
∑

l=2k+1

1

l1−
γ
2

≈ 2γk/2

and doing the same kind of computation as before, using condition 2:

∑

n>2

√

∑

k>n |ak|2

n1− γ
2

< +∞

implies
∑

k>1

sup
α∈[−M,M ]

|Pk(α)| < ∞

We also get from (3), for all α ∈ R:

|Pk(α)| 6 ξ|||f |||
√

log(|α| + 1)

√

√

√

√

√log(Φβ(Nk+1))

Nk+1
∑

j=Nk+1

|aj|2

summing on k, we get the inequality:

|F (α, ω) − E(F (α, .))| 6 Cξ(ω)|||f |||
√

log(|α| + 2)

where C only depends on (ak) and E(ξ) < ∞
This ends the proof of theorem 1.4 which is also the first step of the proof
of theorem 1.1

-Step 2 : (second part of the sum)
Let K be a compact which does not contain zero and α ∈ K. Let n < m be
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two integers,

|
m
∑

k=n

akE(f(αXk))| = |
∑

j∈Z∗

m
∑

k=n

akf̂(j)E(exp(2iπjαXk))|(4)

= |
∑

j∈Z∗

m
∑

k=n

akf̂(j)ϕXk
(jα)|(5)

= |
∑

j∈Z∗

f̂(j)(

m
∑

k=n

akϕXk
(jα))|(6)

6 (
∑

j∈Z∗

|f̂(j)|) sup
j∈Z∗

|
m
∑

k=n

akϕXk
(jα)|(7)

At this point, to prove theorem 1.1, we can conclude directly by using hy-
pothesis (H) to get

sup
n<m

sup
α∈K

|
m
∑

k=n

akE(f(αXk))| < ε

as long as m and n are large enough.
To prove corollary 1.2, we use Abel’s summation. Let φp =

∑p−1
k=0 ϕXk

, we
have :

m
∑

k=n

akϕXk
(jα) =

m
∑

k=n

ak(φk+1(jα) − φk(jα))(8)

=

m+1
∑

k=n+1

ak−1φk(jα) −
m
∑

k=n

akφk(jα)(9)

= −anφn(jα) + amφm+1(jα)(10)

+

m
∑

k=n+1

(ak−1 − ak)φk(jα)(11)

and :

(7) 6 |||f ||| sup
N>1

sup
α∈K

sup
j∈Z∗

|φN (jα)|
[

|am| + |an| +
m
∑

k=n+1

|ak − ak−1|
]

we now conclude using hypothesis H′ and hypothesis (1) on the sequence
(an) in corollary 1.2 :

sup
n<m

sup
α∈K

|
m
∑

k=n

akE(f(αXk))|

6 |||f |||
[

|am| + |an| +
m
∑

k=n+1

|ak − ak−1|
]

sup
N>1

sup
α∈K

sup
j∈Z∗

|φN (jα)| < ε
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as long as m and n are large enough.
To prove corollary 1.3, we use Cauchy Schwarz inequality in the following
way:

∣

∣

∣

∣

∣

m
∑

k=n

akϕXk
(jα)

∣

∣

∣

∣

∣

6

√

√

√

√

m
∑

k=n

|ak|2
√

√

√

√

m
∑

k=n

|ϕXk
(jα)|2

and we conclude using condition H ′′.

Remark 2.1.

(1) the most general hypothesis we can put on the sequence (ak)k>1 is
the following : there exists a strictly increasing sequence (Nk)k>1

such that

∞
∑

k=1

√

√

√

√

√log Φβ(Nk+1)

Nk+1
∑

l=Nk+1

|al|2 < ∞

(2) if the process (Xk)k>1 takes integer values then f ∈ A(T) can be
assumed without any other hypothesis.

(3) If
∑ |ak|2 diverges, then we can construct a stochastic process (Xk)k>1

verifying the hypothesis of theorem 1.4 and find f ∈ B(T) such that
the convergence of the series is not uniform on any compact. In that
sense, the conditions imposed to the sequence (ak)k>1 are optimal.
Remark that in this case, condition 1 is not fulfilled.

Namely consider a sequence of independent random variables with
disjoint supports. For all k > 1 the support of Xk is the set of
integers belonging to [k2, (k+1)2−1] and hence, the hypothesis on the
moment is verified. We will come back to the law of Xk later. Now
choose f in the following way : for all α ∈ T, f(α) = exp (2iπα).
Thus f ∈ A(T) et |||f ||| < ∞. As a consequence, if the convergence
of the series defining F was uniform in α on T, then we would have
:

√

√

√

√

∫ 1

0

∣

∣

∣

∣

∣

∞
∑

k=1

ak [exp 2iπαXk(ω) − E exp 2iπαXk ]

∣

∣

∣

∣

∣

2

dα

≤ sup
α∈[0,1]

∣

∣

∣

∣

∣

∞
∑

k=1

ak [exp 2iπαXk(ω) − E exp 2iπαXk]

∣

∣

∣

∣

∣

< ∞
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By construction, P− almost surely :

∫ 1

0

∣

∣

∣

∣

∣

∞
∑

k=1

ak [exp 2iπαXk(ω) − E exp 2iπαXk]

∣

∣

∣

∣

∣

2

dα

=

∞
∑

k=1

|ak|2
∫ 1

0
| exp (2iπαXk(ω)) − E exp (2iπαXk)|2dα

>

∞
∑

k=1

|ak|2
∫ 1

0
|1 − |E exp (2iπαXk)||2 dα

Assume now that the law of Xk is uniform on the 2k + 1 integers of
[k2, (k + 1)2 − 1]. for all k > 1.

|E exp (2iπαXk)| =
1

2k + 1

∣

∣

∣

∣

sin πα(2k + 1)

sin πα

∣

∣

∣

∣

Using Lebesgue convergence theorem, we get

lim
k→+∞

∫ 1

0
|1 − |E exp (2iπαXk)||2 dα = 1

and we also get the divergence of the series with positive terms
∞
∑

k=1

|ak|2
∫ 1

0
|1 − |E exp (2iπαXk)||2 dα = ∞

A contradiction with uniform convergence of the centered part.

3. Proof of theorem 1.5

Let us begin by restating some inequalities obtained by Fernique ([4])
which will be useful in the proof of theorem 1.5. For more information on
gaussian techniques in this framework, see [7] and [2].

Inequality 3.1. Let (Gk)k>1 be a sequence of Banach space valued gaussian
random variables (B, ‖ · ‖) defined on a probabilised space (Ω,A, P). Then :E sup

k>1
‖ Gk ‖≤ K1

{

sup
k>1

E ‖ Gk ‖ +E sup
k>1

| λkσk |
}

where (λk)k>1 is an isonormal sequence, K1 a universal constant and for all
k > 1,

σk = sup
f∈B′ ,‖f‖≤1

‖< Gk, f >B‖2,P

Inequality 3.2. Let g be a real valued stationary gaussian random variable,
separable and continuous in quadratic mean. Let m be its associated spectral
measure on R+ defined byE[| g(s) − g(t) |2] = 2

∫ ∞

0
[1 − cos 2πu(s − t)]m(du)



12 FRÉDÉRIC PACCAUT(1), DOMINIQUE SCHNEIDER(2)

We haveE sup
α∈[0,1]

g(α) ≤ K

{
√

∫ ∞

0
min(u2, 1)m(du) +

∫ ∞

0

√

m
(]

ex2 ,∞
[)

dx

}

where K is a universal constant.

Inequality 3.3. (decoupling) Let X = {X(t) : t ∈ T} be a gaussian
random function defined on a finite or countable set T . Let {Tk, k ∈ [1, n]}
be a covering of T . Let S = T1 × · · · × Tn. The following inequality holds :E{ sup

k∈[1,n]

[

sup
t∈Tk

X(t) − E sup
t∈Tk

X(t)

]}

≤ π

2
· sup

s∈S

{E[ sup
k∈[1,n]

X(sk)

]}

The following estimation generalizes inequality 3.2 and will be useful in
the almost periodic case because it gives estimations on arbitrarily large
intervals.

Inequality 3.4. Let g a real valued stationnary gaussian random function,
separable and continuous in quadratic mean. Let m its associated spectral
measure on R+ defined as in inequality 3.2. There exists a universal constant
K such that E sup

α∈[−M,M ]
g(α)

≤ K







√

∫ ∞

0
min(2Mu2, 1) m(du) +

∫ ∞

0

√

m

(]

ex2

2M
,∞
[)

dx







Let us now come to the proof
-Step 1: In this part, we replace our problem by a question of regularity

of trajectories of random gaussian functions.
Let us consider an independent copy of X = (Xk)k>1 denoted by X ′ =

(X ′
k)k>1 defined on another probabilized space (Ω

′

,A′

, P
′

). We call E∗ the
integration symbol whose index refers to the space of integration.

Using classical convexity properties, to prove (1), it is enough to showEX,X′ sup
j∈Z sup

λ>1
sup
Λ>λ

sup
α∈IM

∣

∣

∣

∣

∣

∣

∑Λ
k=λ ak

[

e2iπαjXk − e2iπαjX
′

k

]

√

A2
Λ,λ,M log (|j| + 3)

∣

∣

∣

∣

∣

∣

< ∞(12)

Let us now symmetrize the problem: consider the following separable
family of random functions, with continuous trajectories

(fk)k>1 = {fk(α, j) = ak(exp 2iπαjXk − exp 2iπαjX ′
k), α ∈ IM , j ∈ Z}k>1

By construction f is a symmetric family of random functions, that is to say
their law is sign-invariant. More precisely, call {εk, k > 1} a sequence of
independent Rademacher random variables (taking the values +1 and −1

with probability 1/2), defined on a third space (Ω
′′

,A′′

, P
′′

), independent of
X and X ′. {fk, k > 1} and {εkfk, k > 1} have the same law. Thus for all
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integers (Λ, λ) such that Λ > λ,
∑Λ

k=λ fk and
∑Λ

k=λ εkfk also have the same
law.

That is why (12) can be written on a larger space of integration in the
following way:EX,X′ ,ε sup

j∈Z sup
λ>1

sup
Λ>λ

sup
α∈IM

∣

∣

∣

∣

∣

∣

∑Λ
k=λ εkfk(α, j)

√

A2
Λ,λ,M log (|j| + 3)

∣

∣

∣

∣

∣

∣

We deduce a sufficient condition for (12) to be realisedEX,ε sup
j∈Z sup

λ>1
sup
Λ>λ

sup
α∈IM

∣

∣

∣

∣

∣

∣

∑Λ
k=λ εkak exp 2iπαjXk
√

A2
Λ,λ,M log (|j| + 3)

∣

∣

∣

∣

∣

∣

(13)

We then use a precious tool in the theory of gaussian random functions: the
contraction principle. This tool is built on a quite simple idea: replace the
choice of signs by a sequence of gaussian random variables with mean zero
and variance one. This idea can be explained by the following property:
given g a gaussian random variable with mean zero and variance 1 and ε a
Rademacher random variable, if g and ε are independent, then g and ε|g|
have the same law.

As a consequence, in order to prove (13), we showEX,g,g′ sup
j∈Z sup

λ>1
sup
Λ>λ

sup
α∈IM

∣

∣

∣

∣

∣

∣

∑Λ
k=λ ak(gk cos 2παjXk + g′k sin 2παjXk)

√

A2
λ,Λ,M log (|j| + 3)

∣

∣

∣

∣

∣

∣

< +∞

where {gk, k > 1} et {g′k, k > 1} are two sequences of independent identically
distributed random variables with law N (0, 1), independent of X and ε,
defined on two other probabilised spaces.

Conditionally to X, the problem is reduced to studying the regularity of
the trajectories of stationary gaussian random variables. This concludes the
first step of the proof.

-Step 2 : In this part, we use the gaussian tools introduced in the be-
ginning.

Conditionally to X, call G(λ,Λ, j, α) the following quantity

1
√

A2
λ,Λ,M log (|j| + 3)

Λ
∑

k=λ

ak

[

gk cos (2παjXk) + g
′

k sin (2παjXk)
]

If j, λ and Λ are fixed, G(α) := G(λ,Λ, j, α) is a random function with
almost surely continuous trajectories (up to a modification of trajectories).
That is why it is enough to show that G is bounded on IM ∩ Q. Moreover,
we will assume that |j| ≤ J where J is a large fixed integer.

Let us begin by finding an upper bound forEg,g′ sup
|j|≤J

sup
λ>1

sup
Λ>λ

sup
α∈IM∩Q

|G(λ,Λ, j, α)|
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First remark that if Yt (t ∈ T ) is a gaussian random function defined on T ,
then for all t0 ∈ T we have (see [4] (480))E sup

t∈T
|Yt| ≤ E|Yt0 | + E sup

t∈T
Yt

In this way, we get rid of the absolute value. Apply this remark to G(λ,Λ, j, α)
with α = 0, λ = Λ = 1 and j = 0 and let us find an upper bound forEg,g′ sup

|j|≤J
sup
λ>1

sup
Λ>λ

sup
α∈IM∩Q

G(λ,Λ, j, α)(14)

In order to apply the decoupling inequality 3.3, define

T = {−J, · · · , J} × H × (IM ∩ Q)

where J is a large enough integer and H is the upper triangle of dimension
2 in N ×N (see figure 1 below) (λ ∈ N and Λ > λ.) A point in t ∈ T will
be written t = (j, λ,Λ, α).

This set T is at most countable and we will find an upper bound forEg,g′ supt∈T G(t) independently of J and then conclude by taking the supre-

mum on j ∈ J . Define

Tj = {j} × H × (IM ∩ Q)

It is obvious that {Tj}j=−J,··· ,J is a covering of T . Define

S = T−J × · · · × TJ

Using inequality 3.3, we haveEg,g′ sup
t∈T

G(t) ≤ π

2
sup
s∈S

Eg,g′ sup
−J6j6J

G(sj) + sup
−J6j6J

Eg,g′ sup
t∈Tj

G(t)

where sj is a point in Tj.

-Step 3 : We study now

sup
s∈S

E sup
−J6j6J

G(sj).

We can rewrite this in the following way :

supEg,g′ sup
−J6j6J

∑Λj

k=λj
ak

[

gk cos (2πjαjXk) + g
′

k sin (2πjαjXk)
]

√

A2
λj ,Λj ,M log (|j| + 3)

(15)

where the first supremum is taken on

{(α−J , · · · , αJ ) ∈ (IM ∩ Q)2J+1, ( (λ−J ,Λ−J ) , · · · , (λJ ,ΛJ) ) ∈ H2J+1 }
Fix {(α−J , · · · , αJ) ∈ (IM ∩ Q)2J+1 and ((λ−J ,Λ−J) , · · · , (λJ ,ΛJ ) ) ∈

H2J+1 }. Define the gaussian process

Gj :=

∑Λj

k=λj
ak

[

gk cos (2πjαjXk) + g
′

k sin (2πjαjXk)
]

√

A2
λj ,Λj ,M log (|j| + 3)
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In order to get an upper bound for 15, we remark that

supEg,g′ sup
−J6j6J

Gj

≤ sup
((λ−J ,λ−J),··· ,(λJ ,λJ))∈H2J+1

Eg,g
′ sup
−J6j6J

sup
α∈IM

|G(j, λj ,Λj , α)|(16)

We will get an upper bound for the right hand side of 16 independently of
J , which will give us an upper bound for 15 by taking the supremum on
j ∈ J .

Applying inequality 3.1 to the finite sequence of random gaussian func-
tions

(G(j, λj ,Λj , α))−J≤j≤J

we prove that Eg,g′ sup−J≤j≤J supα∈IM
|G(j, λj ,Λj , α)| is less than

C

{

sup
−J≤j≤J

Eg,g′ sup
α∈IM

|G(j, λj ,Λj , α)| +Eξ sup
−J≤j≤J

|ξjqj|
}

(17)

where C is a universal constant, (ξj)−J≤j≤J is an isonormal sequence and

qj ≤ sup
α∈IM

||G(j, λjΛj, α)||2,g,g′

This gives us the following upper bound

qj ≤
1

√

log(MΦβ(Λj)) log (|j| + 3)

As for all j we have Λj > 1 and M > 1 we easily get

Eξ sup
−J≤j≤J

|ξjqj| ≤ Eξ sup
−J≤j≤J

∣

∣

∣

∣

∣

1
√

log (|j| + 3)
ξj

∣

∣

∣

∣

∣

(18)

≤ CEξ sup
j∈Z ∣∣∣∣∣ ξj

√

log(|j| + 3)

∣

∣

∣

∣

∣

(19)

The exponential integrability of gaussian vectors givesEξ sup
j∈Z ∣∣∣∣∣ ξj

√

log |j| + 3

∣

∣

∣

∣

∣

= C < ∞

and hence

sup
(λ−J ,Λ−J),··· ,(λJ ,ΛJ))∈H2J+1

Eξ sup
−J≤j≤J

|ξjqj| = C < ∞

independently of J and of the sequence (λ−J ,Λ−J), · · · , (λJ ,ΛJ )) ∈ H2J+1).
We then get independently of J on the whole integration spaceEX sup

(λ−J ,Λ−J ),··· ,(λJ ,ΛJ ))∈H2J+1

Eξ sup
−J≤j≤J

|ξjqj| ≤ C < ∞

where C is a constant.
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Let us now try to find an upper bound for

sup
((λ−J ,Λ−J),··· ,(λJ ,ΛJ))∈H2J+1

sup
−J≤j≤J

Eg,g′ sup
α∈IM

|G(j, λj ,Λj , α)|(20)

independently of J .
We will use inequality 3.4. Let us choose a finite sequence

((λ−J ,Λ−J ), · · · , (λJ ,ΛJ )

and an integer |j| ≤ J . The gaussian random function Gj(α) := G(j, λj ,Λj , α)
is stationary. Its associated spectral measure on R+ is defined by

mj =
1

log (|j| + 3) log (MΦβ(Λj))
(

∑Λj

k=λj
|ak|2

)

Λj
∑

k=λj

|ak|2δj|Xk|

where δu is the Dirac measure in the point u.
We get Eg,g

′ sup
α∈IM

|Gj(α)|

≤ C







√

∫ ∞

0
min(

u2

2M
, 1)mj(du) +

∫ ∞

0

√

mj

(

]
ex2

2M
,∞[

)

dx







It is obvious that the first term is less than
√

mj(R+) ≤ C
1

√

log (2M) log (|j| + 3)

where C is a universal constant because for all j we have Φβ(Λj) > 2.
For the second term, it can be rewritten in the following way

∫ ∞

0

√

mj

(

]
exp x2

2M
,∞[

)

dx

=





1

log (|j| + 3) log (MΦβ(Λj))
(

∑Λj

k=λj
|ak|2

)





1
2

×
∫ ∞

0

√

√

√

√

√

Λj
∑

k=λj

|ak|21{2M |jXk|>ex2}
dx

Using

∀k > 1, 1
{2M |jXk|>ex2}

≤ 1
{2M |j| supl≤k|Xl|>ex2}

we cut R+ in the integral according to the increasing subdivision

{0}
⋃

{
√

log+ (2M |j| sup
l≤k

| Xl |), λj ≤ k ≤ Λj}
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We get thus an upper bound for the previous integral

Λj
∑

k=λj

[

√

log+ (2M |j| sup
l≤k

| Xl |) −
√

log+ (2M |j| sup
l≤k−1

| Xl |)
]





Λj
∑

l=λj

|al|2




1
2

≤





Λj
∑

l=λj

|al|2




1
2 Λj
∑

k=λj

[

√

log+ (2M |j| sup
l≤k

| Xl |)

−
√

log+ (2M |j| sup
l≤k−1

| Xl |)
]

≤ 2





Λj
∑

k=λj

|ak|2




1
2
√

log+ (2M |j| sup
l≤Λj

| Xl |)

Consequently, ∀|j| ≤ J ,

∫ ∞

0

√

mj

(

]
exp x2

M
,∞[

)

dx ≤ 2

√

log+ (2M |j| supl≤Λj
| Xl |)

log (|j| + 3) log(MΦβ(Λj))

≤ 4

√

log+ (2M sup1≤l≤Λj
| Xl |)

log(MΦβ(Λj))

≤ 4 sup
1≤l≤Λj

√

log+ (2M | Xl |)
log(MΦβ(l))

≤ 4 sup
N>1

√

log+ (2M | XN |)
log (MΦβ(N))

≤ 4

(

1 + sup
N>1

√

log+ (| XN |)
log Φβ(N)

)

Finally, on the whole integration space, we get the following upper bound :EX sup
(λ−J ,Λ−J),··· ,(λJ ,ΛJ)∈H2J+1

sup
−J≤j≤J

Eg,g′ sup
α∈IM

|Gj(α)|(21)

≤ C

(

1 + EX sup
N>1

√

log+ (| XN |)
log Φβ(N)

)

< ∞(22)

-Step 4 : To end the proof of theorem 1.5, it remains to deal with

sup
−J≤j≤J

Eg,g′ sup
(λ,Λ)∈H

sup
α∈IM∩Q

G(j, λ,Λ, α)

Let us fix j. In order to apply inequality 3.1, we need to replace the supre-
mum on (λ,Λ) ∈ H by a supremum on only one variable, in other words,
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λ

Λ
h

Figure 1. renumbering the upper triangle in N2

we need to renumber H using one variable h ∈ N2 given by the formula :

h = λ +
Λ(Λ − 1)

2

(see figure 1).

Let us fix j. Inequality 3.1 gives us :Eg,g′ sup
h>1

sup
α∈IM∩Q

G(j, h, α) 6 K1(sup
h>1

Eg,g′ sup
α∈IM∩Q

G(j, h, α) + Eg,g′ sup
h>1

|λhσh|)(23)

where (λh)h>1 is an isonormal sequence. The inequality :

Λ(Λ − 1)

2
6 h 6

Λ(Λ + 1)

2

gives a polynomial dependence between Λ and h, hence :

σh = O(
1√

log h
)

and the first term in the right hand side of inequality (23) is dealt with in
the same way as before. Finally, we get :Eg,g′ sup

(λ,Λ)∈H
sup

α∈IM∩Q

G(j, λ,Λ, α) ≤ C

(

1 + sup
N>1

√

log+(|XN |)
log Φβ(N)

)

That is to say, by integrating on the whole space,
(24)EX sup

1≤j≤n
Eg,g

′ sup
(λ,Λ)∈H

sup
α∈IM∩Q

G(j, λ,Λ, α) ≤ C

(

1 + EX sup
N>1

√

log+(|XN |)
log Φβ(N)

)
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Let us prove that EX sup
N>1

√

log+(|XN |)
log Φβ(N)

< ∞

Using Jensen inequality, we can get rid of the square root. Let δ > 0. For
all N > 1, we have

β log+ |XN | ≤ β log+

[

|XN |
Φδ

β(N)

]

+ β log+[Φδ
β(N)]

noticing that Φδ
β(N)) > 2 it is sufficient to showE sup

N>1
log+

[

|XN |β
Φδβ

β (N)

]

< ∞

Using now the inequality log+(x) ≤ x for any x > 0, it is sufficient to prove

∑

N>1

E|XN |β
Φδβ

β (N)
< ∞

And as E|XN |β 6 Φβ(N) and Φβ(N) > N , if we chose δ = 3
β we get the

conclusion. Steps 3 (see 21), step 4 (see 24) lead us to the announced result
of theorem 1.5.

4. Applications

Let us begin by giving an example where the (Xk) are uniformly dis-
tributed :

Example 4.1. Suppose that L(Xk) = U([µk −σk/2, µk +σk/2]) with σk > 0
et E(Xk) = µk with µk = O(kd) for some d > 0. The characteristic function
of Xk can easily be computed :

ϕXk
(t) =

e2iπtµk

πtσk
sin(πtσk)

Using condition H of theorem 1.1, the following condition

(25)
∑

n>1

|an|
σn

converges

and

∑

n>1

√

∑

k>n |ak|2

n
√

log n
< +∞

are sufficient to get the desired convergence.
Notice that using corollary 1.3, condition (25) is replaced by

∑

n>1

1

σ2
n

< +∞
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The subexponential case could be dealt with in the same way.
If we consider the border case ak = O(k−1/2−ε), it is sufficient that :

∃η > 0, σk > k
1
2
+η

in this case : P{∀k,Xk ∈ [µk − k
1
2
+η

2
, µk +

k
1
2
+η

2
]} = 1

which gives an information on the possible dispersion of the variables Xk.

Here are other examples where the conditions of our theorems can be
quite easily verified.

Corollary 4.1. Let (Xk)k>1 be a sequence of real independent random
variables whose law can be written in the following way for all k > 1 :
L(Xk) = L(σk ·X +µk) where X verifies E|X|β < ∞ for some β > 0. More-
over, we assume that there exist d > 0 and δ > 0 such that |σk| = O(kd),
|µk| = O(kd), the application t 7→ tδE exp (2iπtX) is bounded on R, and let
(ak)k>1 be a sequence of real or complex numbers satisfying the following
two conditions

(1) |ak| = O(k−β) with β > 1/2
(2)

∑∞
k=1

1
|σk|2δ < ∞

Then there exists a measurable set Ωo with full measure (P(Ωo) = 1) such
that for any ω ∈ Ωo for all f ∈ B(T) such that

∫T f(t)dt = 0 : for any
compact K which does not contain 0, the application t ∈ K 7→ F (t) =
∑

k>1 akf(tXk(ω)) is continuous and the series defining F converges uni-
formly on K.

The proof of corollary 4.1 relies on corollary 1.3.

Example 4.2. The random variable X may have a gaussian law with mean
zero and variance one, a Cauchy law, the first Laplace law, an exponential
law with parameter λ > 0. Let us precise the gaussian case.

Here L(X) = N (0, 1), we have E exp 2iπtX = e−t2/2. Hence we can use the

fact that t 7→ et2/2E exp 2iπtX is bounded on R. In this case, the sufficient
condition to obtain convergence is

∀ε > 0,∃N > 0, sup
m>n>N

sup
α∈K

sup
j∈Z−{0}

|
m
∑

k=n

ake
2iπαµkje−j2α2σ2

k/2| < ε

Let d(0,K) be the distance between 0 and the compact K. Using the fact
that |ak| = O(k−β) with β > 1/2, the previous condition will be satisfied as
soon as :

∃ε > 0, σk >

√

2(1 − β + ε)

d(0,K)

√

log k
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which, in terms of dispersion of the variables Xk means that infinitely often:

Xk ∈ [µk − 3

√

2(1 − β + ε)

d(0,K)

√

log k, µk + 3

√

2(1 − β + ε)

d(0,K)

√

log k]

We discuss now the case when the laws of Xk are generated by a convolu-
tion product of a given law µ. We distinguish two cases : on one hand when
the support of µ contains non integer values, on the other hand when the
support of µ is contained in Z. The first case is discribed by the following
corollary :

Corollary 4.2. Let (Xk)k>1 be an sequence of real valued independent ran-
dom variables such that for all integer k > 1, L(Xk) = µ∗k where µ is a
probability measure on R with E|X1|δ < ∞ for some δ. Assume the follow-
ing :

(a) ϕX1(t) = 1 ⇐⇒ t = 0 (X1 aperiodic)

(b) ∃δ > 0, sup
t∈R |tδE exp (2iπtX1)| = q < ∞

Let (ak)k>1 be a sequence of real or complex numbers such that the sequence
|ak| is decreasing and fulfills the two following conditions :

(1) |ak| = O(k−β) avec β > 1/2
(2)

∑∞
k=1 |ak − ak+1| < ∞

Then there exists a measurable set Ωo with full measure (P(Ωo) = 1) such
that for any ω ∈ Ωo, for all f ∈ B(T) such that

∫T f(t)dt = 0, for any
compact K which does not contain 0, the application t ∈ K 7→ F (t, ω) =
∑

k>1 akf(t Xk(ω)) is continuous and the series defining F converges uni-
formly on K.

Remark 4.1. If X1 is striclty aperiodic (|ϕX1(t)| = 1 ⇐⇒ t = 0), then the
condition on the differences |ak − ak+1| may be removed, using corollary 1.3
and the same kind of conputation as in the following proof.

The random variable X1 being real valued, its characteristic function is
not periodic. Take for example a gaussian law with mean zero and variance
one.
Proof : Let K be a compact which does not contain 0. Using Abel ’s
summation, it is sufficient to prove

sup
t∈K

sup
|j|>1

∣

∣

∣

∣

∣

N
∑

k=1

(E exp 2iπjtX1)
k

∣

∣

∣

∣

∣

< ∞

independently of N . Let us split the supremum on j respectively into the

supremum on the indexes J(q) and J̄(q) where J(q) = {j ∈ Z∗ : |j|δ ≤
[

2q
εδ

]

}
and 2ε is the distance between 0 and the fixed compact K.
On one hand, using (a), it can be proved that :

∀ε > 0 inf
|t|>ε

|t|δ|1 − E exp(2iπtX1)| > 0
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this implies

sup
t∈K

sup
j∈J(q)

∣

∣

∣

∣

∣

N
∑

k=1

(E exp 2iπjtX1)
k

∣

∣

∣

∣

∣

≤ sup
t∈K

sup
j∈J(q)

C(ε)|jt|δ ≤ C(K)

[

2q

εδ

]

On the other hand, using (b),

sup
t∈K

sup
j∈J̄(q)

∣

∣

∣

∣

∣

N
∑

k=1

(E exp 2iπjtX1)
k

∣

∣

∣

∣

∣

≤ sup
t∈K

sup
j∈J̄(q)

N
∑

k=1

(

q

|tj|δ
)k

≤ C

N
∑

k=1

1

2k
≤ 2C

where C is a universal constant.
�

As for the integer valued case, we have :

Corollary 4.3. Let (Xk)k>1 be an sequence of integer valued independent
random variables such that for all integer k > 1, L(Xk) = µ∗k where µ is a
probability measure on R with E|X1|β < ∞ for some β > 0. Let (ak)k>1 be
a sequence of complex numbers such that |ak| = O(k−β) with β > 1/2.
Assume either :

ϕX1(t) = 1 ⇐⇒ t = 0 and
∑

k>1

|ak − ak+1| converges

or :

|ϕX1(t)| = 1 ⇐⇒ t = 0

Then there exists a measurable set Ωo with full measure (P(Ωo) = 1) such
that for any ω ∈ Ωo, for all f ∈ A(T) such that

∫T f(t)dt = 0, for any
compact K of the torus which does not contain 0, the application t ∈ K 7→
F (t, ω) =

∑

k>1 akf(t Xk(ω)) is continuous and the series defining F con-
verges uniformly on K.

Example 4.3. If the law of X1 is a Poisson law with parameter 1, we use :

∀t ∈ T, |ϕX1(t)| 6 ecos(2πt)−1
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