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ABSTRACT. In this article we study the continuity properties of trajec-
tories for some random series of functions, Yy axf(aXk(w)) where
(ak)r>0 is a complex sequence, (X&)r>0 is a sequence of real indepen-
dent random variables, f is a real valued function with period one and
summable Fourier coefficients. We obtain almost sure continuity results
for these periodic or almost periodic series for a large class of functions
f, where the ”almost sure” does not depend on the function. The proof
relies on gaussian randomization. We show optimality of the results in
some cases.

SERIES DE FONCTIONS ALEATOIRES ET APPLICATIONS

ABSTRACT. (RESUME) Dans ce travail, nous étudions des propriétés
de continuité de trajectoires de séries de fonctions aléatoires du type
Yoo arf(aXk(w)) ot (ar)r>o est une suite de nombres complexes,
(Xk)k>o0 une suite de variables aléatoires réelles et indépendantes, f une
fonction 1-périodique a coefficients de Fourier sommables. Nous mon-
trons que, presque stirement, ces séries de fonctions aléatoires (périodiques
ou presque périodiques) sont a trajectoires continues pour une grande
classe de fonctions f. Le ”presque sir” est indépendant de f. Les
preuves s’appuient sur un procédé de randomisation gaussien. Dans
certains cas, nous montrerons I'optimalité des résultats obtenus.

Keywords : random fourier series, almost sure continuity of trajectories, gaussian ran-
domization, almost periodic functions, random trigonometric polynomial
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1. INTRODUCTION. MAIN RESULTS

In [III], Berkes studies the almost sure convergence of series defined by :

> arf(ang)

k>1

where the sequence (ny) is lacunary and the function f verifies :

flz+1) = /f =0 /01f2(x)dx:

He shows that the important property of f to ensure the almost sure con-
vergence is f € Lip(y) with v > 1/2 and };+, lag|?> < 4+o00. In his case,
the ny are strictly lacunary, more precisely, they satisfy the Hadamard gap

condition :
Nk41

ng

zq>1

We can naturally adress the question whether the convergence still holds
when ny is polynomial, and for which class of functions. We are going to
answer the question when the sequence (ny) is randomly generated.

Let us mention that the result exists when (ny) is a deterministic polynomial
sequence and (ay,) is randomly distributed (see [f] and [A]).

We want to study the convergence properties of series of functions sampled
by a random process. More precisely, consider the torus T = R/Z and define
A(T) as the set of complex valued functions whose Fourier coefficients are
absolutely summable :

AT)={f:T—C, f(« Zf )exp (2imag), Z]f )| < +oo}

JEZ JEZ

(ak)k>0 will denote a sequence of real numbers and (X )x>0 a sequence of in-
dependent real random variables defined on the probabilised space (12, .4, P).
Our aim is to study the convergence, when w € €) is fixed, of the series of
functions

Va € R, Fla,w) =) arf(aXi(w))

Is it possible to give conditions on the sequence (aj)r>o in order to find a
A—measurable set g independent of the function f, such that P(Qy) = 1,
on which the series uniformly converges?

Note that when X} does not take integer values, F' is not a periodical func-
tion of the torus. For us, a will be real and we will deal with this ”almost
periodical” case. That is why we have to study the properties of F' on a
compact [—M, M| and not only [0,1] (see for example [J])

For all f € A(T), define

1£11:= D 1F ()] < +oo.

JEZ
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111 =3 17G)1v/log (] + 8) < +o0.
JEZ
and
B(T) = {f: T — C, f(a) = > f(j) exp (2imaj), ||| f|l| < +o0}
JEZ
Remark that B(T) C A(T).
In the following, we will give conditions for o — F'(c,w) to have continuous
trajectories P—almost surely.
We will denote by ¢x the characteristic function of the random variable X

Vi € R, px(t) = B(TY)

Theorem 1.1. Let (Xj)r>0 be a sequence of independent real valued random
variables and let (ax)r>1 be a sequence of complex numbers such that, for
any compact K which does not contain 0:

Z AP Xy (]a)

k=n

(H) Ve > 0,dN >0, sup sup sup
m>n2N acK jeZ—{0}

<e.

Assume moreover that:
case 1:(polynomial) there exists 3 > 0 and d > 0 with E|X;|? = O(k?)
and

Zk}n |ak|?

(1) > alosn

n=1

< 400

case 2:(subexponential) there exists § > 0 and v €]0, 1] with B|X|? =
O2¥") and

Zk>n |al€|2
(2) Z — 1=z <+

n>1 n-o2

then in both cases, there exists a measurable set Qo with P(Qg) = 1 such that
for allw € Qq, for any f € B(T) such that [ f(t)dt =0 : for a € R —{0},
F(a,w) is well defined, o — F(a,w) is continuous and the series defining
F converges uniformly on every compact which does not contain {0}.

Remark 1.1.

(1) It is worth noticing that the set Qg does not depend on the class of
functions f (A(T) or B(T)).

(2) when (Xi)k>o takes integer values, condition |||f||| < oo becomes
1£1] < oo.

(3) we will give conditions on the law of the process (Xj)r>o to fulfill
hypothesis (H).

(4) For example, when |ay| = O(k™°), in case 1, if § > 1/2, then condi-
tion [] holds and in case 2, if § > VTH, then condition [§ holds.
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(5) Concerning case 2, if vy > 1 (E|Xy|® growths exponentially), one can
prove using remark [2.1 that the series > ay has to converge. The
function F is then obviously well defined using only Cauchy Schwarz
inequality.

In case condition (H) is hard to check, it is possible to split up the hypoth-
esis on the sequence (aj) and the characteristic function ¢x, either using
Abel’s summation method or using Cauchy Schwarz inequality.

Define:
{ 1+ \/log n in the polynomial case
Cn =

nz in the subexponential case

Corollary 1.2. Let (Xy)r>0 be a sequence of independent real valued ran-
dom variables
Assume that, for any compact K which does not contain 0 :
N

(") sup sup  sup |y ox, (ja)| < 00,

N21a€eK jeZ—{0} k=0
Let (ar)k>1 be a sequence of complex numbers enjoying the following prop-
erties

2
(1) S Y4z < oo

nen
(2) Zk>1 lax, — ag41| converges

then there exists a measurable set Qo with P(Qy) = 1 such that for allw € Q,

for any f € B(T) such that [, f(t)dt =0: for « € R — {0}, F(a,w) is well

defined, o — F(a,w) is contmuous and the series defining F converges

uniformly on every compact which does not contain {0}.

Corollary 1.3. Let (Xj)r>0 be a sequence of independent real valued ran-
dom variables
Assume that, for any compact K which does not contain 0 :

(H") Ve >0,dN >0, sup sup sup Z lox, (ja)|
m>n2N a€K jeZ— {0}
Let (ar)k>1 be a sequence of complex numbers enjoying

Z \/Zkgn |ay|?

ney,

< 400

n=>1
then there exists a measurable set Qo with P(Qy) = 1 such that for allw € Q,
for any f € B(T) such that [, f(t)dt =0: for a € R — {0}, F(a,w) is well
defined, a — F(a,w) is contmuous and the series defining F converges
uniformly on every compact which does not contain {0}.

Remark 1.2.
The previous corollaries will be useful for example when the low of X
is obtained by convolution product (see corollary [{.3). As the condition
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> k1 lak — agy1| is often hard to check, corollary [[.3 is sometimes better to
use.

The proof of theorem [L.1 will start by looking separately at F(a,w) —
E(F(a,.)) and E(F(a,.)). It turns out that hypothesis (H) will be used
only to deal with the expectation. That is why we think interesting to state
the result for:

Fla,w) = B(F(e,.) =Y aplf(aXp(w) — B(f(aXy))
!

Theorem 1.4. Let (Xj)r>0 be a sequence of independent real valued random
variables such that there exists 3 > 0 and d > 0 with E|X;|® = O(k?)
or v €]0,1[ with E|Xy|® = O2F"). Let (ay)i>1 be a sequence of complex
numbers enjoying the following property

Z \/Zkgn |ay|?

ney,

< +00

n>1
then there exists a measurable set Qg with P(Qg) = 1 such that for allw € Qy,
for any f € B(T) such that [ f(t)dt =0 : for a € R, F(a,w) — E(F(a,.))
is well defined, o — F(o,w) — E(F(a,.)) is continuous, the series defining
F — E(F) converges uniformly on every compact and there exists C,, > 0
such that for all a € R:

|F(a,w) = E(F(a,.)| < Culll fll|v1og(|er| +2)
Remark 1.3.

(1) We also discuss the optimality of hypothesis on (ay) of theorem
i section 2.

(2) We also have:

. VITIF(tw) - B(F(, ) 2dt
1 VTTlogT

This result relies on uniform estimations of the size of some trigonometric
polynomials, more precisely on the following :
Recall that logt = max(log, 0).

Theorem 1.5. Let X\ and A be two integers with A < A, (Xi)p>0 be a
sequence of independent real valued random variables such that there exists
B > 0 such that, VN >0, IE)|XJ6V| < 00. Define

YN > 0,®5(N) = 2 + max(N, E|X5])

Let M > 1 and Iy = [—M, M]. Let (ar)r>1 be a sequence of real or complex
numbers.
Define

< 00

A
Asar = 4| log (MP(A)) D Jaxl,
k=x
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then

ZQ:A ay, [exp 2imaj Xy (w) — Eexp 2imagj Xy

IE sup sup sup sup
JEZ AZ1 AN acly \/Ai,A,M log (|5] + 3)

Remark 1.4. When(Xy)r>o takes integer values, the proof of theorem [[.§
is easier. Namely, using the fact that o — ja (mod 1) is onto for j # 0, we
get

A

sup sup Z ay [exp 2imaj X (w) — Eexp 2imag X]
JEZ* aeT e\

A
= sup Z ay, [exp 2ima Xy (w) — Eexp 2imaXy]
a€eT | 7

the result of theorem becomes then :

[Esup sup sup ZQ:A ay, [exp 2ira Xy (w) — Eexp 2imaXy]

A1 AN a€ly /Ai AM

When (Xj)k>1 takes real values, the proof is more tedious. It relies on a
fine inequality about decoupling gaussian random functions (see section 3.).
We can see here why, for integer-valued Xy, we can work with the functional
space A(T), whereas for real-valued Xy, we need to introduce the space B(T).

2. PROOF OF THEOREM [L.] AND COROLLARY [L.J

First, we split F' into two parts as follows :

Y af(aXp(w) =Y arlf(aXp(w) = B(f(aXk) + Y axB(f(aXr))
K K k

-Step 1 : (first part of the sum)
Let (Nj)r>1 be a strictly increasing sequence of integers and define

Nk

VEk > 1, Pe(a)= > alf(aX;(w)) - Bf(aX))]
I=Np+1

where f € B(T). We want to study the following series, for all M > 1 :

> sup  |Pi(o)
L o€[-M,M]
We have :
Ni41

1P(a) < DI Y arlexp (2mjaX(w)) — Bexp (2mjaX))]
jez I=Np+1
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Hence, using theorem [[.5, there exists a positive integrable random variable
& such that

Ni41
(3) sup | Pe(a)] < Il | log (M@s(Nir1)) > lagf?
ac[-M,M j=Ni+1
where
1 Niq1
£ = sup sup sup a [ Q2imaj Xi(w) _ [ p2imaiXy
sz k1 ach | A2\ log (1] +3) 1=

with

Ni41

A ar =log (M®p(Niy1)) D el
I=Ny+1

First, in the polynomial case, that is to say when there exists d > 0 with
®5(N) = O(NY)

then we choose N = 22° and we need to prove that

g2kt 1/2
Yo [ Y e <o
k 1=22% 11
now we use the following equivalent:
22k+1
> sy =2
I(log(l
2 og(0)

which may be computed by comparing series and integral, hence :

22k+1 1/2 22k:+1 o 1/2
2 IO T B DN log gy | 2 Il
1=22% 11 1=22% 11 1=22% 11

. Z (zj af2)”

1=22F 4 H(log(1))/2
and, using condition [ :
(2 N\ 2 (Ser)
;2 l§+1|al| Zk:Cl ;ﬂ [(log(1))1/2
< —Z/@n‘akp < +00
< 2 vien
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this implies :

sup | Py(a)] < o0
k>1aﬂ—ALM]

almost everywhere on the measurable set Q, = {w € Q,{(w) < o}. By
construction, this set does not depend on the choice of f.
Secondly, in the subexponential case, that is when there exists v €]0, 1| with

®5(N) = 0(2"")

we choose Ni = 2F and we need to prove that

2k+1 1/2
S [ Y ] <
k 1=2F41
Using the following equivalent:
2k+1
3 SLIGPRTE
1-2
1=2F41 2

and doing the same kind of computation as before, using condition f:

Z \/Zkgn |ay|?

.
-3

< 400

n>2 n

implies

sp  |Pela)] < o0
k>1aekﬂmﬂﬂ

We also get from (fJ), for all a € R:

Nit1
|Pr(@) < &l FIIIVIog(la] + 1) [log(@5(Nks1)) D aj)?
J=Ni+1

summing on k, we get the inequality:

[F(o,w) = E(F(a, )| < CEW)I[[f]l]v1og(ler| +2)

where C' only depends on (ax) and E(&) < oo
This ends the proof of theorem which is also the first step of the proof
of theorem [[.]]

-Step 2 : (second part of the sum)
Let K be a compact which does not contain zero and o« € K. Let n < m be



RANDOM SERIES OF FUNCTIONS AND APPLICATIONS 9

two integers,

(4) \ZaklE (X)) = [ Zakf (exp(2imjaXy))|
JEZ* k=n

(5) = 1)) af(i)ex, (o)
JEZ* k=n

(6) = | Z f(j)(z arpx, (ja))
iz —

(7) < O IfG) ) sup Izak%(m)l
JEZ* k=n

At this point, to prove theorem [.], we can conclude directly by using hy-
pothesis (H) to get

sup sup | Z arE(f(aXy))| <€

n<mack k—n,
as long as m and n are large enough.
To prove corollary [I.3, we use Abel’s summation. Let ¢, = Zz;é Px,, We
have :

(8) > arex, (ja) = Z (fr+1(ja) — Prlja))
k=n =n
+
9) = > a1¢k(io) Zaktﬁk (Ja)
k=n+1
(10) = _an¢n(ja)+am¢m+1(]a)
(11) + > (a1 —ar)dk(je)
k=n+1
and
@ < l1£1ll sup sup sup ¢ (ja)| |lam| + lan| + > lak —aga|
N21 a€eK jeZ k=n-+1

we now conclude using hypothesis H' and hypothesis (1) on the sequence
(a,) in corollary [[.9 :

m

sup sup | Z arB(f (aXk))|

n<moacK k—n

m
<A lam| + lan] + > lar — ag—1]| sup sup sup [¢n(jo)| < e
k1 N2>1a€K jezZ*
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as long as m and n are large enough.
To prove corollary [.J, we use Cauchy Schwarz inequality in the following
way:

m
zz:akwkk(ja)
k=n

m m
<y Do lawl? | Y lex ()l
k=n k=n

and we conclude using condition H”.

Remark 2.1.

(1) the most general hypothesis we can put on the sequence (ag)r>1 1S
the following : there exists a strictly increasing sequence (Ng)p>1
such that

0o Nit1
log ®g(Ni1) Y i < o0
k=1 [=Nj+1

(2) if the process (Xi)g>1 takes integer values then f € A(T) can be
assumed without any other hypothesis.

(3) IfY" |ak|* diverges, then we can construct a stochastic process (X)k>1
verifying the hypothesis of theorem and find f € B(T) such that
the convergence of the series is not uniform on any compact. In that
sense, the conditions imposed to the sequence (ap)k>1 are optimal.
Remark that in this case, condition [] is not fulfilled.

Namely consider a sequence of independent random variables with
disjoint supports. For all k > 1 the support of Xy is the set of
integers belonging to [k?, (k+1)2—1] and hence, the hypothesis on the
moment is verified. We will come back to the law of X later. Now
choose f in the following way : for all « € T, f(a) = exp (2ina).
Thus f € A(T) et |||f||]| < oco. As a consequence, if the convergence
of the series defining F' was uniform in o on T, then we would have

1| o0
/ Z ak [exp 2imaXy(w) — Eexp 2itaX|| da
O k=1

o0
< sup Z a, [exp 2imaXy(w) — Eexp 2iraXy]| < oo
k=1
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By construction, P— almost surely :
2

1 o
/ Zak [exp 2imaXy(w) — Eexp 2iraXy]| do
0 k=1
o0 1
= Z|ak|2/ |exp (2iTa Xy (w)) — Eexp (2iraXy)|>da
k=1 0
o0 1
> Zmy?/ 1 — [Eexp (2iraXy)| da
k=1 0

Assume now that the law of Xy is uniform on the 2k + 1 integers of
(k2 (k+1)2—1]. for all k > 1.

1
|Eexp (2iraXy)| = 1

Using Lebesgue convergence theorem, we get

sinma(2k + 1) ‘

sin o

1
lim / 11 — |Eexp (2imaXy)|[*da =1
k—4o00 0

and we also get the divergence of the series with positive terms

o0

1
Z |ak|2/ 11— |Eexp (2iraXy)||* da = oo
k=1 0

A contradiction with uniform convergence of the centered part.

3. PROOF OF THEOREM

Let us begin by restating some inequalities obtained by Fernique ([ff])
which will be useful in the proof of theorem [[.J. For more information on
gaussian techniques in this framework, see [ and [J].

Inequality 3.1. Let (Gi)r>1 be a sequence of Banach space valued gaussian
random variables (B, || - ||) defined on a probabilised space (2, A,P). Then :

Esup | Gk [|< K3 {supIE | G || +Esup | Agog \}
k>1 k>1 k>1
where (Ag)g>1 is an isonormal sequence, K1 a universal constant and for all

k>,

o= sup [[< Gk, f>Bl2p
reBlIflI<1

Inequality 3.2. Let g be a real valued stationary gaussian random variable,
separable and continuous in quadratic mean. Let m be its associated spectral
measure on R™ defined by

B[l g(s) — g(t) [P] = 2 /O 11— cos 2ru(s — t)}m(du)
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We have
E sup g(a) <K \// min(u?, 1)m(du) / \/m (Je*, 00
a€l0,1]

where K is a universal constant.

Inequality 3.3. (decoupling) Let X = {X(¢) : t € T} be a gaussian
random function defined on a finite or countable set T'. Let {Ty,k € [1,n]}
be a covering of T. Let S =T x --- X T,,. The following inequality holds :

E< sup |sup X(t) —Esup X(¢)| ¢ < T -sups E | sup X(sk)
ke[l,n] | teTk tET, 2 ses ke[1,n]
The following estimation generalizes inequality B.2 and will be useful in

the almost periodic case because it gives estimations on arbitrarily large
intervals.

Inequality 3.4. Let g a real valued stationnary gaussian random function,
separable and continuous in quadratic mean. Let m its associated spectral
measure on R defined as in inequality [3.3. There exists a universal constant
K such that

E s g0
a€[—M,M]

<K \// min(2Mu2, 1) m(du) /\/ er de

Let us now come to the proof

-Step 1: In this part, we replace our problem by a question of regularity
of trajectories of random gaussian functions.

Let us consider an independent copy of X = (Xj)r>1 denoted by X "=
(X})k>1 defined on another probabilized space (Q',. 4", P'). We call E, the
integration symbol whose index refers to the space of integration.

Using classical convexity properties, to prove (1), it is enough to show

Zé\:)\ ak |:62i7rank _ e?iwa_jX;]
(12) ]EX +/ SUpsup sup sup

JEZ X1 AN o€l \/A?\,)\,M IOg(‘j’ + 3)

< 00

Let us now symmetrize the problem: consider the following separable
family of random functions, with continuous trajectories

(fi)rz1 = {fil(e, j) = ax(exp 2imaj Xy — exp 2imajXy), o € Inr, j € L
By construction f is a symmetric family of random functions, that is to say
their law is sign-invariant. More precisely, call {ex,k > 1} a sequence of
independent Rademacher random variables (taking the values +1 and —1

with probability 1/2), defined on a third space Q" A", IP’”), independent of
X and X'. {fg,k > 1} and {erfx,k > 1} have the same law. Thus for all
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integers (A, \) such that A > A, ZQ:A fr and ZQ:A e [ also have the same
law.

That is why (1) can be written on a larger space of integration in the
following way:

E yA ,
_y E ,
X,X',g Sllp sup sup sup k=\ k;fk;(a J)
JELAZLAZA aclm \/ 137 1og (7] +3)

We deduce a sufficient condition for ([[J) to be realised

Zﬁz)\ exay exp 2imaj Xy

(13) [Ex e supsup sup sup
JEZ A=1 A=) o€l \/A%,)\7M log (|j] + 3)

We then use a precious tool in the theory of gaussian random functions: the
contraction principle. This tool is built on a quite simple idea: replace the
choice of signs by a sequence of gaussian random variables with mean zero
and variance one. This idea can be explained by the following property:
given g a gaussian random variable with mean zero and variance 1 and € a
Rademacher random variable, if g and e are independent, then g and ¢|g|
have the same law.
As a consequence, in order to prove ([J), we show

E ng\:)\ ar(gr cos 2maj Xy, + gp, sin 2waj Xy,

/ Sup sup sup sup < 400

JEZ A1 AN acly \/A§7A7M log (|| +3)

X,9,9

where {g;, k > 1} et {g, k > 1} are two sequences of independent identically
distributed random variables with law A/(0,1), independent of X and e,
defined on two other probabilised spaces.

Conditionally to X, the problem is reduced to studying the regularity of
the trajectories of stationary gaussian random variables. This concludes the
first step of the proof.

-Step 2 : In this part, we use the gaussian tools introduced in the be-
ginning.
Conditionally to X, call G(A, A, j,«) the following quantity

1 /
' E ag [gk cos (2majXy) + gp, sin (2maj Xy)
VAo log (1] +3) i5%

If j, A and A are fixed, G(a) := G(\, A, j,«) is a random function with
almost surely continuous trajectories (up to a modification of trajectories).
That is why it is enough to show that G is bounded on Ij; N Q. Moreover,
we will assume that [j| < J where J is a large fixed integer.

Let us begin by finding an upper bound for

E_  sup supsup sup ‘G()HAJ, a)]
P9 151<T A1 AZA alyNQ
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First remark that if Y; (¢t € T) is a gaussian random function defined on T,
then for all to € T we have (see [[] (480))

Esup|Y;| < E|Y;,| + Esup¥;
teT teT

In this way, we get rid of the absolute value. Apply this remark to G(\, A, j, «)
with « =0, A=A =1 and j = 0 and let us find an upper bound for

(14) [E_/ supsupsup sup G(\A,j, )
99 l51<J AZ1 AZX a€lyNQ

In order to apply the decoupling inequality B.3, define

T={-J,--,J} xHx(IyNQ)

where J is a large enough integer and H is the upper triangle of dimension
2in IN x IN (see figure 1 below) (A € N and A > \.) A point in ¢t € T will
be written ¢ = (j, \, A, ).

This set T is at most countable and we will find an upper bound for
E g.9' SUPteT G(t) independently of J and then conclude by taking the supre-
mum on j € J. Define

Tj={j} x Hx (InNQ)
It is obvious that {7}};—_.. s is a covering of T'. Define
S=T_;x---xTy
Using inequality B.3, we have

s
E, /supG(t) < o supE

» sup G(t)

s.g Sup G(sj)+ sup E
’ teTy

teT 2 ses _J<G<T —igi<a Y

where s; is a point in T}.

-Step 3 : We study now

suplE sup G(sj).
seS  —J<G<T

We can rewrite this in the following way :

Aj . ro. .
Zk’:)\j a, [gk cos (2mjo; Xy) + g;, sin (2wgank)]
(153upE,  sup - '
— <G \/A/\ﬁAhM log (|5] + 3)
where the first supremum is taken on
{(azy,+ as) € Ty NQ* L (A_y,Azy) o (As,Ay)) € HYH Y

Fix {(a—j, - ,ay) € (Ipy N Q)2J+1 and (A—j,A_y),---,(As,Ay)) €
H?/+1}. Define the gaussian process

A . ro. .
Zk’:)\j ay, {gk cos (2mjo; Xy) + gy, sin (2mjo; X,)

Gj :
VA arlos (1] +3)
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In order to get an upper bound for [[5, we remark that

supEgg/ ;3p< Gj
- \]\J

(16) < sup Egg/ sup sup |G(J,A\j, Ay, a)]
(A= A=) (ApA))EH2IHL 77 —J<G<T o€l

We will get an upper bound for the right hand side of [lf independently of
J, which will give us an upper bound for [[§ by taking the supremum on
jed.

Applying inequality B.J] to the finite sequence of random gaussian func-
tions

(G(], >‘j’ Aj’ O‘))*JSJ'SJ
we prove that B, /sup_ ;<< ;subacr,, |G(4,Aj,Aj, )] is less than

(17) C{ sup B, o sup |G(j,\j,Aj, o) + B¢ sup \Qqﬂ}
—J<i<Jd a€ly —J<i<J

where C' is a universal constant, (§;)_j<j<; is an isonormal sequence and

q; < sup [|G(j, A4, a)

ey H2,g,g'

This gives us the following upper bound
1

< -
V19og(M®5(A;)) log (|j] + 3)
As for all j we have A; > 1 and M > 1 we easily get

495

1
(18) Ee sup [§q5] < Ee sup | ————==(;
nggng T nggng Viog (Ij1+3) ™
(19) < CFEg¢sup 5—1
iez | \/1og(lj| + 3)
The exponential integrability of gaussian vectors gives
¢ sup gij =C <o
jez. | \/log |j| +3
and hence
sup Ee sup [§gj|=C < o0
A—p A g) (A, Ag))eH2IHL = J<5<T

independently of J and of the sequence (A_y,A_j), -+ ,(As,Ay)) € H*/*1).
We then get independently of J on the whole integration space

Ex sup Ee sup [€g5] < C < o0
=g A_g) (Mg, Ay))eH?T+T —J<i<J

where C is a constant.
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Let us now try to find an upper bound for

(20) sup sup B/ sup |G(j, Aj, Ay, )
(O A ) (A er2+t —J<i<t 77 aely

independently of J.
We will use inequality B.4. Let us choose a finite sequence

(Mg Ay)se s (Ag, AY)

and an integer |j| < J. The gaussian random function G (a) := G(j, \j, A, @)
is stationary. Its associated spectral measure on R™ is defined by

1
mj = ) Z |ak]?j1x,)

log (1] + 3) log (M®3(A;)) (L, laxf?

where J,, is the Dirac measure in the point u.
We get

E, . sup |Gj(a)]

99 aEly

<cC \//Ooomin(%,l)mj(du)—{—/ooo \/mj (]%,oo[)dx

It is obvious that the first term is less than

1
m; (Rt C
VR = e A D s (719

where C' is a universal constant because for all j we have ®g(A;) > 2.
For the second term, it can be rewritten in the following way

/ \/mj eprQ’ [> o

1
log (1j] + 3) log (M@(A,)) (32, lax )

A

o
2
x / D 14k oy ety 02
0 —\.
k=X;

NI

Using
Vk 21 Lonnjxi ey < Liant|jlsupyc| Xi[>e2)

we cut RT in the integral according to the increasing subdivision

{O}U{\/log+ (2M]jlsup | X0 1), < k< Ag)
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We get thus an upper bound for the previous integral

> log* (2M|j|sup | X; |) —  flog* (2Mj| sup [ X; )| | D |auf?
1<k I<k—1 y

k=X;

Aj %AJ-
< X Jal] S| flog @M]jlsup | X; |)
1=\, k=X, I<k
J ]
- wogﬂsz sup | X, r>]
1<k—1
2
<

A
2 > Jal? log™ (2M 3] sup | X; [)
k=), I=A;

Consequently, V|j| < J,

/OOO \/mj (]##ﬂ[)dw

\/1og+ (2M ]| sup<y, | Xi )
log (7] + 3) log(M®5(A;))

\/10g+ (2M SUP1<i<A, | X1 1)
log(M®p(A;))

log™ (2M | X,
§4Sup\/og( | Xi ]

1<I<A, log(M®5(1))
log™ (2M | X
< o 108" @M [ Xy ]
Nz1 | log (M®s(N))
+
N>1 log ‘I)g(N)
Finally, on the whole integration space, we get the following upper bound :
(21) Ex sup sup B sup |Gj(a)
A= A_g)y (A AEHZIHL —J<G<T 77 aely
log™ (| X |)
22 <C|1+4+Exsu — | <
( ) < XN2p1 10g<1>5(N)

-Step 4 : To end the proof of theorem [[.H, it remains to deal with

sup B,  sup  sup G, \ A, )
—J<i<d T (\MA)EH a€lynQ
Let us fix j. In order to apply inequality B.1], we need to replace the supre-

mum on (A\,A) € H by a supremum on only one variable, in other words,
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FIGURE 1. renumbering the upper triangle in IN?

we need to renumber H using one variable h € IN? given by the formula :
AA -1
p=ay ML

(see figure [l)).

Let us fix j. Inequality B.1] gives us :

E, fgﬁ?))sup G(j,h,a) < Ki(supE, , sup G(j,h,a) + E, sup|Ayon|)
>1 aclpyNQ h2>1 aelynQ h2>1

where (Ap)p>1 is an isonormal sequence. The inequality :

A(AQ— D e A(A2+ 1)

gives a polynomial dependence between A and h, hence :
1
=0
on = O( Toah =)

and the first term in the right hand side of inequality (R3) is dealt with in
the same way as before. Finally, we get :

. log™ (| Xn|)
E s sup sup G(,A\Aa)<C|1+supy|———F
P9 (\A)EH a€lnnQ N31 | log @5(N)

That is to say, by integrating on the whole space,
(24)

log™ (| X
Ex sup E,, sup  sup G(iAAa)<C(1+Exsup | 25 XN
1§]§77/ 9.9 ()\,A)EHQ’EI}VIOQ N>1 10g (bﬁ(N)
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Let us prove that

log™ (| X |)
Ex sup < 00
N1\ log @g(N)
Using Jensen inequality, we can get rid of the square root. Let § > 0. For
all N > 1, we have

Blog* [Xx| < Blog* [ XN L B og* [@8(v)]

()

noticing that @%(N)) > 2 it is sufficient to show

X8
E sup log™ |56N| < 00
N>1 P (N)

Using now the inequality log™ (x) < z for any x > 0, it is sufficient to prove

E|Xy|?
> LﬁN| <0
1 @5 ()

And as E|Xy|? < ®5(N) and ®5(N) > N, if we chose § = % we get the

conclusion. Steps 3 (see R1)), step 4 (see R4)) lead us to the announced result
of theorem [L.§.

4. APPLICATIONS

Let us begin by giving an example where the (X}) are uniformly dis-
tributed :

Example 4.1. Suppose that L(Xy) = U([pr — 01/2, i + 0k /2]) with o, > 0
et B(Xy) = px with uy = O(k?) for some d > 0. The characteristic function
of X can easily be computed :

BZthMk

ox, (t) = sin(mtoy,)

Ttog

Using condition H of theorem [[-1, the following condition

(25) Z Jan] converges
n>1 In
and
Zk}n |ag|?

< 400

o ny/logn

are sufficient to get the desired convergence.
Notice that using corollary [I.3, condition (B4) is replaced by

Z%<+oo

n>1 M
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The subexponential case could be dealt with in the same way.
If we consider the border case ap = O(k:_l/Q_E), it 1s sufficient that :

n > 0,0, > featn

in this case :

1 1
katn katn
=1
5 Mk T I}

which gives an information on the possible dispersion of the variables Xy.

Here are other examples where the conditions of our theorems can be
quite easily verified.

Corollary 4.1. Let (Xjy)r>1 be a sequence of real independent random
variables whose law can be written in the following way for all k > 1 :
L(Xy) = L(og- X 4 pi) where X verifies B|X|? < oo for some 3 > 0. More-
over, we assume that there exist d > 0 and § > 0 such that |ox| = O(k?),
|| = O(k?), the application t — t°T exp (2intX) is bounded on R, and let
(ar)k>1 be a sequence of real or complex numbers satisfying the following
two conditions

(1) |ag| = O(k=P) with 8> 1/2

(2) >kt ﬁ <0
Then there exists a measurable set Q, with full measure (P(,) = 1) such
that for any w € Q, for all f € B(T) such that [r f(t)dt = 0 : for any
compact K which does not contain 0, the application t € K — F(t) =

> kst 0k f (tXk(w)) ds continuous and the series defining F' converges uni-
formly on K.

The proof of corollary [.1] relies on corollary [L.3.

Example 4.2. The random variable X may have a gaussian law with mean
zero and variance one, a Cauchy law, the first Laplace law, an exponential
law with parameter X\ > 0. Let us precise the gaussian case.

Here L(X) = N(0,1), we have Eexp 2intX = e~ t/2. Hence we can use the
fact that t — et’/2 exp 2imtX s bounded on R. In this case, the sufficient
condition to obtain convergence is

m
- s 522 2
Ve >0,IN >0, sup sup sup | E apeimoHk] g =i Uk/Q‘ <e
m>n2N a€K jeZ—{0} p—

Let d(0, K) be the distance between 0 and the compact K. Using the fact
that |ax| = O(k=P) with 3 > 1/2, the previous condition will be satisfied as
soon as :

2(1-B+¢)
3 > /1
> 0,04 FIONS) ogk
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which, in terms of dz’spersion of the variables Xy means that infinitely often:

Xpe - 3220+ o a2 0+e) B“Le\/
d(O K) (

We discuss now the case when the laws of X} are generated by a convolu-
tion product of a given law u. We distinguish two cases : on one hand when
the support of p contains non integer values, on the other hand when the
support of p is contained in Z. The first case is discribed by the following
corollary :

Corollary 4.2. Let (X)r>1 be an sequence of real valued independent ran-
dom wariables such that for all integer k > 1, L(X}) = p** where p is a

probability measure on R with B|X,|° < co for some §. Assume the follow-
mg :

(a) ox,(t)=1<=t=0 (X1 aperiodic)

(b) 36>0, sup | Eexp (2imtX1)| = ¢ < o0

teR

Let (ap)k>1 be a sequence of real or complex numbers such that the sequence
lag| is decreasing and fulfills the two following conditions :

(1) |ag| = O(k=P) avec B> 1/2

(2) 22521 lak — apq] < oo
Then there exists a measurable set Q, with full measure (P(,) = 1) such
that for any w € Qo, for all f € B(T) such that [p f(t)dt = 0, for any
compact K which does not contain 0, the application t € K — F(t,w) =
> k>1 0k f (t Xk(w)) is continuous and the series defining F' converges uni-
formly on K.

Remark 4.1. If X, is striclty aperiodic (|px,(t)| =1 <=t =0), then the
condition on the differences |ay — ap11| may be removed, using corollary
and the same kind of conputation as in the following proof.

The random variable X7 being real valued, its characteristic function is
not periodic. Take for example a gaussian law with mean zero and variance
one.

Proof : Let K be a compact which does not contain 0. Using Abel ’s
summation, it is sufficient to prove
N

sup sup (B exp 2imjtX,)F| <
teK |j|>1

k=1
independently of N. Let us split the supremum on j respectively into the
supremum on the indexes J(q) and J(q) where J(q) = {j € Z* : || < [%}}
and 2¢ is the distance between 0 and the fixed compact K.

On one hand, using (a), it can be proved that :

Ve >0 ‘1|nf t1°]1 — Eexp(2intX1)| > 0
t
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this implies

N
Z(]E exp 2imjt X, )*
k=1
On the other hand, using (b),

N
Z(]E exp 2imjtX )k
k=1

sup sup
teK jed(q)

2
< sup sup C(6)|jt|5 < C(K) [—g]
teK jeJ(q) €

sup sup

N k
< sup sup Z( a >
teK jeJ(q)

teK jei(q = \[til°

IN

N
0227 <20
k=1

where C is a universal constant.

O

As for the integer valued case, we have :

Corollary 4.3. Let (Xi)r>1 be an sequence of integer valued independent
random variables such that for all integer k > 1, L(X}y) = p** where p is a
probability measure on R with E|X1|? < oo for some B> 0. Let (ag)r>1 be
a sequence of complex numbers such that |a| = O(k~3) with 8 > 1/2.
Assume either :

ox,(t)=1<=t=0 and Z lar, — ag41| converges
k>1
or :
ox; ()] =1 =1=0

Then there exists a measurable set Q, with full measure (P(Q,) = 1) such
that for any w € Q,, for all f € A(T) such that [y f(t)dt = 0, for any
compact K of the torus which does mot contain 0, the application t € K —
F(t,w) = 3 > arf(t Xi(w)) is continuous and the series defining F con-
verges uniformly on K.

Example 4.3. If the law of X is a Poisson law with parameter 1, we use :

Vi e T, ’(PXl (t)‘ < ecos(27rt)71
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