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The Eulerian Distribution on Involutions is Indeed

Unimodal

Victor J. W. Guo1 and Jiang Zeng2

Institut Camille Jordan, Université Claude Bernard (Lyon I), F-69622, Villeurbanne Cedex, France

Abstract. Let In,k (respectively, Jn,k) be the number of involutions (respectively, fixed-point
free involutions) of {1, . . . , n} with k descents. Motivated by Brenti’s conjecture which states
that the sequence In,0, In,1, . . . , In,n−1 is log-concave, we prove that the two sequences In,k and
J2n,k are unimodal in k, for all n. Furthermore, we conjecture that there are nonnegative integers
an,k such that

n−1
∑

k=0

In,kt
k =

⌊(n−1)/2⌋
∑

k=0

an,kt
k(1 + t)n−2k−1.

This statement is stronger than the unimodality of In,k but is also interesting in its own right.
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1 Introduction

A sequence a0, a1, . . . , an of real numbers is said to be unimodal if for some 0 ≤ j ≤ n we
have a0 ≤ a1 ≤ · · · ≤ aj ≥ aj+1 ≥ · · · ≥ an, and is said to be log-concave if a2

i ≥ ai−1ai+1

for all 1 ≤ i ≤ n − 1. Clearly a log-concave sequence of positive terms is unimodal. The
reader is referred to Stanley’s survey [10] for the surprisingly rich variety of methods to
show that a sequence is log-concave or unimodal. As noticed by Brenti [2], even though
log-concave and unimodality have one-line definitions, to prove the unimodality or log-
concavity of a sequence can sometimes be a very difficult task requiring the use of intricate
combinatorial constructions or of refined mathematical tools.

Let Sn be the set of all permutations of [n] := {1, . . . , n}. We say that a permutation
π = a1a2 · · ·an ∈ Sn has a descent at i (1 ≤ i ≤ n − 1) if ai > ai+1. The number of
descents of π is called its descent number and is denoted by d(π). A statistic on Sn is
said to be Eulerian, if it is equidistributed with the descent number statistic. Recall that
the polynomial

An(t) =
∑

π∈Sn

t1+d(π) =

n
∑

k=1

A(n, k)tk

is called an Eulerian polynomial. It is well-known that the Eulerian numbers A(n, k)
(1 ≤ k ≤ n) form a unimodal sequence, of which several proofs have been published: such

1guo@math.univ-lyon1.fr, http://math.univ-lyon1.fr/~guo
2zeng@math.univ-lyon1.fr, http://math.univ-lyon1.fr/~zeng
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as the analytical one by showing that the polynomial An(t) has only real zeros [3, p. 294],
by induction based on the recurrence relation of A(n, k) (see [9]), or by combinatorial
techniques (see [7, 11]).

Let In be the set of all involutions in Sn and Jn the set of all fixed-point free involutions
in Sn. Define

In(t) =
∑

π∈In

td(π) =
n−1
∑

k=0

In,kt
k,

Jn(t) =
∑

π∈Jn

td(π) =
n−1
∑

k=0

Jn,kt
k.

The first values of these polynomials are given in Table 1.

Table 1: The polynomials In(t) and Jn(t) for n ≤ 6.

n In(t) Jn(t)
1 1 0
2 1 + t t

3 1 + 2t + t2 0
4 1 + 4t + 4t2 + t3 t + t2 + t3

5 1 + 6t + 12t2 + 6t3 + t4 0
6 1 + 9t + 28t2 + 28t3 + 9t4 + t5 t + 3t2 + 7t3 + 3t4 + t5

As one may notice from Table 1 that the coefficients of In(t) and Jn(t) are symmetric

and unimodal for 1 ≤ n ≤ 6. Actually, the symmetries had been conjectured by Dumont
and were first proved by Strehl [12]. Recently, Brenti (see [5]) conjectured that the
coefficients of the polynomial In(t) are log-concave and Dukes [5] has obtained some partial
results on the unimodality of the coefficients of In(t) and J2n(t). Note that, in contrast
to Eulerian polynomials An(t), the polynomials In(t) and J2n(t) may have non-real zeros.

In this paper we will prove that for n ≥ 1, the two sequences In,0, In,1, . . . , In,n−1

and J2n,1, J2n,2, . . . , J2n,2n−1 are unimodal. Our starting point is the known generating
functions of polynomials In(t) and Jn(t):

∞
∑

n=0

In(t)
un

(1 − t)n+1
=

∞
∑

r=0

tr

(1 − u)r+1(1 − u2)r(r+1)/2
, (1.1)

∞
∑

n=0

Jn(t)
un

(1 − t)n+1
=

∞
∑

r=0

tr

(1 − u2)r(r+1)/2
, (1.2)

which have been obtained by Désarménien and Foata [4] and Gessel and Reutenauer [8]
using different methods. We first derive linear recurrence formulas for In,k and J2n,k in the
next section and then prove the unimodality by induction in Section 3. We end this paper
with further conjectures beyond the unimodality of the two sequences In,k and J2n,k.
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2 Linear recurrence formulas for In,k and J2n,k

Since the recurrence formula for the numbers In,k is a little more complicated than J2n,k,
we shall first prove it for the latter.

Theorem 2.1. For n ≥ 2 and k ≥ 0, the numbers J2n,k satisfy the following recurrence

formula:

2nJ2n,k = [k(k + 1) + 2n − 2]J2n−2,k + 2[(k − 1)(2n − k − 1) + 1]J2n−2,k−1

+ [(2n − k)(2n − k + 1) + 2n − 2]J2n−2,k−2. (2.1)

Here and in what follows J2n,k = 0 if k < 0.

Proof. Equating the coefficients of u2n in (1.2), we obtain

J2n(t)

(1 − t)2n+1
=

∞
∑

r=0

(

r(r + 1)/2 + n − 1

n

)

tr. (2.2)

Since
(

r(r + 1)/2 + n − 1

n

)

=
r(r − 1)/2 + r + n − 1

n

(

r(r + 1)/2 + n − 2

n − 1

)

,

it follows from (2.2) that

J2n(t)

(1 − t)2n+1
=

t2

2n

(

J2n−2(t)

(1 − t)2n−1

)′′

+
t

n

(

J2n−2(t)

(1 − t)2n−1

)′

+
n − 1

n

J2n−2(t)

(1 − t)2n−1
,

or

J2n(t) =
t2(1 − t)2

2n
J ′′

2n−2(t) +

[

(2n − 1)t2(1 − t)

n
+

t(1 − t)2

n

]

J ′
2n−2(t)

+

[

(2n − 1)t2 +
(2n − 1)(1 − t)t

n
+

(n − 1)(1 − t)2

n

]

J2n−2(t)

=
t4 − 2t3 + t2

2n
J ′′

2n−2(t) +

[

(2 − 2n)t3

n
+

(2n − 3)t2

n
+

t

n

]

J ′
2n−2(t)

+

[

(2n − 2)t2 +
t

n
+

n − 1

n

]

J2n−2(t). (2.3)

Equating the coefficients of tn in (2.3) yields

J2n,k =
(k − 2)(k − 3)

2n
J2n−2,k−2 −

(k − 1)(k − 2)

n
J2n−2,k−1 +

k(k − 1)

2n
J2n−2,k

+
(2 − 2n)(k − 2)

n
J2n−2,k−2 +

(2n − 3)(k − 1)

n
J2n−2,k−1 +

k

n
J2n−2,k

+ (2n − 2)J2n−2,k−2 +
1

n
J2n−2,k−1 +

n − 1

n
J2n−2,k.

After simplification, we obtain (2.1).
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Theorem 2.2. For n ≥ 3 and k ≥ 0, the numbers In,k satisfy the following recurrence

formula:

nIn,k = (k + 1)In−1,k + (n − k)In−1,k−1 + [(k + 1)2 + n − 2]In−2,k

+ [2k(n − k − 1) − n + 3]In−2,k−1 + [(n − k)2 + n − 2]In−2,k−2. (2.4)

Here and in what follows In,k = 0 if k < 0.

Proof. Extracting the coefficients of u2n in (1.1), we obtain

In(t)

(1 − t)n+1
=

∞
∑

r=0

tr
⌊n/2⌋
∑

k=0

(

r(r + 1)/2 + k − 1

k

)(

r + n − 2k

n − 2k

)

. (2.5)

Let

T (n, k) :=

(

x + k − 1

k

)(

y + n − 2k

n − 2k

)

,

and

s(n) :=

⌊n/2⌋
∑

k=0

T (n, k).

Applying Zeilberger’s algorithm, the Maple package ZeilbergerRecurrence(T,n,k,s,0..n)
gives

(2x + y + n + 1)s(n) + (y + 1)s(n + 1) − (n + 2)s(n + 2) = 0, (2.6)

i.e.,

s(n) =
y + 1

n
s(n − 1) +

2x + y + n − 1

n
s(n − 2).

When x = r(r + 1)/2 and y = r, we get

s(n) =
r + 1

n
s(n − 1) +

r(r − 1) + 3r + n − 1

n
s(n − 2). (2.7)

Now, from (2.5) and (2.7) follows the identity

nIn(t)

(1 − t)n+1
= t

(

In−1(t)

(1 − t)n

)′

+
In−1(t)

(1 − t)n
+ t2

(

In−2(t)

(1 − t)n−1

)′′

+ 3t

(

In−2(t)

(1 − t)n−1

)′

+ (n − 1)
In−2(t)

(1 − t)n−1
,

or

nIn(t) = (t − t2)I ′
n−1(t) + [1 + (n − 1)t]In−1(t) + t2(1 − t)2I ′′

n−2(t)

+ t(1 − t)[3 + (2n − 5)t]I ′
n−2(t) + (n − 1)[1 + t + (n − 2)t2]In−2(t). (2.8)
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Comparing the coefficients of tk in both sides of (2.8), we obtain

nIn,k = kIn−1,k − (k − 1)In−1,k−1 + In−1,k + (n − 1)In−1,k−1

+ k(k − 1)In−2,k − 2(k − 1)(k − 2)In−2,k−1 + (k − 2)(k − 3)In−2,k−2

+ 3kIn−2,k + (2n − 8)(k − 1)In−2,k−1 − (2n − 5)(k − 2)In−2,k−2

+ (n − 1)In−2,k + (n − 1)In−2,k−1 + (n − 1)(n − 2)In−2,k−2,

which, after simplification, equals the right-hand side of (2.4).

Remark. The recurrence formula (2.6) can also be proved by hand as follows. It is easy
to see that the generating function of s(n) is

∞
∑

n=0

s(n)un = (1 − u2)−x(1 − u)−y−1. (2.9)

Differentiating (2.9) with respect to u implies that

∞
∑

n=0

ns(n)un−1 =

(

2ux

1 − u2
+

y + 1

1 − u

)

(1 − u2)−x(1 − u)−y−1,

consequently,

(1 − u2)

∞
∑

n=0

ns(n)un−1 = [(2x + y + 1)u + y + 1](1 − u2)−x(1 − u)−y−1

= [(2x + y + 1)u + y + 1]

∞
∑

n=0

s(n)un. (2.10)

Comparing the coefficients of un+1 in both sides of (2.10), we obtain

(n + 2)s(n + 2) − ns(n) = (2x + y + 1)s(n) + (y + 1)s(n + 1),

which is equivalent to (2.6).

Note that the right-hand side of (2.1) (respectively, (2.4)) is invariant under the sub-
stitution k → 2n − k (respectively, k → n − 1 − k), provided that the sequence In−1,k

(respectively, J2n−2,k) is symmetric. Thus, by induction we derive immediately the sym-
metry properties of J2n,k and In,k (see [4, 8, 12]).

Corollary 2.3. For n, k ∈ N, we have

In,k = In,n−1−k, J2n,k = J2n,2n−k.

It would be interesting to find a combinatorial proof of the recurrence formulas (2.1)
and (2.4), since such a proof could hopefully lead to a combinatorial proof of the uni-
modality of these two sequences.
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3 Unimodality of the sequences In,k and J2n,k

The following observation is crucial in our inductive proof of the unimodality of the
sequences In,k (0 ≤ k ≤ n − 1) and J2n,k (1 ≤ k ≤ 2n − 1).

Lemma 3.1. Let x0, x1, . . . , xn and a0, a1, . . . , an be real numbers such that x0 ≥ x1 ≥
· · · ≥ xn ≥ 0 and a0 + a1 + · · ·+ ak ≥ 0 for all k = 0, 1, . . . , n. Then

n
∑

i=0

aixi ≥ 0.

Indeed, the above inequality follows from the identity:

n
∑

i=0

aixi =

n
∑

k=0

(xk − xk+1)(a0 + a1 + · · · + ak),

where xn+1 = 0.

Theorem 3.2. The sequence J2n,1, J2n,2, . . . , J2n,2n−1 is unimodal.

Proof. By the symmetry of J2n,k, it is enough to show that J2n,k ≥ J2n,k−1 for all 2 ≤ k ≤ n.
We proceed by induction on n. The n = 2 case is clear from Table 1. Suppose the sequence
J2n−2,k is unimodal in k. By Theorem 2.1, one has

2n(J2n,k − J2n,k−1) = A0J2n−2,k + A1J2n−2,k−1 + A2J2n−2,k−2 + A3J2n−2,k−3, (3.1)

where

A0 = k2 + k + 2n − 2, A1 = 4nk − 3k2 − 6n + k + 6,

A2 = 3k2 + 4n2 − 8nk − 5k + 12n − 4, A3 = 3k − k2 + 4nk − 4n2 − 8n.

We have the following two cases:

• If 2 ≤ k ≤ n − 1, then

J2n−2,k ≥ J2n−2,k−1 ≥ J2n−2,k−2 ≥ J2n−2,k−3

by the induction hypothesis, and clearly

A0 ≥ 0, A0 + A1 = 2(k − 1)(2n − k) + 4 ≥ 0,

A0 + A1 + A2 = (2n − k)2 − 3k + 8n ≥ 0, A0 + A1 + A2 + A3 = 0.

Therefore, by Lemma 3.1, we have

J2n,k − J2n,k−1 ≥ 0.
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• If k = n, then
J2n−2,n−1 ≥ J2n−2,n = J2n−2,n−2 ≥ J2n−2,n−3

by symmetry and the induction hypothesis. In this case, we have A1 = (n− 2)(n−
3) ≥ 0 and thus the corresponding condition of Lemma 3.1 is satisfied. Therefore,
we have

J2n,n − J2n,n−1 ≥ 0.

This completes the proof.

Theorem 3.3. The sequence In,0, In,1, . . . , In,n−1 is unimodal.

Proof. By the symmetry of In,k, it suffices to show that In,k ≥ In,k−1 for all 1 ≤ k ≤
(n−1)/2. From Table 1, it is clear that the sequences In,k are unimodal in k for 1 ≤ n ≤ 6.

Now suppose n ≥ 7 and the sequences In−1,k and In−2,k are unimodal in k. Replacing
k by k − 1 in (2.4), we obtain

nIn,k−1 = kIn−1,k−1 + (n − k + 1)In−1,k−2 + (k2 + n − 2)In−2,k−1

+ [2(k − 1)(n − k) − n + 3]In−2,k−2 + [(n − k + 1)2 + n − 2]In−2,k−3. (3.2)

Combining (2.4) and (3.2) yields

n(In,k − In,k−1) = B0In−1,k + B1In−1,k−1 + B2In−1,k−2

+ C0In−2,k + C1In−2,k−1 + C2In−2,k−2 + C3In−2,k−3, (3.3)

where

B0 = k + 1, B1 = n − 2k, B2 = −(n − k + 1),

C0 = (k + 1)2 + n − 2, C1 = 2nk − 3k2 − 2k − 2n + 5,

C2 = n2 − 4nk + 3k2 + 4n − 2k − 5, C3 = −(n − k + 1)2 − n + 2.

Notice that In−1,k ≥ In−1,k−1 ≥ In−1,k−2 for 1 ≤ k ≤ (n − 1)/2. By Lemma 3.1, we
have

B0In−1,k + B1In−1,k−1 + B2In−1,k−2 ≥ 0. (3.4)

It remains to show that

C0In−2,k + C1In−2,k−1 + C2In−2,k−2 + C3In−2,k−3 ≥ 0, ∀ 1 ≤ k ≤ (n − 1)/2. (3.5)

We need to consider the following two cases:

• If 1 ≤ k ≤ (n − 2)/2, then

In−2,k ≥ In−2,k−1 ≥ In−2,k−2 ≥ In−2,k−3

by the induction hypothesis, and

C0 = (k + 1)2 + n − 2 ≥ 0, C0 + C1 = (2k − 1)(n − k − 1) + k + 3 ≥ 0,

C0 + C1 + C2 = (n − k + 1)2 + n − 2 ≥ 0, C0 + C1 + C2 + C3 = 0.
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• If k = (n − 1)/2, then by symmetry and the induction hypothesis,

In−2,k−1 ≥ In−2,k = In−2,k−2 ≥ In−2,k−3.

In this case, we have C1 = (n − 3)(n − 7)/4 ≥ 0 for n ≥ 7.

Therefore, by Lemma 3.1 the inequality (3.5) holds. It follows from (3.3)–(3.5) that

In,k − In,k−1 ≥ 0, ∀ 1 ≤ k ≤ (n − 1)/2.

This completes the proof.

4 Further remarks and open problems

Since In,k = In,n−1−k, we can rewrite In(t) as follows:

In(t) =

n−1
∑

k=0

In,kt
k =



























n/2−1
∑

k=0

In,kt
k(1 + tn−2k−1), if n is even,

In,(n−1)/2t
(n−1)/2 +

(n−3)/2
∑

k=0

In,kt
k(1 + tn−2k−1), if n is odd.

Applying the well-known formula

xn + yn =

⌊n/2⌋
∑

j=0

(−1)j n

n − j

(

n − j

j

)

(xy)j(x + y)n−2j,

we obtain

In(t) =

⌊(n−1)/2⌋
∑

k=0

an,kt
k(1 + t)n−2k−1, (4.1)

where

an,k =



























k
∑

j=0

(−1)k−j n − 2j − 1

n − k − j − 1

(

n − k − j − 1

k − j

)

In,j, if 2k + 1 < n,

In,k +
k−1
∑

j=0

(−1)k−j n − 2j − 1

n − k − j − 1

(

n − k − j − 1

k − j

)

In,j, if 2k + 1 = n.

The first values of an,k are given in Table 2, which seems to suggest the following
conjecture.

Conjecture 4.1. For n ≥ 1 and k ≥ 0, the coefficients an,k are nonnegative integers.
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Table 2: Values of an,k for n ≤ 16 and 0 ≤ k ≤ ⌊(n − 1)/2⌋.

k \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 2 4 6 9 12 16 20 25 30 36 42 49
2 2 6 18 39 79 141 239 379 579 849 1211 1680
3 0 18 78 272 722 1716 3626 7160 13206 23263
4 20 124 668 2560 8360 23536 59824 139457
5 32 700 4800 24160 95680 325572
6 440 5480 44632 257964
7 2176 44376

Since the coefficients of tk(1 + t)n−2k−1 are symmetric and unimodal with center of
symmetry at (n − 1)/2, Conjecture 4.1 is stronger than the fact that the coefficients of
In(t) are symmetric and unimodal. A more interesting question is to give a combinatorial
interpretation of an,k. Note that the Eulerian polynomials can be written as

An(t) =

⌊(n+1)/2⌋
∑

k=1

cn,kt
k(1 + t)n−2k+1,

where cn,k is the number of increasing binary trees on [n] with k leaves and no vertices
having left children only (see [1, 6, 7]).

We now proceed to derive a recurrence relation for an,k. Set x = x(t) = t/(1 + t)2 and

Pn(x) =

⌊(n−1)/2⌋
∑

k=0

an,kx
k.

Then we can rewrite (4.1) as

In(t) = (1 + t)n−1Pn(x). (4.2)

Differentiating (4.2) with respect to t we get

I ′
n(t) = (n − 1)(1 + t)n−2Pn(x) + (1 + t)n−1P ′

n(x)x′(t), (4.3)

I ′′
n(t) = (n − 1)(n − 2)(1 + t)n−3Pn(x) + 2(n − 1)(1 + t)n−2P ′

n(x)x′(t)

+ (1 + t)n−1P ′′
n (x)(x′(t))2 + (1 + t)n−1P ′

n(x)x′′(t), (4.4)

x′(t) =
1 − t

(1 + t)3
, x′′(t) =

2t − 4

(1 + t)4
. (4.5)
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Substituting (4.2)–(4.5) into (2.8), we obtain

n(1 + t)n−1Pn(x)

= [1 + (2n − 2)t + t2](1 + t)n−3Pn−1(x) + t(1 − t)2(1 + t)n−5P ′
n−1(x)

+ [−(t2 + 14t + 1)(1 − t)2 + (1 + 6t − 18t2 + 6t3 + t4)n + 4t2n2](1 + t)n−5Pn−2(x)

+ [3t(t2 − 4t + 1)(1 − t)2 + 4t2(1 − t)2n](1 + t)n−7P ′
n−2(x)

+ t2(1 − t)4(1 + t)n−9P ′′
n−2(x). (4.6)

Dividing the two sides of (4.6) by (1+ t)n−1 and noticing that t/(1+ t)2 = x, after a little
manipulation we get

nPn(x) = [1 + (2n − 4)x]Pn−1(x) + (x − 4x2)P ′
n−1(x)

+ [(n − 1) + (2n − 8)x + 4(n − 3)(n − 4)x2]Pn−2(x)

+ [3x + (4n − 30)x2 + (72 − 16n)x3]P ′
n−2(x) + (x2 − 8x3 + 16x4)P ′′

n−2(x).

Extracting the coefficients of xk yields

nan,k = an−1,k + (2n − 4)an−1,k−1 + kan−1,k − 4(k − 1)an−1,k−1

+ (n − 1)an−2,k + (2n − 8)an−2,k−1 + 4(n − 3)(n − 4)an−2,k−2

+ 3kan−2,k + (4n − 30)(k − 1)an−2,k−1 + (72 − 16n)(k − 2)an−2,k−2

+ k(k − 1)an−2,k − 8(k − 1)(k − 2)an−2,k−1 + 16(k − 2)(k − 3)an−2,k−2.

After simplification, we obtain the following recurrence formula for an,k.

Theorem 4.2. For n ≥ 3 and k ≥ 0, there holds

nan,k = (k + 1)an−1,k + (2n − 4k)an−1,k−1 + [k(k + 2) + n − 1]an−2,k

+ [(k − 1)(4n − 8k − 14) + 2n − 8]an−2,k−1 + 4(n − 2k)(n − 2k + 1)an−2,k−2,
(4.7)

where an,k = 0 if k < 0 or k > (n − 1)/2.

Note that, if n ≥ 2k + 3, then

(k − 1)(4n − 8k − 14) + 2n − 8 > 0 for any k ≥ 1,

and so are the other coefficients in (4.7). Therefore, Conjecture 4.1 would be proved if
one can show that a2n+1,n ≥ 0 and a2n+2,n ≥ 0.
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Finally, from (4.1) it is easy to see that

a2n+1,n = (−1)nI2n+1(−1) =

2n
∑

k=0

(−1)n−kI2n+1,k,

a2n+2,n = (−1)nI ′
2n+2(−1) =

2n+1
∑

k=1

(−1)n+1−kkI2n+2,k.

Thus, Conjecture 4.1 is equivalent to the nonnegativity of the above two alternating sums.
Since J2n,k = J2n,2n−k, in the same manner as In(t) we obtain

J2n(t) =

n
∑

k=1

b2n,kt
k(1 + t)2n−2k,

where

b2n,k =



























k
∑

j=1

(−1)k−j 2n − 2j

2n − k − j

(

2n − k − j

k − j

)

J2n,j, if k < n,

J2n,k +
k−1
∑

j=1

(−1)k−j 2n − 2j

2n − k − j

(

2n − k − j

k − j

)

J2n,j , if k = n.

Now, it follows from (2.2) that

J2n,k =
k

∑

i=0

(−1)k−i

(

2n + 1

k − i

)(

i(i + 1)/2 + n − 1

i(i + 1)/2 − 1

)

is a polynomial in n of degree d := k(k + 1)/2 − 1 with leading coefficient 1/d!, and so is
b2n,k. Thus, we have limn→+∞ b2n,k = +∞ for any fixed k > 1.

The first values of b2n,k are given in Table 3, which seems to suggest

Conjecture 4.3. For n ≥ 9 and k ≥ 1, the coefficients b2n,k are nonnegative integers.

Similarly to the proof of Theorem 4.2, we can prove the following result.

Theorem 4.4. For n ≥ 2 and k ≥ 1, there holds

2nb2n,k = [k(k + 1) + 2n − 2]b2n−2,k + [2 + 2(k − 1)(4n − 4k − 3)]b2n−2,k−1

+ 8(n − k + 1)(2n − 2k + 1)b2n−2,k−2.

where b2n,k = 0 if k < 1 or k > n.

Theorem 4.4 allows us to reduce the verification of Conjecture 4.3 to the boundary
case b2n,n ≥ 0 for n ≥ 9.

Acknowledgment. The second author was supported by EC’s IHRP Programme, within
Research Training Network “Algebraic Combinatorics in Europe,” grant HPRN-CT-2001-
00272.
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Table 3: Values of b2n,k for 2n ≤ 24 and 1 ≤ k ≤ n.

k \ 2n 2 4 6 8 10 12 14 16 18 20 22 24
1 1 1 1 1 1 1 1 1 1 1 1 1
2 −1 −1 0 2 5 9 14 20 27 35 44
3 3 12 36 91 201 399 728 1242 2007 3102
4 −7 −10 91 652 2593 7902 20401 46852 98494
5 25 219 1710 10532 50165 194139 639968 1861215
6 −65 249 11319 122571 841038 4377636 18747924
7 283 6586 135545 1737505 15219292 101116704
8 −583 33188 1372734 24412940 277963127
9 4417 379029 16488999 367507439
10 1791 3350211 203698690
11 133107 36903128
12 761785
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natoire 1, Strasbourg 1980, Publications de l’I.R.M.A. 140/S-02, Strasbourg, 1981.

12


