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Steepest descent method on a
Riemannian manifold: the convex

case

Julien Munier

Abstract: In this paper we are interested in the asymptotic behavior of the
trajectories of the famous steepest descent evolution equation on Riemannian
manifolds. It writes

ẋ (t) + gradφ (x (t)) = 0.

It is shown how the convexity of the objective function φ helps in establishing
the convergence as time goes to infinity of the trajectories towards points that
minimize φ. Some numerical illustrations are given for the Rosenbrock’s
function.
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1 Introduction

Let (M, 〈., .〉) be a manifold endowed with a Riemannian metric. Reference
on this field are Do Carmo [8] or [10]. The associated length of a curve is
denoted ` (.), and the distance ρ (., .). Let φ : M → R be a differentiable
function, we denote gradφ (x) the gradient with respect to the Riemannian
inner product 〈., .〉x, which means that for any u ∈ TxM , the tangent space
to the manifold at point x, following holds th

dφ (x)u = 〈gradφ (x) , u〉x.

We will consider in this paper the following evolution equation

ẋ (t) + gradφ (x (t)) = 0 (1)

under the assumptions

(H1)





(M,ρ) is complete,
φ ∈ C1 with a locally Lipschitz continuous gradient
φ bounded from below

with the following definition, which appears in [2]

Definition 1 A vector field X is L-Lipschitz continuous on a subset U ⊂M
if for all geodesic curve γ : [0, 1]→M with endpoints in U

|Pγ,1,0X (γ (1))−X (γ (0)) |γ(0) ≤ L` (γ) .

Here Pγ,1,0 is the parallel transport from time 1 to time 0 along γ (see [8]).

Equation (1) generalizes to a Riemannian setting the continuous version
of the famous steepest descent equation.This dynamical system is intemely
linked with the problem of minimizing φ, see [4, 5]. The framework of man-
ifolds is interesting, for instance in order to deal with non-linear equality
constraints. Indeed, the following problems

min
x∈Rn,f(x)=0

φ (x)

and
min
x∈M

φ (x)

are equivalent, if we denote M = f−1 (0) ⊂ Rn. If the function f is regular,
the set M can be endowed with the Riemannian structure of submanifold of
Rn.
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This evolution equation has already been studied by Udrişte in [15] chap.7
§1. under the name ”minus gradient line”. Theorems 1 and 2 are proved
under slightly stronger assumptions, but our other results are new (up to our
knowledge). The case of a Morse-Bott objective function φ is studied in [11].
In the case of an open subset of Rn, links between trajectories of (1) and
central paths are made in [12] (see also [3, 11] and references therein). For
a submanifold of Rn which is the intersection of an open convex set with an
affine subspace can be found in [1]. The Riemannian structure there comes
from the Hessian of a Legendre barrier function. Some discrete versions of
(1) appear in [15, 6, 7, 9, 14].

2 Existence and first results

All the results that appear in this section are true under the assumptions
(H1). They are similar to results that exist in Hilbert spaces.

Theorem 1 Assume (H1) hold. For any starting point x0 ∈M , the Cauchy
problem {

ẋ (t) + gradφ (x (t)) = 0
x (0) = x0

has a unique solution x (.) defined on [0,+∞). This solution is continuously
differentiable.

Proof: Local existence and uniqueness comes when writing (1) in a local
chart. It becomes a system of n ODEs and we can apply Cauchy results. This
provides a maximal solution defined on an interval of type [0, T ). Assume by
contradiction that T < +∞. As

d

dt
φ (x (t)) = 〈gradφ (x (t)) , ẋ (t)〉x(t) = −|ẋ (t) |2x(t) (2)

we see that ∫ T

0

|ẋ (t) |x(t)dt ≤
√
T
(
φ (x0)− inf

M
φ
)
.

Thus ẋ (t) is integrable, and x (.) has a limit when t tends to T , because of
completeness of M . We can then extend this solution, which contradicts the
maximality. �

Theorem 2 Let x (.) be a solution of (1). Under assumptions (H1), it sat-
isfies

(i) φ (x (.)) decreases and converges,
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(ii) |ẋ (.) |x(.) ∈ L2 (0,+∞).

Proof: It comes from (2). As φ is bounded from below, φ (x (t)) has a
limit, say φ∞, when t goes to +∞. �

Theorem 3 Assume (H1) hold. Let x (.) be a solution of (1) assumed
bounded. It satisfies

lim
t→+∞

|gradφ (x (t)) |x(t) = 0.

Proof: Let L be the Lipschitz constant for gradφ on the bounded set
{x (t) , t ∈ [0,+∞)}. Denote, for s ≤ t, by γ : [0, 1] → M a minimizing
geodesic such that γ (0) = x (s) and γ (1) = x (t). Since Pγ,1,0 is an isometry,
we have the following

∣∣∣|ẋ (t) |x(t) − |ẋ (s) |x(s)

∣∣∣ ≤ |Pγ,1,0ẋ (t)− ẋ (s) |x(s)

≤ L` (γ)

≤ L

∫ t

s

|ẋ (τ) |x(τ)dτ

≤
(
L

∫ +∞

0

|ẋ (τ) |2x(τ)dτ

)√
t− s

Thus |ẋ (.) |x(.) is uniformly continuous and square integrable, and necessarily
limt→+∞ |ẋ (t) |x(t) = 0. This achieves the proof. �

3 Convex case

In this section, assumptions (H1) still hold, and we assume moreover that

(H2)

{
φ convex on M ,
argminφ 6= ∅.

We recall here the definition of a convex function. It comes from [15]. A
subset A ⊂ M is called totally convex if for all geodesic curve γ, we have
(γ (0) , γ (1)) ∈ A× A⇒ ∀t ∈ [0, 1], γ (t) ∈ A.

Definition 2 f : A→ R is said convex on A, a totally convex set, if for all
geodesic curve γ with (γ (0) , γ (1)) ∈ A× A and for all t ∈ [0, 1] we have

f (γ (t)) ≤ (1− t) f (γ (0)) + tf (γ (1)) .
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We will remark at the end of the section that this definition can be weakened,
in what concerns this work.

Denote for some y in M and for every t, u (t) a vector of Tx(t)M such that

expx(t) (u (t)) = y
ρ (x (t) , y) = |u (t) |x(t)

(3)

Such a vector always exists if M is complete. It may not be unique, but this
is not a problem. The curve [0, 1] 3 s 7→ expx(t) (su (t)) is thus a minimizing
geodesic that joins x (t) and y.

Proposition 1 Under assumptions (H1), if moreover φ is convex on M and
y belong to the set L = {y ∈ M,φ (y) ≤ φ∞}, the function t 7→ ρ (x (t) , y)
decreases, and thus converges.

Proof: For fixed t and h, in order to simplify the notations, x, g, u and
xh will respectively denote x (t), gradφ (x (t)), u (t) and x (t+ h). Consider
the geodesic γ (s) = expx (su). We have γ (0) = x, γ̇ (0) = u and γ (1) = y.
Since φ ◦ γ is convex, we get

〈g, u〉x ≤ φ (y)− φ (x) .

The latter is nonpositive, and is null iff φ (x) = φ (y) ≤ φ∞ ≤ φ (x). Thus
φ (x (.)) would be constant on [t,+∞), which means with (1) and (2) that
g = 0. In this case, the trajectory is stationary, and the proposition is easy.
We can restrict to the case when 〈g, u〉x < 0.
Since the opposite of u belongs to the normal cone at the point x of the set
{z ∈ M,ρ (y, z) ≤ ρ (y, x)}, this suffices to show the desired decreasingness.
We give in the following a geometrical idea of this fact. As both paths h 7→ xh
and h 7→ expx (−hg) are C1, and have the same initial condition of order 0
and 1, we have

ρ (xh, expx (−hg)) = o (h) . (4)

An argument of same type gives

ρ (expx (−hg) , expx (hλu)) = | − hg − hλu|x + o (h) . (5)

Choose λ such that 〈−g − λu,−g〉x = 0 (that is λ = |g|2x
−〈u,g〉x > 0). It gives

| − hg − hλu|x = h
(
(λ|u|x)2 − |g|2

) 1
2 . Finally

ρ (expx (hλu) , y) = (1− hλ) |u|x. (6)
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Combining (4), (5) and (6), we are now able to construct a continuous and
piecewise differentiable curve α (in bold in the figure below) that joins xh to
y of length

` (α) = |u|x − h[λ|u|x −
(
(λ|u|x)2 − |g|2

) 1
2 ] + o (h) .

The bracket just above is positive. Indeed (λ|u|x)2 > (λ|u|x)2 − |g|2 ≥ 0.
Thus, for h small enough, we have

ρ (xh, y) ≤ ` (α) ≤ |u|x = ρ (x, y) .

�

According to this result, we can state the following theorem. Such a result
was proved in [5] in the case of a Hilbert space.

Theorem 4 Under the complete assumptions (H1)-(H2), every solution x (.)
of (1) has a limit x̄ which belongs to argminφ

Proof: Under the assumptions, the set L is non-empty. Then x (.) is
bounded in M . According to Hopf-Rinow Theorem, there exists a sequence tj
such that x (tj) converges to some x̄. But x̄ belongs to L, and then ρ (x (.) , x̄)
converges. The limit has to be 0 (consider the sequence tj), that is to say
x (t) converges to x̄.
Consider now some y ∈ argminφ. As previously, the convexity of φ implies
that

0 ≤ φ (x (t))− φ (y) ≤ 〈−gradφ (x (t)) , u (t)〉x(t)

≤ |gradφ (x (t)) |x(t)ρ (x (t) , y)

One part tends to 0 (Theorem 3) and the other one is bounded in the latter,
which shows that

φ (x̄) = lim
t→+∞

φ (x (t)) = φ (y) = inf
M
φ.
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�
The two following remarks allow to weaken the assumptions of this result.

Remark 1 To ask φ to be convex on the whole manifold is strong, it suffices
for φ to be convex on the set {z ∈M,φ (z) ≤ φ (x (0))}.
Remark 2 Another assumption here is too strong. The convexity definition
is meaningless on compact manifolds. Indeed there is no non-constant convex
function on such a manifold. So a better definition would have been

φ : A→ R is convex on A, a totally minimizing geodesic set, if the restriction
to any minimizing geodesic is convex.

The proof of the preceding result remains true in that framework.

4 Example: Rosenbrock’s function

This example comes from [15]. The function present a narrow valley with a
”U” form (actually a parabola). It is plotted in the left hand side of figure 4
and is defined by

φ : R2 → R
(x1, x2) 7→ 100

(
x2 − x2

1

)2
+ (1− x1)2 .

–1

0

1

2

3

4

5

–2 –1 1 2

Figure 1: Rosenbrock’s function and its the levelsets.

As we can see on the picture of the levelsets of φ, it is not convex when R2

is endowed with the Euclidean structure. But in the Riemannian manifold

(
R2, 〈., .〉

)
with 〈u, v〉x = uTA (x) v where A (x) =

(
4x2

1 + 1 −2x1

−2x1 1

)
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it becomes convex.

Let us present some numerical computations made on this example. We
construct the sequence of points obtained by an explicit discretization of
equation (1)

xk+1 = xk + λkvk. (7)

The starting point x0 is given.
We discuss first about the choice of the stepsize λk. On one hand, it is chosen
in the following manner

Algorithm 1 Stepsize choice:
1. λ = 1, compute y = xk + λvk and z = xk + λ

2
vk.

2. While φ (y) > φ (z) do
λ = λ

2
,

y = z,
z = xk + λ

2
vk.

3. Finally λk = λ and xk+1 = y.

This is a type of optimal line search, reduced to the interval [0, 1]. Indeed,
it approaches the theoretical choice

λk ∈ argmin{φ (xk + λvk) , λ ∈ [0, 1]}.

On the other hand, we compute the sequence obtained by (7) with a stepsize
still given by a optimal line search, reduced to the interval [0, 0.1]. It suffices
to change λ = 1 by λ = 0.1 in the previous algorithm.
The descent direction vk is chosen first as the opposite of the Riemannian
gradient

vk = −gradφ (xk) (8)

which provides the lines in figure 2, and secondly as the opposite of the
Euclidean gradient

vk = −∇φ (xk) (9)

which provides the dotted trajectories.
As expected, the experiments we made, with starting points randomly cho-
sen in [−5, 5] × [−5, 5], show that both sequences seem to converge to the
minimum (1, 1) (except cases were numerical instability occurs which will be
discussed later). Indeed, (7) with (8) is a discretization of (1), whose trajec-
tories converge to the minimum: φ is convex, apply then theorem 4. On the
other hand, (7) with (9) is a discretization of

ẋ (t) +∇φ (x (t)) = 0.
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Figure 2: Trajectories obtained with a line search in [0, 1] (left) and in [0, 0.1]
(right).

This (Euclidean) steepest descent is known to provide convergent trajectories,
under analyticity assumptions on φ (see  Lojasiewicz [13]). We wanted here to
compare the two methods. Figure 3 presents the convergence curves obtained
related to the experiments presented in figure 2: the value φ (xi) is plotted
versus the number i of the iterate.
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Figure 3: Convergence curves obtained with a line search in [0, 1] (left) and
in [0, 0.1] (right).

For both stepsize choices, the Riemannian steepest descent (lines) is more
efficient than the Euclidean one (dots).
The line search in [0, 0.1] seems to stabilize the method while the points are
not in the bottom of the valley, that means while the gradients are huge.
Moreover, we can imagine that it reduces the number of computations done
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in algorithm 1 providing the ”optimal” stepsize. But it appears that once
the point is in the bottom of the valley, steps of size 1 or at least between 0.1
and 1 speed up the convergence. Actually this is true for the Riemannian
version, and after around thirty points we reach the limit of precision of the
computer, whereas it can produce instability for the Euclidean version: in
some cases, the sequence seem to skip from on side of the ”U” of the valley
to the other.

Remark 3 A more accurate discretization of a continuous dynamical sys-
tem on a Riemannian manifold should involve the geodesics or the exponential
mapping, as in [6, 7, 2]. Here, we clearly make use of the vector space prop-
erties of R2, such structure provide a trivial retraction. It has the advantage
of eluding the complicated computations of the exponential.
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