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On the consensus of closure systems 

 

Bruno Leclerc *
 

 

Abstract 
The problem of aggregating a profile of closure systems into a consensus system has 

applications in domains such as social choice, data analysis, or clustering. We first briefly 
recall the results obtained by a lattice approach and observe that there is some need for a 
finer approach. Then, we develop some considerations based on implications and related 
notions, and present a uniqueness result. It appears to be a generalization of a previous 
result relevant from cluster analysis.  
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1 Introduction 
We consider the problem of aggregating a profile (k-tuple) F* = (F1, F2, …, Fk ) of 

closure systems on a given finite set  S into a consensus closure systems F = c(F*). The 
aim is, for instance, to find a structure on a set S described by variables of different 
types. Structural information (order, tree structure) provided by these variables may be 
totally or partially retained by a derived closure system (see examples in Section 2). 
Moreover, several consensus problems already studied in the literature are particular 
cases of the consensus of closure systems. A basic example is provided by hierarchical 
classification, where many works have followed those of Adams [Ada72] and Margush 
and McMorris [MM81] (see the survey [Lec98]). 

Closure systems and their uses are presented in Section 2.1. Several equivalent 
structures are recalled in Section 2.2. Section 2.3 give elements about the involved 
lattice structures. Section 3 presents results provided by the particularization of general 
results on the consensus problem in lattices. An original approach based on implications 
is initiated in Section 4. 
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2 Closure systems  

2.1 Definitions and uses 
A closure system (abbreviated as CS) on a finite given set S is a set F ⊆ P(S) of 

subsets of S satisfying the following two conditions: 

(C1) S ∈ F; 

(C2) C, C’ ∈ F  ⇒  C∩C’ ∈ F. 

When considering classical types of preference or classification data describing a 
given set S of objects, one observes that, frequently, they naturally correspond to 
closure systems. A list, of course not limitative, of such situations is given in Table 1. A 
CS F is nested if it is linearly ordered by set inclusion: for all F, F’ ∈ F  ⇒  F∩F’ ∈ {F, 
F'}; it is a tree of subsets if, for all F, F’ ∈ F ⇒  F∩F’ ∈ {∅, F, F'} (and hierarchical if, 
moreover, {s} ∈ F for all s ∈ S); it is distributive if, for all F, F’ ∈ F ⇒  F∩F’ ∈ F and 
F∪F’ ∈ F. 

 

Type of data S endowed with 
a 

Subsets of S Type of closure 
system 

Numerical, 
ordinal variable 

Weak order W Down-sets of W Nested 

Transitive 
preference relation 

Preorder P Down-sets of P Distributive  

Nominal variable Partition Π S, ∅, and classes 
of Π 

Tree of subsets of 
length 2 

Taxonomy 

 

Hierarchy H Classes of H, 
and ∅ 

Hierarchical 

 

Table 1. Types of data and related closure systems 

 

238 



Annales du LAMSADE n°3 

2.2 Equivalent structures 

Three notions are defined in this section. Together with CS's, they turn to be 
equivalent to each other. A closure operator ϕ is a mapping onto P(S) satisfying the 
properties of isotony (for all A, B ⊆ S, A ⊆ B implies ϕ(A) ⊆ ϕ(B), extensivity ((for all A 
⊆ S, A ⊆ ϕ(A) and idempotence (for all A ⊆ S, ϕ(ϕ(A)) = ϕ(A). Then, the elements of 
the image Fϕ = ϕ(P(S)) of P(S) by ϕ are the closed (by ϕ) sets, and Fϕ is a closure 
system on S. Conversely, the closure operator ϕF on P(S) is given by ϕF(A) = ∩{F ∈ F: 
A ⊆ F}. 

A full implicational system, denoted hereafter by I, →I or simply →, is a binary 
relation on P(S) satisfying the following conditions: 

(I1) B ⊆ A implies A → B; 

(I2) for any A, B, C ⊆ S, A → B and B → C imply A → B; 

(I3) for any A, B, C, D ⊆ S, A → B and C → D imply A∪C → B∪D. 

An overhanging order on S is also a binary relation Œ on P(S), now satisfying:  

(O1) A Œ B  ⇒  A ⊂ B ; 

(O2) A ⊂ B ⊂ C  ⇒  [A Œ C  ⇐⇒  A Œ B ou B Œ C] ; 

(O3) A Œ A∪B  ⇒  A∩B Œ B. 

It follows from (01) and (02) that the relation Œ is a strict order on P(S) (whereas → 
is a preorder). The sets of, respectively, closure systems, closure operators, full 
implicational systems and overhanging orders on S are denoted, respectively, as M, C, I 
and O. They are related to each other by one-to-one correspondences. The equivalence 
between closure systems and operators has been recalled above. For a closure operator 
ϕ and its associated full implicational system → and overhanging order Œ, the first of 
the equivalences below is due to Armstrong [Arm74], and the second is given in 
[DL04a]: 

A → B  ⇐⇒  B ⊆ ϕ(A) 

A Œ B ⇐⇒ A ⊂ B and ϕ(A) ⊂ ϕ(B) 

There is an important literature, with meaningful results, on implications, due to their 
importance in domains such as logic, lattice theory, relational databases, knowledge 
representation, or latticial data analysis (see the survey [CM03]). Overhanging orders 
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take their origin in Adams ([Ada86]), where, named nestings, they were characterized in 
the particular case of hierarchies. Their generalization to all closure systems [DL04a] 
make them a further tool for the study of closure systems. 

2.3. Lattices 

The results of this section may be found in [CM03] and, for overhangings, in [DL03] 
and [DL04a]. First, each of the sets M, C, I and O is naturally ordered: M, I and O by 
inclusion, and C by the pointwise order: for ϕ, ϕ' ∈ C, ϕ ≤ ϕ' means that ϕ(A) ⊆ ϕ'(A) 
for any A ⊆ S. These orders are isomorphic or dually isomorphic: 

F ⊆ F' ⇐⇒ ϕ' ≤ ϕ ⇐⇒ I' ⊆ I ⇐⇒ Œ ⊆ Œ', 

where ϕ, I and Œ (resp. ϕ', I' and Œ') are the closure operator, full implication system 
and overhanging relation associated to F (resp. to F '). 

The sets M and I preserve set intersection, while O preserves set union and C 
pointwise intersection (ϕ∧ϕ'(A) = ϕ(A)∩ϕ'(A), for any A ⊆ S). The main 
correspondences between elements or operations in M, C, I and O are given in Table 2. 
Here, (A] = {B ⊆ S: B ⊆ A} (prime ideal in P(S))and [A) = {B ⊆ S: A ⊆ B} (prime 
filter). 

From these observations, M and I are closure systems, respectively on P(S) and 
(P(S))2. The closure operator associated to M is denoted as Φ. It is well-known that, 
with the inclusion order, any closure system F on S is a lattice (F, ∨, ∩) with the meet 
F∩F' and the join F∨F' = ϕ(F∪F'). If F ⊆ F', F' covers F (denoted as F p F') if F ⊆ G 
⊆ F' implies G = F or G = F'. 

An element J of F is join irreducible if G ⊆ F and J = ∨G imply J ∈ G; an equivalent 
property is that J covers exactly one element, denoted J-, of F. The set of all the join 
irreducibles is denoted by J. Setting J(F) = {J ∈ J: J ⊆ F} for any F ∈ F, one has F = 
∨J(F) for all F ∈ F. A join irreducible is an atom if it covers the minimum element of 
F, and the lattice F is atomistic if all its join irreducibles are atoms. Similarly, an 
element M of F is meet irreducible if G ⊆ F and M = ∩G imply M ∈ G; equivalently, M 
is covered by exactly one element M+ of F. For any F ∈ F, we have F = ∩M(F), where 
M is the set of all the meet irreducibles of F and M(F) = {M ∈ M: F ⊆ M}. 
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M C I O 

P(S)     (maximum) ϕmin = idP(S) 

(minimum) 

{(X, Y) ∈ P(S)2: Y 
⊆ X}       (minimum) 

{(X, Y) ∈ P(S)2: 

X ⊂ Y}  
(maximum) 

{S}      (minimum) ϕmax(A) = S, all A 
⊆ S 

(maximum) 

P(S)2  (maximum) ∅           
(minimum) 

join M∨M' meet (pointwise 
intersection) 

meet    I∩I' join    Œ∪Œ' 

meet M∩M' join join     I∨I' meet   Œ∧Œ' 

{S, A}, A ⊂ S 

(join irreducible) 

ϕ(X) = A if X ⊆ A; 

ϕ(X) = S otherwise 

(meet irreducible) 

P(A)2∪{(X, Y) ∈ 
P(S)2: A / ⊆  X} 

(meet irreducible) 

{(X, Y) ∈ (A]× 

(P(S)–(A]): X ⊂ Y} 

(join irreducible) 

{X ⊆ S: A ⊆ X ⇒ s 
∈ X}, A ⊂ S, s ∈ S-A 
(meet irreducible) 

ϕ(X) = X+s if A ⊆ X

ϕ(X) = X otherwise 
(join irreducible) 

{(X, Y) ∈ P(S)2: X 
⊆ Y or A ⊆ X, Y = 
X+s}  

(join irreducible) 

{(X, Y) ∈ P(S)2: X 
⊂ Y} - {(X, Y) ∈ P(S)2: 
A ⊆ X, Y = X+s}  

(meet irreducible) 

 

Table 2. Correspondences between M, C, I and O 

 

 

The lattice F is lower semimodular if, for every F, F' ∈ F, F p F∨F' and F' p F∨F' 
imply F∩F' p F and F∩F' p F. The lattice F is ranked if it admits a numerical rank 
function r such that F p F' implies r(F') = r(F) + 1. Lower semimodular lattices are 
ranked. 

The lattice F is a convex geometry if it satisfies one of the following equivalent 
conditions (among many other characterizations [Mon90b]: 

(CG1) For any F ∈ F, there is a unique minimal subset R of J such that F = ∨R; 

(CG2) F is ranked with rank function r(F) = |J(F)|; 
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(CG3) F is lower semimodular with a rank function as in (CG2) above; 

Since it is a closure system on P(S), the ordered set M is itself a lattice. This lattice is 
an atomistic convex geometry. For F ∈ M, we have J(F) = {{A, S}: A ≠ S, A ∈ F} and, 
so, |J(F)| = |F|-1. 

 

3 Lattice consensus for closure systems  
In this section, we consider the main consequences of the lattice structure of M for the 

consensus problem on closure systems, that is the aggregation of a profile F* = (F1, F2, 
…, Fk) (of length k) of closure systems into a closure system F = c(F*). General results 
on the consensus problem in lattices may be found, among others, in [BM90b], [BJ91] 
and [Lec94]. Concerning closure systems, the results obtained in an axiomatic approach 
by Raderanirina [Rad01] (see also [MR04] about the related case of choice functions) 
are described in another contribution and not recalled here. 

3.1. A property of quota rules 

A federation on K is a family K of subsets of K = {1,…, k} satisfying the 
monotonicity property: [L ∈ K, L' ⊇ L] ⇒ [L' ∈ K]. Then, the federation consensus 
function cK on M is associated to K by cK(F*) = ∨L∈K (∩i∈L Fi). Such consensus 
function includes the quota rules, where K = {L ⊆ K: |L| ≥ q}, for a fixed number q, 0 ≤ 
q ≤ k. The quota rule cq is equivalently defined as: 

cq(F*) = Φ(Aq), 

where Aq = {A ⊂ S: |{i ∈ K: A ∈ Fi}| ≥ q}, the set of all proper subsets of S 
appearing in at least q elements of F*, and Φ is the operator mentioned in Section 2.3: 
Φ(Aq) is the smallest closure system including Aq. For q = k/2, cq(F*) = m(F*) is the so-
called (weak) majority rule and, for q = k, it is the unanimity rule u(F*). 

Quota rules have good properties in any lattice structure, for instance: 

• Unanimity : for any F ∈ M, cq(F, F,…, F) = F ; 

• Isotony : for any F* = (F1, F2, …, Fk),F'* = (F'1, F'2, …, F'k), profiles of M, Fi, ⊆ F'i: 
for all i = 1, …, k implies cq(F*) ⊆ cq(F'*). 

The next property of consistency type (see Section 3.2) is not general (for instance it 
is not true in partition lattices [BL95]) but holds in the so-called LLD lattices [Lec03], 
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which include convex geometries; it implies unanimity. In what follows, the profile 
F*F'* is just the concatenation of profiles F* and F'*, which are not required to have the 
same length. 

Proposition 3.1. Let F* and F'* be two profiles of M. If cq(F*) = cq(F'*) = F, then  
cq(F*F'*) = F. 

3.2. Bounds on medians 
For a metric approach of the consensus in M, we first have to define metrics. For that, 

we just follow [BM81] and [Lec94]. A real function v on M such as F ⊆ F' implies v(F) 
< v(F') is a lower valuation if it satisfies one the following two equivalent properties: 

(LV1) For all s, t ∈ L such that s∨t exists, v(s) + v(t) ≤ v(s∨t) + v(s∧t); 

(LV2) The real function dv defined on M2 by the following formula is a metric on M: 

dv(F, F') = v(F) + v(F') - 2v(F∩F'). 

A characteristic property of lower semimodular semilattices is that their rank 
functions are lower valuations. So, taking property (CG2) into account, the rank metric 
is obtained taking v(F) = |F| and, so, dv(F, F') = ∂(F, F') = |F∆F'|, where ∆ is the 
symmetric difference on subsets. The equality between the rank and the symmetric 
difference metric is characteristic of convex geometries or of close structures [Lec03] 
and is a reason to focuse on that metric. 

Given the metric ∂, the median consensus procedure consists of searching for the 
medians of the profile F*, that is the elements Fµ of M minimizing the remoteness ρ(Fµ, 
F*) = ∑1≤i≤k ∂(Fµ, Fi) (see [BM81]). If µ(F*) is the set of all the medians of the 
profile F*, the median procedure has a consistency type property (YL78), described as 
follows. 

Let F* and F'* be two profiles of M. If µ(F*)∩µ(F'*) ≠ ∅, then µ(F*F'*) = 
µ(F*)∩µ(F'*).Set Jm = {{A, S}: A ∈ Ak/2} (the set of majority atoms). From results in 
[Lec94], every median M of F* is the join of some subset of Jm. It then follows that 
every median CS is included into the majority rule one: 

Theorem 3.2. For any profile F* and for any median Fµ of F*, the inclusion Fµ ⊆ 
m(F*) holds.  

 243  



On the consensus of closure systems 
 

4 The fitting of overhangings  
The results of the previous section (and those of the same type mentioned there) only 

take into account the presence or absence of the same closed set in enough (oligarchies, 
majorities) or all (unanimity) elements of the profile. It was observed in the literature 
that this strong limitation may prevent one to recognize actual common features. This 
criticism, essentially pointed out in the classification context, remains valid for general 
closure systems [DL04b]. Moreover, consensus systems based on closet sets may 
frequently be trivial. For instance, if there does not exist any majority non-trivial closed 
set, then, the majority rule (and unique median) is the trivial closure system reduced to 
{S}. Adams [Ada86] presented a consensus method (for hierarchies) able to retain 
common features even in such cases. It is based on overhanging orders (and, then, on 
implications). Here we initiate the same approach for closure systems of any type. 

We state here a very general uniqueness result. Let Ξ be a binary relation on P(S), 
with the only assumption that (A, B) ∈ Ξ implies A ⊂ B. Consider the following two 
properties for a closure system F, with associated closure operator ϕ and overhanging 
relation Œ: 

(AΞ1) Ξ ⊆ Œ;           (preservation of Ξ) 

(AΞ2) for all M ∈ MF, (M, M+) ∈ Ξ.          (qualified overhangings) 

Note that (AΞ2) is a weakening of the converse of (AΞ1) since, by definition, any 
pair (M, M+) belongs to Œ. Only those special pairs are required to already belong to 
the relation Ξ. 

Theorem 4.1. If both F and F' satisfy Conditions (AΞ1) and (AΞ2), then F = F'. 

 

Proof. Observe first that the maximum set S is in both F and F'. If F ≠ F', The 
symmetric difference F∆F' is not empty. Let F be a maximal element of F∆F'. This 
subset F is not equal to S and it may be assumed without loss of generality that F 
belongs to F (and, so, not to F'). If F was not a meet-irreducible element of F, it would 
be an intersection of meet-irreducibles, all belonging to both F and F' and, so, F would 
belong to F'. 

Thus, F is a meet-irreducible, covered by a unique element F+ of F, with F+ ∈ F'. By 
(AΞ2), (F, F+) ∈ Ξ and, by (AΞ1), F Œ' F+. Set F' = ϕ'(F). We have F ⊂ F', since F ∉ 
F', and F' Œ' F+, since F' = ϕ'(F) = ϕ'(F') ⊂ ϕ'(F+) = F+. But, according to the 
hypotheses, F ⊂ F' implies F' ∈ F, with F ⊂ F' ⊂ F+, a contradiction with the 
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hypothesis that F+ covers F in F.                
❑  

The following question then arises: given a binary relation Ξ on P(S) (implying strict 
inclusion), does it exist an overhanging relation Œ satisfying conditions (AΞ1) and 
(AΞ2). Adams provides a positive answer in the case of a profile of hierarchies, and 
with Ξ = ∩i∈K Œi where Œ1, Œ2, …, Œk are the overhanging orders associated to the 
elements of the profile. In the general case, one can consider any convenient 
combination of Œ1, Œ2, …, Œk. For instances, Ξ = ∩i∈K Œi corresponds to a kind of 
unanimity rule on overhangings, and Ξ = ∪L⊆K, 2|L|>k ∩i∈L Œi to a majority rule. 

5 Conclusion 
 

The last section provides a framework for the consensus of closure systems. One of 
the main questions is to recognize the binary relations Ξ on P(S) for which an 
overhanging order Œ satisfying (AΞ1) and (AΞ2) exists. For instance, setting Ξ = 
∪L⊆K, 2|L|>k ∩i∈L Œi accounts for the fact that a CS appears several times in a profile, 
contrary to intersection rules. Algorithmic issues are very important, since overhanging 
relations are very big objects. 
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