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HIGHER ORDER PEAK ALGEBRAS

DANIEL KROB AND JEAN-YVES THIBON

Abstract. Using the theory of noncommutative symmetric functions, we intro-
duce the higher order peak algebras (Sym(N))N≥1, a sequence of graded Hopf
algebras which contain the descent algebra and the usual peak algebra as initial
cases (N = 1 and N = 2). We compute their Hilbert series, introduce and study
several combinatorial bases, and establish various algebraic identities related to the
multisection of formal power series with noncommutative coefficients.

1. Introduction

The peak algebra of the symmetric group Sn is a subalgebra of its descent algebra
Σn, spanned by sums of permutations having the same peak set, a certain subset
of the descent set. The direct sum of these peak algebras turns out to be a Hopf
subalgebra of the direct sum of all descent algebras, which can itself be identified
with Sym, the Hopf algebra of noncommutative symmetric functions.

The peak Hopf algebra Π has been introduced (somewhat implicitely, and inde-
pendently) in two papers published in 1997. In [17], Stembridge introduced the dual
Hopf algebra as a subalgebra of quasi-symmetric functions, while in [7, Sec. 5.6.4],
Prop. 5.41 implied the existence of Π and many of its properties (see [2]). Since
then, a larger peak algebra, related to descent algebras of type B and D, has been
discovered [1].

Actually, the results of [7] implied more than the classical peak algebra. The peak
algebra was obtained as the image of Sym under a certain endomorphism θq for
q = −1. For generic values of q, θq is an automorphism, but it degenerates at (non
trivial) roots of unity. In this way, we obtain an infinite family of Hopf subalgebras
of Sym, denoted by Sym(N) = θq(Sym) when q is a primitive Nth root of unity.
Then Sym and Π correspond to N = 1 and N = 2, respectively.

In the following, we shall investigate the Hopf algebras Sym(N) for arbitrary N .
Our main results consist in the introduction of several linear bases, in which the
various natural operations of Sym(N) admit interesting combinatorial expressions.
These bases allow us to obtain algebraic identities generalizing those involving the
noncommutative tangent in [5, 2].

Finally, let us mention that the commutative images (in ordinary symmetric func-
tions) of the first two algebras are known to be the Grothendieck rings of Hecke
algebras Hn(q) at q = 1 (symmetric groups, same as generic case) and q = −1. In
general, the commutative image of the N -th peak algebra is the Grothendieck ring
of the tower Hn(ζ), where ζ is a primitive N -th root of unity (symmetric functions
not depending on power sums pm with N |m, cf. [10]). It would be interesting to find
an interpretation of the higer order peak algebras in this context.
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2 D. KROB AND J.-Y. THIBON

2. Preliminaries

Our notations will be those of [5, 7, 4, 8, 9, 3]. We recall here the most important
ones in order to make the paper self-contained.

2.1. Compositions and permutations. A composition of n is a sequence I =
(i1, i2, · · · , ir) of positive integers summing to n. The length of I is ℓ(I) = r. A
composition I can be represented by a skew Ferrers diagram called a ribbon diagram

of shape I, e.g.,

is a ribbon diagram of shape I = (3, 1, 2, 1). The conjugate composition I∼ is associ-
ated with the conjugate ribbon diagram in the sense of skew Ferrers diagrams. On
our example, I∼ = (2, 3, 1, 1).

One associates with a composition I = (i1, i2, · · · , ir) of n the subset D(I) of [1, n−1]
defined by D(I) = { i1, i1+i2, · · · , i1+i2+ · · ·+ir−1 }. Compositions of n are ordered
by reverse refinement, denoted by �, and defined by I � J iff D(I) ⊆ D(J).

One associates with a permutation σ of Sn two compositions D(σ) and P (σ) re-
spectively called the descent composition and the peak composition of σ. The descent
composition D(σ) of the permutation σ encodes its descent set D(σ) = { i ∈ [1, n−
1], σ(i) > σ(i+1) }, i.e., is characterized by D(D(σ)) = D(σ). The peak composition
P (σ) of σ encodes its peak set P(σ) = { i ∈ [2, n−1], σ(i−1) < σ(i) > σ(i+1) }, that
is, D(P (σ)) = P(σ). For example D(265341) = (2, 1, 2, 1), D(265341) = { 2, 3, 5 },
P (265341) = (2, 3, 1) and P(265341) = { 2, 5 }.

While each subset of [1, n−1] is obviously the descent set of some permutation
σ ∈ Sn, a subset P of [1, n−1] is the peak set of a permutation σ ∈ Sn if and only
if

(1)

{

1 /∈ P ,

∀ i ∈ [2, n−1], i ∈ P ⇒ i− 1 /∈ P .

The corresponding compositions are called peak compositions of n. A peak compo-
sition of n is one whose only entry allowed to be equal to 1 is the last one. It is
easy to check that the number of peak compositions of n is fn, where fn is the n-th
Fibonacci number, with the convention f0 = f1 = f2 = 1 and fn+2 = fn+1 + fn.

Finally, the peak set P (I) of a composition I = (i1, i2, · · · , ir) is defined as follows.
If D(I) = {d1, d2, · · · , dr−1} with d1 ≤ · · · ≤ dr−1, then P (I) is obtained from D(I)
by removing each di such that di − di−1 = 1 (with the convention d0 = 0). For
example, if I = (1, 3, 1, 2), D(I) = {1, 4, 5} and P (I) = {4}.

2.2. Noncommutative symmetric functions. The Hopf algebra of noncommuta-
tive symmetric functions, introduced in [5], is the free associative C-algebra Sym =
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C〈S1, S2, . . . , 〉 over an infinite sequence of noncommuting indeterminates (Sk)k≥1

called the noncommutative complete symmetric functions. It is graded by deg Sn = n,
and endowed with the coproduct

(2) ∆(Sn) =
n∑

k=0

Sk ⊗ Sn−k .

Its graded dual is Gessel’s algebra of quasi-symmetric functions. Various applications
are discussed in the series [5, 7, 4, 8, 9, 3].

Let σ(t) be the generating series of the (Sk)k≥0, with the convention S0 = 1,

(3) σ(t) =
∑

k≥ 0

Sk t
k .

The noncommutative power sums of the first kind, denoted by (Ψk)k≥1, are the coef-
ficients of the series

(4) ψ(t) =
∑

k≥1

Ψk t
k−1 = σ(t)−1 d

dt

(

σ(t)
)

.

The noncommutative ribbon Schur functions RI are characterized by the equivalent
relations

(5) SI =
∑

J� I

RJ , RI =
∑

J� I

(−1)ℓ(I)−ℓ(J) SJ

where SI = Si1 Si2 · · · Sir .

The commutative image of a noncommutative symmetric function F is the ordinary
symmetric function χ(F ) obtained through the algebra morphism χ(Sn) = hn, the
complete symmetric function (notation as in [13]). The commutative image of Ψn is
then the power sum pn. Similarly, the commutative image of RI is the ordinary ribbon
Schur function of shape I. We recall that ribbon Schur functions were introduced by
McMahon (see [12], t. 1, p. 200, where they are denoted by hI).

2.3. Relation with the descent algebra of the symmetric group. The sum in
the group algebra C[Sn] of all permutations σ whose descent composition D(σ) is
equal to I is denoted by D=I . The D=I with |I| = n form a basis of a subalgebra
of C[Sn], introduced by Solomon in [15], which is denoted Σn and called the descent

algebra of Sn. One can define an isomorphism α of graded vector spaces

(6) α : Sym =
⊕

n≥ 0

Symn −→ Σ =
⊕

n≥ 0

Σn

by α(D=I) = RI . Then, α(SI) = D� I , the sum in C[Sn] of all permutations σ whose
descent composition D(σ) is � I.

The direct sum Σ can be turned into an algebra by extending the natural products
of its components Σn by setting x y = 0 for x ∈ Σp and y ∈ Σq with p 6= q. We can
can then define the internal product, denoted by ∗, on Sym by requiring that α be
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an anti-isomorphism of algebras. In other words, the internal product ∗ of Sym is
defined by

(7) F ∗G = α−1(α(G)α(F )) .

2.4. The (1− q)-transform. In the commutative case, the (1−q)-transform is the
endomorphism ϑq of the algebra Sym of commutative symmetric functions defined
on power sums by ϑq(pn) = (1 − qn) pn. Our terminology comes from the λ-ring
notation, which allows to write it as ϑq(f(X)) = f((1−q)X) (cf. [6, 11]). One just
has to point out here the (traditional) abuse of notation in using the same minus sign
for scalars and in the λ-ring, though these operations are completely different.

In [7], this λ-ring formalism was extended to the algebra of noncommutative sym-
metric functions. A consistent definition of ϑq(F ) = F ((1−q)A) for F ∈ Sym was
proposed and its fundamental properties were obtained. The first step in the con-
struction of this noncommutative version consists in defining the noncommutative
complete symmetric functions (Sn((1−q)A)n≥0 by their generating series

(8) σt((1−q)A) =
∑

n≥0

Sn((1−q)A) tn = σ−q t(A)−1 σt(A) ,

where σt(A) is the generating series of the complete functions Sn(A) (usually denoted
by σ(t) when A plays no role). The noncommutative (1−q)-transform is the algebra
endomorphism ϑq of Sym defined by θq(Sn) = Sn((1−q)A). One can show that

(9) ϑq(F (A)) = F ((1−q)A) = F (A) ∗ σ1((1−q)A)

for F (A) ∈ Sym, where ∗ is the internal product.

The most important property of ϑq obtained in [7] is its diagonalization. We recall
first that a noncommutative symmetric function π ∈ Sym is called a Lie idempotent

of order n if π is an homogeneous noncommutative symmetric function of Symn in
the primitive Lie algebra L(Ψ), generated by (Ψn)n≥1, and which is idempotent for
the internal product of Sym, or equivalently which has a commutative image equal
to pn/n (see [5]). It is shown in [7] that there is a unique family (πn(q))n≥1 of Lie
idempotents (with πn(q) ∈ Symn) possessing the characteristic property

(10) ϑq(πn(q)) = (1− qn) πn(q) .

These Lie idempotents were used in [7] for describing the structure of ϑq, which is a
semi-simple endomorphism of Symn. The eigenvalues of ϑq in Symn are

(11) pλ(1− q) =

r∏

i=1

(1− qλi)

where λ = (λ1, . . . , λr) runs over all partitions of n. The projector on the eigenspace
Eλ associated with the eigenvalue pλ(1− q) is the endomorphism F −→ F ∗Eλ(π) of
Symn, where Eλ(π) is obtained through a construction introduced in [7], which we
briefly recall here. Consider first the decomposition of Sn in the multiplicative basis



HIGHER ORDER PEAK ALGEBRAS 5

of Sym constructed from the πn(q), i.e.,

(12) Sn =
∑

|I|=n

cI(q) π
I(q)

where πI(q) = πi1(q) . . . πir(q). Then, the projector Eλ(π) on Eλ is given by

(13) Eλ(π) =
∑

I↓=λ

cI(q) π
I(q)

where I↓ denotes the partition obtained by reordering the components of I. It can
be shown that the eigenspace Eλ is spanned by the πI(q) such that I↓ = λ (see the
proof of Theorem 5.14 of [7]).

The following formula can be easily deduced from these results.

Proposition 2.1. Let q ∈ C be a complex number. Then we have :

(14) detϑq|Symn =

(
n−1∏

i=1

(1− qi)(n−i+3) 2n−i−2

)

(1− qn) .

Proof – Since the determinant of an endomorphism is the product of its eigenvalues,
we get

detϑq|Symn =
∏

I=(i1,...,ir)

|I|=n

(
r∏

k=1

(1− qik)

)

=
n∏

i=1

(1− qi) c(n,i)

where c(n, i) is the number of times the integer i appears as a component of a com-
position of n. Formula (14) can therefore be established if we can find a closed
expression for this number. To this purpose, let

Fi(x, y) =
∑

k≥0

(x+x2+· · ·+xi−1+xi y+xi+1+xi+2+. . . )k =
∑

k≥0

(
x

1− x
− xi + xi y

)k

.

Then,

∑

n≥0

c(n, i) xn =
d

dy
(Fi(x, y)) | y=1 = xi

(
∑

k≥0

k
( x

1− x

)k−1
)

= xi 1− 2 x+ x2

(1− 2 x)2
.

This shows that c(n, i) = c(n−i+1, 1), and that c(n, 1) is equal to 1 if n = 1 and to
(n + 2) 2n−3 for n ≥ 2, whence the result.

Note 2.2. If q is a complex number, Proposition 2.1 shows that ϑq is an automor-
phism of Sym if and only if q is not a root of unity. The higher order peak algebras
Sym(N) arise precisely when we specialize q to a primitive N -th root of unity.
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2.5. The peak algebra. The sum in the group algebra C[Sn] of all permutations σ
whose peak composition is equal to I is denoted by P=I . It follows from the results
of [7] that the family (P=I), where I runs over peak compositions of n, form a basis
of a subalgebra of C[Sn], first mentioned explicitly by Nyman in [14]. It is denoted
by Πn and called the peak algebra of Sn. Note that Πn is a subalgebra of Σn. Indeed,
for every peak composition I of n, one has

P=I =
∑

P (J)=D(I)

D=J ,

where J runs over all compositions of n. Using the isomorphism α defined in Section
2.3, we can therefore define the peak functions ΠI = α(P=I) in Symn by

ΠI =
∑

P (J)=D(I)

RJ

for all peak compositions I. The space spanned by all the peak classes in Symn is
called Pn. It is obviously isomorphic to Πn, and so P =

⊕

n≥0Pn is isomorphic to
Π =

⊕

n≥0 Πn.

We will now explain the connection between these constructions and the (1− q)-
transform θq introduced in Section 2.4 (see also [2]). Let us first recall the following
result which expresses θq(RI) in the ribbon basis of Sym (cf. equation (121) of [7]),

(15) RI((1− q)A) =
∑

P (J)⊆D(I)△(D(I)+1)

(1− q)hl(J)(−q)b(I,J)RJ(A) ,

Here I, J are compositions of n, hl(J) = |P (J)| + 1 and b(i, j) is an integer which
will not bother us at this point since we set q = −1 from now on. Rewriting this
equation in terms of peak classes of Symn gives

θ−1(RI) =
∑

D(J)⊆D(I)△(D(I)+1)

2|D(J)|+1ΠJ ,

where J runs over peak compositions of n. Hence, the image of Symn by θ−1, which

we will denote by S̃ymn, is contained in the subspace Pn of Symn spanned by the
peak classes. In fact,

S̃ymn = Pn ,

since S̃ymn and Pn have the same dimension. Indeed, recall that the dimension of
Πn (and therefore of Pn) is equal to the Fibonacci number fn (as shown in Section
2.1). Thanks to equation (10), we know that the elements

πI(−1) = πi1(−1) πi2(−1) · · · πir(−1)

where I = (i1, · · · , ir) runs over all compositions of n into odd parts, form a basis of

S̃ymn, since θ−1(πk(−1)) = 0 if and only if k is even. But the number of compositions
of n with odd parts is easily seen to be fn. Therefore,

P = (S̃ym :=
⊕

n≥0

S̃ymn) .
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3. Higher order peak algebras

3.1. Definition and first properties. Let N ≥ 1 and let ζ ∈ C be a primitive
N -th root of unity. We set Θq = θq

1−q
, and we denote by Θζ the endomorphism of

Sym defined by

(16) Θζ(Sn) =
Sn((1− q)A)

1− q

∣
∣
∣
∣
q=ζ

for n ≥ 1. Due to the fact that Θζ is not invertible (cf. Note 2.2), it is of interest to
consider the following algebra.

Definition 3.1. The higher order peak algebra, or generalized peak algebra of order
N is the C-algebra Sym(N) = Θζ(Sym).

We will see (Theorem 3.11) that these algebras depend only on N (and not on the
particular choice of ζ). Note that Sym(N) has obviously a graded algebra structure,
inherited from Sym

Sym(N) =
⊕

n≥0

Symn(N) ,

where Symn(N) := Sym(N) ∩ Symn .

Note 3.2. For N = 1, Sym(1) reduces to Sym. Indeed,

(17) Θq(Sn) =
n−1∑

i=0

(−q)iR1i,n−i

for every n ≥ 1 (cf. Proposition 5.2 of [7]), which immediately implies that Θ1(Sn) =
Ψn (cf. Corollary 3.14 of [5]).

Note 3.3. For N = 2, due to the results of Section 2.5, Sym(2) reduces to P, the
inverse image under α of the usual peak algebra Π within Sym.

Let us now consider the multiplicative basis (πI(q))I of Sym, associated with
the family of Lie idempotents (πn(q))n≥1 defined by Formula (10) as in Section 2.4.
Considering the image of (πI(q))I in Sym(N) by the morphism Θζ , we obtain that the
non-zero elements of the family (Θζ(π

I(q)))I form a basis of Sym(N). But according
to equation (10), we have that Θζ(πn(q)) = 0 if and only if n ≡ 0 [N ]. Hence the
family
(18) Θζ(π

I(q)) = Θζ(πi1(q)) Θζ(πi2(q)) · · · Θζ(πir(q)) ,

indexed by the compositions I of the set F
(N)
n := { I = (i1, · · · , ir) |= n | ∀ k ∈

[1, r], ik 6≡ 0 [N ] } forms a basis of Sym(N). Summarizing, we obtain the following
proposition.

Proposition 3.4. Let ζ and η be two primitive N-th roots of unity. Then the two C-

algebras Θζ(Sym) and Θη(Sym) are isomorphic. Moreover their common dimension

is

dim(Symn(N)) = #F(N)
n .
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. At this stage, it is interesting to calculate the dimension of Symn(N).

Proposition 3.5. The Hilbert series of Sym(N) is

(19)
∑

n≥0

dim(Symn(N)) tn =
1− tN

1− t− t2 − · · · − tN
.

Proof – The right-hand side of (19) is the generating function of the generalized
Fibonacci numbers (fn)n≥0. It is easily seen to be equal to the generating function

of #F
(N)
n , which is

(20)
∑

n≥0

#F(N)
n tn =

(

1−
∑

j 6≡0 mod N

tj

)−1

.

Note 3.6. Observe that Symn(N) = Symn for n ∈ [1, N−1].

Though the family (F
(N)
n )n≥0 was useful for the calculation of the graded dimension

of Sym(N), the associated compositions are not always well-suited as labellings of
the combinatorial bases that we want to construct. The following result provides an
alternative labelling scheme.

Proposition 3.7. Let us define

G(N)
n := { I = (i1, · · · , ir) |= n | ∀ k ∈ [1, r−1], ik ∈ [1, N ] and ir ∈ [1, N − 1] }.

Then, there exists a bijection between G
(N)
n and F

(N)
n .

Proof – Observe that G
(N)
n is just the set of all compositions of n that belong to the

rational language [1, N ]∗[1, N−1]. In other words,
⊔

n≥1

G(N)
n = [1, N ]∗[1, N−1] = (N∗[1, N−1])∗N∗[1, N−1] = (N∗[1, N−1])+ .

This implies that
⊔

n≥1

G(N)
n = {N i1j1 · · · N

irjr | i1, i2, · · · , ir ≥ 0, j1, · · · , jr ∈ [1, N−1] } .

The map ε defined by

N i1j1 N
i2j2 · · · N

irjr
ε
←→ (N×i1+j1, N×i2+j2, · · · , N×ir+jr),

for i1, i2, · · · , ir ≥ 0 and j1, · · · , jr ∈ [1, N−1] is then a bijection between G
(N)
n and

F
(N)
n .

Note 3.8. For N = 2 (remembering that Sym(2) is the usual peak algebra Π), G
(N)
n

is the set of conjugates of all peak compositions of n, as introduced in Section 2.1.
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3.2. Analogues of complete functions in higher order peak algebra. If I =
(i1, i2, . . . , ir) and J = (j1, j2, . . . , js) are two compositions of n, let us write I ≤

p
(N)
n

J

if and only if J can be obtained from I by one of the following elementary rewriting
rules:

∀k ∈ [1, r],







ik 7−→ (1, ik − 1) ,

ik 7−→ (2, ik − 2) ,

. . .

ik 7−→ (N − 1, ik −N + 1) .

We denote by ≤
P

(N)
n

the transitive closure of ≤
p
(N)
n

.

Definition 3.9. For n ≥ 0, P
(N)
n is the poset of all compositions of n endowed with

the partial ordering ≤
P

(N)
n

.

Example 3.10. On compositions of 4, we have

N = 2 N = 3

P
(2)
4 =

(4)

(1,3) (2,2) (3,1)

(1,1,2) (1,2,1) (2,1,1)

(1,1,1,1)

�
�

��+

�
�

��+

Q
Q

QQs?

�
�

��+

?

�
�

��+

Q
Q

QQs

P
(3)
4 =

(4)

(1,3) (2,2) (3,1)

(1,1,2) (1,2,1) (2,1,1)

(1,1,1,1)

�
�

��+ ?

�
�

��+

Q
Q

QQs?

Q
Q

QQs

�
�

��+ ?

?

�
�

��+

Q
Q

QQs

A single rule: ik 7−→ (1, ik − 1) Two rules: ik 7−→ (1, ik − 1), (2, ik − 2)

We can now state one of the main results of this article.

Theorem 3.11. For I in G
(N)
n , let us define the complete peak function of order N

Σ
(N)
I by

Σ
(N)
I :=

∑

J≤
P

(N)
n

I

RJ .

Then, the family (Σ
(N)
I )

I∈G
(N)
n

forms a basis of Symn(N).

Example 3.12.

Σ
(2)
(1,2,1) = R(1,2,1) +R(3,1) ,

Σ
(3)
(1,2,1) = R(1,2,1) +R(3,1) +R(1,3) +R(4) ,

Σ
(3)
(1,1,2) = Σ

(2)
(1,1,2) = R(1,1,2) +R(2,2) +R(1,3) +R(4) .
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We shall deduce Theorem 3.11 from the following two Lemmas.

Lemma 3.13. For all i ≥ 0 and j ∈ [1, N−1],

RN ij ∈ Sym(N) ,

with N ij = (N, . . . , N
︸ ︷︷ ︸

i times

, j).

Note 3.14. Since N ij cannot have any predecessor in P
(N)
n , we have, for i ≥ 0 and

j ∈ [1, N−1],

Σ
(N)

N ij
= RN ij .

Lemma 3.15. For I, J ∈ G
(N)
n ,

Σ
(N)
I × Σ

(N)
J = Σ

(N)
I·J .

Proof of Theorem 3.11 - Let I = (N i1 , j1, . . . , N
ir , jr) be a generic element of G

(N)
n .

According to Lemma 3.15, we can write

Σ
(N)
I = Σ

(N)

N i1j1
× . . .× Σ

(N)

N ir jr
.

Using now Lemma 3.13 and Note 3.14, we deduce from this identity that Σ
(N)
I ∈

Sym(N). But the Σ
(N)
I are linearly independent by construction. Hence, they form a

basis of Sym(N), since the cardinality of G
(N)
n is equal to the dimension of Symn(N),

according to Propositions 3.4 and 3.7.

It remains to establish the Lemmas.

Proof of Lemma 3.13 - For j ∈ [1, N−1], let

(21) ̺j(z) =
∑

m≥0

(−1)m+1RNmj z
mN+j .

Substituting

RNmj =
∑

α1 + . . . + αr = m

α1, . . . , αr ≥ 0

(−1)m+1−r Sα1N . . . Sαr−1N SαrN+j

in (21) yields

̺j(z) =
∑

n≥0

∑

α1 + . . . + αr = n

α1, . . . , αr ≥ 0

(−1)r Sα1N . . . Sαr−1N SαrN z
nN+j .
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Rearranging the sum, we obtain

̺j(z) =
∑

m≥0

(
∑

α1 + . . . + αs ≥ 0
s ≥ 0

(−1)s Sα1N . . . SαsN z
(α1+...+αs)N

)

SmN+j z
mN+j ,

where the two summations are now independent. So, Equation (21) reduces to
(22)

̺j(z) =

(
∑

α1 + . . . + αs ≥ 0
s ≥ 0

(−1)s Sα1N . . . SαsN z
(α1+...+αs)N

)

×

(
∑

m≥0

SmN+j z
mN+j

)

,

which can itself be rewritten as

(23) ̺j(z) =

(
∑

n≥0

SnN z
nN

)−1

×

(
∑

m≥0

SmN+j z
mN+j

)

.

It follows then from (23) that

N−1∑

j=1

̺j(z) =

(
∑

n≥0

SnN z
nN

)−1

×

(
∑

m≥0

SmN+1 z
mN+1 + . . . +

∑

m≥0

SmN+N−1 z
mN+N−1

)

=

(
∑

n≥0

SnN z
nN

)−1

×

(
∑

m6≡0 [N ]

Sm z
m

)

=

(
∑

n≥0

SnN z
nN

)−1

×

(
∑

m≥0

Sm z
m −

∑

n≥0

SnN z
nN

)

=

(
∑

n≥0

SnN z
nN

)−1

×

(
∑

m≥0

Sm z
m

)

− 1 ,

so that

(24) 1 +

N−1∑

j=1

̺j(z) =

(
∑

n≥0

SnN z
nN

)−1

×

(
∑

m≥0

Sm z
m

)

.

We want to prove that this series in z has its coefficients in Sym(N). Equivalently,
we can prove this for its inverse

(

1 +

N−1∑

j=1

̺j(z)

)−1

= λ−z(A)
∑

m≥0

SmN(A)zmN

=
∑

n≥0

zn
∑

Ni+j=n

(−1)jΛj(A)SNi(A) .(25)

The coefficient Cn of zn in this expression can be rewritten as

(26)
∑

Ni+j=n

(−1)jSj(−A)SNi(qA)|q=ζ = E0[Sn((q − 1)A)]
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where for a polynomial f(q) we set

(27) f(q) = f0(q
N) + qf1(q

N) + q2f2(q
N) + · · ·+ qN−1fN−1(q

N)

and

(28) fj = Ej [f ] .

Now, the inversion formula for the discrete Fourier transform on N points shows that
the polynomials qjfj(q

N) are linear combinations with complex coefficients of f(q),
f(ζq), f(ζ2q),...,f(ζN−1q). In particular, E0[Sn((q − 1)A)] is a linear combination of

Sn((q − 1)A), Sn(ζq − 1)A, . . . , Sn(ζN−1q − 1)A) ,

and Cn, which is its specialization at q = ζ , is therefore in the subspace spanned by

Sn((ζ − 1)A), Sn((ζ2 − 1)A), . . . , Sn((ζN − 1)A) = 0

which are all in Sym(N), thanks to the identity ζk−1 = (1−ζ)(−1−ζ−· · ·−ζk−1).

Proof of Lemma 3.15 - Observe first that for I, J ∈ G
(N)
n , the concatenation I · J is

also in G
(N)
n . Consider now the product

(29)

(
∑

K≤
P

(N)
n

I

RK

)

×

(
∑

L≤
P

(N)
n

J

RL

)

.

According to the product formula for ribbons (Proposition 3.13 of [5]), the product
in Formula (29) is seen to be the sum of all compositions of n which can be refined
into the concatenation I.J , whence the Lemma.

Note 3.16. One should observe that the converse of Lemma 3.13 is false: there exists
RI ∈ Sym(N) such that the associated composition I is different from N ij for all
i ≥ 0 and j ∈ [1, N−1]. For example,

R(2,1,1) =

(

Σ
(3)
(2,1,1) − Σ

(3)
(3,1) − Σ

(3)
(2,2)

)

∈ Sym(N) ,

and (2, 1, 1) is obviously not a composition of the type (3i, 1) or (3i, 2).

For k 6≡ 0 [N ], let us now set

Tk = RN ij = ΣN ij

where (i, j) is the unique pair of N×[1, N−1] such that k = N×i+j. More generally,

for K = (k1, . . . , kr) ∈ F
(N)
n , we set

TK = Tk1 × . . .× Tkr
.

An alternative definition of TK is

ΣI = Tε(I) ,
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where ε is the bijection introduced in the proof of Proposition 3.7, which allows us
to rephrase Theorem 3.11 in the form

Corollary 3.17. The family (TK)
K∈F

(N)
n

forms a basis of Sym(N)
n .

3.3. Generalized peak ribbons. We are now in a position to introduce analogues
of ribbons in the higher order peak algebras.

Definition 3.18. Let I be a composition of G
(N)
n . Then the peak ribbon of order N

labelled by I is defined as

(30) ρ
(N)
I =

∑

J ≤
P

(N)
n

I ,

J ∈ G
(N)
n

(−1)l(I)−l(J) Σ
(N)
J .

The following Proposition results immediately from Theorem 3.11.

Proposition 3.19. (ρ
(N)
I )

I∈G
(N)
n

is a basis of Sym(N).

It follows that each Σ
(N)
I has a decomposition on the generalized peak ribbons. This

decomposition is given by the Möbius-like inverse of Formula (30), justifying the claim

that the families (ρ
(N)
I )

I∈G
(N)
n

and (Σ
(N)
I )

I∈G
(N)
n

are in a similar relation as (RI)I|=n

and (SI)I|=n.

Proposition 3.20. For all I ∈ G
(N)
n ,

(31) Σ
(N)
I =

∑

J ≤
P

(N)
n

I

J ∈ G
(N)
n

ρ
(N)
J

Proof – See Note 4.5.

Note 3.21. We can introduce others analogues of the usual ribbon functions, such as,

for example, the following two families, which are indexed by compositions I ∈ G
(N)
n :

ρ
(N)
I (t) =

∑

J ≤
P

(N)
n

I

J ∈ G
(N)
n

tl(I)−l(J) ΣJ or ρ
′(N)
I (t) =

∑

J ≤
P

(N)
n

I

J ∈ G
(N)
n

tl(I)+l(J) ΣJ ,

and which also are clearly bases of Sym(N) for t ∈ C−{0}. We have of course

ρ
(N)
I = ρ

(N)
I (−1) = ρ

′(N)
I (−1) ,

for I ∈ G
(N)
n . Note also that ρ

(N)
I (t) and ρ

′(N)
I (t) are connected by

ρ
′(N)
I (t) = t2l(I) ρ

(N)
I (

1

t
) .

Due to this relation, we will only make use of (ρ
(N)
I (t))

I∈G
(N)
n

in the sequel.
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Example 3.22. We now give explicitly some elements of the family (ρ
(N)
I )

I∈G
(N)
n

:

ρ
(2)
(1,1,1) = Σ

(2)
(1,1,1) − Σ

(2)
(2,1) ,







ρ
(3)
(1,1,1) = Σ

(3)
(1,1,1) − Σ

(3)
(1,2) − Σ

(3)
(2,1) = R(1,1,1) − R(3) ,

ρ
(3)
(1,2) = Σ

(3)
(1,2) = R(1,2) +R(3) ,

ρ
(3)
(2,1) = Σ

(3)
(2,1) = R(2,1) +R(3) .

Unfortunately the internal product of two elements of the family (ρ
(N)
I (t))

I∈G
(N)
n

does

not always decompose with non-negative coefficients on this family, contrary to the
case of the usual ribbon basis of Sym (cf. section 5 of [5]). This shows that the
family defined by Definition 3.18 is probably not a perfect analogue of the usual non
commutative ribbons.

Example 3.23.
{

ρ
(3)
(1,1,1) ∗ ρ

(3)
(1,1,1) = (−2)× ρ

(3)
(1,1,1) ,

ρ
(3)
(1,2) ∗ ρ

(3)
(1,1,1) = ρ

(3)
(1,1,1) + ρ

(3)
(2,1) − ρ

(3)
(1,2) .

4. Decompositions on peak bases

4.1. A projector. Let us define a linear map πN from Sym onto Sym(N) by

(32) πN(SI) =







ΣI if I ∈ G
(N)
n ,

0 otherwise.

Note 4.1. Note that πN (RI) = ρ
(N)
I for every I ∈ G

(N)
n .

Let T (N) be the left-ideal of Sym generated by the Sj such that j 6≡ 0 mod N .

Lemma 4.2. Sym(N) is a subalgebra of T (N).

Proof – The generators RN ij of the algebra Sym(N) are in T (N), since

RN ij =
∑

α1 + ... . . . + αr = i

α1, . . . , αr ≥ 0

(−1)i+1−r S(α1N, ... , αr−1N, αrN+j) .

Proposition 4.3. πN |Sym(N)
is an algebra morphism.

Proof – We will in fact show the slightly stronger property

(33) πN(F ×G) = πN(F )× πN(G) ,

for all F ∈ T (N) and G ∈ Sym. We establish (33) by proving that it holds for
products of complete functions, that is

(34) πN(SI × SJ) = πN(SI)× πN(SJ) ,

for SI ∈ T
(N)
n and all SJ . Two cases are to be considered.
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Suppose first that I · J 6∈ G
(N)
n . Then one has either I 6∈ G

(N)
n , or J 6∈ G

(N)
n by

definition of G
(N)
n . So, both sides of (34) are 0 according to the definition of πN .

Assume now that I · J ∈ G
(N)
n . Then, I and J are also elements of G

(N)
n , since we

have assumed that the last part of I is not a multiple of N . Then, by definition of
πN ,

(35) πN (SI·J) = Σ
(N)
I·J .

But from Lemma 3.15, we know that that

(36) Σ
(N)
I.J = Σ

(N)
I × Σ

(N)
J .

So it results from (35) and (36) that

πN(SI·J) = πN(SI)× πN(SJ) ,

since Σ
(N)
I and Σ

(N)
J are respectively the images of SI and SJ under πN . Hence, (34)

also holds in this case.

We can now give an important property of πN .

Proposition 4.4. πN is a projector from Sym onto Sym(N).

Proof – We have to prove that

(37) πN (ΣI) = ΣI ,

for I ∈ G
(N)
n . Using Proposition 4.3, which gives that πN is multiplicative on

Sym(N), and Lemma 3.15, we only have to prove that

πN(RN ij) = RN ij ,

for i ≥ 0 and j ∈ [1, N−1]. But we have already seen (Note 4.1) that πN(RI) = ρ
(N)
I

for every I ∈ G
(N)
n , and for I = (N ij), ρ

(N)
I = ΣI = RI .

Note 4.5. Remark that for I ∈ G
(N)
n ,

Σ
(N)
I = πN (SI) =

∑

J≤I

πN (RJ) =
∑

J ≤
P

(N)
n

I

J ∈ G
(N)
n

ρJ ,

which gives an alternative proof of Proposition 3.20.
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4.2. Some interesting decompositions. We record in this section a number of
remarkable decompositions with respect to the bases of complete and ribbon peak
functions of order N .

Proposition 4.6. Let ζ be a primitive N-th root of unity. Then, for a composition

I of n,

(38) ϑζ(S
I) =

∑

J = (j1, ..., js) ≤ I

J ∈ G
(N)
n

(−1)l(I)−l(J)
∏

k∈H(I,J)

((
1

ζ

)jk

− 1

)

Σ
(N)
J ,

where

H(I, J) := { l ∈ [1, s], |∃k ∈ [1, r], j1 + ... + jl = ik } .

Proof – Formula (38) results by applying πN to the decomposition of SI((1 − q)A)
on products of complete functions, specialized at q = ζ , which is given by Formula
(105) of Proposition 5.30 of [7].

Proposition 4.7. Let ζ be a primitive N-th root of unity. Then, for a composition

I of n,

(39) ϑζ(RI) =
∑

J = (j1, ..., js) ≤ I

J ∈ G
(N)
n

(−1)l(I)−l(J) qα(I,J) (1− qjs) Σ
(N)
J ,

where

α(I, J) =

l(J)−1
∑

k=1

jk × δj1+...+jk 6∈D(I) .

Proof – As for Proposition 4.6, Formula (39) is obtained by applying πN on the
decomposition of RI((1− ζ)A) on the basis SJ , as given in [7] .

Note 4.8. Note that Propositions 4.6 or 4.7 give another proof of Theorem 3.11, since

Formulas (38) or (39) show that (Σ
(N)
I )

I∈G
(N)
n

is a generating family of Sym(N). Since

this family is obviously linearly free by construction, it follows that it is a basis of
Sym(N)

In order to state the next Proposition, we need a definition. For each pair of com-
positions I = (i1, ..., ir) and J = (j1, ..., js) of the same weight, let us introduce
the sequence of compositions H(I, J) = (H1, ..., Hr) of length l(I) which is uniquely
determined by the the conditions |Hk| = ik for k ∈ [1, l(I)], and

H1 • ... •Hr = J ,

where • denotes either the concatenation of compositions, or the operation �, defined
by

H �K = (k1, ..., kr−1, kr + l1, l2, ..., ls) .
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Example 4.9. Let I = (3, 2, 1, 4) and J = (2, 5, 2, 1). Then, we have

H(I, J) = ((2, 1), (2), (1), (1, 2, 1)) .

We can now give the following definition.

Definition 4.10. For any two compositions I and J of the same weight, we set

(40) h(I, J) =







−∞ if there exists k ∈ [1, l(I)], α ≥ 0, β ≥ 1, Hk 6= (1α, β) ,

l(I)
∑

i=1

αi if for every k ∈ [1, l(I)], αk ≥ 0, βk ≥ 1, Hk = (1αk , βk) .

Proposition 4.11. Let ζ be a primitive N-th root of unity. Then, for a composition

I of n,

(41) ϑζ(S
I) = (1− ζ)l(I)

∑

J ∈ G
(N)
n

h(I, J) 6= −∞

(−ζ)h(I,J) ρ
(N)
J

Proof – The decomposition of ϑq(S
I) on the ribbon basis follows from Formula (67)

of Proposition 5.2 of [7]. Formula (41) comes by applying πN to this decomposition,
specialized at q = ζ .

Note that an arbitrary composition I can always be uniquely written as

I = H1 ·H2 · · · · ·Hhl(I) ,

where Hk = (1α, β), k ∈ [1, hl(I)]. We denote by HI the composition

HI = (|H1|, |H2|, ... , |Hhl(I)|) .

Example 4.12. For I = (1, 3, 1, 4, 2), we have

I = H1 ·H2 ·H3 ,

with H1 = (1, 3), H2 = (1, 4), H3 = (2). Hence hl(I) = 3 and D(HI) = { 4, 9 }, in
this case.

Definition 4.13. Let I, J be two compositions of n. We set

(42) b(I, J) =







|(1 + (D(I)−D(J))) ∪ (D(J)−D(I))| if D(HJ) ⊂ S(I) ,

−∞ otherwise ,

where S(I) := ((1 +D(I))−D(I)) ∪ (D(I)− (1 +D(I))).

Proposition 4.14. Let ζ be a primitive N-th root of unity. Then, for a composition

I of n,

(43) ϑζ(RI) =
∑

J ∈ G
(N)
n

b(I, J) 6= −∞

(1− ζ)hl(J) (−ζ)b(I,J) ρ
(N)
J .
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Proof – This follows by applying πN to the ribbon decomposition of ϑq(RI), special-
ized at q = ζ , as given in Formula (121) of Proposition 5.41 of [7].

4.3. Higher order “noncommutative tangent numbers”. We will finally present
in this last section, a number of formulas generalizing the known relations involving
the so-called noncommutative tangent numbers, introduced in [5]. The formulas of
[5] are obtained for N = 1, and those of [2] for N = 2.

Proposition 4.15. Let

t :=
∑

i≥0

(−1)i+1

( N−1∑

j=1

Σ
(N)

N ij

)

,

Then,

(44) (1− t)−1 =
∑

n≥0

(−1)n ρ
(N)
1n ,

Proof – We know that

(45) (1− t)−1 =
∑

i1, ..., ir ≥ 0
r ≥ 0

(−1)i1+...+ir+r
∑

j1,...,jr∈[1,N−1]

Σ
(N)

N i1j1 ... N ir jr
,

where Σ
(N)
∅ = 1. But for a composition K = (N i1j1, ..., N

irjr), one has

l(K) = i1 + ...+ ir + r ,

so that (45) can be rewritten as

(1− t)−1 = 1 +
∑

K ∈ G
(N)
n

n ≥ 1

(−1)l(K) Σ
(N)
K

= 1 +
∑

n≥1

(−1)n

(
∑

K∈G
(N)
n

(−1)l(K)−|K| Σ
(N)
K

)

,

= 1 +
∑

n≥1

(−1)n ρ
(N)
1n ,

which is the required expression (ρ
(N)
10 = 1).

Note 4.16. Equation (44) can be regarded as a kind of generalization of the trivial
relation σ(1)λ(−1) = 1, where σ and λ are respectively the generating functions of



HIGHER ORDER PEAK ALGEBRAS 19

complete and elementary non commutative symmetric functions. More generally, we
can set







σN (t) = 1 +

N−1∑

i=1

ti Σ
(N)
i +

∑

i≥1

(−1)i

(N−1∑

j=1

tiN+j Σ
(N)

N ij

)

,

λN(t) =
∑

n≥0

(−t)n ρ
(N)
1n ,

and one can check, following the lines of the proof of Proposition 4.15, that σN (t)λN(−t) =
1, another generalization of the same relation.

Proposition 4.17. Let ζ be a primitive N-th root of unity and let tζ be defined by

tζ :=
∑

i≥0

N−1∑

j=1

ζj−i−1 Σ
(N)

N ij
.

Then,

(46) (1− tζ)
−1 =

∑

n≥0

(−1)n ρ
(N)
1n (ζ) .

Note 4.18. Note that for N = 2, we get t−1 = TH , in the notation of [5].

Proof – According to Lemma 3.15,

(47) (1− tζ)
−1 =

∑

i1, ..., ir ≥ 0
j1, ..., jr ∈ [1, N−1]

r ≥ 0

ζj1+...+jr−(i1+...+ir+1) Σ
(N)

N i1j1...N ir jr
.

But for a composition K = (N i1j1, ..., N
irjr),

|K| − l(K) = N × (i1 + ...+ ir) + j1 + ...+ jr
︸ ︷︷ ︸

|K|

− (r + i1 + ...+ ir)
︸ ︷︷ ︸

l(K)

.

So, (47) becomes

(1− tζ)
−1 =

∑

K ∈ G
(N)
n

n ≥ 0

ζ |K|−l(K) Σ
(N)
K ,

whence the proposition.

Acknowledgements.- This project has been partially supported by EC’s IHRP Programme,
grant HPRN-CT-2001-00272, “Algebraic Combinatorics in Europe”. The authors are also
grateful to Maxime Rey for his help with the redaction of this paper.



20 D. KROB AND J.-Y. THIBON

References

[1] M. Aguiar, N. Bergeron, Kathryn Nyman, The peak algebra and the descent algebras of

types B and D, preprint math.CO/0302278.
[2] Bergeron N., Hivert F., Thibon J.Y., The peak algebra and the Hecke-Clifford algebras at

q = 0 , J. Combinatorial Theory A 117 (2004),1–19.
[3] Duchamp G., Hivert F., Thibon J.Y., Noncommutative symmetric functions VI: Free

quasi-symmetric functions and related algebras, Intern. J. Alg. Comput., 12, no. 5, (2002),
671-717.

[4] Duchamp G., Klyachko A., Krob D., Thibon J.Y., Noncommutative symmetric functions

III: Deformations of Cauchy and convolutive algebras, Discrete Math. Theoret. Comput. Sci.,
1, (1997), 159-216.

[5] Gelfand I.M., Krob D., Lascoux A., Leclerc B., Retakh V.S., Thibon J.Y., Non-

commutative symmetric functions, Adv. in Math., 112, (1995), 218–348.
[6] Knutson D., Λ-rings and the representation theory of the symmetric group, Lecture Notes in

Mathematics, 308, Springer, 1973.
[7] Krob D., Leclerc B., Thibon J.Y., Noncommutative symmetric functions II: Transforma-

tions of alphabets, Intern. J. Alg. Comput., 7, (2), (1997), 181–264.
[8] Krob D., Thibon J.Y., Noncommutative symmetric functions IV: Quantum linear groups

and Hecke algebras at q = 0, J. Alg. Comb., 6, (1997), 339-397.
[9] Krob D., Thibon J.Y., Noncommutative symmetric functions V: A degenerate version of

Uq(glN ), Intern. J. Alg. Comput., 9, no. 3/4, (1999), 405-430.
[10] AL. Lascoux, B. Leclerc, J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases

of quantum affine algebras, Commun. Math. Phys.181 (1996), 205-263.
[11] Lascoux A., Schützenberger M.P., Formulaire raisonné de fonctions symétriques, Uni-
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