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Performance evaluation of demodulation with diversity –

A combinatorial approach II: Bijective methods

D. Krob ∗ , E.A. Vassilieva †

Abstract

This paper is devoted to the presentation of a combinatorial approach for analyzing the per-
formance of a generic family of demodulation methods used in mobile telecommunications. We
show that a fundamental formula in this context is in fact highly connected with a slight modifi-
cation of a very classical bijection of Knuth between pairs of Young tableaux of conjugate shapes
and {0, 1}-matrices. These considerations allowed us to obtain the first explicit expressions for
several important specializations of the performance evaluation formula that we studied.

1 Introduction

Modulating a numeric signal means to transform it into a wave form. Modulation is therefore
a technique of main interest in a number of engineering domains such as computer networks,
mobile communications, satellite transmissions, . . . Due to their practical importance, modula-
tion methods were of course widely studied in signal processing. The classical Proakis textbook
devotes for instance a full chapter to this subject (cf. Chapter 5 of [13]). One should also point
out that one of the most important problems in this area is to be able to evaluate the performan-
ce characteristics of the optimum receivers associated with a given modulation method, which
reduces to the computation of various probabilities of errors (see again Chapter 5 of [13]).

Among the different families of modulation protocols used in practice, an important class
consists in methods where the modulation reference (i.e. a fixed digital sequence) is also mo-
dulated and transmitted. In this kind of situation, the demodulation decision needs to take
into account several noisy informations (the transmitted signal, the transmitted reference, but
also copies of these two signals). It turns out that the probability of errors appearing in such
contexts leads very often to the computation of the following type of probability:

P (U < V ) = P

(
U =

N∑

i=1

|ui|2 < V =
N∑

i=1

|vi|2
)

, (1)

where the ui and vi’s stand for independent centered complex Gaussian random variables with
variances denoted by E[ |ui|2 ] = χi and E[ |vi|2 ] = δi for every i ∈ [1, N ] (see also Section 3.2).
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The problem of computing explicitely this last probability was hence studied by several
researchers from signal processing (cf. [2, 9, 13, 16]). The most interesting result in this direction
was obtained by Barrett (cf. [2]) who proved that the probability defined by (1) is equal to

P (U < V ) =
N∑

k=1



∏

j 6=k

1

1 − δ−1
k δj

N∏

j=1

1

1 + δ−1
k χj


 . (2)

This last formula can also be described in a purely combinatorial way, using Young tableaux
(cf. Section 3.2). This new approach has already led to the first, both algorithmically efficient
and numerically stable, practical method for computing the probability P (U < V ) (cf. Section
3.2 or [5, 6]). In this paper, we continue the combinatorial study of Barrett’s formula by
connecting it with a very classical bijection of Knuth (cf. Section A.4.3 of [7] or [10]) between
pairs of Young tableaux of conjugate shapes and {0, 1}-matrices. These considerations allowed
us in particular to get the first explicit expressions for several specializations of formula (2) (cf.
Section 6).

2 Background

2.1 Partitions and Young tableaux

A partition is a finite nondecreasing sequence λ = (λ1, λ2, . . . , λm) of positive integers. The
number m of elements of λ is called the length of the partition λ. One can represent each such
partition λ by a Ferrers diagram of shape λ, that is to say by a diagram of λ1 + . . . + λm boxes
whose i-th row contains exactly λi boxes for every 1 ≤ i ≤ m. The Ferrers diagram associated
with the partition λ = (2, 2, 4) is for instance given below.

The conjugate partition λ˜of a given partition λ is the partition obtained by reading the heights
of the columns of the Ferrers diagram associated with λ. For instance, for the partition λ =
(2, 2, 4) of the above figure, we have λ˜= (1, 1, 3, 3).

When λ is a partition whose Ferrers diagram is contained into the square represented by the
partition NN = (N, . . . , N) with N rows of length N , one can also define the complementary
partition λ of λ which is the conjugate of the partition ν whose Ferrers diagram is the complement
(read from bottom to top) of the Ferrers diagram of λ in the square (NN ). Note that this
definition is relative to a given size N and that the square does not have to be the smallest
one containing λ. For instance, for N = 6 and λ = (1, 1, 2, 3), we have ν = (3, 4, 5, 5, 6, 6) and
λ = (2, 4, 5, 6, 6, 6) (see Figure 1).

Let A be a totally ordered alphabet. A tabloid of shape λ over A is a filling of the boxes
of a Ferrers diagram of shape λ with letters of A. A tabloid is called a Young tableau when its
rows and its columns consist respectively of non decreasing and strictly increasing sequences of
letters of A. One can see below a Young tableau of shape (2, 2, 4) over A = { a1 < . . . < a5 }.

a3 a5

a2 a2

a1 a1 a1 a4
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Figure 1: Two complementary partitions : λ = (1, 1, 2, 3) and λ = (2, 4, 5, 6, 6, 6).

One associates with any Young tableau T over A the monomial AT which is the product of all
letters of A that occur in the different boxes of T . One has for instance AT = a3

1 a2
2 a3 a4 a5 for T

the Young tableau of the last example. The Schur function sλ(A) associated with the partition
λ is then defined as the sum of all monomials AT for T running over all Young tableaux of shape
λ. We recall that the Schur functions are symmetric polynomials that form a linear basis of the
algebra of symmetric polynomials over A (cf. Section 1.3 of [12]).

2.2 Knuth’s bijection

Knuth’s bijection is a famous one-to-one correspondence between {0, 1}-matrices and pairs of
Young tableaux of conjugate shapes (cf. [10]). It is based on the column insertion process
which is a classical combinatorial construction that we present now. Let A be a totally ordered
alphabet. The fundamental step of the column insertion process associates with a letter a ∈ A

and a Young tableau T over A a new Young tableau T (a) over A defined as follows.

1. If a is strictly larger than all the entries of the first column of T , the tableau T (a) is
obtained by putting a in a new box at the top of the first column of T .

2. Otherwise one can consider the smallest entry b of the first column of T which is greater
than or equal to a. The tableau T (a) is then obtained by replacing b by a and by applying
recursively our insertion scheme, starting now by trying to insert b in the second column
of T . Our process continues until a replaced entry can go at the top of the next column
or until it becomes the only entry of a new column.

One can easily check that T (a) is always a Young tableau. Moreover our process can be reverted
if one knows which new box it created. Let now w = a1 . . . aN be a word over A. The result of
the column insertion process applied to w is the Young tableau obtained by column inserting
successively a1, . . . , aN as described above, starting from the empty Young tableau.

Note 2.1 The Young tableau which is obtained by applying the column insertion process to a
word w = a1 . . . aN over A is the same as the tableau obtained by applying the row insertion
process (i.e. Schensted’s algorithm) to its mirror image w̃ = aN . . . a1 (see [7] for more details).

We are now in the position to present Knuth’s construction. Let M be a matrix from the set
MN×N ({0, 1}) of square {0, 1}-matrices of order N . Knuth’s bijection associates with M a pair
(P, Q) of Young tableaux with conjugate shapes over the alphabet [1, N ] as described below.

1. Construct the 2-row array AN which results by listing the N 2 pairs (i, j) of [1, N ]× [1, N ]
in lexicographic order, i.e.

AN =

(
1 . . . 1 2 . . . 2 . . . . . . N . . . N

1 . . . N 1 . . . N . . . . . . 1 . . . N

)
.
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2. Take in this array all the entries corresponding to the 1’s of M in order to get an array

A(M) =

(
u1 u2 . . . . . . ur

v1 v2 . . . . . . vr

)
.

3. Form the word w1(M) = v1 . . . vr obtained by reading from left to right the bottom entries
(the entries of the second row) of A(M). The column insertion process applied to w1(M)
gives the Young tableau P .

4. Form finally the second Young tableau Q by placing for every i ∈ [1, r] the i-th element ui

of the first row of A(M) in the box which is conjugate to the i-th box created during the
column insertion process that led to P .

By reversing the steps of the described construction, we can recover the array A(M) (and hence
our matrix M) from the pair (P, Q). We find the box in which Q has the largest entry; if there
are several equal entries, the box that is farthest to the right is selected. Then we perform
the reverse column insertion to P starting with the conjugate of the selected box and remove
the selected box from Q. We obtain a new pair of Young tableaux with conjugate shapes and
perform the same procedure up to the moment when we get two empty Young tableaux.

Example 2.2 Let us consider the matrix

M =




0 0 1
1 0 0
0 1 1


 .

Then the arrays A3 and A(M) are respectively equal to

A3 =

(
1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3

)
and A(M) =

(
1 2 3 3
3 1 2 3

)

where in A3 we boxed the entries corresponding to the 1’s of M . Thus w1(M) = (3, 1, 2, 3).
Knuth’s bijection associates with M the following pair of Young tableaux of conjugate shapes:

(P, Q) =




3
2
1 3 ,

2
1 3 3


 .

We now present a variant of Knuth’s bijection that we will need in the sequel (see also Section
A.4.3 of [7]). Let M be again a matrix of MN×N ({0, 1}). One can associate with M a new pair
(R, S) of Young tableaux with conjugate shapes over the alphabet [1, N ] which is constructed
as follows.

1. Construct first the 2-row array ÃN which is equal to the sequence of the N 2 pairs (i, j) of
[1, N ] × [1, N ] taken in the following order:

ÃN =

(
N . . . N . . . . . . 2 . . . 2 1 . . . 1
1 . . . N . . . . . . 1 . . . N 1 . . . N

)
.

2. Take in this array all the entries corresponding to the 1’s of M . We get an array Ã(M).
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3. Form the word w̃1(M) obtained by reading from left to right the bottom entries of Ã(M).
The column insertion process applied to w̃1(M) gives the Young tableau R.

4. Form finally the second Young tableau S from R and Ã(M) using the conjugate sliding
process (see Section A.4.3 of [7] for more details) applied to w̃1(M). Now we will briefly
describe this process. To this purpose, let us first set

Ã(M) =

(
ũ1 . . . ũr

ṽ1 . . . ṽr

)
.

To construct the second Young tableau S, we apply the following procedure.

• Start with one single box containing ũ1.

• For each i in [2, r], apply successively the following rules.

– Add an empty box conjugate to the i-th box that appears during the construction
of the Young tableau R and slide there the greater of its two neighbours to the
left or below. If the two neighbours have the same entry, the one below is chosen.
If there is only one neighbour, it is chosen by abuse of terminology. This creates
a new empty box. This sliding process continues until the empty box is the first
one of the first column.

– Put in this box, the following entry ũi.

At the end of this procedure, we get the Young tableau S. The tableaux R and S are then
of conjugate shape.

The following symmetry result connects then the two previous constructions (cf. Section
A.4.3 of [7] for more details).

Theorem 2.3 (Knuth; [10]) Let M be a matrix of MN×N ({0, 1}) and let tM be the transpose
of M . Let (P, Q) be the result of Knuth’s bijection applied to M and let (R, S) be the result of
the process described above applied to tM . Then one has (P, Q) = (S, R).

Example 2.4 Take again the matrix M of Example 2.2. The transpose of M is

tM =




0 1 0
0 0 1
1 0 1


 .

Then the arrays Ã3 and Ã(tM) are respectively given by

Ã3 =

(
3 3 3 2 2 2 1 1 1

1 2 3 1 2 3 1 2 3

)
and Ã(tM) =

(
3 3 2 1
1 3 3 2

)

where in Ã3 we boxed the entries coresponding to the 1’s of tM . Thus w̃1(
tM) = (1, 3, 3, 2). The

above construction associates with tM the following pair (R, S) of Young tableaux:

(R, S) =


 2

1 3 3 ,

3
2
1 3


 = (Q, P ) .
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2.3 Plactic relations

The column insertion process can also be described algebraically by the plactic formalism de-
veloped by Lascoux and Schützenberger (cf. [11]) that we will now present. Let A be a totally
ordered alphabet. The plactic monoid is the monoid constructed over A and subject to the
following relations (discovered by Knuth (cf. [10])):





aba ≡ baa, bba ≡ bab, for every a < b ∈ A ,

acb ≡ cab, bca ≡ bac, for every a < b < c ∈ A .

Two words over A are identified under the plactic relations if and only if the Young tableaux
obtained by applying the column insertion process to their mirror images are equal (cf. [7, 11]).

We now present an important property of the plactic monoid that we will use in the sequel.
Let T be a Young tableau over A. One can associate with T a word w(T ) over A by reading the
columns of T from top to bottom and left to right. The words associated with Young tableaux
in such a way are called tableau words. For instance the tableau word associated with the Young
tableau T at the end of Section 2.1 is w(T ) = a3 a2 a1 a5 a2 a1 a1 a4. Note that applying the
column insertion to the mirror image of a tableau word w(T ) yields the tableau T . Observe
also (see Section 2.1 of [7] or [11]) that a word over A is equivalent with respect to the plactic
relations to a unique tableau word (which is therefore associated with the Young tableau given
by the column insertion process applied to the mirror image of w).

3 Performance analysis of demodulation protocols

3.1 Demodulation with diversity

Our initial motivation for studying Barrett’s formula came from mobile communications. The
probability P (U < V ) given by formula (1) appears indeed naturally in the performance analysis
of demodulation methods based on diversity which are standard in such a context. In order to
motivate more strongly our paper, we first present in details this last situation.

We consider a model where one transmits an information b ∈ {−1, +1} on a noisy channel 1.
A reference r = 1 is also sent on the noisy channel at the same time as b. We assume that we
receive N pairs (xi(b), ri)1≤i≤N ∈ (C × C)N of data (the xi(b)’s) and references (the ri’s)

2 that
have the following form

{
xi(b) = ai b + νi for every 1 ≤ i ≤ N,

ri = ai
√

βi + ν ′
i for every 1 ≤ i ≤ N,

where ai ∈ C is a complex number that models the channel fading associated with xi(b)
3, where

βi ∈ R
+ is a positive real number that represents the excess of signal to noise ratio (SNR) which

is available for the reference ri
4 and where νi ∈ C and ν ′

i ∈ C denote finally two independent
complex white Gaussian noises. We also assume that every ai is a complex random variable
distributed according to a centered Gaussian density of variance αi for every i ∈ [1, N ].

1 This situation corresponds to Binary Phase Shift Keying (BPSK).
2 This situation corresponds to spatial diversity, i.e. when more than one antenna is available, but also to

multipath reflexion contexts. These two types of situations typically occur in mobile communications.
3 Fading is typically the result of the absorption of the signal by buildings. Its complex nature comes from the

fact that it models both an attenuation (its modulus) and a dephasing (its argument).
4 This number βi is usually greater or equal to 1. In practice however, one often takes βi = 1.
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According to these assumptions, all observables of our model, i.e. the pairs (xi(b), ri)1≤i≤N ,
are complex Gaussian random variables. We finally also assume that these N observables are
N independent random variables which have their image in C

2. Under these hypotheses it is
proved in [4] that

log

(
P (b = +1|X)

P (b = −1|X)

)
=

N∑

i=1

4 αi
√

βi

1 + αi (βi + 1)
(xi(b)|ri) (3)

with X = (xi(b), ri)1≤i≤N and where (?|?) denotes the Hermitian scalar product. The demo-
dulation decision is based on the associated Bayesian criterium. One indeed decides that b was
equal to 1 (resp. to −1) when the right hand side of Formula (3) is positive (resp. negative).

Intuitively this means that one decides that the value b = 1 was sent when the xi(b)’s are more
or less globally in the same direction than the ri’s. Figure 2 illustrates the case N = 1 and one
can see that a noisy reference r has a positive (resp. negative) Hermitian scalar product with a
noisy information x when x corresponds to a small pertubation of 1 (resp. −1).

6
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Figure 2: Two possible noisy bits x(1) and x(−1) and a noisy reference r in the case N = 1.

The bit error probability (BER) of our model is the probability that the value b = 1 was
decoded in −1, i.e. the probability that one had

N∑

i=1

4 αi
√

βi

1 + αi (βi + 1)
(xi(1)|ri) < 0 .

Using the parallelogram identity, it is now easy to rewrite this last probability as

P (
N∑

i=1

|ui|2 −
N∑

j=1

|vi|2 < 0 )

where ui and vi denote for every i ∈ [1, N ] the two variables defined by setting

ui =

(
αi

√
βi

1 + αi (βi + 1)

)1/2

(xi(1)+ri) and vi =

(
αi

√
βi

1 + αi (βi + 1)

)1/2

(xi(1)−ri) .

Our various hypotheses imply then immediately that the ui’s and the vi’s are independent
complex Gaussian random variables. Hence the performance analysis of our model relies exactly
on Barrett’s Formula (2) as already indicated in the introduction of our paper (cf. Formula (1)).
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It is also interesting to point out the explicit relation between the values of χi and δi appearing
in Barrett’s formula and the αi and βi which is the following:

χi = 2
αi (βi + 1)

1 + αi (βi + 1)

(√
∆i + αi

√
βi

)
and δi = 2

αi (βi + 1)

1 + αi (βi + 1)

(√
∆i − αi

√
βi

)

with ∆i = (αi + 1)(αiβi + 1).

3.2 Barrett’s formula

As we saw in the last section, Barrett’s formula is connected with the performance analysis of
demodulation methods based on diversity. More generally, the performance analysis of many
other practical digital transmission systems is based on the computation of the probability that a
given Hermitian quadratic form q in complex centered Gaussian variables is negative. Numerous
examples of such situations can be found for instance in Proakis’s standard textbook (cf. [13]).

The problem of computing such a probability was therefore addressed by several researchers
from signal processing. A first formula for this probability was derived by Turin (cf. [16]) and
used later by Barrett (cf. [2]) who expressed it as a rational function of the eigenvalues of the
covariance matrix associated with q. Formula (2) appears then as a special case of this more
general result of Barrett. Alternate methods based either on contour integration or on algebraic
manipulations (as in [9] or in annex B of [13]) provide other approaches that involve numerical
quadrature of trigonometric functions.

However, all these methods lead to algorithms that are not numerically stable due to the
presence of artificial singularities such as the situation δi = δj in Barrett’s formula (2) 5. The first
efficient and stable method for computing the probability P (U < V ) defined by (1) was obtained
by Dornstetter, Krob and Thibon (cf. [5]) using techniques from the theory of symmetric
functions (cf. [6]). For the sake of completeness, we recall below their algorithm.

• Step 1. Consider the two polynomials X(z) and ∆(z) of R[z] defined by setting

X(z) =
N∏

i=1

(1 − χi z) and ∆(z) =
N∏

i=1

(1 + δi z) .

• Step 2. Compute the unique polynomial π(z) of R[z] of degree d(π) ≤ N−1 such that

π(z) X(z) + µ(z) ∆(z) = 1

where µ(z) stands for some polynomial of R[z] of degree d(µ) ≤ N−1.

• Step 3. Evaluate π(0) = P (U < V ) .

The efficiency and the numerical stability of this algorithm come from the fact that the second
step of the above method can be realized by the classical generalized Euclidean algorithm which
has the two above mentioned properties.

5 These last singularities typically create numerical problems in the context of demodulation with diversity
described in Section 3.1 where one must deal both with χi’s and δi’s that are very close to each other.
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3.3 The combinatorial version of Barrett’s formula

Using Barrett’s formula, it was proved (cf. [6]) that Formula (1) reduces to

P (U < V ) =
F (χ, δ)∏

1≤i,j≤N

(χi + δj)
(4)

where F (χ, δ) denotes the symmetric (with respect to the χi’s and the δj ’s) polynomial

F (χ, δ) =
∑

λ⊆(NN−1)

s
(λ,N)

({χ1, . . . , χN}) s(λ,N)({δ1, . . . , δN}) , (5)

(λ, N) representing the complement of the partition (λ, N) in the square NN (cf. [6]). Recall
that sλ(X) denote the Schur function associated with the partition λ over the alphabet X which
is equal by definition to the sum of all monomials XT , defined as the product of all variables of
X involved in T , for T running over all possible Young tableaux of shape λ.

From this combinatorial interpretation of a Schur function, it follows that the monomials
involved in the right hand side of equation (5) are exactly the monomials obtained by taking the
product of the elements of all square tableaux of shape (NN ) consisting of two Young tableaux
of complementary shapes (cf. Figure 1 of Section 2.1) that respect the two constraints:

• Condition B1: the first Young tableau is only filled by variables that belong to the
ordered alphabet δ = { δ1 < . . . < δN } and the length of its first row is equal to N ,

• Condition B2: the second Young tableau is only filled by variables that belong to the
ordered alphabet χ = {χ1 < . . . < χN }.

A typical example of such a combinatorial structure is given in Figure 3. The first tableau is
written there in the usual way. On the other hand, the second tableau is organized differently:
its rows (resp. its columns) are placed from top to bottom (resp. from right to left) in the space
corresponding to the complement of the first tableau within the square (NN ). Note finally
that the tableaux formed out in such a way are examples of the so-called (k, l)−semi-standard
tableaux in the sense of Remmel (see [14] or [15]).

χ6 χ5 χ4 χ3 χ2 χ1

δ5 χ6 χ5 χ4 χ2 χ1

δ4 δ5 δ6 χ4 χ3 χ2

δ3 δ3 δ5 χ5 χ4 χ3

δ2 δ2 δ3 δ4 χ4 χ3

δ1 δ1 δ2 δ2 δ2 δ3

Figure 3: A typical example of complementary fillings of a square tableau.

Example 3.1 For N = 2, Barrett’s formula reduces to

P (U < V ) =
χ1 χ2 (δ2

1 + δ1 δ2 + δ2
2) + (χ1 + χ2) (δ2

1 δ2 + δ1 δ2
2) + δ2

1 δ2
2

(χ1 + δ1) (χ1 + δ2) (χ2 + δ1) (χ2 + δ2)

9



and one can check that the eight monomials occurring in the numerator of this last expression
are exactly the products of the entries of the following eight combinatorial structures:

χ1 χ2

δ1 δ1 ,

χ1 χ2

δ1 δ2 ,

χ1 χ2

δ2 δ2 ,

δ2 χ1

δ1 δ1 ,

δ2 χ2

δ1 δ1 ,

δ2 χ1

δ1 δ2 ,

δ2 χ2

δ1 δ2 ,

δ2 δ2

δ1 δ1 .

The complexity of Formula (4) is O(N 2 γN ) where γN denotes the number of monomials
involved in its numerator or equivalently the number of square tableaux of shape (NN ) filled as
in the typical example of Figure 3. Unfortunately γN = 2N2−1 (see below) from which it follows
that Formula (4) is impracticable when N grows. This combinatorial formula is however not
useless since it leads to efficient expressions for several interesting specializations of Barrett’s
formula (cf. Section 6). Formula (4) can also be reformulated in terms of the algorithm given at
the end of Section 3.2, which is both practically efficient (its complexity is quadratic as Barrett’s
formula) and numerically stable as already stated (cf. [5, 6]).

Proposition 3.2 The number γN of square tableaux of shape (NN ) filled by two complementary
Young tableaux satisfying conditions B1 and B2 is equal to γN = 2N2−1 .

Proof – Let us denote by P (t) the polynomial of N[t] that results from the substitution in the
numerator F (χ, δ) (of the righthand side of (4)) of χi and δi by ti for every i ∈ [1, N ]. Then a
combination of Formulas (2) and (4) yields:

P (t) =
∏

1≤i,j≤N

(
ti + tj

)



N∑

k=1




∏

1≤j 6=k≤N

1

1 − tj−k

N∏

j=1

1

1 + tj−k




 . (6)

Note now that the special case z = 0 in the following partial fraction expansion

1
N∏

i=1

(1 − ti z)
N∏

i=1

(1 + ti z)

=
N∑

k=1

1

1 − tk z




N∏

j=1
j 6=k

1

1 − tj−k

N∏

j=1

1

1 + tj−k


+

N∑

k=1

1

1 + tk z




N∏

j=1

1

1 + tj−k

N∏

j=1
j 6=k

1

1 − tj−k




leads immediately to the identity

N∑

k=1




∏

1≤j 6=k≤N

1

1 − tj−k

N∏

j=1

1

1 + tj−k


 =

1

2
(7)

from which we deduce that one has

P (t) =
1

2




∏

1≤i,j≤N

(ti + tj)


 .

One can now immediately conclude that γN = P (1) = 2N2−1 which completes our proof.

We will add finally that the proof of Proposition 3.2 is purely analytic. A bijective proof
that explains better this result is now coming (see Section 5).
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4 Column words and their complements

This section is devoted to the presentation of several combinatorial results of independent interest
concerning column words that will be used in the sequel in our paper.

4.1 Column words

Let A be a totally ordered alphabet. We recall that a column (of length k) over A is just a
Young tableau of shape 1k = (1, . . . , 1) over A. If P = { p1 < . . . < pr } is a subset of A, we
denote by [P ] or by [ pr, . . . , p1 ] the unique column of length r filled with all letters of P . We
also denote by C(A) = { [P ], P ⊂ A } the set of all columns over A (including the empty column
denoted by [ ]). A word over the alphabet C(A) is then said to be a column word.

It is important to note that one can associate with every Young tableau T over A a column
word [T ] which is just the concatenation of the columns of T (considered now as letters of C(A))
read from left to right. The column word associated with the Young tableau given at the end
of Section 2.1 is for instance equal to [a3 a2 a1] [a5 a2 a1] [a1] [a4].

The column words associated with Young tableaux can be characterized using the partial
order � on the alphabet C(A) which is defined as follows. Let P = { p1 < . . . < pr } and
Q = { q1 < . . . < qs } be two subsets of A. Then one says that [P ] � [Q] if one has s ≤ r and
pi ≤ qi for every 1 ≤ i ≤ s. In other words, the column [P ] is less or equal to the column [Q] if
and only if one gets a Young tableau when putting [Q] at the right of [P ]. It is then easy to see
that each column word associated with a Young tableau is a non decreasing column word (with
respect to �) and that conversely each non decreasing column word encodes a Young tableau 6.

Example 4.1 Let A = { a<b<c }. Then one has C(A) = { [ ], [a], [b], [c], [ba], [ca], [cb], [cba] }
and the associated partial order � is given by the Hasse diagram below.

[cba] - [ba] - [ca] - [cb]

? ?

[a] - [b] - [c] - [ ]

We need one further notation. If P = { p1 < . . . < pr } and Q = { q1 < . . . < qs } are two
subsets of A such that pr < q1, then we denote by [Q, P ] the unique column of length r + s

which is filled by all the elements of P and Q.

4.2 Complement of a column word

Let P and Q be two subsets of a totally ordered alphabet A. The column [P ] is said to be the
complement (within A) of the column [Q], denoted by [Q], if and only if one has P = A \ Q.
More generally the complement of a column word [w] = [P1] . . . [Pn] ∈ C(A)∗ is the column word
[w] defined by setting [w] = [Pn] . . . [P1].

We can now give the following important result that will be used in the next section when
we will deal with complementation of Young tableaux.

Proposition 4.2 The complement of a non decreasing column word is a non decreasing column
word.

6 This last encoding is however not one-to-one due to the fact that the empty column is allowed in the context
of column words.
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Proof – The proof of our result is based on the two following lemmas, whose proofs can be easily
made by suitable inductions and that are left to the reader.

Lemma 4.3 Let P and Q be two subsets of A such that each element of P is strictly less than
each element of Q. Then one has [P ] � [Q, P ] .

Lemma 4.4 Let P and Q be two subsets of A of the same cardinality such that [P ] � [Q]. Then
for the complements of the columns constructed on P and Q, one has [Q] � [P ].

Let P and Q be two subsets of A such that each element of P is strictly less than each
element of Q. Let also R be another subset of A of the same cardinality than P . Suppose
finally that the inequality [Q, P ] � [R] holds. Then as an immediate consequence of the two last
lemmas, one has [R] � [Q, P ]. This ends the proof of our result.

Note 4.5 Observe that Proposition 4.2 shows that the complement [T ] of the column word [T ]
associated with a Young tableau T over A also naturally encodes a Young tableau called the
complement (within A) of T (see [11] p. 140).

4.3 Complementation and plactic equivalence

Let A be a totally ordered alphabet. Let us then denote by π the natural projection of C(A)∗ onto
A∗, i.e. the morphism defined by setting π([P ]) = pr . . . p1 for every subset P = { p1 < . . . < pr }
of A. The following result (that can be seen as an extension of Property 3.4 of [11]) gives a
simple condition for the plactic equivalence ≡ to be preserved under complementation. Remind
that the length of a column word [u] is its number of columns (not the number of letters in the
word π([u])!).

Theorem 4.6 Let [u] and [v] be two column words of C(A)∗ that have the same length. Then
one has π([u]) ≡ π([v]) if and only if one has π([u]) ≡ π([v]).

Proof – Let us first prove two lemmas that correspond to two special cases of our theorem (i.e.
the situations where [u] = [ ] [Q, p] and [v] = [Q] [p] for the first lemma, and where all columns
involved in [u] and [v] are reduced to letters of A for the second lemma).

Lemma 4.7 Let p be an element of A and let Q be a subset of A such that p is strictly less
than each element of Q. Then one has π([p] [Q]) ≡ π([Q, p] [A]) .

Proof – Let ω(A) be the maximal element of the totally ordered alphabet A and let q+ denote
the immediate successor in A of any element q ∈ A distinct of ω(A). The interpretation of
the plactic equivalence in terms of the column insertion process allows then to show that one
has q′ π([q]) ≡ π([q]) q′ when q′ 6= q and q π([q]) ≡ π([q+]) q+ when q 6= ω(A). We are now in
position to prove that one has

π([p] [Q]) ≡ π([Q, p] [A]) .

We will start from its lefthand side and use the first of the two identities established above to
bring all the elements { q ∈ [Q], q > p } to the left with respect to [p]. In the similar way, we
will use the second identity to move all the elements { q ∈ [Q], q ≤ p } to the left with respect
to [p]. This leads to the desired relation and ends the proof.
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Lemma 4.8 Let a1 . . . an ∈ A∗ and b1 . . . bn ∈ A∗ be two equivalent (with respect to the plactic
relations) words over A. Then one has π([an] . . . [a1]) ≡ π([bn] . . . [b1]).

Proof – This lemma follows immediately from the fact the plactic relations are stable under
complementation as shown in the proof of Property 3.4 of [11].

Let now [u] = [P1] . . . [PN ] and [v] = [Q1] . . . [QN ] be two column words of C(A)∗ of the
same length N such that π([u]) = a1 . . . an and π([v]) = b1 . . . bn are plactically equivalent
words of A∗. Let us denote by pi the number of letters of A involved in the column Pi for every
1 ≤ i ≤ N . Using the fact that the identity π([ ]p1−1 [P1] . . . [ ]pN−1 [PN ]) ≡ π([a1] . . . [an])
can be obtained by using only relations of the type [ ] [Q, p] ≡ [Q] [p], one can now deduce from
Lemma 4.7 and from the fact that π([A]) commutes with every letter of A that one has

π([u] [A]n−N ) ≡ π([PN ] [A]pN−1 . . . [P1] [A]p1−1) ≡ π([an] . . . [a1]) .

Symmetrically one can also prove that π([v] [A]n−N ) ≡ π([bn] . . . [b1]) . Using Lemma 4.8, one
deduces from these relations that π([u] [A]n−N ) ≡ π([v] [A]n−N ), from which it is immediate to
obtain that π([u]) ≡ π([v]) according to the interpretation of the plactic equivalence in terms of
the column insertion process.

Let us denote by π̃ the mirror projection of C(A)∗ onto A∗, i.e. the anti-morphism 7 defined
by setting π̃([P ]) = p1 . . . pr for every subset P = { p1 < . . . < pr } of A. We are now in
the position to show how the column insertion process acts with respect to complementation of
column words.

Corollary 4.9 Let [w] be a column word of C(A)∗ of length n, let T be the Young tableau
obtained by applying the column insertion process to π̃([w]) and let m be the number of columns
of T . Then the Young tableau obtained by applying the column insertion process to π̃([w]) is the
Young tableau naturally associated with the non decreasing column word [A]n−m [T ].

Proof – Observe first that one must have m ≤ n due to the structure of the column insertion
process. Our result follows immediately from Theorem 4.6 applied to the two column words [w]
and [T ] [ ]n−m and from the basic properties of the plactic equivalence (cf. Section 2.3).

Example 4.10 Let us take A = {1, 2, 3} and [w] = [3][21][3]. Then we get π([w]) = 3213 and
π̃([w]) = 3123. Applying the column insertion process to π̃([w]), we get the Young tableau

T =

3
2
1 3 .

Hence we have m = 2 and n − m = 1. Observe that [w] = [21][3][21] and π̃([w]) = 12312.
Applying the column bumping process to π̃([w]), we get the Young tableau

[A] [T ] =

3
2 2
1 1 .

7 That is to say a mapping π̃ satisfying π̃([P1] . . . [Pn]) = π̃([Pn]) . . . π̃([P1]) for every [P1] . . . [Pn] ∈ C(A)∗.
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5 A bijective proof of Proposition 3.2

Proposition 3.2 gave us the number γN of monomials involved in F (χ, δ) in a purely analytic
way. In particular, its proof did not provide any insight, neither on the structure of F (χ, δ), nor
on the simplicity of the fact that one has γN = 2N2−1 which is indeed remarkable. This section
will be devoted to the construction of a bijective proof that explains this result more deeply.
This bijection will also help us for studying a number of specializations of Barrett’s formula of
practical interest (see Section 6).

5.1 A more general combinatorial structure

Let us first introduce a natural generalization of the combinatorial structures that appeared in
Section 3.3, that is to say the set TN of all square tableaux of shape (NN ) divided as in this last
section into two complementary Young tableaux (but without any constraint on them) filled by
elements of the alphabets δ and χ, respectively. The two Young tableaux that form an element
of TN will again be organized as already depicted in Section 3.3. The following picture shows
two typical examples of elements of T6.

χ6 χ5 χ4 χ3 χ2 χ1

δ5 χ6 χ5 χ4 χ2 χ1

δ4 δ5 δ6 χ5 χ2 χ1

δ3 δ3 δ4 χ6 χ2 χ1

δ2 δ2 δ2 δ2 χ2 χ1

δ1 δ1 δ1 δ1 δ1 δ1

δ6 χ5 χ4 χ3 χ2 χ1

δ5 χ6 χ5 χ4 χ2 χ1

δ4 δ5 δ6 χ4 χ3 χ2

δ3 δ3 δ5 χ5 χ4 χ3

δ2 δ2 δ3 δ4 χ4 χ3

δ1 δ1 δ2 δ2 δ2 χ4

Figure 4: Two typical elements of T6 .

As we will see in the sequel, it is in fact possible to construct a bijection between TN and the
set MN×N ({0, 1}) of all square {0, 1}-matrices of size N , which implies that the cardinality of
TN is equal to 2N2

. It follows then from this last result that γN = 2N2−1 due to the fact that the
number of elements of TN whose first tableau has a first row of length N is obviously (use the
symmetry with respect to the main diagonal of the square (NN ) and exchange the role of the
alphabets χ and δ in order to pass from one case to the other) equal to the number of elements
of TN whose second tableau has a first row of length N (which means equivalently that the first
tableau has a first row of length strictly less than N).

5.2 Description of the bijection

We now present our bijection between MN×N ({0, 1}) and TN . Our construction is based on a
slight variation of the well known Knuth correspondence (cf. Section 2.2) that has an interesting
symmetry property which is used to derive some practically important specializations of Barrett’s
formula.

Let M be a matrix of MN×N ({0, 1}). We apply first Knuth’s bijection (as described in
Section 2.2) to M in order to get a pair (P, Q) of Young tableaux of conjugate shapes λ and λ .̃
We then associate with Q a new Young tableau Q of shape λ (the complementary partition of
λ within the square (NN )) which is defined as follows.
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• We denote first the length of λ by m (or equivalently the number of columns of Q). We
then decide (by abuse of terminology) that Q also has columns indexed by integers strictly
greater than m which are all empty.

• We can now define a unique tabloid Q of shape λ by requiring that for every i ∈ [1, N ] the
i-th column of Q consists exactly of all the letters of the alphabet { 1, . . . , N }, sorted in
increasing order from bottom to top, that do not appear in the (N−i+1)-th column of Q.

Observe that the column word obtained by reading from left to right the columns of Q (considered
here as letters of C({ 1, . . . N })) is equal to [A]N−m [Q]. It follows then immediately from Pro-
position 4.2 that the tabloid Q is also a Young tableau.

Hence Ψ(M) = (P, Q) is a pair of complementary Young tableaux within the square (NN ).
To obtain from it an element of TN , it suffices to associate with each entry i of P (resp. Q) the
letter δi (resp. χi) of the alphabet δ (resp. χ). We denote by Φ(M) the element of TN that
corresponds in such a way to the initial matrix M . Since the mapping Q → Q is one to one,
Ψ is clearly a bijection between MN×N ({0, 1}) and pairs of Young tableaux of complementary
shapes over the alphabet [1, N ] while Φ is a bijection between MN×N ({0, 1}) and TN .

Example 5.1 Let us continue Example 2.2. Knuth’s bijection applied to the matrix M in-
troduced in this example gives a pair (P, Q) of tableaux of conjugate shapes λ = (1, 1, 2) and
λ˜= (1, 3). The shape λ = (2, 3), complementary to the shape λ within the square (33), provides
the shape of the tableau Q. Filling in its entries by taking (in the reverse order) the complements
in { 1, 2, 3 } of the entries of the columns of Q, we obtain the tableau

Q =

2 2
1 1 3 .

The element Φ(M) of T3 associated with M is then the following rewriting of the pair (P, Q):

Φ(M) =

δ3 χ2 χ1

δ2 χ2 χ1

δ1 δ3 χ3 .

5.3 Symmetry properties of the bijection

In this section we present of a strong symmetry property of the bijection Φ. We start by giving
first a new method for constructing the second Young tableau Q associated by Φ with a given
{0, 1}-matrix M .

1. Construct the 2-row array BN which results by listing the N 2 pairs (i, j) of [1, N ]×[1, N ]
in lexicographic order with respect to the second entry, i.e.

BN =

(
1 . . . N 1 . . . N . . . . . . 1 . . . N

1 . . . 1 2 . . . 2 . . . . . . N . . . N

)
.

2. Select in this array all the entries corresponding to the 0’s of M . We obtain then a word
w2(M) by reading the top components of the selected entries. The result of the column
insertion process applied to w2(M) is a Young tableau Q′.
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It turns out that the Young tableau Q′ obtained in this way is exactly the second Young tableau
Q constructed by the bijection Ψ, presented in Section 5.2, when applied to the matrix M .

Proposition 5.2 Let M be a matrix of MN×N ({0, 1}), let Q be the second Young tableau
constructed by the bijection Ψ applied to M and let Q′ be the Young tableau constructed as
above. Then one has Q′ = Q.

Proof – Let M be a matrix of MN×N ({0, 1}) and let tM be its transpose matrix. Let ÃN be
the 2-row array associated with tM as defined in Section 2.2 and let BN be the 2-row array
associated with M as defined above. Let us then associate with these two 2-row arrays the two
following column words [u(M)] and [v(M)] of length N defined by setting:

• [u(M)] = [I1] . . . [IN ] where Ii denotes the sequence (possibly empty) of the entries, written
from right to left, of the second row of ÃN corresponding to the 1’s of the i-th row of tM ;

• [v(M)] = [JN ] . . . [J1] where Ji denotes the sequence (possibly empty) of the entries, written
from right to left, of the first row of BN corresponding to the 0’s of the i-th column of M .

For instance, if we take the matrix M of Example 2.2, we have [u(M)] = [2] [3] [31] (cf. Example
2.4) and [v(M)] = [2] [21] [31] (cf. Example 5.3 that follows).

The reader can now check that one always has [v(M)] = [u(M)] (as can be observed in the
previous example). Our proposition follows then from Corollary 4.9 due to the fact that Q is
the result of the column insertion process applied to w̃1(M) = π̃([u(M)]) according to Theorem
2.3 and that Q′ is the result of the column insertion process applied to w2(M) = π̃([v(M)])
according to the construction presented above.

Example 5.3 This example continues Example 2.2 and Example 5.1. In this case, we have:

B3 =

(
1 2 3 1 2 3 1 2 3

1 1 1 2 2 2 3 3 3

)

where we boxed the entries that correspond to the 0’s of the associated matrix M . Hence w2(M) =
(1, 3, 1, 2, 2). Then the column insertion process applied to w2(M) gives the Young tableau:

Q′ = 2 2
1 1 3

= Q .

The following symmetry result is now an immediate consequence of the new intepretation of
the bijection Ψ that follows from the construction given above and Theorem 2.3.

Corollary 5.4 Let M be a matrix of MN×N ({0, 1}) and let (P, Q′) be the result of the bijection
Ψ applied to M . Then the result of the bijection Ψ applied to the matrix s0,1(

tM) obtained by
exchanging the 0’s and the 1’s in the transpose matrix tM of M is equal to (Q′, P ).

Example 5.5 Let us consider again the matrix M of Example 2.2. Then one has:

s0,1(
tM) =




1 0 1
1 1 0
0 1 0


 .

The reader can then easily check that w1(s0,1(
tM)) = (1, 3, 1, 2, 2) and w2(s0,1(

tM)) = (3, 1, 2, 3)
from which it follows that (taking here again all the notations of the previous examples):

Ψ(s0,1(
tM)) =


 2 2

1 1 3 ,

3
2
1 3


 = (Q′, P ) .
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6 Some specializations of Barrett’s formula

In this section we show how the bijection constructed in Section 5 can be effectively used to find
explicit expressions for several specializations of Barrett’s formula.

6.1 Matrices involved in the combinatorial version of Barrett’s formula

Let us denote by NN the set of all square matrices M of MN×N ({0, 1}) such that the length of
the first row of the first Young tableau P associated with M by the bijection Ψ (constructed in
Section 5.2) is exactly equal to N . Furthermore, let µ(t) stand for the monomial obtained by
taking the product of all entries of an element t of TN . According to the results of Section 3.3, the
symmetric polynomial F (χ, δ) defined by relation (5), i.e. the nominator of the combinatorial
expression (4) of the probability of error (1), can be expressed as

F (χ, δ) =
∑

M∈NN

µ(Φ(M)), (8)

where Φ stands for the second bijection constructed in Section 5.2.

In order to better understand the combinatorial version of Barrett’s formula, we will explore
the fine structure of NN . Let again M be a matrix of MN×N ({0, 1}). Observe that the length
of the first row of the Young tableau P associated by Ψ with M is exactly the length of the
longest non increasing subsequence in w1(M) according to Greene’s theorem (cf. [8] or Chapter
3 of [7]) and to the construction of P (cf. Section 2.2). Since a non increasing subsequence in
w1(M) corresponds to a strictly increasing subsequence, for the North-East order 8, in the set
of the entries of M associated with 1’s, we get the following characterization of NN .

Proposition 6.1 A matrix M ∈ MN×N ({0, 1}) belongs to NN if and only if there exists a
sequence of 1’s of length N in M such that the corresponding entries form a strictly increasing
sequence (of length N) in the North-East order.

Example 6.2 Let us consider again the matrix of Example 5.5, denoted here by M ′, i.e.

M ′ =




1 0 1

1 1 0

0 1 0


 .

The entries associated with the three 1’s of M ′ boxed on the above picture correspond to the
strictly increasing sequence (3, 2) ≺NE (2, 2) ≺NE (1, 3) in the North-East order. According to
Proposition 6.1, M ′ belongs therefore to N3, which just means that the length of the first row of
the first tableau associated by Ψ to M ′ is equal to 3 as it can be directly checked in Example 5.5.

Note 6.3 Let M be a matrix of MN×N ({0, 1}). Then for every k ∈ [1, N ], let us consider:

• the largest number L0(M, k) that can be realized as the sum of the lengths of k disjoint
sequences (possibly empty) of 0’s in M such that the corresponding sequences of entries
are strictly increasing for the South-East order; 9

8 We define the North-East order ≺NE over [1, N ]2 by setting (i, j) ≺NE (k, l) if and only if i > k and j ≤ l.
9 We define the South-East order ≺SE over [1, N ]2 by setting (i, j) ≺SE (k, l) if and only if i < k and j ≤ l.
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• the largest number L1(M, k) that can be realized as the sum of the lengths of k disjoint
sequences (possibly empty) of 1’s in M such that the corresponding sequences of entries
are strictly increasing for the North-East order.

We also define by convention L0(M, 0) = L1(M, 0) = 0. Greene’s theorem (cf. [8] or Chapter 3
of [7]) used in connection with the constructions of Sections 2.2 and 5.3 shows that

• L0(M, k) − L0(M, k−1) is equal to the length of the k-th column of Q′,

• L1(M, k) − L1(M, k−1) is equal to the length of the k-th row of P ,

for every k ∈ [1, N ], if we set Ψ(M) = (P, Q′). Proposition 5.2 then implies that the following
simple, but surprising, identity always holds for every k ∈ [1, N ]:

L0(M, k) − L0(M, k−1) + L1(M, N−k+1) − L1(M, N−k) = N .

As an illustration of these results, let us again consider the matrix M of Example 2.2, i.e.

M =




0 0m 1

1 0m 0

0@@�� 1m 1@@��


 .

Then one has L0(M, 1) = 2, L0(M, 2) = 4, L0(M, 3) = 5, L1(M, 1) = 2, L1(M, 2) = 3,
L1(M, 3) = 4 (the corresponding subsequences of 0’s and 1’s are boxed, circled and triangled in
the above picture) from which it is easy to check all the results of this note.

Let M be a matrix of NN . According to Proposition 6.1 and to the definition of the North-
East order, there exists a sequence σ of length N of 1’s in M such that the corresponding
sequence of entries has the form σ′ = ((N −k+1, jk))1≤k≤N where (jk)1≤k≤N stands for an
increasing sequence of integers of [1, N ]. One can obviously encode such a sequence of 1’s by the
pseudo-composition 10 p(σ) = (pk)1≤k≤N of N defined by letting pk to be the number (possibly
equal to zero) of 1’s of σ that belong to the k-th column of M 11. We denote by p(M) the
greatest (in the lexicographic order on N

N ) pseudo-composition that can be associated in such
a way with M . The set NN can then be partitioned as

NN =
⋃

p∈PN

Np,N (9)

where PN denotes the set of all pseudo-compositions of length N of N and where Np,N stands
for the set of all matrices M ∈ NN whose associated pseudo-permutation p(M) is equal to p.

Let us now associate with every pseudo-composition p = (p1, . . . , pN ) of PN the integer µ(p)
defined as the smallest element µ of [1, N ] such that p1 + . . . + pµ = N . The following result
gives a fine characterization of the matrices of Np,N .

Proposition 6.4 Let p = (p1, . . . , pN ) be a pseudo-composition of PN . Furthermore, let also
(jk)1≤k≤N denote the unique increasing sequence of integers defined by demanding every k in
[1, N ] to be repeated pk times. A matrix M belongs to Np,N if and only if it satisfies the two
following properties:

10 A pseudo-composition of an integer N is a sequence of nonnegative integers (including 0) whose sum is N .
11 The sequence (jk)1≤k≤N that characterizes σ′ (or equivalently σ) as described above, is indeed the unique

increasing sequence of N elements of [1, N ] obtained by repeating each integer k ∈ [1, N ] exactly pk times.
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• Condition C1: for every k ∈ [1, N ], the (N−k+1, jk)-entry of M is equal to 1;

• Condition C2: for every k ∈ [1, µ(p) − 1], the (N−(p1+. . .+pk), k)-entry of M is equal
to 0.

Proof – Condition C1 is equivalent to the existence of N values 1 in M whose associated
entries form a strictly increasing sequence for the North-East order encoded by the pseudo-
permutation p. On the other hand, condition C2 expresses that no greater pseudo-permutation
can be associated with a strictly increasing (for the North-East order) sequence of N entries
corresponding to 1’s of M .

Example 6.5 Let us consider the matrix M ∈ M3×3({0, 1}) defined by setting

M =




0 0m 1

0m 1 1

1 0 0


 .

The sequences σ1 and σ2 of 1’s of M given by the associated sequences of entries

σ′
1 = ( (3, 1) ≺NE (2, 2) ≺NE (1, 3) ) and σ′

2 = ( (3, 1) ≺NE (2, 3) ≺NE (1, 3) )

are the unique sequences of length 3 of 1’s in M whose corresponding sequences of entries are
strictly increasing for the North-East order. Since p(σ1) = (1, 1, 1) and p(σ2) = (1, 0, 2), we get
p(M) = (1, 1, 1). One can also check that Proposition 6.4 holds: we boxed (resp. circled) here
the entries of M that are constrained by condition C1 (resp. C2) as expected.

6.2 A first specialization : χi = χ and δi = δ for every i

Let us consider the situation where all χi’s are equal to some fixed value χ and all δi’s to some
fixed value δ. Then according to relation (8), the symmetric polynomial F (χ, δ) defined by
relation (5) reduces to the two variable polynomial

F1(χ, δ) =
N2∑

i=N

αi χ
N2−i δi (10)

where αi denotes the number of matrices of NN with i 1’s and N2− i 0’s (the above expression
comes from the fact that αi = 0 for every 0 ≤ i ≤ N−1 since every matrix of NN has at least
N 1’s). It now follows from relation (9) and from Proposition 6.4 that one has

αi =
N∑

µ=1

∑

p∈PN
µ(p)=µ

(
N2 − (N + µ − 1)

i − N

)
(11)

since having i 1’s in a matrix of Np,N means placing i−N 1’s (N 1’s are already constrained
by condition C1) in the N 2− (N +µ(p)−1) positions not taken both by the N 1’s fixed by
Condition C1 and by the µ(p)−1 0’s fixed by Condition C2. Now note that the number of
pseudo-compositions p of PN such that µ(p) = µ is just the number of integer solutions of the
equation i1 + . . . + iµ = N with iµ ≥ 1 or equivalently of the equation i′1 + . . . + i′µ = N −1

19



(without any constraint), which is classically known to be equal to the binomial coefficient of
order (N−1, N−2+µ) (cf. [3]). It follows then from relation (11) that one has

αi =
N∑

µ=1

(
N − 2 + µ

N − 1

) (
N2 − N − µ + 1

i − N

)
.

Substituting this last value in relation (10), we obtain

F1(χ, δ) =
N2∑

i=N




N∑

µ=1

(
N − 2 + µ

N − 1

) (
N2 − N − µ + 1

i − N

) 
 χN2−i δi

=
N−1∑

µ=0




N2−N∑

i=0

(
N2 − N − µ

i

)
χN2−N−µ−i δi



(

N − 1 + µ

N − 1

)
χµ δN

= δN




N−1∑

µ=0

(
N − 1 + µ

N − 1

)
(χ + δ)N2−N−µ χµ




from which the following simple formula for the specialization of the probability of error (12)
that we are presently studying can now easily be deduced:

P1(U < V ) =

(
δ

χ

)N



N−1∑

µ=0

(
N − 1 + µ

N − 1

) (
χ

χ + δ

)N+µ

 . (12)

Note that Formula (12) was already obtained in [5] by purely analytic methods.

6.3 Two other specializations

In order to illustrate the genericity of our bijective method, we now show how it can be applied
in two special cases that can also occur in practice (cf. Section 3.1). Our first example (cf.
Section 6.3.1) was discussed asymptotically in [5]. We deal below with it in full generality. In
our second example (cf. Section 6.3.2) we give an explicit formula (different from Barrett’s
formula) for a specialization that has not been considered before.

6.3.1 A first situation : δi = δ for every i

Let us consider the situation where δi is equal to some fixed value δ for every i ∈ [1, N ], but no
restriction is imposed on the χi’s. According to relation (8) and to the results of Sections 5.2
and 5.3, the symmetric polynomial F (χ, δ) reduces to the multivariable polynomial

F2(χ1, . . . , χN , δ) =
∑

i1,...,iN≥0

0≤i1+...+iN≤N2−N

βi1,...,iN χi1
1 . . . χ

iN
N δN2−(i1+...+iN ) (13)

where βi1,...,iN stands for the number of matrices of NN that have exactly ik 0’s in their k-th row
for every k ∈ [1, N ]. Let us now associate with every p = (p1, . . . , pN ) of PN its complementary
pseudo-composition p̃ = (p̃1, . . . , p̃N ) which is defined by setting p̃k to be equal to the number
of indices i ∈ [1, N ] such that p1 + . . . + pi = N−k. It should be observed that p̃k is the number
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of 0’s that any matrix of Np,N is forced to contain in its k-th row because of condition C2. It
then follows from relation (9) and from Proposition 6.1 that one has

βi1,...,iN =
∑

p=(p1,...,pN )∈PN

N∏

k=1

(
N − 1 − p̃k

ik − p̃k

)
(14)

since having ik 0’s in the k-th row of a matrix of Np,N means placing ik − p̃k 0’s (p̃k 0’s are
justified by condition C2) in the N−1−p̃k possible positions of the k-th row not taken both by
the unique 1 forced by condition C1 and by the p̃k 0’s forced by condition C2. A combination
of relations (13) and (14) gives now immediately the formula

P2(U <V ) =
1

N∏

i=1

(χi+δ)N




∑

p∈PN

i1,...,iN≥0

0≤i1+...+iN≤N2

N∏

k=1

(
N−1−p̃k

ik−p̃k

)
χi1

1 . . . χ
iN
N δN2−(i1+...+iN )


 (15)

for the current specialization of the probability of error (1) that we are studying here. From
Formula (15), the reader can also easily get the asymptotic evaluation obtained in [5] that
corresponds to the situation δ → 0.

6.3.2 A second situation : χi = χ and δi = δ for i ≤ m

Let us fix m ∈ [1, N ]. We now consider the situation where for 1 ≤ i ≤ m the variable χi is equal
to some fixed value χ and the variable δi is equal to some fixed value δ, while for m+1 ≤ i ≤ N

both χi and δi are equal to 1. Then, according to relation (8) and to the results of Sections 5.2
and 5.3, the symmetric polynomial F (χ, δ) reduces to the two variable polynomial

F3(χ, δ) =
m N∑

i,j=0

γi,j χi δj (16)

where γi,j denotes the number of matrices of NN with exactly i 0’s in their m first rows and j

1’s in their first m columns. Let p = (p1, . . . , pN ) be an element of PN and let p̃ = (p̃1, . . . , p̃N )
be its complementary pseudo-composition. Going back to Proposition 6.1, one can easily check
that the following properties hold for every matrix M ∈ Np,N :

• the number of 0’s whose entries are enforced by condition C2 to belong to the [1, m]×[1, m]
square is equal to α0(m, p) = min(m, p̃1+. . .+p̃N ) − min(m, p̃m+1+. . .+p̃N ) ,

• the number of 1’s whose entries are enforced by condition C1 to belong to the [1, m]×[1, m]
square is equal to α1(m, p) = max(0, p1+. . .+pm−(N−m)) ,

• the number of 0’s whose entries are enforced by condition C2 to belong to the [m+1, N ]×
[1, m] rectangle is equal to β0(m, p) = min(p̃m+1+. . .+p̃N , m) ,

• the number of 1’s whose entries are enforced by condition C1 to belong to the [m+1, N ]×
[1, m] rectangle is equal to β1(m, p) = p1+. . .+pm−α1(m, p) = min(N−m, p1+. . .+pm) ,

• the number of 0’s whose entries are enforced by condition C2 to belong to the [1, m] ×
[m+1, N ] rectangle is equal to γ0(m, p) = p̃1+. . .+p̃m−α0(m, p) ,

• the number of 1’s whose entries are enforced by condition C1 to belong to the [1, m] ×
[m+1, N ] rectangle is equal to γ1(m, p) = m−α1(m, p) = min(m, N−(p1+. . .+pl)) .
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Due to the fact that having j 1’s in the first m columns and i 0’s in the first m rows of M

means that there exist exactly k 1’s (for some k ∈ [0, j]) whose entries belong to [1, m]× [1, m],
j−k 1’s whose entries belong to [m + 1, N ] × [1, m] and i−(m2−k) 0’s whose entries belong to
[m + 1, N ] × [1, N ], one can now easily check that from relation (9), from Proposition 6.1 and
from our last considerations it follows that one has

γi,j =
∑

p∈PN

j∑

k=0

(
m2−α(m, p)
k−α1(m, p)

)(
m (N−m)−β(m, p)

j−k−β1(m, p)

)(
m (N−m)−γ(m, p)

i−(m2−k) − γ0(m, p)

)
(17)

where we set α(m, p) = α0(m, p) + α0(m, p), β(m, p) = β0(m, p) + β1(m, p) and γ(m, p) =
γ0(m, p) + γ1(m, p). A combination of relations (16) and (17) leads immediately to an explicit
formula (that we will not write down) for the current specialization of the probability of error
(1) that we are studying here. We leave it as an exercise to the reader to deduce from this (non
written) formula the asymptotic evaluations of our probability of error corresponding to the two
situations χ → 0 and δ → 0.
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