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This paper is devoted to the presentation of a combinatorial approach, based on the theory of symmetric functions, to
analyze the performance of a family of demodulation methods used in mobile telecommunications.
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1 Introduction

Modulating numerical signals means transforming them into wave forms. Due to their importance in
practice, modulation methods have been widely studied in signal processing (see for instance Chapter 5
of [T0]). One of the most important problems in this area is the performance evaluation of the optimum
receiver associated with a given modulation method, which leads to the computation of various error
probabilities (see againil0]).

Among the different modulation protocols used in practice, an important class consists in methods
where the modulation reference (i.e., a fixed numerical sequence) is transmitted by the same channel as the
modulated signal. The demodulation decision needs then to consider at least two noisy informations, i.e.,
the transmitted signal and the transmitted reference. One can also take into account in the demodulating
process several noisy copies of these two signals: one speaks then of demodulation with diversity. The
error probabilities appearing in such contexts have the following form (cf. S€ction 3.1):

P(U <V):P<u=i|ui|2<V=ilvi|2> : 1)
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where theu; andv;’s denote independent centered complex Gaussian random variables with variances
E[|ui|?] = xi andE[|vi|?] = & (cf. Section 312).

The problem of evaluating such expressions was investigated by several researchers in signal processing
(cf. [@, 2,10,712]). The most interesting result in this direction is due to Barrett{cf. [1]) who obtained the

expression
N 1 N 1
PU<V)= - — ; (2)
kgl il;l 1-9, 15 il:l 1+9 1Xi

referred to as Barrett’s formula in the sequel.

Observe now that the expressi¢h (2) must be symmetric igithand in thed;’s due to its probabilistic
interpretation given by[J1). Itis therefore natural to use the machinery of the theory of symmetric functions
in order to analyze it more in depth. Using this point of view, we obtain several new expressions for
Barrett’'s formula involving Schur functions, from which we derived an efficient and stable Bezoutian
algorithm for computing in all cases the probabilify (1) (see aiso [3] for an elementary verification of
the correctness of our algorithm). Note finally that the identities proved here are also connected with
classical bijective combinatorics that can be used in order to deal with the numerous specializations of
Barrett's formula involving degeneracies, i.e., the situations where some of ttwncide (seel]5] for
more details).

2 Symmetric function background

We present here the background on symmetric functions which is used in our paper. More information
about symmetric functions can be found in Macdonald’s classical texthbok [9]. We will somewhat deviate
from the notation off[9] by considering partitions as weakly increasing sequéncég <i» <...<im),

instead as weakly decreasing ones. In the present context, this convention provides a more convenient
presentation of the various matrices that will be encountered.

2.1 Partitions

Let| be apartition, i.e., a finite nondecreasing sequehee (i1 <i» < ... <ipy) of positive integers. The
numbem of elements of is called thdengthof |. One can represent this partition b¥arrers diagram

of shape | i.e., by a diagram of; + ... + iy boxes whoseé-th row contains exactlyx boxes for each
1 <k < n. The Ferrers diagram associated with the partitien(2,2,3) is for instance given below.

One says that a partitiohcontains a partitiod, which is denoted by C I, if and only if the Ferrers
diagram ofJ is contained in the Ferrers diagram lof The conjugatepartition |~ of | is the partition
obtained by reading the heights of the columns of the Ferrers diagrdam@®@he has for instance =
(1,3,3) whenl = (2,2,3) as can be seen in the previous picture.

Whenl is a partition whose Ferrers diagram is contained in the sqidtewith N rows of lengthN,
one can also define twmplementarpartitionl which is the conjugate of the partitishwhose Ferrers
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diagram is the complement (read from bottom to top) of the Ferrers diagrain tfie squaréNN). For
instance, foN = 3 andl = (2,3), we haveK = (1,3) andl = (1,1,2) as can be checked in FigUde 1.

Fig. 1: Two complementary Ferrers diagrams.

2.2 Symmetric functions

Let X be a set of indeterminates. The algebra of symmetric functionsXoigdenoted bysyn{X). We
define thecomplete symmetric functiong(X) by their generating series

o) = 5 $002 =[] 7o ®

We also define in the same way teEementary symmetric functiors(X) by their generating series
(which is a polynomial wheiX is finite)

Al(X) = ZAn<xw [ @ 4)

In order to use complete and elementary symmetric functions indexed by any iktederwe also set
S(X) = Ak(X) = 0 for everyk < 0. Every symmetric function can be expressed in a unique way as a
polynomial in the complete or elementary functions. For evetyplel = (iy,...,in) € Z", we now define
theSchur function gX) as the minor taken over the rows21....,nand the columng +1,i2+2,...,in+n

of the infinite matrixS = (S;_i(X))i jez, i-€.,

Sl(x) Sz+l(x) Sn—rH-l(X)
S,-1(X) S,(X) o Spent2(X)

S'(X): : : : : ’ ®)
Si-nr1(X)  Sponi2(X) o Si(X)

We also define more generally for evdry (iy,...,in) € Z" andJ = (j1,..., jn) € Z", the skew Schur
function g/, (X) as the minor of taken over the rowl +1,i2+2,...,in+nand the columng; + 1, j> +
2,...,jn+n. The importance of Schur functions comes from the fact that the family of the Schur functions
indexed by partitions form a classical linear basis of the algebra of symmetric functionsl (see [9] for the
details).

Let us finally introduce multi Schur functions (seé [8]) which form another natural generalization of
usual Schur functions that we will use in the sequel. g} <i<n be a family ofn sets of indeterminates.
Then, for everyn-tuple | = (iy,...,in) € Z", one defines the multi Schur functi@(Xy,...,X,) by the
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determinantal formula

S, (X1) S,+1(X2) ... Sp—np1(Xn)
S,-1(X1) S,%2) .o Sp—ni2(%a)
s (Xg,...,XNn) = : : : : (6)
Sl—n+1(xl) Sz—f‘H—Z(XZ) s Sn(xn)

Hence the usual Schur functign(X) is the multi Schur functios; (X, ..., X).

2.3 Transformations of alphabets

Let X andY be two sets of indeterminates. The complete symmetric functions of the formé&iaéare
defined by their generating series

0(X+Y) = ZO SIX+Y)Z" = 0(X)0(Y) . @)
n=
One also defines the complete symmetric functions of the formal diffedérceby
0(X-Y) = Z} SIX=Y)Z" = a,(X)A_,(Y) . (8)
n=

A symmetric functionF of the alphabeX+Y or X—Y is then an element dyn{X) ® Syn{Y) whose
expression in this last algebra can be obtained by develdpiag a product of complete symmetric
functions ofX+Y or XY that are elements @yn{X) ® Syn{Y) according to the two defining relations
(@) and [B). Note also that the complete symmetric functions of the formal$etre in particular defined

by
0z(—X) = ; Si(=X)Z'=A_(X) . 9)

In other words, ifF (X) is a symmetric function of the s&t, the symmetric functiofr (—X) is obtained
by applying toF the algebra morphism that replacg$X) by (—1)" An(X) for everyn > 0. Observe that
the formal seX—Y can also be defined by settiXg-Y = X+(-Y).
The expression of a Schur function of a formal sum of sets of indeterminates is in particular given by
the Cauchy formula
S(X+Y) = ; s(X)si3(Y) (10)
C
for every partition\ (see [9]). One must also point out that one has

s/3(=X) = (=" Plg~-(X) (11)
for any partitiongutandA such that C A (see again]9]). Note finally that the resultant of two polynomials
can in particular be expressed as a rectangular Schur function of a difference of alphab&t@&ndat
be two sets of respectively andM indeterminates. Then the expression
R(X,Y) = (x=y)
xe)l(zl/eY

is the resultant of the polynomials that haXeandY as sets of roots and one can prove that one has
R(X,Y)=§m(X—-Y) (see [8/9]).



Performance analysis of demodulation with diversity — A combinatorial approach | 195

2.4 \Vertex operators

We will use in the sequel the vertex operdigfX) which transforms every symmetric function®yn{Xx)
into a series oByni{X)[[z,z"]]. Due to the fact that Schur functions indexed by partitions form a linear
basis ofSyn{X), we can therefore define this operator by setting

LG = 3 Sim 007"

for any partitionl = (I4,...,ln), where we have herfl,m) = (l,...,I,,m) € Z"* for everym ¢ Z.
The following formula (cf., e.g.,[11] for a proof using the present notation) gives then another explicit
expression of the action of a vertex operator on a Schur function.

Proposition 2.1 Let | be a partition. Then,
M(X)(s(X)) = 0:(X)s(X~1/2) . (12)

2.5 Lagrange’s operators

LetX = {xy,...,Xn } be afinite alphabet dfl indeterminates. Thekagrange interpolating operator Is
the operator that maps every polynomfabf C[X] which is symmetric in the lasti— 1 indeterminates,
i.e., every element (x3, X\x1) of Syn{x;) ® Syn{X\x1), to the symmetric polynomidl(f) of Syn{X)

defined by

% L T4 X\ %)

R0 X\X)’
whereR(A, B) stands again for the resultant of the two polynomials that have respectively the two sets
of indeterminate#\ andB as sets of roots (cf. Sectign 2.3). The following result, which is the algebraic
expression of a geometrical property corresponding to the special case of Bott's formula for fibrations in
projective lines (see[6] 7] for more details), gives an interesting property of the Lagrange interpolation
operator.

Theorem 2.2 (Lascoux; [B])Let X = {xs,...,Xn} be an alphabet of N indeterminates and let=
(A1,...,An) be a partition that containpy_1 = (N—2,...,2,1,0). Then one has

L0 s\ (X\x1)) = S kensa(X) (13)
for every k> 0, where the Schur function involved in the right hand side of relafion (13) is indexed by the
sequencél, k—N+1) = (A1, ...,An,k—N-+1) of Z"1,
3 Signal processing background

3.1 Demodulation with diversity

Our initial motivation for studying Barrett’s formula came from mobile communications. The probability
P(U < V) given by formula[{L) appears naturally in the performance analysis of demodulation methods
based on diversity which are standard in this context.
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Let us consider a model where one transmits an informaiien{—1,+1} on a noisy channel. A
referencer (equal to 1 when emitted) is also sent on the same channel and at the same bim&/as
assume that we receipairs(x;(b),ri)1<i<n € (C x C)N of data (thex (b)’s) and references (thg's)f]
that have the following form

xi (b) ab+vj for every 1<i <N,
= a./Bi+v] foreveryl<i<N,

whereg € C is a complex number that models the channel fading associated with the transmission of
the signalB, wherep; € R* is a positive real number that represents the excess of signal to noise ratio
(SNR) available for the referenceand wherey;, v € C denote two independent complex white Gaussian
noises. We also assume that eveyys a complex random variable distributed according to a Gaussian
density of variance; for everyi € [1,N].

According to these assumptions, all observables of our model, i.e., al(pabs ri)1<i<n, are complex
Gaussian random variables. We finally also assume that bhedservables arl independent complex
random variables. Under these hypotheses, one can then pirove [2] that

_ N . )
log (H) = M (xi(b)|ri), (14)

&G 1+0i(Bi+1)

with X = (x(b), ri)1<i<n and whergx|x) denotes the Hermitian scalar product. The demodulation deci-
sion is based on the associated maximum likelihood criterium: one deciddswiaatequal to 1 (resp. to
—1) when the right hand side of relatiognj(14) is positive (resp. negative).

S ()
N\

X(—1) r

Fig. 2: Two possible noisy bitg(1) andx(—1) and a noisy referenaein the caseN = 1.

Intuitively this means that one decides that the informabien 1 was sent when the(b)’s are more or
less globally in the same direction than ttis. Figure[R illustrates the cadé= 1 and one can see that a

1 This situation corresponds to spatial diversity, i.e., when more than one antenna is available for reception, which is typically the
case in mobile communications.

2 Fading is typically the result of the absorption of the signal by buildings. Its complex nature comes from the fact that it models
both an attenuation (its modulus) and a phase shift (its argument).
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noisy reference has a positive (resp. negative) Hermitian scalar product with a noisy informatvben
x corresponds to a small perturbation of 1 (resfi).

The bit error probability (BER) of our model is the probability that the informalien1 was decoded
as—1, i.e., the probability that one had

N 4q; \/[?l _ .
2 j;aﬁ§;50ﬂbm)<o.

Using the parallelogram identity, one can rewrite this last probability as

N N
P(Y JufP—Y wF<0),
L e

whereu; andv; denote the two variables defined by setting

12 1/2
ui:("“—\/E) (xi(1)+r)) and vi:<°‘i7\/ﬁ> (X (1)—ri)

1+0i(Bi+1) 1+0i(Bi+1)

for everyi € [1,N]. Our different hypotheses imply that tlugs and thevi’s are independent complex
Gaussian random variables. Hence the performance analysis of our model relies on the computation of a
probability of error of type given by formul&](1).

3.2 Barrett’s formula

As we pointed out in Sectiop 3.1, Barrett's formula is connected with performance analysis of demo-
dulation methods based on diversity. More generally, the performance analysis of several other digital
transmission systems relies on the computation of the probability that a Hermitian quadratig iform
complex centered Gaussian variables is negativel(cf. [10]). The problem of computing such a probability
was adressed by several researchers of signal processing (see for instance [4, 12]). The most interesting
result in this direction is due to Barrett (cfl [1]) who expressed the desired probability as a rational function

of the eigenvalues of the covariance matrix associated gqvifformula [R) appears therefore as a special

case of this general result.

For the sake of completeness, we will however show how to directly derive Barrett’s forfjuula (2). Let
us consider the real random variablésandV defined by setting

N N
U= |ui\2 and V= |Vi|27
2 2

where theu;'s and thev;’s are independent centered complex Gaussian random variables with variances
equal toE[|ui]?] = xi andE[|vi|?] = & for everyi € [1,N]. Itis then easy to prove by induction dhthat
the probability distribution functions & andV are equal to

z
3
|

k—‘ e’i (15)
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when all varianceg; andg; are distinct. Thus, one obtains

—+oo N 6{:‘*1 X
PV >x) = t)dt= —< e %. 16
Vex = [ dmds 5 o (16)
1<i#k<N

The probability of error[{1) can now be expressed as
+00
P(U <V) = / du () P(V > x) dx.
0

Using relations[(15) andT]L6), this last identity leads us to the expression

<V)= e Xie %&dx,
0 ifos (Xj —Xi) (O — &)
. 1§i|;1|§N 1§i|;I|<§N
from which we immediately get the relation
N N—1 xN+1
Xi 9O
PU<V) = : .
j,Z:l Gc+xi) [ Xi—xi) (% — i)
1<i#]<N 1<i#K<N
This last formula can now be rewritten as follows,
(O +Xi)
N o+t N 1<ivkeN
PU <V) = k L= Y 17)
2, 2 (i —xi) ™’

= -u(6k+Xi)1<i|;I|<<N (3 — i) = 1<iZk<N

from which we can deduce the formula

N 5§N—l
PU<V)= S — : (18)
= _|'|(6k+xi) [1 (&—3)
= A

due to the fact that the inner sum in relati¢n] (17) is just the Lagrange interpolation expression taken at
the points(—X;j)1<j<n of the ponnomiaIESE*1 (considered here as a polynomial ©fx1, ..., Xn][Ok])-
Formula [R) follows then immediately from this last expression of the probability of error that we are
studying.

4 Symmetric functions expressions for Barrett's formula

This section is devoted to a formulation of Barrett’s formulg (18) in terms of symmetric functions. We
will therefore use here the notations of Sectianm 3.2.
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4.1 A combinatorial formula

Note first that Barrett's formula can be easily expressed using the Lagrange opermtayduced in
Section[Z2p. Indeed, let us s&t= x« andxx = —Yk for everyk € [1,N]. Then one can rewrite formula
(I8) in the following way:

N X1
P(U <V) =
(U <v) kZl R, Y) R(x, X\X)’

where we denoted = {xi,...,xn } andY ={yi,...,yn } and whereR(A, B) stands for the resultant of
two polynomials as defined in Sectipn]2.3. Hence we have

& g% X\X)
P(U <V) Z R X =@ (19)

whereg stands for the element &ynix;) ® Syn{X\x;) defined by
XiN 1
R(X]_,Y) '

g(x1, X\x1) = g(x1) =

Observe now that one has

g(x1, X\x1) = XENLE (xq, X\x1)

ROX,Y)
wheref stands for the element &ynix;) ® Sym{X\x;) defined by

f(Xl,X\Xl) = R(X\Xl,Y) = S(NN—1>((X\X]_) ,Y) (20)

(the last equality comes from the expression of the resultant in terms of Schur functions given in Section
£.3). Note now that the resultaR{X,Y), being symmetric in the alphabX{ is a scalar for the operator
L. It follows therefore from relatior[{19) that one has

LOEV 2100, X\x0))

PU<V)= ROXY)

(21)

Let us now study the numerator of the right-hand side of relafion (21) to get another expression for
P(U <V). Note first that the Cauchy formula yields the expansion

S ((X0) V) = 5 (X0 s (). (22)
Ic(NN-1)

According to the identitied(20) anfi{22), we now get the relations

LOGN 1 O, X\xe)) = z LOGN s (X\xa)) spun-1)1 (—Y)
Ic(NN-1)

Z SNy (X) sy (=)
Ic(NN-1)
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the last above equality being an immediate consequence of Th€ofjem 2.2. Using the expression given by
relation (1) forsyyn-1) 4 (—Y) and going back to the definition of a skew Schur function given in Section
22, we can rewrite the last above expression as

LG o xva) = 3 (=) s X))
Ic(NN-1)

where(l,N) denotes the complementary partition(bfN) in the squar&N (cf. Sectior] 2]1). Going back

to the initial variables, the signs disappear in the previous formula by homogeneity of Schur functions.
Substituting the obtained identity in {21), we finally get an expression in terms of Schur functions for the
probabilityP(U < V), namely

[
PU<V)= , (23)
(Xi +9j)
1<I,j<N
where we sex = {X1,...,Xn } andA={d1,...,0n }.
Example 4.1 ForN = 2, one can indeed check that Barrett’s form{ja (2) reduces to
P(U <V) = X1X2 (8% + 818 +83) + (X1 +Xo) (3732 181 85) + 31 &5
(X1+01) (X1 +82) (X2 +81) (X2 + 32) ’
which is equal (as expected) to
PU <V) = S1,1(X1,X2) $2(01,82) +S1(X1,X2) S1,2(81,02) +S2,2(01,02) .
(Xi +9j)
1<1,)<2
4.2 A determinantal formula
Let us work again with the alphabetsandY defined in Sectiofi 4.1. We saw there that
o fN (XaY)
PU<V)= RX,Y) ’ (24)

wherefy(X,Y) is the symmetric function dbyniX) ® Syn{Y) given by

fn(X,Y) = % SNy (X) span-1y 1 (=Y) -
Ic(NN-1)

Let us now compute the action of the vertex oper&igiX) on the rectangular usual Schur function
siw-1)(X —Y). Note first that the Cauchy formula shows again that

Sin-1) (X =Y) = % S (X) spun-1) 1 (=Y) -
Ic(NN-1)
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Applying the vertex operatdr,(X) on this expansion, we now get

F2(X) (sn-1y (X =Y)) = 2 F2(X) (s1 (X)) spun-2)1 (=)
Ic(NN-1)
—+o00
= 3 (s Osuua(-v)) 2"

Hencefy(X,Y) is equal to the coefficient & in the image of\n-1) (X —Y) by I'2(X). On the other
hand, using the Cauchy formula in connection with relatjoh (12), one can also write

F2(X) (sv-1)(X=Y)) = 02(X)spun-1) (X =Y —1/2)
+o00

= 000 3 sty (X =) sa(-1/2) )

J:

( ii 3002 ) ( Ji sy (X=Y) (<1/2)) )

due to the fact that the only non zero Schur functions of the alphabgét are indexed by column parti-
tions of the form ¥ (and are equal t(}l/z)k). The coefficient ofN in the above product gives us then a
new expression fofy (X,Y), namely

N-1
fn(X,Y) = k;(_l)ks,q+k(x)s,wl/lk(x—v) : (25)

But this last expression is just the expansion along the last colomn of the determinant

SNX=Y)  osna(X=Y) o sn2(X=Y) sen-a(X)
sNo1(X=Y) sw(X=Y) L sne3(X=Y) son-s(X)

: . . : : , (26)
ss(X=Y)  s(X=Y) o osvaX=Y) o se(X)

which is the determinantal expression of the multi Schur fonctigi (X —Y,..., X —Y,X) (see Section

Z-3). Hence relation[{26) gives us both a determinantal and a multi Schur function expression for the
denominator of the right hand side of formu[a](24). Using the interpretation of the resR{dX) as a

multi Schur function (see SectignP.3), we now get that

S(NN)<X—Y,...,X—Y7X)
S(NN)(X—Y,...,X—Y)

PU<V)= (27)

where the alphabeX —Y appeardN — 1 times in the denominator ard times in the numerator of the
right hand side of the above formula.
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5 An efficient and stable algorithm for the error probability

5.1 A Toeplitz system and its solution

Using the determinantal expression of the multi Schur funcﬁ(Qn)(X -Y,...,X=Y), we can now
observe that relatiorf (R7) shows that the probabiify < V) is equal to the quotient of the determinant
(28) by the determinant

SNX=Y)  osva(X=Y) L sn-a(X =)
sn-1(X=Y) sn(X=Y) L sn-2(X YY)
siX=Y)  (X-Y) i s(X-Y)

where the former determinant is obtained by replacing the last column of the latter determinant by the
N-dimensional vectofs,n_1(X), Son—2(X), ..., Sn(X)). Hence the right hand side of relatidn](27) can be
interpreted as the Cramer expression for the last compgmenftthe linear system

SNX=Y)  osa(X=Y) e s (XY Pn-1 SN-1(X)
SNn-1(X=Y) sw(X=Y) e snea(X YY) Pn-2 | | Sn-2(X)
SX-Y)  X-Y) o s(X-Y) po su(X)

Let us now setri(t) = po+ pit +--- + pn_1tN"1. This last linear system expresses the fact that the
coefficients otN,tN+1 .. t?N=1in the seriest(t) oy (X—Y) are equal to the coefficients of the respective
power oft in ay(X). This means equivalently that there exists a polynoptigl of degree less or equal to
N—1 such that one has

I(t) 61 (X—Y) — 0y (X) + (t) = O(t2N) .

Going back to the definition af; (XY, we see that this last property can be rewritten as
(MOA(Y) — 1) 6 (X) +p(t) = O(t™)

which is itself clearly equivalent to the fact that
T At (Y) + RO A(X) = 1+O(tN) .

Since the left hand side of the above identity is a polynomial of degree at iNoestl? it follows that its
right hand side must be equal to 1. Hence we have shown that one has

MM (Y) +HOA(X) = 1. (28)

It follows that the probability?(U < V) is the constant terrm(0) of the Bezout polynomiaii(t) defined
by (28).
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5.2 A Bezoutian algorithm
Itis now immediate to see that the results of Secfiioh 5.1 imply that the following algorithm computes the
error probabilityP(U < V).

e Step 1. Consider the two polynomials(z) andA(z) of R[Z] defined by setting

N N

X(z) = U (1-xiz2 and A(z) = |‘| (1+42) .

e Step 2. Compute the unique polynomia(z) of R[Z] of degreed (1) < N—1 such that
n2)X(2) + W2 A@D =1
wherep(z) stands for some polynomial &z of degreed(p) < N—1.

e Step 3. Evaluater(0) =P(U <V).

Due to the fact the above second step can be realized by the classical generalized Euclidean algorithm,
our algorithm has the same complexity (i.e., quadratibljras Barrett's formula and is hence algorith-
mically rather efficient. On the other hand, our algorithm is also numerically stable (which was not the
case with Barrett's formuld](2)) since it inherits this property from the numerical stability of the gener-
alized Euclidean algorithm. Note finally that one can also directly derive our algorithm from elementary
techniques (cf.[J3]) which does however not give any insight in the internal structure of Barrett’s formula.
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