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This paper is devoted to the presentation of a combinatorial approach, based on the theory of symmetric functions, to
analyze the performance of a family of demodulation methods used in mobile telecommunications.
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1 Introduction
Modulating numerical signals means transforming them into wave forms. Due to their importance in
practice, modulation methods have been widely studied in signal processing (see for instance Chapter 5
of [10]). One of the most important problems in this area is the performance evaluation of the optimum
receiver associated with a given modulation method, which leads to the computation of various error
probabilities (see again [10]).

Among the different modulation protocols used in practice, an important class consists in methods
where the modulation reference (i.e., a fixed numerical sequence) is transmitted by the same channel as the
modulated signal. The demodulation decision needs then to consider at least two noisy informations, i.e.,
the transmitted signal and the transmitted reference. One can also take into account in the demodulating
process several noisy copies of these two signals: one speaks then of demodulation with diversity. The
error probabilities appearing in such contexts have the following form (cf. Section 3.1):

P(U < V) = P

(

U =
N

∑
i=1

|ui |
2 < V =

N

∑
i=1

|vi |
2

)

, (1)
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where theui andvi ’s denote independent centered complex Gaussian random variables with variances
E[ |ui |

2 ] = χi andE[ |vi |
2 ] = δi (cf. Section 3.2).

The problem of evaluating such expressions was investigated by several researchers in signal processing
(cf. [1, 4, 10, 12]). The most interesting result in this direction is due to Barrett (cf. [1]) who obtained the
expression

P(U < V) =
N

∑
k=1

(

∏
i 6=k

1

1−δ−1
k δi

N

∏
i=1

1

1+δ−1
k χi

)

, (2)

referred to as Barrett’s formula in the sequel.

Observe now that the expression (2) must be symmetric in theχi ’s and in theδi ’s due to its probabilistic
interpretation given by (1). It is therefore natural to use the machinery of the theory of symmetric functions
in order to analyze it more in depth. Using this point of view, we obtain several new expressions for
Barrett’s formula involving Schur functions, from which we derived an efficient and stable Bezoutian
algorithm for computing in all cases the probability (1) (see also [3] for an elementary verification of
the correctness of our algorithm). Note finally that the identities proved here are also connected with
classical bijective combinatorics that can be used in order to deal with the numerous specializations of
Barrett’s formula involving degeneracies, i.e., the situations where some of theδi coincide (see [5] for
more details).

2 Symmetric function background
We present here the background on symmetric functions which is used in our paper. More information
about symmetric functions can be found in Macdonald’s classical textbook [9]. We will somewhat deviate
from the notation of [9] by considering partitions as weakly increasing sequencesI = (i1 ≤ i2 ≤ . . .≤ im),
instead as weakly decreasing ones. In the present context, this convention provides a more convenient
presentation of the various matrices that will be encountered.

2.1 Partitions
Let I be apartition, i.e., a finite nondecreasing sequenceI = (i1 ≤ i2 ≤ . . . ≤ im) of positive integers. The
numberm of elements ofI is called thelengthof I . One can represent this partition by aFerrers diagram
of shape I, i.e., by a diagram ofi1 + . . . + im boxes whosei-th row contains exactlyik boxes for each
1≤ k≤ n. The Ferrers diagram associated with the partitionI = (2,2,3) is for instance given below.

One says that a partitionI contains a partitionJ, which is denoted byJ ⊂ I , if and only if the Ferrers
diagram ofJ is contained in the Ferrers diagram ofI . The conjugatepartition I ˜ of I is the partition
obtained by reading the heights of the columns of the Ferrers diagram ofI . One has for instanceI ˜=
(1,3,3) whenI = (2,2,3) as can be seen in the previous picture.

WhenI is a partition whose Ferrers diagram is contained in the square(NN) with N rows of lengthN,
one can also define thecomplementarypartitionI which is the conjugate of the partitionK whose Ferrers
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diagram is the complement (read from bottom to top) of the Ferrers diagram ofI in the square(NN). For
instance, forN = 3 andI = (2,3), we haveK = (1,3) andI = (1,1,2) as can be checked in Figure 1.

⋄ ⋄ ⋄

• • ⋄

• • •

Fig. 1: Two complementary Ferrers diagrams.

2.2 Symmetric functions

Let X be a set of indeterminates. The algebra of symmetric functions overX is denoted bySym(X). We
define thecomplete symmetric functions Sk(X) by their generating series

σz(X) =
+∞

∑
n=0

Sn(X)zn = ∏
x∈X

1
1−xz

. (3)

We also define in the same way theelementary symmetric functionsΛk(X) by their generating series
(which is a polynomial whenX is finite)

λz(X) =
+∞

∑
n=0

Λn(X)zn = ∏
x∈X

(1+xz) . (4)

In order to use complete and elementary symmetric functions indexed by any integerk ∈ Z, we also set
Sk(X) = Λk(X) = 0 for everyk < 0. Every symmetric function can be expressed in a unique way as a
polynomial in the complete or elementary functions. For everyn-tupleI = (i1, . . . , in)∈Z

n, we now define
theSchur function sI (X) as the minor taken over the rows 1,2, . . . ,n and the columnsi1+1, i2+2, . . . , in+n
of the infinite matrixS = (Sj−i(X))i, j∈Z, i.e.,

sI (X) =

∣

∣

∣

∣

∣

∣

∣

∣

Si1(X) Si2+1(X) . . . Sin−n+1(X)
Si1−1(X) Si2(X) . . . Sin−n+2(X)

...
...

...
...

Si1−n+1(X) Si2−n+2(X) . . . Sin(X)

∣

∣

∣

∣

∣

∣

∣

∣

. (5)

We also define more generally for everyI = (i1, . . . , in) ∈ Z
n andJ = ( j1, . . . , jn) ∈ Z

n, theskew Schur
function sJ/I (X) as the minor ofS taken over the rowsi1+1, i2+2, . . . , in+n and the columnsj1+1, j2+
2, . . . , jn+n. The importance of Schur functions comes from the fact that the family of the Schur functions
indexed by partitions form a classical linear basis of the algebra of symmetric functions (see [9] for the
details).

Let us finally introduce multi Schur functions (see [8]) which form another natural generalization of
usual Schur functions that we will use in the sequel. Let(Xi)1≤i≤n be a family ofn sets of indeterminates.
Then, for everyn-tuple I = (i1, . . . , in) ∈ Z

n, one defines the multi Schur functionSI (X1, . . . ,Xn) by the
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determinantal formula

sI (X1, . . . ,XN) =

∣

∣

∣

∣

∣

∣

∣

∣

Si1(X1) Si2+1(X2) . . . Sin−n+1(Xn)
Si1−1(X1) Si2(X2) . . . Sin−n+2(Xn)

...
...

...
...

Si1−n+1(X1) Si2−n+2(X2) . . . Sin(Xn)

∣

∣

∣

∣

∣

∣

∣

∣

. (6)

Hence the usual Schur functionsI (X) is the multi Schur functionsI (X, . . . ,X).

2.3 Transformations of alphabets
Let X andY be two sets of indeterminates. The complete symmetric functions of the formal setX+Y are
defined by their generating series

σz(X+Y) =
∞

∑
n=0

Sn(X+Y)zn = σz(X)σz(Y) . (7)

One also defines the complete symmetric functions of the formal differenceX−Y by

σz(X−Y) =
∞

∑
n=0

Sn(X−Y)zn = σz(X)λ−z(Y) . (8)

A symmetric functionF of the alphabetX+Y or X−Y is then an element ofSym(X)⊗Sym(Y) whose
expression in this last algebra can be obtained by developingF as a product of complete symmetric
functions ofX+Y or X−Y that are elements ofSym(X)⊗Sym(Y) according to the two defining relations
(7) and (8). Note also that the complete symmetric functions of the formal set−X are in particular defined
by

σz(−X) =
∞

∑
n=0

Sn(−X)zn = λ−z(X) . (9)

In other words, ifF(X) is a symmetric function of the setX, the symmetric functionF(−X) is obtained
by applying toF the algebra morphism that replacesSn(X) by (−1)nΛn(X) for everyn≥ 0. Observe that
the formal setX−Y can also be defined by settingX−Y = X+(−Y).

The expression of a Schur function of a formal sum of sets of indeterminates is in particular given by
the Cauchy formula

sI (X +Y) = ∑
J⊂I

sJ(X)sI/J(Y) (10)

for every partitionλ (see [9]). One must also point out that one has

sI/J(−X) = (−1)|I |−|J|sI /̃J ˜(X) (11)

for any partitionsµandλ such thatµ⊂ λ (see again [9]). Note finally that the resultant of two polynomials
can in particular be expressed as a rectangular Schur function of a difference of alphabets. LetX andY
be two sets of respectivelyN andM indeterminates. Then the expression

R(X,Y) = ∏
x∈X,y∈Y

(x−y)

is the resultant of the polynomials that haveX andY as sets of roots and one can prove that one has
R(X,Y) = SNM (X−Y) (see [8, 9]).
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2.4 Vertex operators

We will use in the sequel the vertex operatorΓz(X) which transforms every symmetric function ofSym(X)
into a series ofSym(X)[[z,z−1]]. Due to the fact that Schur functions indexed by partitions form a linear
basis ofSym(X), we can therefore define this operator by setting

Γz(X)(sI (X)) =
∞

∑
m=−∞

s(I ,m)(X)zm

for any partitionI = (I1, . . . , In), where we have here(I ,m) = (I1, . . . , In,m) ∈ Z
n+1 for every m∈ Z.

The following formula (cf., e.g., [11] for a proof using the present notation) gives then another explicit
expression of the action of a vertex operator on a Schur function.

Proposition 2.1 Let I be a partition. Then,

Γz(X)(sI (X)) = σz(X)sI (X−1/z) . (12)

2.5 Lagrange’s operators

Let X = {x1, . . . ,xN } be a finite alphabet ofN indeterminates. TheLagrange interpolating operator Lis
the operator that maps every polynomialf of C[X] which is symmetric in the lastN−1 indeterminates,
i.e., every elementf (x1,X\x1) of Sym(x1)⊗Sym(X\x1), to the symmetric polynomialL( f ) of Sym(X)
defined by

L( f ) =
N

∑
k=1

f (xk,X\xk)

R(xk,X\xk)
,

whereR(A,B) stands again for the resultant of the two polynomials that have respectively the two sets
of indeterminatesA andB as sets of roots (cf. Section 2.3). The following result, which is the algebraic
expression of a geometrical property corresponding to the special case of Bott’s formula for fibrations in
projective lines (see [6, 7] for more details), gives an interesting property of the Lagrange interpolation
operator.

Theorem 2.2 (Lascoux; [6]) Let X = {x1, . . . ,xN } be an alphabet of N indeterminates and letλ =
(λ1, . . . ,λn) be a partition that containsρN−1 = (N−2, . . . ,2,1,0). Then one has

L(xk
1sλ(X\x1)) = sλ,k−N+1(X) (13)

for every k≥ 0, where the Schur function involved in the right hand side of relation (13) is indexed by the
sequence(λ,k−N+1) = (λ1, . . . ,λn,k−N+1) of Z

n+1.

3 Signal processing background
3.1 Demodulation with diversity

Our initial motivation for studying Barrett’s formula came from mobile communications. The probability
P(U < V) given by formula (1) appears naturally in the performance analysis of demodulation methods
based on diversity which are standard in this context.
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Let us consider a model where one transmits an informationb ∈ {−1,+1} on a noisy channel. A
referencer (equal to 1 when emitted) is also sent on the same channel and at the same time asb. We
assume that we receiveN pairs(xi(b), r i)1≤i≤N ∈ (C×C)N of data (thexi(b)’s) and references (ther i ’s)1

that have the following form
{

xi(b) = ai b+νi for every 1≤ i ≤ N,

r i = ai
√

βi +ν′i for every 1≤ i ≤ N,

whereai ∈ C is a complex number that models the channel fading associated with the transmission of
the signals2, whereβi ∈ R

+ is a positive real number that represents the excess of signal to noise ratio
(SNR) available for the referencer i and whereνi , ν′i ∈C denote two independent complex white Gaussian
noises. We also assume that everyai is a complex random variable distributed according to a Gaussian
density of varianceα i for everyi ∈ [1,N].

According to these assumptions, all observables of our model, i.e., all pairs(xi(b), r i)1≤i≤N, are complex
Gaussian random variables. We finally also assume that theseN observables areN independent complex
random variables. Under these hypotheses, one can then prove [2] that

log

(

P(b = +1|X)

P(b = −1|X)

)

=
N

∑
i=1

4α i
√

βi

1+α i (βi +1)
(xi(b)|r i), (14)

with X = (xi(b), r i)1≤i≤N and where(⋆|⋆) denotes the Hermitian scalar product. The demodulation deci-
sion is based on the associated maximum likelihood criterium: one decides thatb was equal to 1 (resp. to
−1) when the right hand side of relation (14) is positive (resp. negative).

✻

✣✢
✤✜

✣✢
✤✜

✣✢
✤✜✬

✫
✩
✪

✬
✫

✩
✪

✬
✫

✩
✪

✘✘✘✘✘✘✘✘✿

❳❳❳❳❳❳❳❳❳❳❳③

✬

✫

✩

✪
✟✟✟✟✟✙

x(1)

x(−1) r

−1 1 β ✲

Fig. 2: Two possible noisy bitsx(1) andx(−1) and a noisy referencer in the caseN = 1.

Intuitively this means that one decides that the informationb = 1 was sent when thexi(b)’s are more or
less globally in the same direction than ther i ’s. Figure 2 illustrates the caseN = 1 and one can see that a

1 This situation corresponds to spatial diversity, i.e., when more than one antenna is available for reception, which is typically the
case in mobile communications.

2 Fading is typically the result of the absorption of the signal by buildings. Its complex nature comes from the fact that it models
both an attenuation (its modulus) and a phase shift (its argument).
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noisy referencer has a positive (resp. negative) Hermitian scalar product with a noisy informationx when
x corresponds to a small perturbation of 1 (resp.−1).

The bit error probability (BER) of our model is the probability that the informationb = 1 was decoded
as−1, i.e., the probability that one had

N

∑
i=1

4α i
√

βi

1+α i (βi +1)
(xi(1)|r i) < 0 .

Using the parallelogram identity, one can rewrite this last probability as

P
(

N

∑
i=1

|ui |
2−

N

∑
j=1

|vi |
2 < 0

)

,

whereui andvi denote the two variables defined by setting

ui =

(

α i
√

βi

1+α i (βi +1)

)1/2

(xi(1)+r i) and vi =

(

α i
√

βi

1+α i (βi +1)

)1/2

(xi(1)−r i)

for every i ∈ [1,N]. Our different hypotheses imply that theui ’s and thevi ’s are independent complex
Gaussian random variables. Hence the performance analysis of our model relies on the computation of a
probability of error of type given by formula (1).

3.2 Barrett’s formula
As we pointed out in Section 3.1, Barrett’s formula is connected with performance analysis of demo-
dulation methods based on diversity. More generally, the performance analysis of several other digital
transmission systems relies on the computation of the probability that a Hermitian quadratic formq in
complex centered Gaussian variables is negative (cf. [10]). The problem of computing such a probability
was adressed by several researchers of signal processing (see for instance [4, 12]). The most interesting
result in this direction is due to Barrett (cf. [1]) who expressed the desired probability as a rational function
of the eigenvalues of the covariance matrix associated withq. Formula (2) appears therefore as a special
case of this general result.

For the sake of completeness, we will however show how to directly derive Barrett’s formula (2). Let
us consider the real random variablesU andV defined by setting

U =
N

∑
i=1

|ui |
2 and V =

N

∑
i=1

|vi |
2,

where theui ’s and thevi ’s are independent centered complex Gaussian random variables with variances
equal toE[ |ui |

2 ] = χi andE[ |vi |
2 ] = δi for everyi ∈ [1,N]. It is then easy to prove by induction onN that

the probability distribution functions ofU andV are equal to

dU (x) =
N

∑
j=1

χN−2
j

∏
1≤i 6= j≤N

(χ j −χi)
e
− x

χ j and dV(x) =
N

∑
k=1

δN−2
k

∏
1≤i 6=k≤N

(δk−δi)
e
− x

δk (15)
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when all variancesχi andδi are distinct. Thus, one obtains

P(V > x) =
∫ +∞

x
dV(t)dt =

N

∑
k=1

δN−1
k

∏
1≤i 6=k≤N

(δk−δi)
e
− x

δk . (16)

The probability of error (1) can now be expressed as

P(U < V) =
∫ +∞

0
dU (x)P(V > x)dx .

Using relations (15) and (16), this last identity leads us to the expression

P(U < V) =
∫ +∞

0

N

∑
j,k=1

χN−2
j δN−1

k

∏
1≤i 6= j≤N

(χ j −χi) ∏
1≤i 6=k≤N

(δk−δi)
e
− x

χ j e
− x

δk dx ,

from which we immediately get the relation

P(U < V) =
N

∑
j,k=1

χN−1
j δN+1

k

(δk +χ j) ∏
1≤i 6= j≤N

(χ j −χi) ∏
1≤i 6=k≤N

(δk−δi)
.

This last formula can now be rewritten as follows,

P(U < V) =
N

∑
k=1

δN+1
k

N

∏
i=1

(δk +χi) ∏
1≤i 6=k≤N

(δk−δi)







N

∑
j=1

∏
1≤i 6=k≤N

(δk +χi)

∏
1≤i 6=k≤N

(χ j −χi)
χN−1

j






, (17)

from which we can deduce the formula

P(U < V) =
N

∑
k=1

δ2N−1
k

N

∏
i=1

(δk +χi) ∏
1≤i≤N

i 6=k

(δk−δi)

, (18)

due to the fact that the inner sum in relation (17) is just the Lagrange interpolation expression taken at
the points(−χ j)1≤ j≤N of the polynomialδN−1

k (considered here as a polynomial ofC[χ1, . . . ,χN][δk]).
Formula (2) follows then immediately from this last expression of the probability of error that we are
studying.

4 Symmetric functions expressions for Barrett’s formula
This section is devoted to a formulation of Barrett’s formula (18) in terms of symmetric functions. We
will therefore use here the notations of Section 3.2.
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4.1 A combinatorial formula

Note first that Barrett’s formula can be easily expressed using the Lagrange operatorL introduced in
Section 2.5. Indeed, let us setδk = xk andχk = −yk for everyk ∈ [1,N]. Then one can rewrite formula
(18) in the following way:

P(U < V) =
N

∑
k=1

x2N−1
k

R(xk,Y)R(xk,X\xk)
,

where we denotedX = {x1, . . . ,xN } andY = {y1, . . . ,yN } and whereR(A,B) stands for the resultant of
two polynomials as defined in Section 2.3. Hence we have

P(U < V) =
N

∑
k=1

g(xk,X\xk)

R(xk,X\xk)
= L(g), (19)

whereg stands for the element ofSym(x1)⊗Sym(X\x1) defined by

g(x1,X\x1) = g(x1) =
x2N−1

1

R(x1,Y)
.

Observe now that one has

g(x1,X\x1) =
1

R(X,Y)
x2N−1

1 f (x1,X\x1)

where f stands for the element ofSym(x1)⊗Sym(X\x1) defined by

f (x1,X\x1) = R(X\x1,Y) = s(NN−1)((X\x1)−Y) (20)

(the last equality comes from the expression of the resultant in terms of Schur functions given in Section
2.3). Note now that the resultantR(X,Y), being symmetric in the alphabetX, is a scalar for the operator
L. It follows therefore from relation (19) that one has

P(U < V) =
L(x2N−1

1 f (x1,X\x1))

R(X,Y)
. (21)

Let us now study the numerator of the right-hand side of relation (21) to get another expression for
P(U < V). Note first that the Cauchy formula yields the expansion

s(NN−1)((X\x1)−Y) = ∑
I⊂(NN−1)

sI (X\x1)s(NN−1)/I (−Y) . (22)

According to the identities (20) and (22), we now get the relations

L(x2N−1
1 f (x1,X\x1)) = ∑

I⊂(NN−1)

L(x2N−1
1 sI (X\x1))s(NN−1)/I (−Y)

= ∑
I⊂(NN−1)

s(I ,N)(X)s(NN−1)/I (−Y) ,
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the last above equality being an immediate consequence of Theorem 2.2. Using the expression given by
relation (11) fors(NN−1)/I (−Y) and going back to the definition of a skew Schur function given in Section
2.2, we can rewrite the last above expression as

L(x2N−1
1 f (x1,X\x1)) = ∑

I⊂(NN−1)

(−1)|I | s(I ,N)(X)s(I ,N)(Y)

where(I ,N) denotes the complementary partition of(I ,N) in the squareNN (cf. Section 2.1). Going back
to the initial variables, the signs disappear in the previous formula by homogeneity of Schur functions.
Substituting the obtained identity in (21), we finally get an expression in terms of Schur functions for the
probabilityP(U < V), namely

P(U < V) =

∑
I⊂(NN−1)

s(I ,N)(χ)s(I ,N)(∆)

∏
1≤i, j≤N

(χi +δj)
, (23)

where we setχ = {χ1, . . . ,χN } and∆ = {δ1, . . . ,δN }.

Example 4.1 ForN = 2, one can indeed check that Barrett’s formula (2) reduces to

P(U < V) =
χ1χ2 (δ2

1 +δ1δ2 +δ2
2)+(χ1 +χ2)(δ2

1δ2 +δ1δ2
2)+δ2

1δ2
2

(χ1 +δ1)(χ1 +δ2)(χ2 +δ1)(χ2 +δ2)
,

which is equal (as expected) to

P(U < V) =
s1,1(χ1,χ2)s2(δ1,δ2)+s1(χ1,χ2)s1,2(δ1,δ2)+s2,2(δ1,δ2)

∏
1≤i, j≤2

(χi +δj)
.

4.2 A determinantal formula
Let us work again with the alphabetsX andY defined in Section 4.1. We saw there that

P(U < V) =
fN(X,Y)

R(X,Y)
, (24)

where fN(X,Y) is the symmetric function ofSym(X)⊗Sym(Y) given by

fN(X,Y) = ∑
I⊂(NN−1)

s(I ,N)(X)s(NN−1)/I (−Y) .

Let us now compute the action of the vertex operatorΓz(X) on the rectangular usual Schur function
s(NN−1)(X−Y). Note first that the Cauchy formula shows again that

s(NN−1)(X−Y) = ∑
I⊂(NN−1)

sI (X)s(NN−1)/I (−Y) .
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Applying the vertex operatorΓz(X) on this expansion, we now get

Γz(X)
(

s(NN−1)(X−Y)
)

= ∑
I⊂(NN−1)

Γz(X)
(

sI (X)
)

s(NN−1)/I (−Y)

=
+∞

∑
m=−∞

(

s(I ,m)(X)s(NN−1)/I (−Y)
)

zm .

Hence fN(X,Y) is equal to the coefficient ofzN in the image ofs(NN−1)(X −Y) by Γz(X). On the other
hand, using the Cauchy formula in connection with relation (12), one can also write

Γz(X)
(

s(NN−1)(X−Y)
)

= σz(X)s(NN−1)(X−Y−1/z)

= σz(X)
( +∞

∑
j=0

s(NN−1)/(1 j )(X−Y)s(1 j )(−1/z)
)

=
( ∞

∑
i=0

si(X)zi
)( ∞

∑
j=0

s(NN−1)/(1 j )(X−Y)(−1/z) j
)

due to the fact that the only non zero Schur functions of the alphabet−1/z are indexed by column parti-
tions of the form 1k (and are equal to(−1/z)k). The coefficient ofzN in the above product gives us then a
new expression forfN(X,Y), namely

fN(X,Y) =
N−1

∑
k=0

(−1)k sN+k(X)sNN−1/1k(X−Y) . (25)

But this last expression is just the expansion along the last colomn of the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

sN(X−Y) sN+1(X−Y) . . . s2N−2(X−Y) s2N−1(X)
sN−1(X−Y) sN(X−Y) . . . s2N−3(X−Y) s2N−3(X)

...
...

...
...

...

s1(X−Y) s2(X−Y)
... sN−1(X−Y) sN(X)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (26)

which is the determinantal expression of the multi Schur fonctions(NN)(X−Y, . . . ,X−Y,X) (see Section
2.3). Hence relation (26) gives us both a determinantal and a multi Schur function expression for the
denominator of the right hand side of formula (24). Using the interpretation of the resultantR(X,Y) as a
multi Schur function (see Section 2.3), we now get that

P(U < V) =
s(NN)(X−Y, . . . ,X−Y,X)

s(NN)(X−Y, . . . ,X−Y)
(27)

where the alphabetX −Y appearsN−1 times in the denominator andN times in the numerator of the
right hand side of the above formula.
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5 An efficient and stable algorithm for the error probability

5.1 A Toeplitz system and its solution

Using the determinantal expression of the multi Schur functions(NN)(X −Y, . . . ,X −Y), we can now
observe that relation (27) shows that the probabilityP(U < V) is equal to the quotient of the determinant
(26) by the determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

sN(X−Y) sN+1(X−Y) . . . s2N−1(X−Y)
sN−1(X−Y) sN(X−Y) . . . s2N−2(X−Y)

...
...

...
...

s1(X−Y) s2(X−Y)
... sN(X−Y)

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

where the former determinant is obtained by replacing the last column of the latter determinant by the
N-dimensional vector(s2N−1(X),s2N−2(X), . . . ,sN(X)). Hence the right hand side of relation (27) can be
interpreted as the Cramer expression for the last componentp0 of the linear system









sN(X−Y) sN+1(X−Y) · · · s2N−1(X−Y)
sN−1(X−Y) sN(X−Y) · · · s2N−2(X−Y)

...
...

...
...

s1(X−Y) s2(X−Y) · · · sN(X−Y)

















pN−1

pN−2
...

p0









=









s2N−1(X)
s2N−2(X)

...
sN(X)









.

Let us now setπ(t) = p0 + p1 t + · · ·+ pN−1 tN−1. This last linear system expresses the fact that the
coefficients oftN, tN+1, . . . , t2N−1 in the seriesπ(t)σt(X−Y) are equal to the coefficients of the respective
power oft in σt(X). This means equivalently that there exists a polynomialµ(t) of degree less or equal to
N−1 such that one has

π(t)σt(X−Y)−σt(X)+µ(t) = O(t2N) .

Going back to the definition ofσt(X−Y), we see that this last property can be rewritten as

(

π(t)λ−t(Y)−1
)

σt(X)+µ(t) = O(t2N)

which is itself clearly equivalent to the fact that

π(t)λ−t(Y)+µ(t)λ−t(X) = 1+O(t2N) .

Since the left hand side of the above identity is a polynomial of degree at most 2N−1, it follows that its
right hand side must be equal to 1. Hence we have shown that one has

π(t)λ−t(Y)+µ(t)λ−t(X) = 1 . (28)

It follows that the probabilityP(U < V) is the constant termπ(0) of the Bezout polynomialπ(t) defined
by (28).
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5.2 A Bezoutian algorithm
It is now immediate to see that the results of Section 5.1 imply that the following algorithm computes the
error probabilityP(U < V).

• Step 1. Consider the two polynomialsX(z) and∆(z) of R[z] defined by setting

X(z) =
N

∏
i=1

(1−χi z) and ∆(z) =
N

∏
i=1

(1+δi z) .

• Step 2. Compute the unique polynomialπ(z) of R[z] of degreed(π) ≤ N−1 such that

π(z)X(z)+µ(z)∆(z) = 1

whereµ(z) stands for some polynomial ofR[z] of degreed(µ) ≤ N−1.

• Step 3. Evaluateπ(0) = P(U < V) .

Due to the fact the above second step can be realized by the classical generalized Euclidean algorithm,
our algorithm has the same complexity (i.e., quadratic inN) as Barrett’s formula and is hence algorith-
mically rather efficient. On the other hand, our algorithm is also numerically stable (which was not the
case with Barrett’s formula (2)) since it inherits this property from the numerical stability of the gener-
alized Euclidean algorithm. Note finally that one can also directly derive our algorithm from elementary
techniques (cf. [3]) which does however not give any insight in the internal structure of Barrett’s formula.
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