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An overview of Λ-type operations

on quasi-symmetric functions

K. Bertet ∗, D. Krob †, M. Morvan ‡,

J.-C. Novelli §, H.D. Phan ¶ and J.-Y. Thibon ‖

Dedicated to the memory of Professor A. I. Kostrikin

Abstract

We present an overview of Λ-type operations on the algebra of quasi-symmetric functions.

Nous présentons un survol de l’ensemble des propriétés de type Λ-anneau de l’algèbre des
fonctions quasi-symétriques.

1 Introduction

The algebra of noncommutative symmetric functions Sym, introduced in [5], is the free asso-
ciative algebra (over some field of characteristic 0) generated by an infinite sequence (Sn)n≥1 of
noncommuting indeterminates (corresponding to the complete symmetric functions), endowed
with some extra structure imitated from the usual algebra of commutative symmetric functions.

Noncommutative symmetric functions were intensively studied in a series of seminal papers
([5, 9, 4, 10, 11]). It is shown there that noncommutative symmetric functions provide a new
point of view on several important algebraic objects such as the free Lie algebra (see [5, 4]),
Solomon’s descent algebra (see [5, 9, 4]), the 0-Hecke algebra (see [10, 11]) or crystal limits of
classical quantum groups of type A (see [10, 11]) for which they give natural descriptions of
their representation theory.

It happens that the graded dual of Sym can be identified with the algebra QSym of quasi-
symmetric functions that was introduced by Gessel in [6]. This other aspect of the theory of
noncommutative symmetric functions is clearly also very important, but it was however not
really very well explored up to now, especially if one thinks that QSym can also be seen as a
natural extension of ordinary commutative symmetric functions.

In this direction, an important question would be to know whether there exists a good ge-
neralization of the notion of Λ-ring for which the algebra of quasi-symmetric functions would
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Cedex – France – novelli@lifl.fr
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be an universal object, exactly as it is the case for the usual algebra of commutative symmetric
functions with respect to the usual structure of Λ-ring (see [8]). This question is however still
open, the main difficulty being the fact that it seems rather difficult to find a representation theo-
retic interpretation of the natural notion of plethysm of quasi-symmetric functions, introduced
by Malvenuto and Reutenauer (see[14]).

In this paper, we are therefore trying to explore the Λ-ring type operations that can be
defined on quasi-symmetric functions, as it was already done in the context of noncommutative
symmetric functions (see [9]). We present first a survey of all known definitions of Λ-ring type
operations on QSym. We then focus on the most complicated operation of this kind, i.e., the so-
called plethysm of quasi-symmetric functions, for which we propose a number of new algorithms,
based on lattice theory, for efficiently computing it.

2 Definitions and notations

2.1 Partially ordered sets

Let P = (V,<P ) be a poset over some set V . Two elements a, b ∈ V are said to be comparable
in P if one has either a < b, or a > b. Two elements that are not comparable, are said to be
incomparable. A poset is then called an antichain if all its elements are pairwise incomparable.

We now need to introduce a generic operation on posets, called series-composition and
denoted by ∗. Let hence P = (U,<P ) and Q = (V,<Q) be two posets with disjoint ground sets
U and V . We denote then by R = P ∗Q the series-composition of P and Q which is the poset
constructed on W = U ∪ V which ordering relation <R is defined by setting x <R y if one has
either x <P y with x, y ∈ U , either x <Q y with x, y ∈ V or x ∈ U and y ∈ V .

A poset R is then said to be a weak order if it is obtained by series-composition of a finite
number of antichains, i.e., if R is of the form

R = A1 ∗ A2 ∗ . . . ∗ Ak

where each Ai is an antichain. An element x in such a weak order R is said to be of height
r if it belongs to Ar. The number k of antichains involved in the previous construction of R is
called the height of R.

A poset Q = (U,<Q) is finally said to be an extension of a poset P = (U,<P ) constructed
on the same ground set U iff one has u <Q v as soon as one has u <P v. A weak-order extension
of P is then an extension of P which is also a weak order. In the same way, a weak-order linear
quotient is a total order constructed on a quotient of a weak order extension of a given poset.

Let now P = ([1, n], <P ) be a poset over the interval [1, n] of the set N of all positive integers.
A linear extension of such a poset P is then just a permutation of Sn that extends P to a total
order. In other words, a permutation σ ∈ Sn is a linear extension of P iff one has

i <P j =⇒ σ−1(i) < σ−1(j)

for every i, j ∈ [1, n]. The set of all linear extensions of P is denoted by L(P ).

We can now introduce a construction on posets over initial intervals of the set N
∗ of all strictly

positive integers. Let therefore P = ([1, p], <P ) and Q = ([1, q], <Q) be two posets respectively
over [1, p] and [1, q]. We denote then by P → Q (resp. by P ← Q) the poset constructed over
[1, p+ q] whose order < is the smallest order over [1, p+q] such that
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p < p+1 (resp. p > p+1 ) and

{

i < j ⇐⇒ i <P j if i, j ∈ [1, p] ,

i < j ⇐⇒ i−p <Q j−p if i, j ∈ [p+1, p+q] .

In other words, the Hasse diagram of P → Q (resp. P ← Q) is obtained as follows: re-index
first the support of Q by translating it over [p+1, p+q], take then together the Hasse diagrams
of P and Q, add finally an arrow that relates the last element p of the support of P and the first
element p+1 of the support of Q oriented from p to p+1 (resp. from p+1 to p). To illustrate
our construction, let us consider the posets T12 and T2 given by the following Hasse diagrams.

3

1 2
?

- 1 - 2

T12 T2

The Hasse diagram of the posets T12 ← T2 and T12 → T2 are then given below.

3

1 2

4 5

?
-

� -

T12 ← T2

3

1 2

4 5

?
-

- -

T12 → T2

2.2 Compositions

A composition of n is a sequence I = (i1, . . . , ir) of strictly positive integers whose sum is equal
to n. The length `(I) of the composition I is then just the number r of integers involved in such
a sequence. One usually represents a composition I by a ribbon diagram of shape I, i.e., by a
skew Young tableau of ribbon shape I. For instance, the ribbon diagram associated with the
composition I = (3, 2, 1, 4) is given below.

Let I = (i1, . . . , ir) be a composition. Its mirror image is then the composition denoted by I

which is defined by reading from right to left the entries of I, i.e., by setting I = (in, . . . , i1).
Using the graphical representation of a composition, one can define the conjugate composition
of I, denoted by I∼, that is the composition obtained by enumerating from right to left the
numbers of cells of the columns of the ribbon diagram of I. One can read for instance on the
above picture that (3, 2, 1, 4)∼ = (1, 1, 1, 3, 2, 1, 1).

We also need to introduce two classical operations on compositions. Let I = (i1, . . . , ir) and
J = (j1, . . . , js) be two compositions. We then define the compositions I · J and I / J by setting
respectively I ·J = (i1, . . . , ir, j1, . . . , js) and I / J = (i1, . . . , ir−1, ir + j1, j2, . . . , js). Notice that
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these two operations graphically correspond to the two ways of gluing the ribbon diagram of I
at the left of the ribbon diagram of J as shown below when I = (2, 1) and J = (1, 2).

? ?

?

�

� �

(2, 1) · (1, 2)

? ?

? �

� �

(2, 1) / (1, 2)

One can associate with every composition I = (i1, . . . , ir) of n the subset D(I) of [1, n−1]
defined by setting D(I) = { i1, i1 + i2, . . . , i1 + . . . + ir−1 }. One then defines the refinement
ordering, denoted ≺, on the set of all compositions of the same integer n by setting I ≺ J iff
D(I) ⊂ D(J). One has for example (3, 2, 6) ≺ (2, 1, 2, 3, 1, 2).

We are now in position to present a classical way for associating with every permutation σ

of Sn a composition C(σ) of n. Let us first recall that the descent set of σ ∈ Sn is the subset
of [1, n−1], denoted by D(σ), formed of all integers 1 ≤ i ≤ n−1 such that σ(i) > σ(i+1). The
composition C(σ) is then by definition the unique composition of n such that D(C(σ)) = D(σ).
One has for instance C(245316) = (3, 1, 2) as one can see on the following picture.

2 4 5

3

1 6

3 Quasi-symmetric functions

Quasi-symmetric functions were introduced by Gessel in [6]. Their Hopf algebra structure was
studied by Gessel, Malvenuto and Reutenauer (see [6, 13]). Their relationship with noncom-
mutative symmetric functions was investigated by Duchamp, Gelfand, Krob, Lascoux, Leclerc,
Malvenuto, Retakh, Reutenauer and Thibon (see [13, 5, 9, 4, 10, 11]).

3.1 Definition and classical bases

Let X = {x1<x2< · · ·<xn< · · · } be an infinite totally ordered set of commutative indetermi-
nates. A function f of C[X] is said to be a quasi-symmetric function if, for each composition
K = (k1, . . . , km), all monomials xk1

i1
xk2

i2
. . . xkm

im
with i1 < i2 < . . . < im have the same coefficient

in f . The quasi-symmetric functions form a subalgebra of C[X] denoted by QSym. This algebra
is naturally graded by the graduation (QSymn)n≥0 inherited from C[X].

One associates with every composition I = (i1, . . . , im) the quasi-monomial function denoted
by MI by setting

MI =
∑

j1<...<jm

xi1
j1
. . . xim

jm
. (1)

By construction, the family of quasi-monomial functions is a natural basis of QSym. It
follows in particular from this fact that the dimension of the C-vector space QSymn is 2n−1.
Another important basis of QSym is formed by the quasi-ribbon functions (FI) defined by setting

FI =
∑

I≺J

MJ (2)
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for every composition I.

One can also give a combinatorial description of these functions that shows that they play
the role of Schur functions in our context. Let again I be a composition. Let us first recall that
a quasi-ribbon of shape I is a ribbon diagram of shape I where every box contains a letter of X
in such a way that:

1. the letters in every row are increasing from left to right;

2. the letters in every column are strictly increasing from top to bottom.

One can associate with every quasi-ribbon the commutative monomial obtained by taking the
product of all its letters. The quasi-ribbon function FI is then the sum of the commutative
monomials associated with all quasi-ribbons of shape I (see [6, 10]).

Example 3.1 Let X = {x < y < z } and I = (2, 1). The quasi-ribbon function F21(X) is equal
to

x x
y +

x x
z

+
y y

z
+

x y

z ,

i.e., F21(X) = x2 y + x2 z + y2 z + xyz = M21(X) +M111(X).

It is also interesting to give explicitly the graded generating functions of the two bases of
QSym that we introduced.

Proposition 3.2 Let X be a totally ordered alphabet. Then one has

∑

I

t`(I)MI =

∏

x∈X

(1 + (t− 1)x)

∏

x∈X

(1− x)
. (3)

Proof — It suffices to notice that one has

∑

I

t`(I)MI =
∑

λ

t`(λ) ψλ

where ψλ denotes the monomial symmetric function indexed by the partition λ. The result then
becomes a simple exercise on symmetric functions that is left to the reader.

Corollary 3.3 Let X be a totally ordered alphabet. Then one has

∑

I

t`(I) FI =
1

1 + t
+

t

1 + t

∏

x∈X

(1 + t x)

∏

x∈X

(1− x)
. (4)

Proof — According to [5], one can write

∑

|I|=n

t`(I) FI = t ( 1 1 )⊗(n−1)
(

1 1
0 t

)⊗(n−1)







Mn
...

M1n






= t ( 1 1 + t )⊗(n−1)







Mn
...

M1n






.
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In other words, one has

∑

|I|=n

t`(I) FI =
t

1 + t
(
∑

|I|=n

(1 + t)`(I)MI ) ,

for every n ≥ 1. The desired formula now immediately follows from this last relation and from
Proposition 3.2.

3.2 Quasi-symmetric functions associated with posets

We recall here a construction due to Gessel (see [6]) that allows to associate a quasi-symmetric
function with every finite poset.

Definition 3.4 (Stanley; [16]) Let P = ([1, n], <P ) be a poset over the interval [1, n] of N. A
P -partition is then a function f from [1, n] into X satisfying the two conditions:

1. i <P j implies f(i) ≤ f(j);

2. i <P j and i > j implies f(i) < f(j).

Let again P = ([1, n], <P ) be a poset over [1, n]. We denote then by CP the function which
is the sum of all commutative monomials f(1) f(2) . . . f(n) where f runs over the P -partitions
corresponding to P . It appears that CP is in fact a quasi-symmetric function.

Proposition 3.5 (Gessel; [6]) Let P = ([1, n], <P ) be a poset over [1, n]. The function CP is
then a quasi-symmetric function. Moreover one has:

CP =
∑

f P−partition

n
∏

i=1

f(i) =
∑

σ∈L(P )

FC(σ) . (5)

Example 3.6 Let us consider the poset P = ({ 1, 2, 3, 4 }, <P ) defined by

1 2 3

4

� -

?

Let X = {x < y < z }. The P -partitions associated with P exactly are the functions f from
[1, 4] into X such that f(2) < f(1), f(2) ≤ f(3), f(2) ≤ f(4). On the other hand, one has
L(P ) = { (2134), (2143), (2314), (2341), (2413), (2431) }. Thus Proposition 3.5 shows that

CP (X) = F13 + F121 + 2F22 + F31 + F211.

We associate with every composition I of n a poset over [1, n], denoted by TI , which is
defined as follows. Let us first consider the skew Young tableau ΘI obtained by filling the rows
of the ribbon diagram of ribbon shape I from left to right, beginning with the bottom-most row
and ending with the top-most row with the integers from 1 to n. When I = (2, 3, 1), one obtains
for instance the following skew Young tableau.

5 6

2 3 4

1

6



The poset TI = ([1, n], <I) is then the smallest poset such that i <I j if either i is to the left of
j in its row, or i is to the bottom of j in its column. Continuing the previous example leads us
therefore to the poset T231 given below.

5 6

2 3 4

1

- -

?

-

?

It appears that the consideration of these posets allows to simplify the usual description of
the product of two quasi-ribbon functions (see [6, 4]) into a formula that may be seen as an
analog of the multiplication formula of noncommutative ribbon functions (see [5]).

Proposition 3.7 Let I, J be two compositions. Then one has

FI FJ = CTI←TJ
+ CTI→TJ

. (6)

Example 3.8 Proposition 3.7 shows that the product F22 F1 can be for instance expressed as
the sum of the quasi-symmetric functions associated with the two following posets.

1 2

43 5

-

-

?

�

1 2

43 5

-

-

?

-

Using Proposition 3.5, we immediately get

F22 F1 = F122 + F212 + F221 + F23 + F32 ,

since it is easily checked that the linear extensions of the two previous posets are exactly the
permutations listed below.

3 4 5

1 2

3 4

1 2 5

3 4

1 5

2

5

3 4

1 2

3 5

4

1 2

Note 3.9 There does not seem to exist such a simple expression for expressing the product of
two quasi-monomials functions. Using the natural pairing between QSym and the algebra of
noncommutative symmetric functions (see [5, 13]), one can however easily prove that one has
for every compositions I and J :

MI MJ =
∑

K=C+D

C∈I 0∗, D∈J 0∗

MK , (7)

where K stands for a composition and where C,D are vectors of N
`(K). To illustrate this last

result, let us for instance consider I = (2, 1) and J = (1, 3). The compositions K that may
appear in identity (7) are then listed below :
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(2, 1) + (1, 3) = (3, 4) ,

(0, 2, 1) + (1, 3, 0) = (1, 5, 1) , (0, 2, 1) + (1, 0, 3) = (1, 2, 4) , (2, 0, 1) + (0, 1, 3) = (2, 1, 4) ,

(2, 0, 1) + (1, 3, 0) = (3, 3, 1) , (2, 1, 0) + (0, 1, 3) = (2, 2, 3) , (2, 1, 0) + (1, 0, 3) = (3, 1, 3) ,

(0, 0, 2, 1) + (1, 3, 0, 0) = (1, 3, 2, 1) , (0, 2, 0, 1) + (1, 0, 3, 1) = (1, 2, 3, 1) ,

(0, 2, 1, 0) + (1, 0, 0, 3) = (1, 2, 1, 3) , (2, 1, 0, 0) + (0, 0, 1, 3) = (2, 1, 1, 3) ,

(2, 0, 1, 0) + (0, 1, 0, 3) = (2, 1, 1, 3) , (2, 0, 0, 1) + (0, 1, 3, 0) = (2, 1, 3, 1) .

Hence it follows that we have

M21M13 = M34 +M151 +M124 +M214 +M331 +M223 +M313

+M1321 +M1231 +M1213 + 2M2113 +M2131.

4 Λ-ring type operations on QSym

The object of this section is to present an overview of the different Λ-ring type operations
(see [12, 8] for instance) that can be defined on QSym. Thus we first recall how one usually
defines the sum and the product of two totally ordered alphabets in the context of quasi-
symmetric functions. We focus then in a second time on the notion of plethysm of quasi-
symmetric functions as introduced by Malvenuto and Reutenauer in [14].

4.1 Sum and product of ordered alphabets

Let X and Y be two totally ordered alphabets. We denote then by X +̂Y the alphabet which
is obtained by taking the disjoint union of X and Y ordered by setting x < y for every x ∈ X
and y ∈ Y . Using the natural pairing between QSym and the algebra of Non-commutative
symmetric functions (see [5]), one can easily obtain the following explicit formulas that express
the quasi-monomials and the quasi-ribbon functions of the alphabet X +̂Y in terms of the same
quasi-symmetric functions for the alphabets X and Y .

Proposition 4.1 Let I be a composition. Then one has

MI(X+̂Y ) =
∑

P ·Q=I

MP (X)MQ(Y ) , (8)

FI(X+̂Y ) =
∑

P ·Q=I

FP (X)FQ(Y ) +
∑

P/Q=I

FP (X)FQ(Y ) . (9)

Example 4.2 The decompositions of a composition I involved in formula (9) can be easily read
on its graphic representation. It suffices indeed to cut in all possible ways the ribbon diagram
associated with I into two disjointed parts in order to obtain all decompositions of the form
I = P · Q and I = P / Q. Let us consider for instance I = (1, 2, 1). One can then obtain
FI(X+̂Y ) by considering the following decomposition :
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−→

�
� �
�

+

?
� �
�

+

?
? �
�

+

?
? ?
�

+

?
? ?
?

from which one gets

F121(X+̂Y ) = F121(Y ) + F1(X)F21(Y ) + F11(X)F11(Y ) + F12(X)F1(Y ) + F121(X) .

Let again X be a totally ordered alphabet. The opposite alphabet −X is then the totally
ordered alphabet defined by setting for every composition I :

FI(−X) = (−1)|I| FI∼(X) .

One can also express any quasi-monomial function of an opposite alphabet in terms of the
quasi-monomial functions of the initial alphabet.

Proposition 4.3 (Malvenuto-Reutenauer; [13]) Let I be a composition. Then one has

MI(−X) =
∑

I�J

(−1)`(J) M
J
(X) . (10)

Note 4.4 One can rephrase the previous definitions in terms of Hopf algebras. Using the iden-
tification QSym ⊗ QSym ' QSym(X+̂Y ), one can indeed define a coproduct γ on QSym

by setting γ(f) = f(X+̂Y ) for every quasi-symmetric function f . In the same way, one can
also introduce the automorphism ν of QSym defined by setting ν(f) = f(−X) for every quasi-
symmetric function f . The algebra QSym equipped with its usual product · and with the coproduct
γ then has a structure of Hopf algebra with antipode ν.

LetX and Y be again two totally ordered alphabets. One denotes then byX ×̂Y the alphabet
obtained by totally ordering the set X × Y by lexicographic order. The following result gives
an expression for the quasi-ribbon functions of the alphabet X ×̂Y in terms of the quasi-ribbon
functions of the alphabets X and Y .

Proposition 4.5 (Gessel; [6]) Let I be a composition and let π be a permutation such that
C(π) = I. Then one has:

FI(X×̂Y ) =
∑

σ∈Sn

FC(σ)(X)FC(π◦σ−1)(Y ) . (11)

Example 4.6 Let I = (1, 2) and let π = 213 in S3. Observe that one has C(213) = (1, 2). One
can now construct the following table
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σ C(σ) π ◦ σ−1 C(π ◦ σ−1)

123 (3) 213 (1, 2)

132 (2, 1) 231 (2, 1)

213 (1, 2) 123 (3)

231 (2, 1) 321 (1, 1, 1)

312 (1, 2) 132 (2, 1)

321 (1, 1, 1) 312 (1, 2)

from which one gets, according to Formula (11) :

F12(X×̂Y ) = F3(X)F12(Y ) + F21(X)F21(Y ) + F12(X)F3(Y )

+F21(X)F111(Y ) + F12(X)F21(Y ) + F111(X)F12(Y ).

Note 4.7 When applied on symmetric functions, the different operations that we introduced for
totally ordered alphabets reduce to the corresponding operations considered in the sense of the
usual Λ-ring structure of the ring of symmetric functions (see [8, 12, 6, 5]).

4.2 Plethysm of quasi-symmetric functions

Let X be a totally ordered alphabet and let F and G be two quasi-symmetric functions over X
with non negative integer coefficients. Following Malvenuto and Reutenauer (see [14]), one can
define the plethysm of F by G as follows. Let us first decompose G as a sum of commutative
monomials totally ordered by lexicographic order, i.e.,

G =
∑

k∈K

mk ,

where some monomials are possibly equal (but distinguished by the total ordering of K). Ele-
mentary considerations then show that the function F ◦G defined by setting

F ◦G = F ({mk, k ∈ K })

is a quasi-symmetric function over X that we shall call plethysm of F by G.

Example 4.8 Let X = {x < y < z }. Then one has

2M12(x, y, z) = x y2 + x y2 + x z2 + x z2 + y z2 + y z2.

The plethysm M12 ◦ (2M12) over X is then equal to

(M12 ◦ (2M12))(x, y, z) = (x y2) ((x y2)2 + (x z2)2 + (x z2)2 + (y z2)2 + (y z2)2)

+(x y2) ((x z2)2 + (x z2)2 + (y z2)2 + (y z2)2) + (x z2) ((x z2)2 + (y z2)2 + (y z2)2)

+(x z2)2 ((y z2)2 + (y z2)2) + (y z2)2 (y z2)2 ,

which, as easily checked, reduces to

(M12 ◦ (2M12))(x, y, z) = M36(x, y, z) + 4M324(x, y, z) + 4M144(x, y, z) + 4M126(x, y, z) .
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The following proposition gives an important positiveness property of the plethysm of two
quasi-ribbon functions.

Proposition 4.9 (Malvenuto, Reutenauer; [14]) Let I, J be two compositions. Then there exists
a family (pK

I,J) of non negative integers such that

(FI ◦ FJ )(X) =
∑

K

pK
I,J FK(X) . (12)

Note 4.10 It is unfortunately not very clear whether this notion of plethysm should be put at
the same level that the two other Λ-ring type operations introduced in the previous subsection.
One indeed does not know for the moment any representation theoretical interpretation (in the
line of [10, 11]) of this plethystic operation on quasi-symmetric functions.

5 Algorithms for computing plethysms

The argument of Malvenuto and Reutenauer used to prove Proposition 4.9 is quite effective, but
can be improved. The purpose of this section is to provide a number of simple algorithms based
on posets properties for efficiently computing the plethysm of two quasi-monomials functions
or the plethysm of two quasi-ribon functions on the corresponding bases of quasi-symmetric
functions.

5.1 Plethysm of quasi-monomial functions

Let X be a totally ordered infinite set and let I, J be two compositions. We first address the
problem of computing the plethysm of the quasi-monomial functions over the basis of quasi-
monomial functions. In other words, we will see how to compute the decomposition:

MI(X) ◦MJ(X) =
∑

K∈K

pK
I,J MK(X) . (13)

Let us now set I = (i1, . . . , in) and J = (j1, . . . , jm). When I = (i), note first that it is easy
to check that one has:

M(i)(X) ◦MJ(X) = Mi×J(X) .

We will therefore assume that n > 1 in all the sequel of our subsection. To compute the
plethysm MI(X) ◦MJ (X), let us first write explicitly the definition of MJ (X):

MJ(X) =
∑

y1<···<ym∈X

y
j1
1 · · · y

jm
m . (14)

The commutative monomials that occur in the right hand-side of the previous expression
can be totally ordered by lexicographic order. Thus, according to the definition of the plethysm
of two quasi-symmetric functions given in Section 4.2, one gets:

MI(X) ◦MJ(X) = MI({ y
j1
1 · · · y

jm
m , y1 < · · · < ym ∈ X })

=
∑

y1<···<ym∈X

(yj1
1,1 · · · y

jm

1,m)i1 · · · (yj1
n,1 · · · y

jm
n,m)in

=
∑

Y ∈Y

∏

k∈[1,n]
l∈[1,m]

y
ik jl

k,l

(15)

11



where the last above sum is taken over the set Y of all n×m matrices







y1,1 . . . y1,m

...
...

...
yn,1 . . . yn,m






(16)

whose entries stand in X and which satisfy the two following conditions:

• Condition H: for every k ∈ [1, n], one has yk,1 < · · · < yk,m;

• Condition V: the row vectors of the matrix Y are strictly increasing for the lexicographic
order over Xm, i.e., one has

(y1,1, . . . , y1,m) ≺ (y2,1, . . . , y2,m) ≺ · · · ≺ (yn,1, . . . , yn,m)

where ≺ stands for the (strict) lexicographic order over Xm.

In order to describe all the matrices of the set Y, we will decompose Condition V into a
disjoint union of conditions of the same type. Observe first that each strict inequality between
two adjacent rows

(yk,1, . . . , yk,m) ≺ (yk+1,1, . . . , yk+1,m) ,

is equivalent to the existence of an index rk for which rows k and k+1 begin to differ, i.e., such
that

yk,1 . . . yk,r−1 yk,r yk,r+1 . . . yk,m

= · · · = ∧
yk+1,1 . . . yk+1,r−1 yk+1,r yk+1,r+1 . . . yk+1,m .

Conversely, let t = (t1, . . . , tn−1) be an element of the set T of all vectors of [1,m]n−1. Let
V (t) be the set of matrices of Mn,m(X) satisfying the condition V(t):

• Condition V(t): for every k ∈ [1, n− 1],

{

∀ l ∈ [1, tk − 1], yl,k = yl,k+1,

ytk,k < ytk ,k+1.

Then it is clear that a matrix satisfies Condition V if and only if there exist an element t
of T such that this matrix satisfies Condition V(t). Moreover, if t exists, it is unique. In other
words, the set of matrices satisfying Condition V exactly is the disjoint union of the sets V(t)
where t runs over the set T .

For every t ∈ T , let us now define

Γt(X) =
∑

Y ∈H∩V(t)

∏

k∈[1,n]
l∈[1,m]

y
ik jl

k,l (17)

where H stands for the set of all matrices of Mn,m(X) satisfying Condition H. It is then easy
to see that the plethysm of MI and MJ can be rewritten as

12



MI(X) ◦MJ(X) =
∑

t∈T

Γt(X) . (18)

Hence, to decompose the plethysm MI(X) ◦MJ(X) over the basis of quasi-monomials func-
tions, it is enough to obtain such a decomposition for every Γt(X) since one can easily prove that
this function is a quasi-symmetric function. Let us therefore choose t in T and let Y ∈Mn,m(X)
satisfying both conditions H and V(t). One can then group together the entries of Y in the
different generic equivalence classes associated with the equality relation, i.e., in the different
classes that consist of all the entries of Y that can be proved equal, using Conditions H and
V(t).

Example 5.1 Consider for instance the compositions I = (3, 5, 7) and J = (2, 4, 6, 8) and the
vector t = (3, 4). A matrix Y ∈M3,4(X) satisfying Conditions H and V(3,4) is then exactly a
matrix

Y =







y1,1 y1,2 y1,3 y1,4

y2,1 y2,2 y2,3 y2,4

y3,1 y3,2 y3,3 y3,4







satisfying the following constraints:

y1,1 < y1,2 < y1,3 < y1,4

= = ∧
y2,1 < y2,2 < y2,3 < y2,4

= = = ∧
y3,1 < y3,2 < y3,3 < y3,4

The generic equivalence classes for the equality relation are then equal to:

{ y1,1, y2,1, y3,1 }, { y1,2, y2,2, y3,2 }, { y1,3 }, { y2,3, y3,3 }, { y1,4 }, { y2,4 }, { y3,4 } .

There is moreover a natural poset Pt built on the generic equality equivalence classes of the
matrix Y , whose partial ordering exactly is defined by the inequalities occuring in Conditions H
and V(t). In the case of our previous example, the poset P(3,4) is for instance given by the
graph (a) of Figure 1.

It is now immediate to see that the decomposition of Γt(X) over the basis of quasi-monomial
functions exactly is equivalent to find the set Q(t) of all weak-order linear quotients of Pt, i.e.,
of all total orders which are constructed over a set Q of the form Q = {Q1 < Q2 < . . . < Qq },
where (Qp)1≤p≤q denotes a partition of the set of all entries of Y such that each Qi is either an
element of Pt or the union of several elements of Pt, in such a way that the ordering of Pt is
always preserved. One can then check that

Γt(X) =
∑

Q∈Q(t)

M
C(Q)(X) (19)

where one sets C(Q) = (c1, c2, . . . , cq), where cp stands itself, for every 1 ≤ p ≤ q, for:

cp =
∑

yk,l∈Qp

ik jl . (20)
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( f )

( a )

( g ) ( h )

( b ) ( c ) ( d )

( e )

{y1,2, y2,2, y3,2}

{y1,3}

{y1,2, y2,2, y3,2}

{y1,1, y2,1, y3,1}

{y2,3, y3,3}

{y1,3}

{y1,2, y2,2, y3,2}

{y1,1, y2,1, y3,1}

{y2,4}

{y2,3, y3,3}

{y1,3}

{y1,2, y2,2, y3,2}

{y1,1, y2,1, y3,1}

{y1,4, y2,4}

{y2,3, y3,3}

{y1,2, y2,2, y3,2}

{y1,1, y2,1, y3,1}

{y1,4, y3,4}

{y2,4}

{y2,3, y3,3}

{y1,3}

{y1,2, y2,2, y3,2}

{y1,1, y2,1, y3,1}

{y3,4}

{y2,4}

{y1,4}

{y2,3, y3,3} {y1,4}

{y2,4}

{y3,4}

{y1,4}

{y3,4}

{y2,4}

{y2,3, y3,3}

{y1,3}

{y1,2, y2,2, y3,2}

{y1,1, y2,1, y3,1}

{y1,4}

{y3,4}

{y1,3}{y1,3}

{y1,1, y2,1, y3,1} {y1,1, y2,1, y3,1}

{y1,2, y2,2, y3,2}

{y1,4, y2,3, y3,3}{y1,4}

{y3,4}

{y2,4}

{y3,4}

{y2,4}

{y1,3}

{y3,4}

{y2,3, y3,3}

Figure 1: The poset P(3,4) ((a)) and the weak-order extensions of Q((3, 4)) ((b)-(h)).

Example 5.2 Let us again continue the previous example. The expansion of the quasi-symme-
tric function Γ(3,4)(X) on the basis of quasi-monomial functions can be immediately obtained
from Figure 1 where one represented (from (b) to (h)) all the weak-order linear quotients of P(3,4)

that compose Q(3, 4). The compositions which are associated by formula (20) with all the weak-
order linear quotients of Q(3, 4) given in Figure 1, are for instance listed below:

C(b) = (30, 60, 18, 96, 40, 56), C(c) = (30, 60, 18, 72, 64, 56),

C(d) = (30, 60, 18, 72, 40, 80), C(e) = (30, 60, 18, 24, 72, 40, 56),

C(f) = (30, 60, 18, 72, 24, 40, 56), C(g) = (30, 60, 18, 72, 40, 24, 56),

C(h) = (30, 60, 18, 72, 40, 56, 24) .

A simple application of Formula (19) then gives the expression of Γ(3,4)(X) on the basis of
quasi-monomial functions:

Γ(3,4)(X) = M(30,60,18,96,40,56)(X) +M(30,60,18,72,64,56)(X) +M(30,60,18,72,40,80)(X)

+M(30,60,18,24,72,40,56)(X) +M(30,60,18,72,24,40,56)(X)

+M(30,60,18,72,40,24,56)(X) +M(30,60,18,72,40,56,24)(X) .
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It then comes that Formulas (18) and (19) reduce the computation of MI(X) ◦MJ(X) to
the respective computations of

1. the poset Pt,

2. the set Q(t) of its weak-order linear quotients,

for every vector t ∈ T . The only non-trivial problem is now to be able to compute efficiently
the set Q(t). Due to the fact that the poset Pt is clearly a graded tree, all the weak-order linear
quotients of Pt can be computed using a slight adaptation, which is given below, of the general
algorithm that computes all the weak-order extensions of a given poset (see [2]).

function Weak ;
Input: N : a set of minimal elements of Pt.

h: height of a maximal antichain.

Output: C: all weak-order linear quotients of Pt.

begin
if N 6= ∅ then

# Computation of all maximal antichains of height h
# for all the weak-order extensions of Pt.
for each A ⊂ N do

h := h+ 1 ;
for each v ∈ A do

H[v] := h;

# Succ(A): all successors of the elements of A in Pt

New N := N \ A ∪ Succ(A) ;
Weak(New N, h) ;

else
# A weak-order linear quotient has been obtained.
for 1 ≤ k ≤ h do

C[k] = { xi,j, H[xi,j] = k } ;

print C ;

end

Algorithm 1: Function Weak – Computation of all weak-order linear quotients of a poset.

The results of [2] indeed show that the function Weak computes all weak-order linear
quotients of Pt when initialized with h = 0 and N equal to the generic equality equivalence class
of x1,1, i.e., with the set

N = {xi,j , xi,j = x1,1 } .

Note 5.3 The reader will easily check that the complexity of our method for computing the
plethysm MI(X) ◦MJ(X) as a sum of quasi-monomials functions is in time O(mnp(I, J)) and
in space O(nm−1 +mn2), where p(I, J) is the number of quasi-monomial functions involved in
the expansion of the computed plethysm.
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5.2 Plethysm of quasi-ribbon functions

Let again X be a totally ordered infinite set and let I, J be two compositions. Let us first recall
that Malvenuto and Reutenauer already proposed an algorithm for decomposing the plethysm
of two quasi-ribbon functions on the basis of quasi-ribbon functions (see Proposition 4.9). We
will now see how to improve the efficiency of their method.

Let I = (i1, . . . , ir) and J = (j1, . . . , js) be respectively two compositions of n and m1. We
will first recall that, by definition, one has:

FJ (X) =
∑

(y1,...,ym)∈FJ

y1 . . . ym , (21)

where the sum is taken over the set FJ of all vectors (y1, . . . , ym) of Xm satisfying Condition CJ

given below:

• Condition CJ: one has

{

yk < yk+1 for every k ∈ D(I),

yk ≤ yk+1 for every k 6∈ D(I).

The commutative monomials that occur in the right hand side of the previous expression
of FJ(X) can be totally ordered by lexicographic order. Thus, according to the definition of the
plethysm of two quasi-symmetric functions given in Section 4.2, we have:

FI(X) ◦ FJ(X) = FI({ y1 . . . ym, (y1, . . . , ym) ∈ FJ })

=
∑

(y1,1,...,y1,m)≺1···≺n−1(yn,1<···<yn,m)

∏

i∈[1,n]
j∈[1,m]

yi,j
(22)

where ≺k stands for � (the strict lexicographic order on Xm) when k ∈ D(I) and for ≺ (the
large lexicographic order on Xm) when k 6∈ D(I). In other words, one has:

FI(X) ◦ FJ(X) =
∑

Y ∈GI,J

∏

i∈[1,n],
j∈[1,m]

yi,j (23)

where the above sum is taken over the set GI,J of all m× n matrices

Y =







y1,1 . . . y1,m

...
...

...
yn,1 . . . yn,m






(24)

over the alphabet X, satisfying the two conditions:

• Condition HJ : for every k ∈ [1, n], the vector (yk,1, . . . , yk,m) satisfies Condition CJ;

• Condition VI : one has
{

(yk,1, . . . , yk,m) ≺ (yk+1,1, . . . , yk+1,m) for every k ∈ { i1, i1 + i2, . . . , i1 + . . . ir−1}
(yk,1, . . . , yk,m) � (yk+1,1, . . . , yk+1,m) for every k 6∈ {i1, i1 + i2, . . . , i1 + . . . ir−1}.

1Notice that n and m are not defined as in the previous section, since they do not play the same role if one

considers the quasi-monomial functions or the quasi-ribbon functions.
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Let us now first recall the method used by Malvenuto and Reutenauer (see [14]) to prove the
formula for the plethysm FI(X) ◦ FJ (X) with formula (23). It is based on the following lemma
that shows that Condition VI can be decomposed into a disjoint union of simple conditions.

Lemma 5.4 (Malvenuto, Reutenauer; [14]) There exist a set R of 2(n−1)m matrices of the form
R ∈ Mn−1,m where each Ri,j is one of the inequalities {<,≤, >,≥}, such that a matrix Y of
Mn,m(X) satisfies Condition VI if and only if it satisfies one of the conditions VR defined by
setting:

• Condition VR : ∀ i ∈ [1, n− 1], ∀ j ∈ [1,m], yi,j Ri,j yi+1,j.

The idea of the proof of this lemma is based on the following equivalences:

(a, b) ≺ (a′, b′)⇔











a < a′ and b ≥ b′

or
a ≤ a′ and b < b′

(a, b) � (a′, b′)⇔











a ≤ a′ and b ≤ b′

or
a < a′ and b > b′

that can easily be extended by induction to higher orders, considering all the entries of a vector
but the first one as playing the role of b in the previous formulas. For instance, one can see that

(a, b, c) ≺ (a′, b′, c′)⇔











a < a′ and (b, c) ≥ (b′, c′)
or

a ≤ a′ and (b, c) < (b′, c′)

Note 5.5 Notice that if one builds the elements of R as seen previously, a matrix is generally
very similar to the previous one in the list. The main idea of our algorithm for computing the
plethysm of to quasi-ribbon functions is to take into account this property: the algorithm we
provide builds the so-called ideal lattice of a poset associated with the matrix by reusing as much
as possible of the ideal lattice of the previous matrix in the list.

Let R be an element of R. Let us define

∆R(X) =
∑

Y ∈VR∩H

∏

i∈[1,n]
j∈[1,m]

yi,j (25)

where VR (resp. H) denotes the set of the matrices ofMn,m(X) satisfying Condition VR (resp.
Condition HJ). It is then immediate to see that one has:

FI(X) ◦ FJ(X) =
∑

R∈R

∆R(X) (26)

which reduces the problem of computing the plethysm FI(X) ◦ FJ (X) to the problem of com-
puting ∆R(X) for each R ∈ R.

One can then compute ∆R(X) as a sum of quasi-ribbon functions by using the technique
invented by Malvenuto and Reutenauer in [14]. Let R be an element of R. One first associates
with R the two posets PR and P ′R built on Y = {yi,j, i ∈ [1, n], j ∈ [1,m] } and defined by the
relations
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x <PR
y if x ≤ y or x < y,

x <P ′
R
y if x ≤ y or y < x.

According to Proposition 3.5, that can easily be adapted to our context, we can deduce from
Formula (25) that the quasi-ribbon functions that are involved in the decomposition of ∆R(X),
are in direct correspondance with the linear extensions of the poset PR. This old result of Gessel
immediately shows that the quasi-symmetric function ∆R(X) is equal to

∆R(X) =
∑

L∈L(PR)

FC(L) , (27)

where, for each total order L = { l1 < . . . < lnm } of L(PR), the composition C(L) = (c1, . . . , cr)
of nm is defined by asking that its associated descent set is equal to

D(C(L)) = { i ∈ [1, nm− 1], li > li+1 in P ′R } ,

where the defining inequality of this last set holds in X. The decomposition of FI(X) ◦ FJ(X)
over the basis of quasi-ribbon functions is then obtained by the conjunction of this last formula
with relation (26).

Example 5.6 Let us set I = (1, 1, 1) and J = (2, 1). In this case, the computation of the
plethysm F(1,1,1)(X) ◦ F(2,1)(X) is based on the study of the families of 3× 3 matrices

Y =







y1,1 y1,2 y1,3

y2,1 y2,2 y2,3

y3,1 y3,2 y3,3







satisfying Condition H(2,1) and Condition V(1,1,1). This last condition exactly means that each
row vector of Y must be strictly smaller (in the lexicographic order) than its successor in Y .
The family R, given by Lemma 5.4, consists in 22.3 = 64 different matrices R.

Among all elements of R, let us consider the relation R given by

(

∧| ∧ ∨|
∧| ∧ ∨|

)

So the complete set of inequalities that Y has to satisfy can be represented as

y1,1 ≤ y1,2 < y1,3

∧| ∧ ∨|
y2,1 ≤ y2,2 < y2,3

∧| ∧ ∨|
y3,1 ≤ y3,2 < y3,3

Let us now describe the computation of ∆R(X), which represents the contribution of R in
the decomposition of the plethysm F(1,1,1)(X) ◦ F(2,1)(X) given by formula (26). To this aim,
let us first write down the inequalities corresponding to the poset P ′R obtained by reverting all
strict edges of the previous set:
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y1,1 ≤ y1,2 > y1,3

∧| ∨ ∨|
y2,1 ≤ y2,2 > y2,3

∧| ∨ ∨|
y3,1 ≤ y3,2 > y3,3

One can then easily compute the two posets PR and P ′R associated with R. Both posets are
represented in Figure 2.

( b )( a )

y1,3

y2,3

y3,3

y3,2

y3,1 y2,2

y2,1 y1,2

y1,1

y1,3

y2,3

y3,3

y3,2

y3,1

y2,2

y2,1

y1,2

y1,1

Figure 2: The posets PR and P ′R associated with R.

We can now compute for all linear extensions L of PR the associated compositions C(L):

• L = y1,1 ≤ y2,1 ≤ y3,1 ≤ y1,2 < y2,2 < y3,2 < y3,3 ≤ y2,3 ≤ y1,3 ⇒ C(L) = (5, 1, 3)

• L = y1,1 ≤ y2,1 ≤ y1,2 < y3,1 ≤ y2,2 < y3,2 < y3,3 ≤ y2,3 ≤ y1,3 ⇒ C(L) = (3, 2, 1, 3)

• L = y1,1 ≤ y2,1 ≤ y1,2 < y2,2 < y3,1 ≤ y3,2 < y3,3 ≤ y2,3 ≤ y1,3 ⇒ C(L) = (4, 2, 3)

• L = y1,1 ≤ y1,2 < y2,1 ≤ y3,1 ≤ y2,2 < y3,2 < y3,3 ≤ y2,3 ≤ y1,3 ⇒ C(L) = (2, 3, 1, 3)

• L = y1,1 ≤ y1,2 < y2,1 ≤ y2,2 < y3,1 ≤ y3,2 < y3,3 ≤ y2,3 ≤ y1,3 ⇒ C(L) = (2, 2, 2, 3)

From these last considerations, it is now immediate to deduce the decomposition of ∆R on
the basis of quasi-ribbon functions:

∆R(X) = F(5,1,3)(X) + F(3,2,1,3)(X) + F(4,2,3)(X) + F(2,3,1,3)(X) + F(2,2,2,3)(X) .

Up to now, we presented the ideas of Malvenuto and Reutenauer in [14] to decompose the
plethysm FI(X) ◦ FJ(X) on the basis of quasi-ribbon functions. Their ideas are however not
very effective and we will now present a technique to compute the plethysm that is based on the
two following results of lattice theory.

An ideal of a poset P is a subset I of P such that, for all x ∈ I, the relation y ≤ x implies
that y ∈ I. The ideal lattice of P is the set of all ideals of P ordered by inclusion. This lattice
is denoted by I(P ) = (I(P ), U), where U represents the cover relation.

Theorem 5.7 (Bonnet, Pouzet; [3]) There is a bijection between all linear extensions of a poset
and the maximal chains of the ideal lattice of this poset.
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A result proved by Nourine (see [15, 7]) can be transformed in a constructive way when used
in conjunction ideas of interval doubling (see [1]) we will not present there. However, one finally
gets to the following proposition:

Proposition 5.8 Let P and P ′ be two posets such that P ′ = P ∪ {x} where x is a maximal
element of P ′. Then the ideal lattice T ′ of P ′ can be constructed from the ideal lattice T of P by
simply creating a copy of the interval [x′,max(T )] in order to construct [x,max(T ′)] (where x′

denotes the supremum of the set A ⊂ P that consists of all predecessors of x in P ′).

The main idea of our algorithm consists in treating the matrices R column by column to use
the fact that a matrix is generally very similar to the previous one in the list of R. In order to
present our algorithm, let us first introduce some new notations. For every 1 ≤ v ≤ m, let us
set

Yv =







y1,v

...
yn,v






and Y1...v =







y1,1 . . . y1,v

...
...

...
yn,1 . . . yn,v






.

Denote by Pv and P ′v the posets corresponding to Yv and by by Tv the ideal lattice of Pv.
Denote by Lv (resp. L′v) a linear extension of Pv (resp. P ′v). One defines in the same way P1...v,
P ′1...v, L1...v, L

′
1...v and T1...v associated with the matrix Y1...v.

Our algorithm consists in repeating the following operations when R runs over the set R (we
denote by R′ the predecessor of R in R if it exists):

1. Compute the greatest integer v such that the first v-th columns of R are the same as the
first v-th columns of R′.

2. Compute the ideal lattice of Y1...v by deleting in the ideal lattice of R′ the elements yk,l

with l > v.

3. Compute the ideal lattice I(PR) by adding each column one at a time as described in
Proposition 5.8.

4. Compute LR and finally compute ∆R(X).

Note 5.9 Let I and J be two compositions of respectively n and m. The reader may easily
check that our method for computing the plethysm FI(X) ◦ FJ(X) has a time complexity of
O(2mn (nm2 + |E|)) and a space complexity of O(|E| + |X|), where T = (X,E) is the ideal
lattice of maximal size within all possible ideal lattices corresponding to a poset associated with
a given choice of the graph GR.
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