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Résumé

Cet article présente une étude combinatoire du monoide Chinois, un monoide
ternaire proche du monoide plaxique, fondé sur le schéma cba = bea = cab. Un algo-
rithme proche de ’algorithme de Schensted nous permet de caractériser les classes
d’équivalence et d’exhiber une section du monoide. Nous énoncons également une
correspondance de Robinson-Schensted pour le monoide Chinois avant de nous in-
téresser au calcul du cardinal de certaines classes. Ce travail a permis de développer
de nouveaux outils combinatoires. Nous avons trouvé un plongement de chacune
des classes d’équivalence dans la plus grande classe. La derniére partie de cet article
présente 1’étude des relations de conjugaison.

Abstract

This paper presents a combinatorial study of the Chinese monoid, a ternary
monoid related to the plactic monoid and based on the rewritings cba = beca =
cab. An algorithm similar to Schensted’s algorithm yields a characterisation of
the equivalence classes and a cross-section theorem. We also establish a Robinson-
Schensted correspondence for the Chinese monoid before computing the order of
specific Chinese classes. For this work, we had to develop some new combinatorial
tools. Among other things we discovered an embedding of every equivalence class in
the greatest one. Finally, the end of this paper is devoted to the study of conjugacy
classes.
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Introduction

A large part of modern algebraic combinatorics can be traced back to Schensted’s seminal
paper of 1961 (cf [11]). In this paper, Schensted introduced an algorithm (now called
Schensted’s algorithm) for solving the elementary algorithmical problem of finding the
length of the longest increasing subsequence of a sequence of integers.

Precisely, this algorithm associates with every word w over some totally ordered al-
phabet A a Young tableau P(w), called the insertion tableau of w, and the length of the
first row of P(w) is exactly the length of the longest increasing subsequence of w. This
property was generalized by Greene who gave an interpretation of the length of every row
of the insertion tableau in terms of maximal lengths of shuffles of increasing subsequences
(cf [3]). It is also worth noting that Schensted’s algorithm is the main ingredient of the
Robinson-Schensted correspondance which is a fundamental bijection between words and
pairs (P, Q) of Young tableaux of the same shape (cf [10]).

In 1970, Knuth proved that the insertion tableaux of two words u,v are the same if
and only if these words are equivalent with respect to the congruence of A* generated by

the relations
aba = baa, bba = bab when a < b,

(1)

(see [4]). Rather curiously Knuth did not use the fact that these relations were the
definition relations of a monoid. This simple but fundamental remark was made by
Lascoux and Schutzenbeger who decided to call plactic monoid the monoid defined by the

acb = cab, bca = bac when a < b < ¢

relations (1) (cf[6]). Initially they used the plactic monoid to derive one of the first proofs
of the so-called Richardson-Littlewood rule (which yields a combinatorial interpretation
of the multiplicity of a Schur function in a product of Schur functions, i.e., the multiplicity
of a irreducible representation of &,, of a tensor product of two irreducible representations
of &,) (cf [12, 9]). Lascoux and Schiitzenberger then developped in a decisive way the
theory of the plactic monoid which became the main tool in several combinatorial contexts
(Kostka-Foulkes polynomials, charge and cocharge of a Young tableau, standards bases,
etc) (see [6, 7] for instance).

More recently Date, Jimbo and Miwa discovered a strong relationship between the
usual Robinson-Schensted correspondance and the quantum group U,(gl,,) (cf [1]). They
showed that if V{;) denotes the basic representation of U,(gl,), the transition matrix in
V(%k from the basis of monomial tensors (i.e. words) to the Gelfand-Zetlin basis (indexed
by pairs of Young tableaux) specializes when ¢ = 0 to a permutation matrix given by
the Robinson-Schensted map. In the same spirit, Leclerc and Thibon even obtained
a quantum characterization of the plactic monoid. They proved that two words u =
and v = aj, ... a; of {a1 < ... < a,}* are equivalent with respect to the

(7SI ¢ 7%

plactic relations iff one has
Tiryiy o Tigig = Tirr -+« + Lhgodn mod ¢ £

in the classical quantum deformation A,(Mat,) of the coordinate ring of n x n matrices
over a field K of characteristic 0, where £ denotes the lattice generated over K([q| by
quantum bitableaux (cf [8] for details).

All these facts clearly motivate further study of the plactic monoid as a fundamental
combinatorial and algebraic object. Several characterizations of the plactic monoid have



been given (cf [6]), but none was based on growth properties. The Hilbert series of the
plactic monoid is indeed given by Schur-Littlewood formula. In other words,

I 1
ST T A

acA a<b€EA

(2)

where m; denotes the number of plactic classes of evaluation I. It seems therefore natural
to try to find all monoids whose Hilbert series are given by the above identity. Duchamp,
Krob and Schiitzenberger obtained a partial result in this direction. They showed that
there were exactly three families of ternary monoids (i.e., generated by 3-letters multi-
homogeneous relations) whose Hilbert series is given by formula (2). But only two of
these three families are regular: the plactic monoid, and the so-called Chinese monoid.
This Chinese monoid appeared to be naturally connected with classical bijective proofs
of Schur-Littlewood identities. Therefore, a deeper study of this new object seemed to be
in order.

This paper constitutes a first combinatorial study of the chinese monoid, where we
obtained several new results. After pointing out some basic properties of the Chinese
monoid, we devote Section 2 to an insertion algorithm that yields a cross-section theorem
for the Chinese monoid. Sections 3 and 4 contain a fine study of Chinese classes in the
standard case: in violent contrast to the plactic monoid where the distribution of all words
in different classes is rather uniform, there is a great class in the Chinese case. Section 5
gives a framework for the enumeration of Chinese classes. Finally Section 6 is devoted
to the study of the conjugacy relation : we prove that, as in the plactic case, conjugacy
classes are identical to evaluation classes.
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1 Definition and first properties

1.1 Definition
Definition 1.1 (Duchamp, Krob, [2]) Let (A, <) be a totally ordered alphabet. The Chi-

nese congruence is the congruence defined by the relations

cba = cab = bca  for every a < b < ¢, (3)
aba = baa, bba = bab  for every a < b. (4)

The Chinese monoid CH (A, <) is the quotient monoid of A* by the Chinese congruence.
Note 1.2 Obviously, (3) and (4) together are equivalent to
cba = cab = bea for every a < b < e. (5)

Therefore we will almost exclusively use (5) throughout the paper.

For instance, Figure 1 shows the congruence class of dcba.



dbca

cdba dcba dcab

chda cdab dacb

This is the congruence graph of dcha. Each edge stands for an elemen-
tary rewriting. The thick edge between dcba and dbca means that these
words are equivalent thanks to two elementary congruences, namely
dcb = dbc and cha = bca.

Figure 1: The class of dcha

1.2 Schitzenberger’s Involution

We shall denote by CH(A,>) the Chinese monoid built over the alphabet A supplied
with the opposite order of <. Denote by (A*)° the opposite monoid associated with A*.
We consider the morphism § from A* into (A*)° defined by:

1(ay...ap) = ag...as,

i.e., 1 maps every word w to its mirror image. The morphism 7 is compatible with the
Chinese monoid structure, that is:

u=cv & g(u) =5 i(v), (6)

i.e., § actually defines a morphism from CH (A, <) into (CH(A,>))°. To prove this, it is
enough to check that
1(u) = 4(v)

for every pair (u,v) of words involved in an elementary congruence of CH(A, <). Choose
a <b<casin (5). We have

1(cba) = abe =5 g(cab) = bac =5  3(bca) = ach,

for the Chinese congruence =5 of CH(A,>).

For an alphabet A over the ordered letters a, b, . . ., z consider the elementary morphism
I: (A", <) = (A*,>) defined by Z(a) = 2z,Z(b) = y,...,Z(2) = a. Then # =T oy is
an isomorphism from CH (A, <) to (CH(A, <))°, which is in fact an involution of the set
CH(A, <), called Schiitzenberger’s involution of CH(A, <).

As an elementary application, Schiitzenberger’s involution helps finding isomorphic
classes in the Chinese monoid. Figure 2 shows a simple example of classes that are
Schutzenberger-equivalent. Note also the symmetry of Figure 1, since the class of dcha is
invariant under Schutzenberger’s involution.



bfaced fabced cbdefa cbdfae

bfcﬁ fbaced cbdfea

cbfdae
bcefad cfabde
—
bcfaed bcfdea bcedfa facbde cbfade
bcfead bcefda fcabde cfbade
bcfeda fcbade

Figure 2: Schutzenberger-equivalent classes: fachde and bcedfa

1.3 Standardization

Let w be a word over the alphabet A. We associate with it a standard word! Std(w) over
the alphabet A x N obtained by numbering all occurrences of the same letter 1,2,3, ...
from right to left. For instance, we have:

Std (babbaach ) = byaszhsh,aza;cib; -
This standardization process is compatible with the chinese congruence. Indeed:
u=v (CH(A,<)) = Std(u)=Std(v) (CH(A xN, <)), (7)
where the order over A x N is the lexicographic order defined by

(a,7) < (8,7) iff a<for(a=pandi<j).

1.4 Collapsing the intervals

Let I be an interval of A, ¢ a letter of [ and consider the new alphabet A; = A\ U {¢}
that we totally order by restricting < to A\ I and defining for every a € A\ [

o<1 iff a < (3 for some 3 € I.
This definition makes sense since [ is an interval. We can now define the morphism y;

from A* into A" by setting

xi(a) =

{oz ifad¢l

1 ifael

In other words, x; maps every word to the word obtained by replacing every letter of [
with the same single letter ¢. This morphism is compatible with the Chinese congruence:

u=v = i) = ). (8)

1 A standard word is a word without repetition of letters.



We just have to check property (8) for the defining relations of the Chinese congruence.
Just observe that:

X{ap}(ba) = x{apy(cab) = x(ap(bea), xipep(cba) = xqpey(cab) = X (.1 (bea).
But these last relations reduce to

cbb = cbb = beb, bba = bab = bba,

which is obviously satisfied. This concludes the proof of (8).

2 A representation of the Chinese monoid

2.1 Chinese Staircases

Let A be a totally ordered alphabet of n letters. A p-staircase diagram is a Ferrers diagram
of shape (1,2, ... ,p) that we draw in the following way:

the example being given here for p = 4. A partial Chinese staircase is a p-staircase
diagram filled with nonnegative integers? , e.g.,

We index the rows (resp. the columns) of the diagram with an initial segment of A from
top to bottom (resp. from right to left.) i.e.,

d c b a

this example being for A = {a,b,c,d,e}, p = 4.

2 Most of the time, we will omit zeros for clarity.



We denote indifferently by 0,4 the cell in row a, column 3 or its contents. Formally,
a partial staircase is just an application o from A x A into N such that o,5 # 0 implies
p > «a > (3. Furthermore we shorten o, into o,.

A full Chinese staircase is a n-Chinese staircase over a n letters alphabet. In this
paper, ‘Chinese staircase’ or ‘staircase’ for short designates a full Chinese staircase unless
otherwise precised.

Note 2.1 Strictly speaking, a given staircase is associated with an initial segment of the
alphabet. However, it is fairly easy to extend a p-staircase to a p + l-staircase by setting
the appropriate entries to 0. Conversely, if z is the greatest letter of a p-staircase o, and
if the last row of ¢ is empty, o reduces to a p — 1-staircase.

We need a form of structural induction on staircases. Let o be a p-staircase over the
initial segment a, b, ...,y. Let row R be an application from a.b, ...,z into N. We denote
by ¢’ = (o, R) the p 4 l-staircase built from o by setting o = R(«).

Conversely, if o is a p-staircase with p > 0, let R; be the bottom row of o, ¢’ the
p — l-staircase obtained by deleting the bottom row of o. Then o = (o', Ry).

Ry

z a z a

Definition 2.2 The hook corresponding to a letter « is the union of the row and the
column indexed by .

Example 2.3 The hook of ¢ and the first diagonal of the staircase:

. d

d c b a

Note 2.4 The way we draw Ferrers diagrams is neither the French nor the English usual
notation. However, since we are going to describe an insertion algorithm, this is a suitable
notation to mimic the classical Schensted algorithm, where letters move from bottom to
top and from right to left.

A word w is said to be a Chinese row of type z if and only if it has the following
structure
w = (za)". .. (zy)" ()"
where a,b,...,z denotes the initial segment of A ending with z, and where every n,
belongs to N. Now let o be a Chinese staircase. We associate to every row of o a Chinese



row in a natural way. Indeed, if the z*" row of ¢ has the form

Oz Ozy Oza ’

z Y a

then the associated Chinese row is just the word equal to
(s (29)° (2)°"
We say that a word w is a Chinese staircase word if and only if it can be written as
w=lly... 1, (9)
where the [, are Chinese rows of respective increasing types a,b, ..., z.

Definition 2.5 The row-reading of a Chinese staircase o is the word w obtained by con-
catenating all Chinese rows associated with the rows of o from top to bottom.

We will define later (in Definition (2.18)) the column-reading of a Chinese staircase as
a dual notion.

2.2 The Insertion Algorithm

We shall now describe an algorithm that sends a word of A* to a Chinese staircase. The
basic idea is to try to adapt Schensted algorithm (Schensted, [11], Knuth, [4], Knuth, [5]).
The basic step builds upon a Chinese staircase o and a letter o a new Chinese staircase
denoted by o.a. Hence, starting with the empty staircase €, we build step by step a
staircase (- - ((e.ay).az) - - -).ax corresponding to the word ajas . .. ay.

Algorithm 2.6 (The insertion algorithm)
Let o be a staircase, a a letter to insert in o. Start with o = (¢, R;), where Ry is the
bottom row of o, z the greatest letter of o.

Ry

z a z a

1. If @ > z, then 0.aa = 0.
2. If @ = z, then 0.a = (0, R}) where R is obtained from R; by adding 1 to cell o,:
R, R

Oz Oza — oz+1 Oza

3. If a < z, let B be the greatest letter whose cell on R; does not contain 0 or if such
a (3 does not exist, set 3 = a. Three distinct cases appear:



3a. If o > 3, then 0.0 = (0", Ry).
3b. If o < B < z, then 0. = (0.3, RY), where R} is obtained from R; by adding

1 to cell o,, and substracting 1 from cell o,5:

R, R}

0O — 0 (%] Oza — 0O — 0 055—1 za+1
z Ié] o z Ié] o

3e. If a < 8=z, then 0.a = (¢/, R}), where R} is obtained from R; by adding 1
to cell 0., and substracting 1 from cell o,:

Ry R

e Oza — oz—1 oza+1

z a z a

Examples 2.7 On the alphabet a, b, c, words cba, cab, bca map to the same staircase:

1 c

c b a

Figure 3 shows the insertion algorithm in action.

a a
insert ¢ b insert b b
e —— E——
Step 2 Step 3c
1 c 1 c
c b a c b a
a a a
b insert a b b is bumped 1 b
E—— E—
Step 3b Step 2
1 c 0 1 c 1 c
c b a c b a c b a

Figure 3: The insertion of cha

Similarly the reader may check that the word abababchca gives:

1 a

1 2 |b




We will now establish some basic properties of the insertion algorithm.

Definition 2.8 Write down explicitly all the steps in the insertion of a letter a = ay.
The insertion algorithm deals with a decreasing sequence of partial staircases:

0.1 =(0".az, R) (by step s,) =
((o".as, Ry), RY) (by step s3) =
(((c®).a4, RY), RY), RY) (by step s3) =

((--- (a(k_l).ozk, Ry 1),...), R)) (by step sx_1)
(- (™, Ry),...), RY) (by step sy).

The sequence oy —5( R, ay) 25(RYy, a3) ... (Ry_|, ar) — R, describes accurately the ex-
ecution of the algorithm.®> We call such a sequence an insertion sequence.

Definition 2.9 Let o be a staircase. An exposed entry is a cell holding a non zero value
such that all cells to its west and to its south-west are empty (that is: a 0,3 such that
Oapg >0, 0,5 =0 fory>a and § > 3, and 0,5 = 0 for § > ). An exposed letter is a
letter that indexes a column corresponding to an exposed entry.

Proposition 2.10 The insertion algorithm yields an increasing sequence of letters
i, Qg, . ..oy that takes as values all the exposed letters that are greater than oy. Moreover,
changes of value occur on the rows of corresponding exposed entries, by application of
Step 3b. Other intermediate steps correspond to Step 3a. The last step (Ry_,, op) —= R}
is either Step 2 or Step 3c; specifically, oy is the greatest letter of row Rj.

Proof — Consider o; = o;41. Step s; has to be Step 3a or Step 3b. If s; is Step 3a, then
a1 = ;. If s; is Step 3b, then a;41 = B > ;. The letter 3 has to be an exposed letter;
if it were not, there would an exposed letter v corresponding to an entry to the lower left
of 3, and there would be a step 7 < 7 in the insertion sequence that would read: «; 2 v.

Step 1 ensures that the algorithm is well-defined even on partial staircases, but it can
never occur for an insertion in a full staircase: by inspection of Step 3a and Step 3b, the
letter o; always occur in o=Y). If ; is the greatest letter of ¢(*=1), then i = k and the
algorithm terminates by applying Step 2 or Step 3c. O

Definition 2.11 Let ¥ be the set of Chinese staircases over A. The insertion algorithm
defines an action A of the monoid A* on X:

A ¥ ox A* — b
(o, w) — ow=/(---((0.a1).a3) - ).a,
Looking for analogies with Schensted algorithm, it seems natural to try and find what a

good ()-symbol might be in this context. This will help us find a kindred of Robinson-
Schensted correspondence. This question we will address in Section 5.2.

Definition 2.12 We denote by C(o) the set of words w of A* such that ew = o. We
also denote by C(w) the Chinese classe of w. Theorem 2.1/, to follow, fully justifies the
use of a similar notation.

3 In semantics, this is called a trace of the algorithm.

10



Lemma 2.13 For any two words of C(o), one is a permutation of the other.

Proof — Set
o], = E Oap + Z O8a + Oa,
a>g B>a
that is: sum all the cells in the hook of a. It is immediate to check that [o.a|; = |o];+ 58,

where §9 denotes the Kronecker symbol of @ and 3. Hence, if ¢ = e.w, |o|, counts the
number of « that have been inserted in ¢, i.e., the number of o in w, |w|,. O

2.3 The Cross-Section Theorem

Theorem 2.14 The Chinese staircase words form a cross-section of the Chinese monotd.
More precisely:

— Property 1: For any words v and w for which the insertion algorithm yields the
same staircase o, v and w are equivalent under the Chinese congruence.

— Property 2: For any words v and w equivalent under the Chinese congruence, for
any staircase o, o.v = o.Ww.

Proof —

Property 1: First we prove that we can assume that v is the row normal form of o.

Lemma 2.15 Let o be a staircase and t the associated row normal form. Then o is
exactly the staircase obtained by the insertion algorithm applied to t.

Proof — This lemma is obvious since the rows of ¢ are filled from top to bottom when
inserting ¢. O

Hence, let w be a generic word and v = ¢ be the row normal form of o. The proof
is obtained by induction on the number of letters of w. If |w| = 2, there is nothing to
prove. If |w| > 3, decompose w = w;a with a € A. Let Property 1 hold for wy: if oy
is the staircase obtained by the insertion of wy, its row normal form ¢; is congruent to
wy. We are going to “simulate” the insertion algorithm through elementary congruences,
proving thus that w;a can actually be rewritten into ¢ in an effective way. Paralleling the
algorithm, we perform a structural induction on the staircase o;.

Let o be a partial staircase of oy, let t be the row normal form of o. Decompose
o = (¢/, Ry) and t = t'r with r the Chinese row associated with R;. The induction
hypothesis states that, for any 3 smaller than the greatest letter of o', ¢’ concatenated with
3 is congruent to the row normal form of ¢’.3. Keep in mind that r = (za)*(zb)*...(zy)*z*
and insert « in r:

— Step 1: Not applicable.
— Step 2: 0.a = (o', R}), with ' = rz. No rewriting is necessary.

— Step 3a: By applying the insertion algorithm, we obtain 0.0 = (¢’.c, R}). Since
B < a <z, r = (za)(zb)*...(zy)*. Denote by r’ the Chinese row associated
with R}. The induction hypothesis applies since @ < z, so we just have to verify

11



that ra = ar’. Since a > 3, for every (z7) occuring in r, v < 8 < a, so that
(z7)a = a(z7) : a crosses through each pair of letters (zv). Hence ra = ar’, where
r’ is the Chinese word associated with Rj.

— Step 3b: By applying the insertion algorithm, we obtain similarly o.ao = (¢'.38, R}).
Since 3 < z, r = (za)*(zb)*...(zy)*. The induction hypothesis applies since 3 < z,
so we just have to verify that ra = 3r'.

— Since a < 3, (20)a = #(za), hence (z3) is replaced with (za).

— Since 3 is defined as the greatest letter whose cell does not contain 0, for every
(z7) occuring in r, (7)o = a(zy): B crosses through each pair of letters (zv),
as in Step 3a.

— For every (zv) occuring in r with v > a, (zv)(za) = z(za)y = (za)(zy), so
that (z«) is able to move to the correct position in 7/,

— Step 3¢: Let us write r = (za)*(2b)*...(zy)*2* with &k > 0. Since a < z, 2*a =
(za)z"~1. Proceed as in Step 3b to move (za) to the correct position and conclude
that ra = r'.

Property 2: We have to check that the insertion algorithm is compatible with the Chinese
congruence. Clearly, it is enough to check Property 2 for elementary rewritings. So we
must prove:

o.cba = 0.bca = o.cab,

for every a < b < ¢. The proof proceeds by induction on the size p of the staircase. The
induction hypothesis is

Let o be a p-staircase of greatest letter z, let a, b, ¢ be three letters such that
a<b< <z Then o.cbha = c.cab= 0.bca.

If p = 2, checking that both insertions give the same result is easy. For instance,

Oa Oa Ta

oy Oba bba - op+1 Tpat1 - oy Opa bab

Lest o be a p-staircase of greatest letter z. Let a, b, ¢ be three letters such that
a < b < c <z Assume that the induction hypothesis holds for p — 1. Decompose o as
o = (o', R) and consider all possible cases.

1. ¢ # z. So the induction hypothesis holds for every triplet of suitable letters smaller
than ¢ or equal to c.

1.1. Row R contains no exposed letter, or the exposed letter d in row R verifies
d < a. Then the insertion sequences of a, b, and ¢ do not interfere with R, that
is: a&(R,a), b%(]%, b), and ci>(R, ¢). By induction o'.cba = ¢'.cab =
o'.bea, hence o.cba = o.cab = o.bca.

12



1.2. The exposed letter in row R is a’ with @ < a’ < b. Then the insertion sequence
of a starts with a 3—b>(R’, a'), whereas b and ¢ yield b-2% b and ¢ 2% c. So we
have o.cba = (o'.cba’, R'), 0.bca = (o'.bca’;, R'), o.cab = (¢'.ca’b, R'). The
induction hypothesis applies for o/, @', b, ¢, and the result holds. The following
diagram describes the transformation from R to R':

o — o | o | | em | - |R
0 — 0 | o,p=1 | = | osatt | - | R
z b a’ a

1.3. The exposed letter in R is b with b < b < ¢. We still have that ¢ 22 ¢, SO we
just have to examine what happens for the insertion of ba versus the insertion

of ab.

First we insert ba in o. The start of the insertion sequence of bis: b 3—b>(Rl, b').
Let a’ be the exposed letter of R;. We necessarily have b’ > a’ > b. Therefore,

the subsequent insertion of a yields a 3—b>(R’, a').

Now we insert ab in . The start of the insertion sequence of a is: a 3—b>(R2, b').
Let d be the exposed letter of Ry. If d > b, then d = &’ and 63—b>(R’,a’). If
d < b, then b = ' and bg—b>(R’,a’). Thus o.cba = o.cab = (o'.cb'a’, R'), and
o.bca = (o'.t'ca’;, R'). The induction hypothesis applies for o', a’, V', ¢, and
the result holds. The following diagram describes the transformation from R

to R":
6 — 0 2! T zal Ozb Oza R
0 — 0 | o-1 R | e | ot wo | osatl - | R
z b’ a’ b a

1.4. The exposed letter in R is ¢ with ¢ < ¢'.

First we insert cba in o. the start of the insertion sequence of ¢ is: ¢ 3—b>(Rl, )
or ci(Rl,c’). Let b’ be the exposed letter of R;. We necessarily have
d > b > c. Write the start of the insertion sequence of b: 63—b>(32,b’)
or bg(Rg,b’). Let o' be the exposed letter of R,. We necessarily have
b > o' > b. Write the start of the insertion sequence of a: a3—b>(R’,a’) or
a=5(R,d").

Examining the insertion of bea and cab in o is tedious, and identical to the
previous case considerations. In the end, we have that o.cba = o.cab = 0.bca =

(o'.c't'a’, R'), so the result holds.

2. ¢ = z. In that case, the insertion of ¢ always proceeds as ¢ SN Ry, with ¢ an exposed
letter of R;.

2.1 Row R contains no exposed letter, or the exposed letter d in row R verifies

d < b. Then o.cha = o.cab = o.bca = (o’.b, R'). The result holds. The
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following diagram describes the transformation from R to R':

0o — 0 Oeb Oea R
6 — 0 Tcb Ocatl R/
c b a

2.2. The exposed letter in R is b’ with ¢ > & > b. We may have ¢ = b or ¢ > ¥/,
but this is irrelevant; in any case, we have o.cba = o.cab = o.bca = (¢'.0', R').
The result holds. The following diagram describes the transformation from R

to R':
0| ey || ew | | ew | - |R
— 0 | o1 oeptl Ceatl -~ | R
b’ b a
Thus ends the proof of Property 2 and of the theorem. O

Note 2.16 Let o be a staircase, v, w two words. By Property 2, if v = w, o.v = o.w.
So action A is compatible with the Chinese congruence, and the quotient A/= is well
defined. Consider oy another staircase. By Theorem 2.14, C(oy) is a Chinese class, so
the staircase o.01 = o.w is constant for w € C(0y).* This law defines an action of ¥ on
itself which is isomorphic to A/= thanks to the isomorphism ¢ — C(o). Finally, (X,.) is
isomorphic to the Chinese monoid Ch(A, <).

Note 2.17 We can easily prove that Property 2 implies the following fact:
— Property 3: For any ¢ and ¢’ staircase words, ¢t = ¢ implies t = ¢'.

Consider a word w. Let o = e.w. The row normal form of ¢ is a normal form of C'(w): it
is identical for all words of C'(w) and uniquely identifies o, therefore C'(w).

2.4 Dual properties

We define the column-reading of a staircase the way we defined the row-reading in Sec-
tion 2.1. A word w is a Chinese column of type a if and only if it has the following
structure

w=(a)"...(ba)™ (za)"

where a,b,...,z denotes the final interval of A beginning with a and where every n,
belongs to N. We can also define the Chinese column associated with the column of a
given staircase o (we read the column from top to bottom.)

We say that a word w is a Chinese column staircase word if and only if it can be
written as

w="11.. 1 (10)

where the [/, are Chinese columns of respective types a.

4 For a completely algorithmic definition, use ¢1, the row normal form of &1, in the insertion algorithm.
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Definition 2.18 The column normal form of a Chinese staircase o is the word w obtained
by concatening all Chinese columns associated with the columns of o from right to left.

Proposition 2.19 Let o be a staircase and t (resp. ¢) the Chinese row (resp. column)
staircase word associated with o. Then t and ¢ are equivalent with respect to the Chinese
congruence.

Proof — 1t is clear that o is the staircase obtained by the insertion algorithm applied
to ¢. The conclusion then follows from Property 1.

The following result gives us a simple geometric interpretation of Schiutzenberger’s
involution on staircases. Define the second diagonal of a staircase o over the alphabet

A ={a,b,...,z} as the line of cells indexed by (a, 2), (b, y),. ...

Proposition 2.20 Let o be a staircase. Schiitzenberger’s involution acts on o by per-
forming a symmetry about the second diagonal of o.

Example 2.21

a a
1 b b
1 c 1 c
o= ; — #(o) = ] ;
1 e 1 e
1 |f 1 |f
f e d c b a f e d c b a

The reader may be interested to note that this is the same example as in Figure 2.

3 Backtracking the Insertion Algorithm

We now place consider the standard case, where all letters used in a given word are
distinct.

Definition 3.1 Let o be a staircase. o is said to be a standard staircase if a word of
C(o) is a permutation over letters of the alphabet, o is a full standard staircase if o is a
permutation over all letters of the alphabet. Thanks to Lemma 2.13, we know that o is a
standard staircase if and only if each hook of o contains at most one 1, all other entries
being 0; o is a full standard staircase if and only if each hook of o contains exactly one 1.

In that case, we can identify non null entries and letters of the alphabet. We speak of
‘the letter a” in a staircase as a shorthand notation for ‘the non null entry corresponding
to o’

15



3.1 Link Representation

Definition 3.2 Let o be a standard staircase. Use o to define a partial involution p of
A: for every non-empty o,5, let p exchange o and (3.

The link representation A(o) of o is a representation of p that we obtain as follows:
dispose all letters involved in o in lexicographic order and link two letters whenever they
appear together in o. Link a letter on the diagonal with itself. For instance,

b
if o= Le then A(o) = abcde.
. ] (el
1 e
e d c b a

Obviously, the link representation X(o), the corresponding standard staircase o and the
corresponding involution p are equivalent representations, the link representation being
more compact. For instance, recalling Figure 1 and Figure 2:

A(chda) = abed,  A(bcedfa) = abcdef,  A(chdefa) = abcdef.
‘i’ Iy [

Definition 3.3 Let o be a standard staircase, p the corresponding involution.

A great letter a verifies p(a) < «, a small letter a verifies p(a) > «, and a neutral
letter a verifies p(a) = a.

In the staircase representation, the great letters index rows that contain a 1, the small
letters index columns that contain a 1, and the neutral letters occur on the diagonal.

Example 3.4 Take the class of abdc, of link representation abcd. That is, a and b are

neutral, ¢ is small, d is great. e

3.2 A Converse of the Insertion Algorithm

In order to find all the words of C(c), we need to find back all the staircases that can
occur in the sequence €.ay. . ... ay.

Definition 3.5 Let o be a staircase. A deletable entry is a cell holding a non zero value
such that all cells to its south-west are empty. A deletable letter is a letter that indexes a
column corresponding to a deletable entry.

Please note that, in the case of a standard staircase, exposed entries as defined in Defini-
tion 2.9 and deletable entries are identical.

Algorithm 3.6 (Converse of the insertion algorithm 2.6)
Let o be a staircase, 0,5 a deletable entry of 0. The algorithm defines a set of rewriting
rules o T as follows:

— Rule 1: if § is on the diagonal of o, 7 is the staircase derived from ¢ by substracting
one from the deletable entry os.
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— Rule 1" if § is not on the diagonal of o, 7 is the staircase derived from o by
substracting one from the deletable entry o.s and putting a 1 on the diagonal in o,.

— Rule 2;: let 4 be a deletable letter such that & > &§. This implies that 4 is higher than
0 in 0, and that the deletable entry o5 verifies v > 4. Let & be the staircase obtained
from o by removing all the rows under row +, inclusive. Choose 7 recursively by
o ? 7, and build 7 by adding at the bottom of 7, first the row obtained by putting

a 1 in cell o 5 and substracting 1 from the cell o.5, then the rows of o of indices
greater than ~.

Formally, & is defined over A’ ={a € A| «a <7} by Gap = 04 for any a < 7,
any (. And similarly: 7,3 = 7ap for any o < v, any 3; 7,3 = 0,5 for any 3 but ¢,
5 Tys = Oys — 15 75 = 15 Tag = 04p for a = v, any 3 but 4, 5 Tag = Onp for any
a >, any [3.

Figure 4 shows a graphic explanation of what is going on.

We define the set (o 7 .) as follows:

(06—
(0 —.)

{reX]| o - T} if § is a deletable letter of o,
0

if a is not a deletable letter of o.

o T
755 7 55 1
%] ¥ 1 oys—1 vy
z 5 § a z 5 ) a

Figure 4: How Rule 2; works.

Example 3.7 Consider the Chinese row staircase word chdfega We display in Figure 5 the
staircases obtained from chdfega by applying Algorithm 3.6.

We now prove that this algorithm is correct.
Theorem 3.8 Let o be a standard staircase over n letters. Define:

Alo) = {6eA| 3Fde¥ oc=046},
cal = {d'e¥| FacA oc=7da}.

Then
— A(o) is the set of deletable letters.

— o.a™! is equal to (o0 — ) for any «a.
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Figure 5: The cardinal of the class of cbdfega is 15.

The proof subdivides into two lemmas:

Lemma 3.9 A(o) is the set of deletable letters.

Proof — 1f § is a deletable letter, applying Rule 1 or Rule 1’ to o results in a staircase 7
that readily verifies 7.6 = 0. Conversely, let 7 be a staircase, a a letter such that 7. = o.
Consider the insertion sequence of a. At the first exposed entry o,5 to the left of the

column of «, the step of the insertion sequence reads « N B ora N (. This step creates
> If there is no exposed entry to the left of the column of «, the
insertion sequence ends by applying Step 2 and creates a deletable entry in o,. O

a deletable entry in o.,.

1

Lemma 3.10 (¢ —.) and o.a™" are the same for every a € A(o).

Proof — The proof proceeds by induction on the size of the staircase.
First, we prove that (¢ —.) C o.a™'. In fact, we have already shown in Lemma 3.9

the case of Rule 1 and of Rule 1’. Assume the notations of Rule 2;. Thanks to the

® In the standard case, the exposed entry o5 — 1 vanishes: this explains why exposed entries and
deletable entries are identical in this case.



induction hypothesis, 7.0 = &. A close examination of Step 3b and Step 3¢ proves that
7.0 = 0.

Conversely, consider the insertion sequence that computes o.a. If the sequence of
letters v, ..., ax is constant, if the last step is Step 2, then o.a—0 by Rule 1; if the

last step is Step 3¢, then o.ae — o by Rule 1’. If the insertion sequence ay,...,a; is

not constant, the insertion sequence has to contain a step a = «; N a1 = 3. By the
induction hypothesis, 0.3 ? 0@ and therefore, o.cc —s o by Rule 2;. O

3.3 Applications

Theorem 3.11 In the standard case, every class has an odd order.

Proof — C(0.A™!) is a disjoint union of Chinese classes over n—1 letters. For o/ € a.A™%
adding to an element of C'(¢') the letter § such that ¢’.d = o induces a bijection between
C(c) and C(0.A™"). Since by induction every standard class over n—1 letters is odd, we
have to prove that the order of 0.A™! is odd, otherwise the order of C'(0.A™!), as an even
sum of odd numbers, would be even.

We want to count all the staircases over n—1 letters that can give o when inserting
the missing letter.

‘O'.A_l‘ = > ‘0.5_1‘
5€A (o)
We now use the converse of the insertion algorithm since it enumerates all the different
staircases that lead to a given staircase Note that as we consider a lower deletable entry
in the staircase, the number of possibilities increase.

At this point, we strongly suggest that the reader look at Figure 5 while reading the
end of the proof.

We now compute the cardinality of ¢.0~! by induction. Since we are in the standard
case, there is at most one deletable entry per row. If § is the greatest deletable letter of o,
lo.67!] = 1, since Rule 2; does not apply. Else we may apply Rule 1’ or Rule 23, for any
0’ > 6. Rule 1’ (6 moving to the diagonal) accounts for one staircase. Rule 2; (6 moving

under a greater deletable element ¢") accounts for ‘0.5’_1 , that is:

‘0.5_1‘ =1+ E ‘0.5’_1‘

§'>6

Hence, if § is the k" deletable letter the order of 6.6~! is 2¥~1. Finally, the order of 5. A™*
depends only upon |A(0)|:
o A7 = 21—,

Proposition 3.12 The row normal form of a staircase o is the minimal word in the class
of o for the lexicographic order.

Proof — Thanks to standardization, we need only study the standard case. Define a
total ordering on staircases: o < ¢’ if and only if the corresponding row normal forms ¢
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and t’ satisfy ¢ < /. Using structural induction we are going to show that, for o < ¢,
the smallest element in C(o) is smaller than the smallest element in C(¢’). Thanks
to Theorem 3.8, we know that each staircase can be obtained by removing a deletable
element at each step. But removing an element results in a staircase over n—1 letters,
for which the induction hypothesis applies. Define o, to be the staircase obtained by
applying Rule 1 or Rule 1’ to o for the highest deletable element (depending whether the
highest letter is on the diagonal or not).

Lemma 3.13 o, is the smallest staircase of 0. A71.

Proof — Let ¢’ be a staircase obtained by applying the rewriting rules to o. Let d be
the smallest row that differs between ¢’ and . Then, if d is the lowest non zero row of o,
o' =0, and o < o. If it is not the case, it is not very difficult to see that ¢’ > . Hence
o, <o o

We can then deduce that the smallest element is obtained by removing letters in each
row from bottom to top and in a row from left to right (in the non standard case.) We
thus obtain the row normal form of o. O

4 The Great Class

We devote this section to several counting results concerning standard Chinese classes.
This leads us to the construction of a bijection between the words of a given class and the
so called Dyck words. We handle here the case of the largest class (the other cases may
be found in the next section.) In that case, an integer associated to a Dyck word appears
naturally. We call this integer the weight of the Dyck word.

4.1 The Great Class

Definition 4.1 Let w denote the maximal standard word over an alphabet A on n letters
(for the lexicographic order): w = zy...ba. The great class Gr(n) = Gr(A) is the Chinese
class of w.

Note 4.2 Let p = [5]. In Gr(n), the great letters are the p greatest letters of the alphabet
and the small letters are the p smallest. If n is odd the (p + 1)*® letter is neutral, if n is
even, there is no neutral letter. The i*? letter is associated with the (n — 7)™ letter. The
non-zero entries occur precisely along the second diagonal of ¢ and are filled with 1.

Example 4.3 Gr(6) is drawn in Figure 6.

In the standard case, non null entries correspond to neutral letters, or to pairs of
a great and a small letter. Let us see what may happen to a given letter through the
insertion algorithm.

By convention, a letter to be inserted, «, is initially small.

- If « i>oz, nothing much happens. « does not change of status and climbs up in
the staircase.
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Figure 6: The great class fedcha: A(dcebfa) = abcdef.

=]

— a2 0, then « replaces and disloges another small letter 3, which climbs up in
the staircase in its stead.

~ a2 R, then a becomes a neutral letter and stops.

— Ifa2 R, then « is inserted in a row where 3 was a neutral letter. a stays small,
[ becomes a great letter.

We now have a clear picture of the insertion algorithm: small letters bubble up in the
staircase, get replaced by greater small letters, until they reach the row they index and
become neutral letters, or finally disloge a neutral letter that becomes a great letter. One
interesting point is that a small letter may become neutral or great through subsequent
insertions, but a neutral letter can only stay neutral or become a great letter, and a great
letter stays a great letter.

As an example, let us take a closer look at the words of the great class G'r(6). Since a,
b, ¢ are small letters, by inspection of partial insertion staircases, we can determine what
prefix a word in Gr(6) can not have.

For instance, no word of Gr(6) can start with a, b, or c. No word may start with fab,
foc, fac either. As a more general rule, a prefix may lead to a word of G'r(6) only if it holds
more great letters (d, e, f) than small letters (a, b, ¢). We will give in Section 4.2 a more
detailed account of this fact.

We will now prove that the great class is the largest class of the Chinese monoid. In
fact, it contains all the other subclasses in a very precise way.
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Definition 4.4 Let u, v, w be three words. An elementary rewriting between u, v, w
is an elementary congruence of the Chinese relation: there exists three letters a,b, ¢, two
words x,y such that {u,v,w} = {x.cba.y, z.cab.y,z.bca.y}. An embedding of a Chinese
class Cy into another Chinese class Cy is an injection 1 from Cy into Cy that preserves
the congruence graph. Specifically, for any elementary rewriting between words u, v, w
of C1, there exists an elementary rewriting between i(u), i(v), t(w). The embedding 1 is
strict if both elementary rewritings occur at the same position.

Here is the outline of the proof: the following algorithm yields an embedding of every
Chinese class which is not the great class into a greater class. Therefore, each class belongs
to a sequence of increasing classes that ends necessarily at the great class.

Algorithm 4.5 (Class Embedding)

Let o be a full standard staircase. The algorithm finds an embedding of C'(o) into another
Chinese class. Find 3 such that og,5) be the right-most, non exposed entry. Let v be the
successor of 3.

— if 3 does not exist, take the identity for an embedding (embed C(o) into itself.)

— if 3 does exist, let £} be the elementary tranposition which exchanges 3 and v and
leave other letters invariant. Take this transposition for an embedding.

Proposition 4.6 This algorithm is correct, namely 3 does exist if and only if C(o) is
not a great class, in which case t} is a strict embedding.

Proof — The only full standard staircase without non exposed entries is the staircase
of the great class. Otherwise (3 exists and can not be the greatest letter of the alphabet,
therefore v is well-defined as well.

In this case, let u, v and w be three words of C (o) that are congruent thanks to
one elementary Chinese relation cba = cab = bea. If neither 8 nor v occur in abe, the
transposition ¢} does not affect the elementary Chinese relation at all. If only one of 3
and v does occur in abe, the transposition ¢ does not change the relative order of abe,
hence there still exists an elementary congruence between the images of cba, cab and bea.
Assume now that 4 and 4 occur in abe. Since 8 and v are consecutive letters, there are
only two cases to consider: # < v < ¢, so that ¢y = ¢4y = y¢f and a < § < 7, so that
YBa = yaf = Bya. Since 1 exchanges ¢y3 and ¢y on one hand, y8a and Bya on the
other hand, the only problematic sequences are y¢3 and ~vaf3.

We contend that no word of C'(¢) contains such a sequence. To obtain the entry og,(g),
the insertion algorithm must yield an insertion sequence that ends in inserting p(3) into
the row of 3. Consider the hook of 4 at this point.

— There can be no 1 in a column indexed by o with a > p(/3), since insertion sequences
yield increasing sequence of letters and since the entire hook of v lies below the row

of 3.

— There can be no 1 in a cell 0., with o < p(b) : then we would have p(vy) < p(b),
and v would be a non exposed letter, contradicting the definition of 3.

The hook of v is empty at this point, which means that v occur after 3 in every word of
C(0o). Every elementary congruence is still valid after the transposition: by transitivity,
the images of the words of C (o) are congruent. o
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Theorem 4.7 For a given n, all classes have an order less or equal to the cardinality
of Gr(n). In fact, for any Chinese class, there exists a permutation of A which is a strict
embedding of this class into Gr(n).

Proof — Starting with the chinese class C(0y), apply Algorithm 4.5 iteratively to define
a sequence of larger and larger Chinese classes C(o;). For i < j, the permutation we
obtain is a strict embedding of C(o;) into C(o;).

Choose a word u in C(0g). Let u; be its iterated image in C(0;). If C(0;) # Gr(n),
the algorithm supplies a transposition ¢} which puts # and v in the right order, that is,
the number of inversions of u;y1 = ¢}(u) is strictly greater than the number of inversions
of u;. By exhaustion, there must eventually be a j such that u; € Gr(n). O

Examples 4.8 Consider the class of abcdefijhkg of order 35. The algorithm embeds it
successively into the classes of

bacdefijhkg (order 35), beadefijhkg (105), bedaefijhkg (175),
bcdeafijpkg (245), bedefaijhkg (315), bedegaijhkf (315),
bcdehaijgkf (315), bcdehiajgkf (329), bcdehigjakf (399),
bedehigika (1225), chdehigifka (1 295), cdbehigitka (4 165),
cdebhigifka (7 175), cdfbhigieka (7175), cdgbhifieka (7175),
cdghbifieka (7 725), cdghfibjeka (10 607), cdghfiejpka (60 037),
deghfiejpka (67 597), ecghfidibka (67 597), fegheidjbka (67 597),
fgcheidjbka (92 323), fgehcidibka (228 305),

and finally fgehdicjbka (3 705075) ! The embedding sends abcdefghik to kajbicdefgh.
As a less formidable example, Figure 7 shows how various classes embed into Gr(6).
Compare Figure 6 and Figure 2.

4.2 Dyck words

In this Section, we use a special convention: a great letter designates a great letter of
Gr(A), that is, a letter in the upper half of A, and a small letter designates a small letter
of Gr(A), that is, a letter in the lower half of A.

We begin by studying G'r(n) where n = 2p is an even number. This partition in small
letters/great letters and the structure of Gr(n) are strongly related to the structure of
Dyck words.

Definition 4.9 Let D = {xz,z} be the alphabet over two letters x and z.
— The height of a word w over D is h(w) = |wl|, — |w|z.

— A word w € D* is a Dyck word if every prefix word u of w verifies h(u) > 0 and if
h(w) = 0.

— A word w is a proper Dyck word if every proper prefiz word u of w verifies h(u) > 0
and if h(w) = 0.

— If w is a Dyck word, and u a prefir of w, we say that u is a return to zero of w
if h(u) =0 (Therefore, a proper Dyck word is a Dyck word with just one return to
zero.)
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Figure 7: The transposition of ¢ and d embeds the class of cdebfa (order 75) into the
class Gr(6) (order 135). Note that the embeddings of fachde and bcedfa do not preserve
Schutzenberger equivalence.

Definition 4.10 Let A be an alphabet. We denote by m the monoid morphism defined

by:
T A* — D~
{J: if a is a great letter of Gr(A)

o — T if o is a small letter of Gr(A).

Theorem 4.11 Fix an alphabet A over 2p letters. Denote by ¢ and ¢ the median letters
of A; model Gr(2p — 2) over A\ {c,c'}. Then the great class Gr(2p) is characterized as
follows:

— if w belongs to Gr(2p), if w' is obtained by deleting ¢ and ¢ from w, then w' does
belong to Gr(2p — 2).

— if w’ belongs to Gr(2p — 2), if w is obtained by inserting ¢ and ¢’ in such a way that
the image m(w) is a Dyck word, then w does belong to Gr(2p).

— if w’ belongs to Gr(2p — 2), if w is obtained by inserting ¢ and ¢’ in such a way that
the image m(w) is not a Dyck word, then w does not belong to Gr(2p).

For example, faeb € Gr(4) and w(faeb) = zzzx € D4. Insert ¢ and d to obtain fadebc
whose image by 7 is zZzaxzz which is a Dyck word, hence fadebc belongs to Gr(6). Insert
¢ and d to obtain facebd whose image by 7 is zzzzzz which is not a Dyck word, and
correspondingly, facebd does not belong to Gr(6).

Proof — We write w = ay ...ajcajyy ... apcapsr . a2p_2, W' = ay...az,_2.°

5 Observe that we do not state which of ¢ < ¢/ and ¢ > ¢ is true.
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We need to compare what happens during the construction of the insertion staircase of
w and during the construction of the insertion staircase of w’. Clearly, before the insertion
of ¢, both staircases are exactly the same.

Lemma 4.12 Let o, (resp. o}) denote the staircase obtained by the partial insertion of
w (resp. w') up to letter a;. The left part of the staircase A; (resp. Al) is the set of
columns of o; (resp. ol) indexed by letters greater than ¢ and ¢, including the columns
indexed by ¢ and by . The right part of the staircase B; (resp. B!) is the set of remaining
columns, namely the set of columns indexed by letters smaller than ¢ and ¢, not including

the columns indexed by ¢ and by c'.
Then B; = B! and the 1 of A; and Al occur on the same hooks.

Figure 8: The definition of A; and B;.

The consequence of this lemma is that the lower 1 in A; and A’ are in the same row.
Start with the staircase corresponding to w’, that is the staircase of the Gr(2p—2) class.
We have to check where we can insert ¢ and ¢ in a word of Gr(2p — 2) to obtain a word
of G'r(2p). Observe that the height of a prefix of a Dyck word, as the difference between
the number of great letters and small letters not yet inserted, is obviously the number of
entries remaining in the left part of the staircase B!. Let ¢ = inf{s > j | h(a;...a;) =0}.
We now have a precise picture of the sequence of staircases o/: the height of the Dyck
word corresponding to w’ denotes the number of small letters still to be inserted in the
staircase before the left part B is left empty. There are several cases to consider:

— ¢ > ¢ and k > i. The entry corresponding to ¢ is on the diagonal of the staircase.
The same happens when ¢’ is inserted except that, the first time the Dyck word
reaches the bottom level after ¢ is inserted, the entry corresponding to ¢’ moves up
in the staircase until it reaches the entry corresponding to ¢. So the staircase o is
the same as the staircase o’ except for a 1 in .. In this case, w belongs to Gr(2p)
and accordingly, its image m(w) is a Dyck word.

— ¢ > ¢ and k < 1. Each time the entry corresponding to ¢/ moves up in the staircase
and reaches ¢, ¢’ stops and ¢ starts climbing. Thus ¢ always remains under ¢. In
this case, w belongs to Gr(2p) and accordingly, its image 7(w) is a Dyck word.

— c¢< c and k > 1. ¢ ends up on the diagonal of o, so o cannot be the staircase of the
great class. In this case, w does not belong to Gr(2p) and accordingly, its image
m(w) is not a Dyck word.
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—c¢ < d and k < 1. When ¢ is inserted, it does not necessarily climb higher than
¢ (this depends on the left part A;), but the insertion of a small letter forces ¢’ to
climb until finally ¢’ goes above ¢; afterwards, ¢ remains under ¢’. In this case, w
belongs to G'r(2p) and accordingly, its image m(w) is a Dyck word. O

We now describe a procedure to compute the order of the great class.

Definition 4.13 A Dyck word with history is @ word w over the alphabet {z,z} x N that
verifies:
— If jw| = 2p, w is a permutation of the letters xy,...xp, T1,...,Tp.

— The monoid morphism v : x; — x, &; — &, sends w to a Dyck word.

— The word w' obtained by deleting x, and &, from w is a Dyck word with history (the
empty word is a Dyck word with history.)

In other words, a Dyck word with history embodies a Dyck word and a way to build it
through successive Dyck words.

Corollary 4.14 Fix an alphabet A over 2p letters. Let ( be the monoid isomorphism
between A* and D x {1,...,p} that sends the small letters of A a,b,... to T1,Z,... and
the great letters of A z,y,... to xp,Tp_q,....

Then ( is a bijection between Gr(2p) and the Dyck words with history of length 2p.

Actually, we can count the words of G'r(2p) directly by associating a weight to Dyck
words.

Definition 4.15 A Dyck word of length 2p, p > 0, can be reduced to a Dyck word of
length 2p—2 in a variety of ways by deleting one x and one x. Fach of these ways will be
called a Dyck reduction. We define the weight of a Dyck word inductively:

— Weight(zz) = 1.

— The weight of a Dyck word of length 2p is the sum of all the weights of Dyck words
obtained by all possible Dyck reductions.

Example 4.16 Since zazz reduces as fxfz, fex¥, y¥z, and zfz¥, Weight(zzzz) = 4.

On the other hand, zzaxz reduces as ¥frz, xfyz, and zzff, so Weight(zzzz) = 3.
Similarly the reader can check that Weight(zazzzzz) = 36.

We now state our main result concerning the cardinality of the great class.
Theorem 4.17 For every Dyck word w of length n, Weight(w) verifies:

Weight(w) = [{u € Gr(n), m(u) =w}|.

Proof — By definition, Weight(w) = |v~(w)]. O
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Corollary 4.18 The sum of the weights of all Dyck words of n letters is equal to the
cardinality of Gr(n).

Let us now assume that n is odd, n = 2p+ 1. A similar argument yields the following
theorem.

Theorem 4.19 Fiz an alphabet A over 2p + 1 letters. Denote by ¢ the median letter of
A; model Gr(2p) over A\ {c}. Then the great class Gr(2p+1) is characterized as follows:

— if w belongs to Gr(2p+1), if w' is obtained by deleting ¢ from w, then w' does belong
to Gr(2p).

— if w' belongs to Gr(2p), if w is obtained by inserting ¢ in w, then w does belong to
Gr(2p +1).

Corollary 4.20 If n is an odd integer. Then |Gr(n)| = (n)|Gr(n—1)|.

5 Generalization to the other classes

The idea of inserting letters can be generalized to all the classes in the standard case, as
this Section shows.

Definition 5.1 Let M be the alphabet over three letters x,& and t. We consider the
monoid morphism p from M* to D* defined by p(x) =z, pu(z) =z, p(t) =e. A word w
of M* is called a Motzkin word if pu(w) is a Dyck word. The type of a Motzkin word w is
(|wl|z, |wlt). Thanks to i, we obtain a natural notion of height of a Motzkin word, proper
Motzkin words, and returns to zero.

Definition 5.2 Let C be a congruence class of the Chinese monoid. The type of C is (1, 7)
where 1 is the number of pairs of great and small letters and j is the number of neutral
letters.

We define like we did in the previous section the morphism that sends every word of
a Chinese class to a Motzkin word of the same type.

Definition 5.3 Let A be an alphabet, C a Chinese class over A. The monoid morphism
7 1s defined by:

T A* — M
z if a s a small letter of C
« — {x if a ts a great letter of C
t if a s a neutral letter of C.

Definition 5.4 Let o be a standard staircase. The first non null entry g, in the row-
reading order is called the central entry of the staircase, that is, for any ' < 3, any o/,
ogiar = 0, for any o < a, 05, =0, and og, > 0. The letters a, 3 corresponding to this
entry are called the central letters of the staircase (note that we may have o = 3.) All
entries located in the lower-left part of the staircase relative to the central entry are called
external entries. The corresponding letters are called the external letters of the staircase.
The staircase Do obtained by setting og, to zero is called the derivative staircase of o,
and the corresponding class DC' the derivative class of C'.
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Figure 9: The successive derivations of bcafdge.

5.1 Two reduction theorems

Theorems 4.19 and 4.11 generalize to two reduction theorems | and LI, depending
whether there is one neutral central letter or there is a pair of two central letters.

Theorem 5.5 (| — one central letter.) Let o be a standard staircase with central
entry o.. Let e; be the external letters of o, s; the letters smaller than q, and let g; = p(s;)
be the associated letters.

Then all letters s; are small letters, and the sets {s;}, {g:}, {€;} and {c} form a
partition of the alphabet A.

A word w=ay...axCaks1 ... a1 belongs to C(o) if and only if

—w =ay...a,—1 belongs to C(Do),
— If M s the Motzkin word associated with w, if p is the position of the first return
to 0 of M after the letter t associated with ¢, all the lelters e; occur after position p

Proof — Notice that these two inequalities hold: s; < ¢ < g¢; and ¢ < ¢j, so that in
particular, ¢ is smaller than the small letters of the set {e;}. The direct part can be
proved by using the same argument as in the case of the great class: the final place of
the 1 corresponding to s; and s; are in the right part of the staircase. The trick is the
following: thus, in the proper Dyck word which contains ¢, the height denotes the number
of letters smaller than ¢ that have to be inserted before the 1 associated with ¢ reaches
its final position in o. Thus if a letter associated to one of the e; is inserted the 1 cannot
reach its place since ¢ is smaller than the small letters of the set {e;}. 0
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With a similar argument we prove the following theorem:

Theorem 5.6 ( LI — two central letters.) Let o be a standard staircase central en-
try o,c,. Let €; be the external letters of o, s; the letters smaller than ¢z and g; = p(s;)
be the associated letters.

Then all letters s; are small letters, and the sets {s;}, {g:}, {¢;} and {c1,¢c2} form a
partition of the alphabet A.

A word w=ay...axCaksy ... a3Cap41 ... an_g belongs to C(o) if and only if

!/

—w =ay...a,_y belongs to C(Do).

B {C, C/} = {61762}'
— If M is the Motzkin word associated with w, if p is the position of the first return to
0 of M after the letter x or T associated with ¢, all the letters e; occur after position
pinw.
5.2 Robinson-Schensted correspondence

We still have to find a way of inserting ¢ and pairs of x, x to obtain a Motzkin word, while
preserving the structure inferred from the reduction theorems.

Definition 5.7 A Motzkin word with history of type (n,p) is @ word w over the alphabet
M x N that verifies:

— The word w s a permutation of the letlers xq,...,2,, %1, ..., Tp,t1,... 1, .
— The monoid morphism v: x; — x, ; — , t, — t sends w to a Motzkin word.

— The word w' obtained by deleting x,, and x,, from w is a Motzkin word with history
of type (n — 1,p).

— The word w' obtained by deleting t, from w s @ Motzkin word with history of type
(n,p - 1)

The empty word is a Motzkin word with history of type (0,0).

Similarly to the case of the great class, the row normal form of a class yields an
ordering of the pairs of great/small letters. For a class C of a given type, there is a one-
to-one correspondence between the letters of a well ordered Motzkin word of the same
type and the letters of the alphabet. By applying the converse of this correspondence,
each Motzkin word with history of the proper type yields a word. We will now examine
under what condition this word belongs to C.

Example 5.8 Consider the class C' of cdaeb, of link representation abcde.
|

The Motzkin word with history z;x,t12221 has the right type, but it is associated with
the word edcab, which is not in C.
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Definition 5.9 Let C be a Chinese class, w a Motzkin word with history of the same
type. The word w corresponds to a word of C. Define the deriwative word Dw of w by

deleting the letter(s) corresponding to the central entry of C in w.
The word w ts C-admissible if and only if

— the word Dw is a Motzkin word with history.

— The word Dw s DC-admissible,

If there is one central letter, it corresponds to ty.

— The letters of w corresponding to the external letters of C' occur after the first return
to 0 of w after the letter(s) associated with the central letter(s) of C.

Just remark that t1 is a-admissible and x1%1 is ba-admissible (we denote the class by
its normal form).

Using Theorem | and Theorem [ it is easy to prove the following.

Theorem 5.10 Let C be a Chinese class of type (n,p) , let t be its row normal form.
Let ¢ be the monoid isomorphism between A* and {x,z} x{1,...n} U {t} x{1,...,p}
that sends the great letters of A to xq,...x, according to their respective positions in t,
the neutral letters of A to 1y,...,t, according to their respective positions in t, and the
small letters of A to xy,...T, according to the respective positions of the corresponding
great letters by p in t.

Then ¢ is a bijection between the words of C' and the C-admissible Motzkin words with
history.

We want to stress the following technical point: the return to zero of the Motzkin
word associated to w’ cannot be read on w; take a look at this example: in the class of
edfbgcha the word 1% x324T329742 is admissible, but xyx323%4242222%1 is not since the
deletion of x4 and z4; moves the position of the return to 0 to the end of the word.

5.3 Counting patterns

We now want to count the number of classes of a given order in the standard case. Since the
number of distinct classes is quite formidable, we will need to merge cases by introducing
a notion of isomorphism between classes, that is, by identifying common patterns. We
begin by considering the case of order 1 classes, where a simplified version of the general
idea applies: we are going to split a staircase into primitive staircases that do not interfere
with one another. Staircases of order one play a central role in the decomposition.

Lemma 5.11 Let o be the staircase of a class of order one. Then o does not contain two
1 such that one lies to the north-west of the other.

Proof — Remember the converse algorithm (Algorithm 3.6.) Since the class holds just one

element, only one rewriting must apply at each step, hence the set of deletable elements
must always hold just one element. O
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We may transpose this lemma to the corresponding word:

Proposition 5.12 A word w belongs to a class of order 1 if and only if both the sequence
of letters at odd positions in w and the sequence of letters at even positions are increasing
sequences.

Example 5.13 Take w = abcdgehf. Since both acgh and bdef are increasing sequences, the
class of w has order one.

Corollary 5.14 The number of classes of order one with n distinct letters is: (LH%J)'

Consider a Chinese class C'(¢) and examine carefully the positions a given letter can
occupy. In classes of order 1, all letters have a fixed position. In some classes, only some
letters move. In other classes, all letters move, but most of them only occupy a limited
range of positions.

Definition 5.15 Consider two staircases o and o' over the alphabets A and A'. We say
that o and ¢’ hold the same pattern if there exist an increasing injection 1 from A to A’
and an increasing injection j from A’ to A such that o = o' o (i,i) and o' = o0 (j,7).

Proposition 5.16 If two staircases hold the same pattern, they have isomorphic support.
Formally a pattern is a staircase up to isomorphism of its support set.

Proof — Let S be the support of o, that is the set of letters a such that there exist a
non null o,5 or og,, let S’ be the support of ¢’. Then ¢ and j define an isomorphism of

(5,<) and (57, <). O

Definition 5.17 Let o be a staircase over alphabet A, let B be a subset of A. The
subpattern P of o over B is the staircase over B obtained by taking all the cells of o with
both indices in B.

This does not make much sense in the general case. An extractible pattern is a
subpattern P over B such that all other cells of o with one index in B have empty contents.

An extractible pattern P is a right subpattern if and only if all cells to the north-est
of P vanish. An extractible pattern is a left subpattern if and only if all cells to the
south-west of P vanish.

A pattern is a primitive pattern if it does not contain any non trivial extractible
subpattern.

Example 5.18 Consider a standard word w such that w = wv, with all letters of u
less than all letters of v. Then the subpattern U over the letters of u is extractible,

the subpattern V over the letters of v is extractible. The class C'(w) is a product class.
Indeed, C(w) = C(U).C(V).

Obviously a given staircase decomposes into a collection of primitive extractible subpat-
terns in a unique way.

Definition 5.19 Consider a pattern P. The left part of P I(P) is the set of small letters
such that all preceding letters in lexicographic order that belong to P are small. The height
of P at the left hl(P) is the order of [(P). The right part of P r(P) is the set of great
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letters such that all succeeding letters in lexicographic order that belong to P are great.

The height of P at the right hr(P) is the order of r(P).

For example, the pattern bcdea of link representation abcde verifies
[

hl(bcdea) = hr(bcdea) = 1.

The pattern chdae of link representation abcde verifies
(=

hl(cbdae) = 1, hr(cbdae) = 0.

Proposition 5.20 Let P be a paltern over p letters. The number of staircases o with n
letters (n > p) that have P as a left pattern, and such that the rest of o is composed of
primitive patterns of order one is

)

Proof — Consider the following transformation of the pattern P. The pattern ends in
hr(P) great letters. We build a new pattern P’ by associating these letters with suitable
small letters such that C'(P’) has order one. For example, consider the pattern decfbga.

abcdefg.

=

The right part of P is r(P) = efg. Associate a with e, b with f, g with ¢, remove d to
obtain the new pattern P’ = eafbgc.
abcefg.

=l

Then we apply the same transformation of this subpattern to all the staircases o as
defined in the proposition. The classes we obtain are obvious classes of order one on
2hr(P) + n — p letters, with the supplementary condition that the first hr(P) smallest
letters must occur at the first even positions in the canonical word. To have classes of
order one, we have to choose which letters will occur at even positions in the row normal
form; this yields hr(P) + [*3%| possibilities. Since the first hr(P) even letters are fixed,
there still remains to choose [*5*| among the hr(P) 4+ n — p final letters. This yields the
desired result. O

Proposition 5.21 Let P and ) be two patterns with respectively p and q letters. The
number of classes with n letters (n > p+q) that have P as a left pattern and Q) as a right
pattern and whose other primitive patterns are of order one is:

- (") i n =g i e
B (hr(P)+hl(Q)+n—p—q) ifn—p—qis odd.

==
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Definition 5.22 We take the following ordering on ones of a staircase. A 1 is smaller
than another 1 if and only if the first one has its great letter lesser than the great letter
of the second one and greater than the small letter of the second one.

The order can be seen in a very simple way when using the link representation.

Example 5.23 For the staircase cbda, we have ¢b < da. For the staircase cadb, we have
ca < db.
We call pyramidal pattern a pattern in which the 1 are not in the diagonal and can be
ordered in a chain such that every element of the chain is smaller than the previous
element.

Definition 5.24 Let P be a staircase composed with a pattern, a left part which is a
class of order one and a right part which is a class of order one. There is an interference
between the right and the left part if and only if there is a small letter of the right part that
is smaller (in the lexicographic order) than a great letter of the left end. The number of
interferences is the greatest number of letters g in the left part of o which can be associated
to different letters s in the right part of o such that g > s.

Theorem 5.25 Let P be a pattern that is not a pyramidal pattern. Then the number of
statrcases o with q letters that have P as a pattern and such that all the other patterns of
o that are disjoint of P are of order one is the following sum:

2

Proof — 1In the previous sum, j denotes the number of letters at the left of the pattern.
The proof is clear since that if P is not a pyramidal pattern, the letters involved in hr(P)
and hI(P) have no interferences. In particular, j being chosen, the choice of the letters
involved in the left and the right part are totally independant. This then gives the wanted
product. O

We now have to work on the number ¢ of interferences between the right and the left
of the pattern in the cases of the pyramidal patterns.

Theorem 5.26 Let P be a pyramidal pattern. The number of staircases o with q letters
that have P as a pattern and such that all the other patterns of o that are disjoint of P
are of order one is:

= q—fﬂ (hl(P) +it J') (h’"(P) J[f—g—?f o j) '

1=0 7=0

Proof — If there are ¢ interferences, we can transform P by adding ¢ to hr(P) and hI(P),
and count like in the former theorem supposing there are no interferences. O

Note 5.27 With all these formulas, one can compute the number of classes with n letters
that have a given order. To do this, one has just to know all the extracted patterns that
exist.
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6 Conjugacy classes

This Section investigates into some properties of the Chinese monoid that are not related
with anything else in this paper.

Definition 6.1 The conjugacy relation ~ on the Chinese monoid is the transitive closure

of the relation R defined by:
¢cRd & Ju,v € Ch(A), ¢c=uv, ¢ =vu,
for every ¢, ¢ € Ch(A).
Note 6.2 Consider the following two operators on words:
— Operator F: take the chinese congruence class of an element.

— Operator Rot: take the last letter of a word and put it in first position.

The conjugacy class of w is the set of all words that can be obtained by a finite number
of applications of F or Rot.

The following result gives the structure of the Chinese conjugacy classes. It is an
obvious consequence of the more precise Theorem 6.5, to follow.

Theorem 6.3 The conjugacy class of a word for the Chinese congruence is its evaluation
class, that is to say, the set of all words that have the same numbers of a,b,...,z as w.

Definition 6.4 We define yet another equivalence relation on words:

ajay...ap =w R w =ajaly...a, if and only if:

—w=uw or
— ! ! !
— ap_1apa; = ay_,ayay or
_ —
arayay = ayaial,

That is to say: we allow elementary Chinese congruences to wrap around (picture words
written on a circle with a pointed position to mark the beginning of the word). Figure 10
shows the wrapping Chinese classes for n = 4.

The wrapping Chinese congruence & holds the key to the conjugacy relation ~, since
it is obviously coarser than the Chinese congruence = but finer than the conjugacy rela-
tion ~.

For instance, badc & cadb & bacd since dch = dbc = cdb.

Theorem 6.5 Consider the standard case for an alphabet A of n letters.
1) If n is odd, there is just one wrapping Chinese class.

2) If n is even, there are exactly two wrapping Chinese classes. Moreover Rot swaps
these classes.

Proof — First notice that the wrapping Chinese class of a word is included in its conjugacy
class. We define the following algorithm:
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Figure 10: the wrapping Chinese congruence over 4 letters

Algorithm 6.6 (Standardization for the wrapping Chinese congruence)
Let w be a standard word, of length |w| > 2, a the smallest letter of w, z the greatest
letter of w.

— Step 1: move the letter a to the position just to the right of z using the elementary
congruences of & cba & cab and bea & cab (a slides to the left.)

— Step 2: move the block za to the beginning of w using the elementary congruence
template bea = cab as in y(za) & (za)y.” (za slides to the left.)

Applying this algorithm yields a word w’ = zau. We then apply the algorithm recursively
to u which is 2 letters shorter. The main point is that a and z are the two extreme letters
of the alphabet, hence every other letter can cross the block za without problems. if n is
even, iterated application of Algorithm 6.6 to w clearly yields

— either w & zayb...af,
— or w & zayb...Ba,

with a and ( the median letters of A. If n is odd, iterated application of Algorithm 6.6
yields zayb . ..o with o the median letter of A.

Let us wrap the case ‘n even’ up. We have shown that there are at most two classes.
There remains to prove that there are exactly two classes. To achieve this, since there are
two distinct normal forms, we only have to show that if two words are congruent by &,
Algorithm 6.6 yields the same result. It is enough to prove this result for an elementary
Af-congruence, which is immediate. Then the set of wrapping Chinese classes is stable by
Rot, and it is easy to check that the image of a class by Rot cannot be itself. For instance,
take the case n = 6. The class [faebdc] is sent to the class [faebcd] since cfaebd & faebed as
¢ can cross every couple of letters. Conversely, we can prove that the class [fagbed] is sent
to the class [faebdc]. A similar argument applies for any even n. O

7 Since all other letters are greater than a and smaller than z.
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Note 6.7 The center of the Chinese monoid is the set of words that commute with every
other word in the insertion algorithm, As announced in [2], we can easily check that the
center is:

(za)".

Note 6.8 In the case of the Plactic monoid, based on experimental results, we conjecture
that the number of &-classes is exactly the number of letters in the standard case.

Conclusion

This paper mostly presents some powerful tools to deal with enumeration problems re-
garding the Chinese monoid. There are still lots of open questions. For instance, a closed
formula for the order of the great class.

This study relies a lot on actual experiments. In order to understand the Chinese
monoid, being able to obtain graph representations and manipulate them easily was of
great help.

Accordingly, we developped a suit of programs that will be made available shortly
on ftp://ftp.ens.fr/pub/dmi/users/espie/chinese. These programs are written in
Icon, a very powerful high level language. Icon’s advanced features—generators, poly-
morphic data-types, graphics functions—enabled us to develop simple experimental code,
very easy to modify and adapt to our needs in a small fraction of the time we would have
needed using a more conventional programming language.

We would like to thank the people from the University of Arizona Computer Science
Department for their very fine work (Griswold, [13]). More information about Icon is
available from ftp://cs.arizona.edu/icon.
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