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Daniel Krob — Roberto Mantaci
LIAFA — Université Paris VII
2, Place Jussieu — 75251 Paris Cedex 05 — France
e-mail: dk, mantaci@liafa.jussieu.fr

Abstract

This paper is devoted to a noncommutative generalisation of a classical result occuring
in the context of the modular representation theory of the symmetric group. We prove
that a noncommutative Schur ribbon function R; is annihilated by the quasi-differential
operator Dp, if and only if the composition I is the external border of a k-core.

1 Introduction

Ordinary Schur functions can be interpreted as the Frobenius characteristics of the irreducible
representations of the symmetric group in characteristic 0. When one wants to work with
modular representations of the symmetric group, things become much more complicated since
the algebra of the symmetric group does not remain semisimple in this new context. One
can however show that the two Grothendieck rings naturally associated with irreducible and
projective indecomposable modules of the symmetric group in characteristic k are respectively
isomorphic to
Sym/Z;, and Sym_j

where 7 denotes the ideal of the algebra of symmetric functions Sym which is generated by
the power sums indexed by a multiple of & and where Sym_j denotes the subalgebra of Sym
generated by the power sums which are indexed by a non-multiple of k. The Schur functions
that belong to Sym_; are of special interest since they are exactly the Frobenius characte-
ristics of the Specht modules. One can show that these Schur functions are characterized by
the fact that they are indexed by k-cores.

This paper is intented as a first step towards the generalization to noncommutative sym-
metric functions (introduced in [G-T]) of the previous framework. We indeed show that
the good noncommutative analogues of the Schur functions, i.e. the so called noncommuta-
tive ribbon Schur functions, belong to a noncommutative analogue of Sym_j (coming from
Lazard’s elimination theorem) if and only if they are indexed by a composition which is the
border of a k-core.



The main problem which remains clearly open would be to find a good representation
theoretic interpretation of such a result. Since the representation theoretic interpretation of
noncommutative symmetric functions is given by the 0-Hecke algebra (see [KT1, KT2, KT3]),
there is certainly some two parameter (¢ and t) deformation of the Hecke algebra where one
should both consider degeneracies at ¢ = 0 and at ¢ a k-root of unity that would give us the
required representation theoretic interpretation of our work. This question is unfortunately
still open!

2 Preliminaries

2.1 Noncommutative symmetric functions

The algebra of noncommutative symmetric functions defined in [G-T] is the free associative
algebra Sym = C(S1, S2,...) generated by an infinite sequence of noncommutative indeter-
minates Sk, called the complete symmetric functions. It is convenient to set S = 1. Let then
t be an indeterminate commuting with the Si. If one introduces the generating series

o(t) :== Z Stk
k>0
it is possible to define other families of noncommutative symmetric functions by setting
At) = o(=t)7,
d
700 =0)p(t), o(t) = exp(4(t)),
where A(t), ¥(t) and ¢(t) are the generating series defined by

400 +o0 too i)
At) == Ayt t) := Wy th! t) := LA
k=0 k=1 k=1
The noncommutative symmetric functions Ay, are called elementary symmetric functions and
U, and ®@j, are respectively called power sums of first and second kind.

The algebra Sym can also be endowed with a Hopf algebra structure. Its comultiplication
A is defined by any of the following equivalent formulas:

n n
ASp)= D Sk®Sn—k, AAn)= Y A®Ay,
k=0 k=0

AT,)=107,+7,01, A®,)=19%,+%,®1.

The free Lie algebra generated by the family (®,),>1 or equivalently by (¥,),>1 is then
exactly the Lie algebra of the primitive elements of Sym with respect to A.

A composition is just a sequence I = (i1,i9,...,4,) of strictly positive integers. If m
denotes the sum i1 + --- + 4; of the parts of such a composition I, we will say that I is a
composition of m. If I is a composition of m, we will write I = m and call m the weight
of I. The integer r will be called the length of I and denoted by #(I). Compositions can be
represented by ribbon diagrams, i.e. by connected skew Ferrers diagrams that do not contain
2 by 2 squares. One associates with the composition I = (i1,42,...,%,) the ribbon diagram
whose j-th row has exactly i; boxes.



Example 2.1 The composition I = (3,1,5,4) is a composition of 13. It can be represented
by the ribbon diagram given below.

L]

L[]

It is often useful to number the boxes of a ribbon diagram by starting from the top left and
finishing at the bottom right. The previous ribbon diagram can then be numbered as follows:

(1] 2[3
4
56780
10[11] 1213
Definition 2.2 If I = (i1,42,--.,i,) is a composition, we shall denote by I the mirror image

of I defined by I = (ip,ip_1,...,%1).

We can also equip the set of all compositions of a given integer m with the reverse
refinement order, denoted <. For instance, the compositions J of 4 such that J < (1,2,1)
are exactly (1,2,1), (3,1), (1,3) and (4).

Let us now observe that Sym can be naturally graded by the weight function w defined
by setting w(S,) = n for every n > 1. The homogeneous component of weight n of Sym
in this grading will then be denoted by Sym,,. If (Fy,)n>1 is now a family of homogeneous
noncommutative symmetric functions, i.e. a family of noncommutative symmetric functions
such that F,, € Sym,, for every n > 1, we set then

F'=F, F, .. F,

for every composition I = (i1,42,...,i,). The families (S!), (A!), (®!) and (¥!) are then
homogeneous linear bases of Sym that can be constructed in such a way.

There is also another very important basis of Sym that is indexed by compositions. If 1
is a composition, we can indeed define the ribbon Schur function R; by setting:

R; = Z (_l)Z(I)fZ(J) SJ
J=I

(see [G-T] for more details). One can then show that the family (R;) is a basis of Sym.
We will use extensively the following rule for multiplying two noncommutative ribbon Schur
functions (cf. [G-T]).

Proposition 2.3 Let I = (i1,...,iy) and J = (j1,...,Js) be compositions. Then one has:
RiR;=Rrj+ Ry

where we set I-J = (i1, ip,J1y---57s) and I>J = (41, ... lp—1,0p + 1,72, - Js)-



2.2 Quasi symmetric functions

Malvenuto and Reutenauer (cf. [MvR]) showed that the dual bialgebra Sym* of the non-
commutative Hopf algebra Sym can be identified with the algebra Qsym of quasi-symmetric
functions, introduced by Gessel (see [Ge]). This last algebra is defined as follows. Let X
be an infinite alphabet totally ordered by some total order <. A commutative polynomial
P € C[X] is then said to be quasi symmetric if one has

(P, mzf m:{’) = (P,yi1 . yf{”)

for every strictly increasing sequences (z1 < 23 < ... < z,) and (y; < y2 < ... < yy) of letters
of X and every sequence (i1,49,...,i,) € N'. The set of all quasi symmetric polynomials
of C[X] form an algebra denoted by @Qsym which is called the algebra of quasi symmetric
functions.

A natural basis of Qsym is formed by the quasi-monomial functions defined by setting

M= Y oyt
Y1<y2<...<yYp
for every I = (i1,...,4p). Another convenient basis is constituted by the quasi-ribbon func-

tions defined by setting

Fr=> M,

-1

for every I. One can then introduce a pairing between QQsym and Sym by setting equivalently
<RI,FJ> = (5[J or <SI,MJ> = (5[] .

With respect to this pairing, @sym becomes exactly the Hopf dual of Sym (cf [G-T] for more
details). The graded dual basis of (¥!) will then be denoted by (Py).

2.3 Commutative symmetric functions

The usual algebra of commutative symmetric functions will be denoted here by Sym. We refer
the reader to [Macd] or to [LS] for any details concerning the classical theory of symmetric
functions. The Schur functions (sy) form in particular an important basis of Sym indexed
by partitions.

One can define a morphism ¢ from the algebra of noncommutative symmetric functions
into the algera of commutative symmetric functions by asking that ¢(S,) = h, (using here
Macdonald’s notations) for every n > 1. The image of a noncommutative symmetric function
F under this morphism will be called the commutative image of F. This terminology is
justified by the fact that ¢(A,) = e, and ¢(¥,) = ¢(®,) = p, for every n > 1, using again
Macdonald’s notations.

One can also show that the commutative image of a noncommutative ribbon function
Ry is the so called ribbon Schur function r;. This last commutative symmetric function is
defined in the following way. A composition I can be represented as a skew Ferrers diagram
A/p and the ribbon Schur function 7 is then just the skew Schur Function s/, (cf [Macd]
for details). Figure 1 gives the example of the composition I = (3,1,5,4) interpreted as the
skew Ferrers diagram (10733/622).



A=10733

pu=622

Figure 1: The ribbon Schur function r3154 .

Remark 2.4 The two symmetric functions r; and r; are always equal.

Several properties of noncommutative Schur ribbons are inherited by their commutative
images. In particular, the multiplication rule stated in Proposition 2.3 holds clearly true for
commutative ribbon Schur functions.

2.4 Some combinatorial results for ribbon diagrams

Definition 2.5 Let I be a composition interpreted as a skew Ferrers diagram \/p. We say
that a composition J of weight k is removable from I at position i if and only if one has:

1. the boxes numbered from i to i + k — 1 in the ribbon diagram associated with I form a
ribbon diagram of shape J;

2. one still gets a skew Ferrers diagram by removing from the Ferrers diagram \/p the
bozes numbered from i to 1 +k — 1.

Example 2.6 The next figure shows that a composition of weight 4 is removable from the
composition (3,1,5,4) at position 6, but not at position 4. By removing a ribbon from
another ribbon, one obtains two disconnected ribbons (possibly empty).

—1 | —

6]7[8]9]

g
[1d1q1914 [TTT]

B T =
6[7]s]9]
[1d11914

Figure 2: Removable (top) and non removable (bottom) compositions.

S

o

N

Remark 2.7 Notice that saying that a composition of weight k is removable from a compo-
sition I is equivalent to saying that a ribbon diagram of length k is removable from the ribbon
diagram associated with I.

Well known objects in the theory of representations are the so called k-cores.



Definition 2.8 Let A be a partition. We say that X is a k-core if it is not possible to remove
any composition of weight k at the border of the Ferrers diagram X in order to obtain another
Ferrers diagram.

Definition 2.9 Let n be a positive integer, let I = (i1,i2,...,%,) be a composition of n and
let i be an integer in {1,2,...,n}. We say that the composition I passes through i if there
exists an integer k € {1,2,...,r} such that iy + --- + i = i.

For instance the composition I = (3,1,5,4) of 13 passes exactly through 3, 4, 9 and 13.

Proposition 2.10 Let I be a composition. Then a composition of weight k is removable
from I at position i if and only if I passes through i+k —1 and I does not pass through i — 1.

Proof. A composition J of lenght k is removable from I at the first position (z = 1) if and
only if the last box of J (which is the k-th box of I) is the last box of its row, i.e. if and only
if T passes through k.

A composition J of weight & is clearly removable from the composition I at position 7 > 1
if and only if the two following conditions are satisfied:

e the (i — 1)-th box of I (which preceeds the first box of J) is not the last box of its row,
i.e. I does not pass through ¢ — 1;

e the (i + k — 1)-th box of I (which is the last box of J) is the last box of its row, i.e. T
passes through 7 + k — 1.

Since all the situations were considered, the proof is now complete. &

Definition 2.11 We will say that a composition I is k-solid if no composition of weight k
is remowvable from 1.

Remark 2.12 [t is straightforward from the definitions that a composition I is k-solid if and
only if it is the border of a k-core.

Lemma 2.13 Let I be a composition of n. Then I is k-solid if and only if either n < k, or
n > k and I satisfies the following conditions:

i) I passes through n — k,
i1) I does not pass through k,

ii1) for every i, the composition I does not pass through i+k if it does not pass through
1.

Proof. A ribbon of length & is certainly not k-solid as it is possible to remove it entirely. Of
course, ribbons of length smaller than & are k-solid. Let us then supppose that n is greater
than k. Condition 4) insures that no composition of weight k is removable at the end of I.
Condition 1) insures that no composition of weight & is removable at the beginning of I.
Condition 4i7) insures that no composition of weight & is removable at any other position ¢ of
I (according to Proposition 2.10). &



2.5 Differential and quasi differential operators

The algebra of commutative symmetric functions Sym is equipped with a canonical scalar
product ( , ) which is defined by requiring that the basis of Schur functions forms an or-
thonormal basis for it, i.e. that one has (sy,s,) = dy, for all partitions A and p (see [Macd]
or [LS]). It is worth noticing that the algebra of Qsym of quasi symmetric functions contains
the algebra Sym of symmetric functions.

This scalar product defined in Sym is related to the pairing between Sym and Qsym
since one can prove that one has

(F,f) = (c(F), f) (1)

for every noncommutative symmetric function F' and every quasi symmetric function f which
is a symmetric function of Sym (see [Ge] or [G-T]).

Let f be a symmetric function. The differential operator Dy is defined as the adjoint of
the multiplication operator My : g — fg, i.e. by requiring

(Dy(9);h) = (g, My (h)) = (g, fh)
for every g,h € Sym. One can prove in particular that D, = k9d/dpy (ctf [Macd] or [LS]).

The Murnaghan-Nakayama rule (cf [Macd] or [LS]) explicitly describes the actions of these
last differential operators on commutative ribbon Schur functions.

Proposition 2.14 (Murnaghan-Nakayama rule) Let I be a composition. Then one has
Dpk (’]"I) = Z (_1)Z(J)71 TII ,’,_12

J removable from I

J=k
where I and I, are the ribbons obtained by removing J from I in all possible ways.

We will use extensively the following corollary of the previous proposition.

Corollary 2.15 Let I be a composition of the integer k. In the expansion of the commutative
ribbon Schur function r; over the basis of power sums, the term py appears with coefficient
(—1)5(1)_1//& Moreover no other monomial of this expansion contains the term py.

Proof. By Proposition 2.14, one has D, (r7) = (—=1)%)=1. Since D,, = k 8/dpy, one has

) -1 LI)-1
0 L0
apk k
and the conclusion is now immediate. &

It is also interesting to introduce a notion of quasi differential operator in the context
of noncommutative symmetric functions. Let f be a quasi-symmetric function. The quasi
differential operator Dy is then defined by setting

for every noncommutative symmetic function F' and every quasi symmetric function g. The
previous property of the pairing given at the beginning of this section shows that

c(Dy(F)) = Ds(c(F))

when f is a quasi symmetric function which is already a symmetric function. This justifies the
fact that we used the same notation for differential operators and quasi differential operators.



3 Commutative ribbons and differential operators

3.1 A tensor decomposition of Sym

One can clearly decompose Sym as follows
Sym = Symy, ® Sym_, ,

where Sym;, = Clpk,Pok: Pk, -- -] is the algebra generated by the power sums indexed by
multiples of £ and where Sym_,, is the algebra generated by the remaining power sums. This
decomposition is of interest in the theory of modular representations of the symmetric group.
The Schur functions that are in Sym_,, are indeed exactly the Frobenius characteristics of the
Specht k-modular representations of the symmetric group (cf. [CR] and [R]). These Schur
functions can be characterized exactly as follows.

Theorem 3.1 A Schur function sy is in Sym_,, if and only if X is a k-core.

We want to generalize this result to the noncommutative case where the ribbon Schur
functions Ry play the role of the usual Schur functions. Our first step in this direction will be
to characterize the commutative ribbon Schur functions that belongs to Sym_;. When one
expands a ribbon Schur function r; of Sym_j into the basis of power sums, no p;; appears
in the expansion. Therefore a ribbon Schur function r; of Sym _j satisfies

o(rr) _
Opjk

Dy, (rr) = jk

for every 7 > 1. In the main theorem of this section (Theorem 3.2), we characterize the
compositions I such that D, (r;) = 0. In Corollary 3.10, we show that this condition is
equivalent to the fact that Dy, (r;) = 0 for every j > 1. Hence a ribbon Schur function
r7 will belong to Sym_j, if and only if it is annihilated by the differential operator D, . It
follows from this remark that Theorem 3.2 will give in fact an exact characterization of the
ribbon Schur functions that belongs to Sym _.

3.2 Ribbon Schur functions in Sym_,

The following theorem is the main result of this section.

Theorem 3.2 Let I be a composition. Then the two following assertions are equivalent:
1. Dpk (’l"]) = 0,‘
2. T or I is k-solid.

Remark 3.3 Before entering into the proof of our theorem, it is worth noticing that the two
conditions “I is k-solid” and “I is k-solid” are not equivalent. Let us consider for instance
the composition I = (1,3, 3) which is 3-solid. It is indeed easy to check that no composition
of weight 3 (in other terms, no ribbon of length 3) can be removed from it. On the other
hand, its mirror image I = (3,3, 1) is not 3-solid. Indeed, it is possible to remove two ribbons
of length 3 from it, one at the beginning (at position 1) and one at the end (at position
5). However, Dp,(r33,1) is equal to zero. Indeed, using Murnaghan-Nakayama rule, one
immediately gets Dy,(r331) =731 — 131 =0.



Proof. Let us first show that condition 2 implies condition 1. If I is k-solid, then no ribbon
of length k is removable from it and hence, by Proposition 2.14, we get D), (r7) = 0. If I is
k-solid, one has of course Dy, (r1r) = Dp, (r7) = 0. This ends the first part of our proof.

The following lemmas will now prove the converse of our theorem, i.e. that condition 1
implies condition 2.

Lemma 3.4 Let I be a composition of n > k such that Dy, (r7) = 0. Then either I or I
satisfies the conditions i) and ii) of Lemma 2.183.

Proof. Let I be a composition of n > k such that D, (r;) = 0. Suppose first that I
satisfies condition i) of Lemma 2.13. Then it is not possible to remove from I a ribbon of
length & at the position n — kK + 1 (at the end of I). This implies that it is not possible to
remove a ribbon of length k at the beginning of I either. Indeed, if this was possible, by the
Murghanam-Nakayama Rule, we would have

Dpk (’I"]) = :i:'r]k + Z trn T
11,1220

where I}, denotes the composition of weight n — k obtained by removing a ribbon of length
k at the beginning of I and where all the compositions that appear in the remaining sum
of the above expression are not empty. According to Corollary 2.15, this implies that the
coefficient of p,,_j in the previous expression cannot be zero. Hence, D,, (r¢) is not equal to
0 which contradicts our hypothesis. So it is not possible to remove a ribbon of length k£ at
the beginning of I. Hence I also satisfies required condition i) of Lemma 2.13.

Suppose now that I does not satisfy condition i) of Lemma 2.13. If I does not pass
through n — k, then T does not pass through k. This means that it is not possible to remove
a ribbon of length k at the beginning of I. For the same reason as in the previous case, it is
not possible to remove a ribbon of length & at the end of I either. This implies that I passes
through n — k and hence that I satisfies both conditions 4) and 44) of Lemma 2.13. &

We are only left with proving that if I is a composition of n > k that satisfies the
conditions 7) and 7) of Lemma 2.13 and such that D,, (r;) = 0, then I also satisfies condition
i11) of Lemma 2.13. We will prove this property in the following lemma.

Lemma 3.5 Let I be a composition of n > k that satisfies conditions i) and i) of Lemma
2.13 and such that Dy, (r;) = 0. Then, if I does not pass through some integer i (with
n > i+ k), the composition I does not pass through i + k either.

Proof. Let I be a composition that satisfies the hypotheses of our lemma. Suppose that there
exists an integer ¢ such that I does not pass through ¢ and such that I passes through ¢ + &
and choose the minimal integer ¢ with this property. Hence, it is possible to remove a ribbon
of length k£ at the position 7 + 1 according to Proposition 2.10. The Murnaghan-Nakayama
rule implies then that

Dy, (rr) = T, gl T Z trn T (2)
(11712)#(11'1[",—/;1—1')



where I; and I,,_j_; denote respectively the two ribbons of length ¢ and n — k — 7 obtained
by removing from I a ribbon of length k at position 7 + 1 and where the other terms of the
sum correspond to the products of ribbons obtained by removing from I a ribbon of length
k at any other position where this is allowed. According to Corollary 2.15, the coefficient of
Pi Pn—k—i in the product r7, r; . . is nonzero. This monomial must clearly be annihilated
by another such monomial in the above sum. However, such a monomial can be found in a
product 7y, 7, of the second part of the sum only if this product is obtained by one of the
three following ways:

e by removing a ribbon of length & at the beginning of I,
e by removing a ribbon of length k at the end of I,
e by removing a ribbon of length k at the position n —¢ — k+ 1 of 1.

The first two possibilities cannot occur according to our hypotheses. Hence it must be possible
to remove a ribbon of length k at the position n — ¢ — k + 1 of I. This implies that I passes
through n — % — kK and does not pass through n — ¢ according to Proposition 2.10. Moreover,
we have 1 # n — i — k. Otherwise, the second part of the sum above would then not contain
any monomial pf. This last monomial would then only appear once with nonzero coefficient
in the sum, which is not possible.

L

J2

5

(_l)l(J1)—1+Z(J2)—1+l(J3)—1 — (_1)1(1) (_l)Z(J{)—1+l(Jé)—1+£(J§)—1 — (_1)1(1)
Figure 3: The two ways to obtain p; p, _;_: the coefficients are equal.

Let us look now at the exact coefficient of p; p,_;_x in the expansion (2) (that is given by
the Murnaghan-Nakayama rule and its Corollary 2.15). As observed above, terms p; p, ; &
correspond exactly to the removing of a ribbon of length k at position 7 + 1 and at position
n —1 — k + 1. We immediately find (see Figure 3) that the coefficient of p; p,_;—x in both
cases would be (=1)0)~1/(i (n — i — k)). Hence their sum would be different from 0, which
is not possible. This contradiction ends the proof. &

10



The proof of Theorem 3.2 beeing achieved, we can now give some consequences of our
result. Let us start with the following remark.

Remark 3.6 Let I be a k-solid composition. Then if I passes through ¢, I passes also
through ¢ — k. This condition is indeed clearly equivalent to condition éii) of Lemma 2.13.

We deduce from this remark the following corollaries.

Corollary 3.7 Let I be a k-solid composition of n > k. Let us consider the euclidean division
decomposition n = gk + r (with 0 < r < k) of n. Then I passes through r + ik for every
i € [0,q] and does not pass through ik for every i € [1,q].

Proof. By condition 4) of Lemma 2.13, I passes throughn —k =r+ gk —k =r+ (¢ — i)k.
Hence by the previous remark, I passes through r + (¢ — 1)k — jk for all j € [1,¢ — 1]. On
the other hand, by condition i7) of Lemma 2.13, I does not pass through k. Condition ii7) of
Lemma 2.13 implies then that I does not pass through k + jk for all j € [1,q — 1]. &

Corollary 3.8 Let I be a composition of n such that Dy, (r;) =0. Then n mod k # 0.

Proof. Suppose that n mod k = 0. There exists therefore an integer ¢ such that n — k =
(¢ — 1) k. Up to exchanging I with I, we can suppose that I is k-solid. Using the previous
corollary, we see that I does not pass through (¢ — 1)k. On the other hand, according to
condition ) of Lemma 2.13, I passes through n — k. Since n — k = (¢ — 1) k, we get now a
contradiction. &

Corollary 3.9 Let I be a composition of n and let n = gk + r be the euclidean division
decomposition of n. Then I is k-solid if and only if one can decompose it asI =1Iy-1I;-...- I,
where I; are compositions with the following properties:

e Iy is a composition of r,

e I; is a composition of k for every j € [1,4],

or every j € [1,q — 1], the composition I;y1 is less fine than or equal to I,
J+ J

none of the compositions I, ..., I, passes through k —r,

if Iy does not pass through an integer i, then none of the compositions I, ..., 1, passes
through k —r + 1.

Hence the compositions I such that Dp, (r;) = 0 are the compositions described in the
previous corollary or their mirror images.

Corollary 3.10 Let I be a composition. Then one has Dp,, (rr) =0 for every 7 > 1 if and
only if I or I is k-solid.

Proof. If one has D, (r;) = 0 for every j > 1, then in particular one has Dy, (r;) = 0 and
Theorem 3.2 allows to conclude.

Conversely, first notice that up to exchanging I with I we can assume that I is k-solid.
Then I satisfies all conditions of Corollary 3.9. Using the characterization given by this
corollary, we easily get then that I is also jk-solid for all 7 > 1. Theorem 3.2 allows then to
conclude that Dy, (ry) = 0 for every j > 1 . &

11



Example 3.11 The composition I = (1,1,1,1,2,1,2,2,1,2,2,3) is 5-solid since one can
decompose it according to Corollary 3.9 in the following way:

I=1111212212 23 5
N N N N N
Ip I I I3 Iy

The composition I' = (6,6,4,2,3,1,2,3,1,1,1,2) is annihilated by D,, because its mirror
image is 6-solid. One can indeed decompose this last composition according to Corollary 3.9
as follows:

I'= 2 1113213 24 6 6 .
M S N N

Ip I I I3 Iy Iy

4 Noncommutative ribbons and quasi differential operators

4.1 A tensor decomposition of Sym

As in the commutative case, the algebra Sym has an analogous interesting decomposition.
Let IT = (II,),>1 be a sequence of Lie idempotents with w(II, ) = n. For any positive integer
k, we can then define the subalgebra Symy, (II) of Sym generated by the elements of the
sequence II which are indexed by some multiple of &, i.e.

Sym,, (IT) = C(Ij, Mgy, M3, ...) .

We must now introduce another important subalgebra of Sym. Let us denote by T}, the
set of all compositions ¢ of the form

t = (i1k, 32k, ... ik, ipi1)

with 4,11 Z 0 (mod k). We associate with every element ¢ = (i1k, 32k, ..., ik, ir41) € T the
noncommutative symmetric function II[t] defined by setting

T[] = [Ty ks Mgk [+ -5 My iy ] -2 1] -
The subalgebra Sym_,(II) is then defined by setting
Sym_(II) = C(II[f], ¢ € Ty ) .

According to Lazard’s elimination theorem (see [B]), the subalgebra Sym_,(II) is freely ge-
nerated by the family {II[¢], ¢ € T }. Moreover this last classical result of Lazard also shows
that one has the following tensor decomposition

Sym = Sym,(IT) ® Sym_(IT)

of Sym. An important fact is that the algebra Sym_,(II) does not depend on the sequence
II of Lie idempotents that was used to define it.

Proposition 4.1 Let IT = (II,,),>1 and II' = (II},),>1 be two sequences of homogeneous Lie
idempotents. Then one has
Sym_,(IT) = Sym_(IT') .
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Proof. Let m be a positive integer such that m # 0 mod k. Since II,,, and II/, are homoge-
neous Lie idempotents of weight m, one has

I, € I}, + [L(IT'), L(1IT')] .
By the free Lie algebra version of the Lazard’s elimination theorem (cf [B]), one has

Hence one can write II,, = 1 + €3 where ¢; € L(II'[t], t € T}) and ¢ € L(II},II,,,...). The
element /5 is homogeneous of weight a multiple of k. But II,, is by definition homogeneous
of weight m # 0 mod k. Hence we must have £5 = 0, which implies IT,,, € L(IT'[t], ¢t € T}).
Thus, for every compositions (71,9, ...4,) and for all m # 0 mod k, one has

[Hilka [Hi2k,, .. [Hzrkanm] .. ]] € L(Hl[t], t e Tk)

since L(II'[t], t € Ty) is a Lie ideal according to Lazard’s elimination theorem (see again [B]).
It follows now easily that II[t] € Sym_,(II') for all ¢ € Ty,. Thus we have

Sym_,(TI) C Sym_,(IT') .
The final desired equality follows by symmetry. &

Therefore the algebra Sym_j(II) can be denoted more simply by Sym_ ;. In particular,
one has Sym_; = Sym_,(V), where ¥ = (¥,),>1. It is also interesting to observe that the
proof of the previous proposition shows in fact the following stronger result.

Corollary 4.2 Let II = (II,)p>1 and II' = (II},)p>1 be two sequences of homogeneous Lie
idempotents. Then one has

LY, t € Ty) = LAT[t], t € Ty) .
Let us now state the following technical lemma.

Lemma 4.3 Let IT = (II,),>1 be a sequence of homogeneous Lie idempotents such that
w(Il,) = n for every n > 1 and let (II}) be the graded dual basis of QSym associated with
the basis (IIf) of Sym. Then one has I}, = n P, for every n > 1.

Proof. 1t suffices to show that (k P, TI;) = 1 for every & > 1 and that ( P,,II') = 0 for
every k > 1 and for all compositions I of length greater or equal to 2. It is a known result
(see [G-T]) that an element ITj is a Lie idempotent if and only if one has

M € 25+ [1(9), L(D)] Q

where L(¥) denotes the free Lie algebra generated the noncommutative power sums of first

kind. Therefore one can write o
k E :
Hk = 7 —|— g ag \IJJ
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where the compositions J involved in the above sum have all length > 2. Thus we get
(k Py, Il ) = kPk, P ZGJ‘I’J (Petpr) + > kay (P, ¥7) =1
J

since all the terms involved in the second part of the above last sum are equal to 0 due to the
fact that all involved J have here length at least 2. On the other hand, for all compositions
I of length > 2, one has

(kP TI') =(kPp, Y a; 97 )= > kas (P, ¥/ ) =0
7 7

since all the J involved in this last sum have length at least 2 according to Equation (3). ¢

Let us now give the following important description of Sym_; in terms of quasi-differential
operators.

Proposition 4.4 Let II = (II,,),>1 a sequence of Lie homogeneous idempotents such that
w(Il,) = n for every n > 1. Then one has

Sym_, = ﬂ keermlk _____ ke

r>1
M1 5eeey e EN*

Proof. Note first that according to Proposition 4.1, it suffices to work with II = ¥, i.e.
suppose that II, = ¥, for every n > 0. Observe also that our claim says equivalently that
the two following assertions are equivalent:

1. F € Sym_,(7);

2. Dp, . pi(F)=0forallmy,...,m, € N".
Let us consider a noncommutative symmetric function F' such that Dp,, , L(F) =0 for
all my,...,m, € N*. Such a property is clearly equivalent to the fact that
<‘DPm1k ..... mrk(F)7PI>:0
for every my,...,m, € N* and every composition I. By definition of the quasi-differential

operator D Pryi one however has
k(F),PI ) = F, Poyiey..oomok Pr ) = ( A(F), Prngy.omek @ Pr ) -
Hence F' satisfies condition 2 if and only if one has

(A(F), Pokymk ® Pr)y =0

for all integers my1,...,m, € N* and for every composition I.

Let us now take some noncommutative symmetric function F' in Sym_,(¥). Then F is
a sum of products of elements ¥[¢] for certain compositions ¢ € Ty, i.e.

F=Y au[t!] ... 0],

1€
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Since every V¥[t] is primitive for A, a straightforward computation leads us to

A(F) = > a; U[u®] @ Tlu®] .

u® L et 4D

This implies that ( A(F), Py k,...m.k ® Pr ) = 0 because ( \If[u(i)],Pmlk,___,mrk ) is necessarily
always equal to 0 since the decomposition of the noncommutative symmetric function \Ii[u(i)]
over the (U!) basis does not involve any term only formed of products of homogeneous
noncommutative symmetric functions of weight a multiple of k.

Conversely, suppose that ( A(F), Py, k,...mk ® Pr ) =0 for all mq,...,m, € N* and for
every composition I. According to the Lazard’s tensor decomposition of the algebra Sym,
we can decompose F' as

F = Z iy, i) Ui oo Uy Flinseesir)

1yeenin>1

where every F(i) stands for a non commutative symmetric function in Sym_,.

Suppose now that F' does not belong to Sym_ . Let then (p1,...,ps) be a composition of
maximal length such that a term of the form ¥, , ... ¥, F®1P7) appears in the previous
decomposition with 7 > 0. By hypothesis, one has ( A(F), Pp,...p.c @ Pr ) = 0 for all
compositions I. Note now that one has

(AF), Ptk @ Pr ) = @y p) { AT <. Up) AFPP)Y By o ® Pr)
by maximality of (p1,...,ps). Since oy, .,y is different form zero, we get
(AWpk - Upo) AFCP)) By ok ® Pr) =0
for all compositions I. But the left hand side of the above identity is equal to
((@Piksspek @ 1) P @ Py = ( F@ers) Py

since all the other terms that may appear in the image by A of WPk -Psk f(P1ops) are
canceled in the scalar product. It follows that

(PO, Py =0

for all compositions I. Hence F(P1Ps) = ( which is impossible. This contradiction shows
that F' belongs to Sym_ . )

Remark 4.5 In the commutative case, Sym_j is the intersection of the kernels of all diffe-
rential operators Dy, for all « > 1. This last result does however not hold anymore in the
noncommutative case. Following the lines of the proof of our last result, one can in fact easily
prove with the help of Lemma 4.3 and of Appendix 1.6.5 of [Re| that one here has

+oo
n ker Dp, = Sym(¥,1) ® Sym_,
i=1

where Symy (U, 1) stands for the subalgebra of Sym generated by the Lie polynomials in the
elements of the family (¥;;);>1 that do not have any linear part.
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4.2 The ribbon functions in Sym_,

The set of all noncommutative ribbon Schur functions form a basis of the algebra Sym. We
want to characterize the noncommutative ribbons that belong to Sym_ ;.

Theorem 4.6 Let I be a composition. Then the following conditions are equivalent:
7/) R[ € Symfk,
ii) Dp,(Rr) =0,
iii) Either I or I is k-solid,

i) Dp,, .. moi (B1) = 0 for all integers ma,...,m, > 1.

Note first that conditions i) and iv) are equivalent according to Proposition 4.4 and
that iv) obviously implies i7). In each of the following subsections, we show the remaining
implications.

4.2.1 Condition 4i) implies condition 7i3)
Lemma 4.7 Let I be a composition such that Dp, (R;) = 0. Then either I or I is k-solid.
Proof. Suppose that Dp, (Rr) = 0. This means that one has

(R, PkF)=0

for all quasi-symmetric functions F. Since every symmetric function is a quasi-symmetric
function, we get in particular that

(R, Pe f)=0
for every symmetric function f. Using now property (1) of Section 2.5, we get

(rpef)=0
for every symmetric function f (notice that P, = pj as one can also easily deduce it from
Lemma 4.3). Hence we have D, (r;) = 0 and we can conclude to our Lemma by using the
results of the previous section. &
4.2.2 Condition 7i7) implies condition iv)

Since the family (Pg) form a linear basis of the algebra of the quasi-symmetric functions,
condition 7v) is equivalent to the fact that

<RIa Pmlk,...,m,nk PK > =0 3

for all integers mi,...,m, > 1 and for every composition K. This last condition is itself
clearly equivalent to the fact that one has

<A(RI)aPm1k,...,mTk ® PK) =0

for all integers m1,...,m, > 1 and for every composition K. Hence, to prove that condition
i41) implies condition iv), it suffices to prove the following lemma.
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Lemma 4.8 Let I be a composition such that either I or I is k-solid. Then one has
(A(R1), Pmyk,..omok ® Pk ) =0
for all integers mq,...,m, > 1 and for every composition K.

Proof. Let I be a composition such that either I or I is k-solid. By definition of a noncom-
mutative ribbon Schur function, note first that one has

A(Ry) = Y (-1)HD-HD A(ST) .
J<I

Hence it suffices to prove that one has

Y (DA CA(S), Ponyygmyk ® Pic) = 0 ()
J=<I
for every composition K. Recall now that for all composition J = (j1,...,js), one has

A(ST) = A(S),) ... A(S;,) -

By definition of A, one gets

J1 Js
AST) =D o D S, S, ®8, - S, -

=0 1s=0

By substituting this last expression in (4), we see that we have to show that

jl js
Z (—1)5(-])( Z Z Sl1 Sls ®Sj1fl1 Sjsflsapm1k,...,mrk ®PK)

J=<I 11=0 Is=0
jl js
=) DN DT (S - St Prskymek) (Sii—ty -+ Sju—1,, P ) =0
J<I 11=0 1s=0

for every composition K. Using the expansion of the noncommutative complete symmetric
functions on the basis of noncommutative power sums of the first kind (cf [G-T]), one gets

SL: Z acL \IJC
C>L

for every composition L where a1, is some rational number that depends on the composition
L and its refinement C. Therefore the only terms of the last previous sum that are different
from zero are those in which the /;’s that are not equal to zero form a composition which is

an anti-refinement of the composition M = (mk, ..., m,k). Hence we have to show that
ST LN au (Z <sJ,,PK)> =0
J<I L<M J

for every composition K, where the most internal sum in the above expression is taken over
all compositions J' of the integer n — (m1 + ...+ m, )k which can be obtained from J in the
following way:

17



1. take a sequence of non negative integers /1,...,l; such that the [;’s that are not equal
to zero form a composition L which is an anti-refinement of the composition M =
(mik,...,m.k) and such that I; < j; for all ¢ € [1, s],

2. form then J' by subtracting in J the integer /; from j, for all ¢ € [1, s] (if a part j; of J
is equal to [y, then this part must ”disappears” in J' when I; is subtracted).

Our last identity is therefore equivalent to the fact that

Z QML Z (_1)K(J) <Z <SJ’,PK>> —0

L<M J=I J!
for every composition K. Of course it suffices to prove that one has
> (0 (($ (s <o
J=I J'

for every composition K. Now any composition L which is an anti-refinement of M =

(mik,...,mk) is still a composition of the form (nik,...,n¢k). Therefore it suffices to
prove that if I is a k-solid composition or the mirror image of a k-solid composition and if
(mak, ..., myk) is a sequence of multiples of k, then the identity
¥ (0 (3 tsn.re0) <o ®
J<I J'

holds for every composition K. Let us now recall that J’ is here any composition obtained
by taking any subsequence (j,, ..., ) of r parts of J such that j, > m.k for all t € [1,7]
and by subtracting the integer m.k from j;, for all ¢ € [1,7] (if a part j;, of J is equal to m;k,
then this part ”disappears” in J' after the subtraction).

The fact that Equation (5) holds for every composition K is clearly equivalent to the

following identity
3~ (Z S ) =0 (6)

J<I

where the internal sum is taken over all compositions J' of n — (m1 + ... + m,)k obtained
using the process described above. This last property is then an immediate consequence of
the next lemma 4.13 which says that

Z (_1)Z(J) (Z J')
J=I J'

is identically equal to zero when I is either a k-solid or the mirror image a of k-solid compo-
sition. This result might be clearer with the following example.

Example 4.9 Let us consider the 3-solid composition I = (1,1, 2,3, 3). The anti-refinements
of I form then the following set

{(1,1,2,3,3),(2,2,3,3),(1,3,3,3),(1,1,5,3),(1,1,2,6), (4,3,3), (2,5,3), (2,2,6),
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(1,6,3),(1,3,6),(1,1,8),(7,3),(4,6),(2,8),(1,9), (10) } .

Consider the sequence M = (3,3). By subtracting the integers of this sequence from the
anti-refinements of I (where this is possible), we obtain the followed signed compositions:

(1,1,2,3,3) — —(1,1,2)

(2,2,3,3) — (2,2)

(1,3,3,3) — (1,3)+(1,3) +(1,3) (3 times!)
(1,1,5,3) — (L,1,2)

(4,3,3) — —(1,3) —(1,3) — (4)

(25513) — - (2’2)

(1,6,3) — —(1,3)

(1,3,6) — —(1,3)

(7,3) — (4

(4,6) — (1,3)

It is straightforward to check that the sum of these signed compositions is identically equal
to zero as required.

Before stating the next lemma, we need to introduce some notations.

Definition 4.10 Let J = (j1,.-.,7s) be a composition, let k and r be two positive integers

with r < s. Let mq,...,m, be another sequence of positive integers and let Iy < --- < I, be
elements of [1, s] such that j;, > mik for all t € [1,r]. We note then by
(J; ll, o ,lT)Amlk,...,m,nk

the composition obtained from J by subtracting the integer mik from its lz-th part for all
t € [1,7] (if ji, = mik, then the l;-th part is erased from J).

Example 4.11 One has for instance
((1,3,8,6,7);2,4,5)2%* = (1,1,8,2,3) and ((1,3,8,6,7);2,4,572%% = (1,1,8,3) .

Definition 4.12 Let I be a composition and let m1,...,m, be another fixed sequence of
positive integers. We note then by Er the set which is equal to

{(JTyl, .. ), J=(1,---,7s) R, 1<l <--- <l < s and jj, > m4k for allt € [1,7]} .

The elements of the set £ defined above are pairs made of a composition and a sequence
of indices corresponding to parts of the composition from which it is possible to subtract
the integers m;k. Notice that the above set also depends on the sequence (mq,...,m,). We
however decided to omit this dependence in the notation £; for clearness.

Lemma 4.13 Let I be a composition of n such that either I or I is k-solid and let m, ... ,m,
be a fized sequence of positive integers. Then the formal sum
S D) (T, LRk (7)

(‘];ll yeensly ) €&y

is identically equal to 0.
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Proof. Up to taking the mirror images of all the compositions that appear in (7), we can
suppose that I is a composition such that I satisfies the conditions of Corollary 3.9 (i.e. such
that I is k-solid). Let us now introduce the two sets £7— and &7~ defined by

51: = {(J;llaIZa' .. al’r) € SI such thatjl, = mrk},
Er> = {(J;li,ly,...,1;) € & such that j;, > myk },

These two sets are subsets of £ and they are clearly the complement of each other. Consider
then the function f from £;— into &7~ defined by setting

f(J;ll" .- JT) = ((]15 ajlrflajlr +jlr+lajlr+25"' ajs);lla v alr)

for every composition J = (j1,Jo,-..,js) of Er—. The function f is well defined. Indeed
one has always [, # s since if [, = s and j; = m,k, then J would pass through n — m,k.
This is not possible because, by the characterization of k-solid and mirror images of k-solid
compositions, I does not pass through n — m,k and I is finer than J by definition.

The function f is injective. Indeed let (J;lq,...,1,) and (J';1],...,1.) be two elements of
Er= such that f(J;ly,...,0) = f(J51},...,1.). Then one has

((jla"'ajlr +jlr+1a---7js)alla'"7l1‘) = ((]i?a]ll’r +jl,;+17"'7j(11)5 Ilaal;‘)

if we set J = (j1,..-,4s) and J' = (ji,...,Jg)- This implies that s = ¢ and that I, = [}
for all ¢t € [1,7]. Moreover one has j; = j; for all ¢ # I,,l, + 1. Note now that we have
Ji, = jl'T = m,k (since we are working with elements of £;—) which allows us to conclude that
Jle+1 = Ji, 41 since ji, + 1,41 = j; + i 41~ Thus J = J' which ends proving the injectivity
of the function f.

The function f is also surjective. Let (J;ly,...,l,) be an element of £~. Suppose that
J=(J1y--sJ1,—1+J1,5- - ,Js) and let J' be defined as

J = (jla"' 7jlrflam7“k,jlr _mrka"'ajs) .

The composition J' has s + 1 parts. Let us first show that it is a composition less fine than
I. Two cases are now to be considered:

e if /[, > 1, the composition J is less fine than I and passes through j; +...4 7, 1. Hence
I also passes through j; + ...+ ji,—1. By Corollary 3.9, if I passes through an integer
m, it also passes through the integer m + [k for all [ such that m + Ik < n. Thus [
passes through j; + ...+ j;,_1 + m,k which implies that J' is less fine than I.

e if [, = 1, the composition J' is also less fine than I because I is the mirror image of
a k solid composition and hence passes through all the multiples of k£ that are smaller
than n. In particular, I passes through m,k.

This shows that J' < I. Hence (J';1y,...,l,;) belongs to &;—. The fact that f is a surjection
follows then immediately since f(J';l1,...,0.) = (J;l1,---,1;)-
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Thus f is a bijection between £r— and &7~. This allows us to write

Z (_1)@(]) (J, lla o ’lr)’\m1k,...,mTk:
(J3la,...lr )EET

= Z (_1)E(J) (J, ll, o ,lr)f\mlk,...,mrk
(J5l15enlr)EET=

D DR o VN O/ s
(J;ll,---,lr)€£[>

= Z (_1)6(]) (J, lh,... ’lT)Amlk,...,m,k
(J;ll,-..,lr)ef,‘]:

+ (_1)E(J’) (f(J, I,... ’lr))/\mlk,...,mrk .
(J5l1yesdr)EEI=

Let us set (J';11,...,0;) = f(J;l,...,1;). It suffices now to notice that £(J') = £(J) — 1 and
that
(J3lay .o L) bk — (F( T30y, L)Y TRk

in order to conclude to our lemma. &

Using the last lemma, we immediately get equation (6). This ends therefore the proof of
Lemma 4.8 and by way of consequence the proof of Theorem 4.6. O

4.3 2-solid ribbons

Theorem 3.2 characterizes the k-solid ribbons. In the particular case k = 2, one deduces that
the only 2-solid ribbons are the compositions of the form 12™ for all m in N. The following
theorem is an interesting result about the generating series of the 2-solid ribbons.

Theorem 4.14 The formal series
+00
R= Y R
m=0
is the tangent of a Lie series in the elements of the family ¥ = (¥p,)p>1.

Proof. Let us denote by L the series defined by

_ _ (=1 o 9j1
L = arctan(R) = JZ:O 2511 R . (8)

The assertion to prove is equivalent to show that L is a Lie series in the elements of the
family ¥. Note first that using a classical expression of arctan, we immediately get
1 14+4R

-1 .
L=glosr—n
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It is a well known fact (see for instance [Re|, Theorem 3.2) that £ is a Lie series in the
elements of the family W if and only if the series

1+4R
1—R
is a group like element for the comultiplication A, i.e. if and only if one has
14+4R 1+4R _144R
(1—m> “1T-R®1-m
According to Proposition 5.23 of [G-T], we have

-1
R=1| > (-1)fSos1 D (=1)k Sy, ;
k>0 k>0
i.e. R = TP~ where we set
IT=> (-1)"Sp1 and P= Y (-1)FSy.
k>0 £>0
We are then left with proving that
NE +iZP7Y\  144iZP7! . +iZP™!
1—iIP-1)  1—4iZP-1 = 1—iIP-1’

1.e. that the series
1+44ZP1

1—ZP-!
is group like for A. Note now that this last expression is equal to
(1 +4ZP (1 —iZP™ ) L = (P +iD)P (P —iZ)P~ 1) = (P +iT)(P —4T)" " .

But we can write

P4l — Z (—1)* Sy + i Z (1) Sop41

k>0 k>0
2k k41
= ZZ SQIH'ZZ okt
k>0 k>0
= > "5
k>0

We can also show in the same way that one has

P—il= Y (-i)fS.

k>0

o(t) = Skt*

k>0

Since the series

is a group like element for A, we get that
(P+4T) (P —iT)' = o(i) o(—i) ™"

is also a group like element for A, which ends our proof. &
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Remark 4.15 Let us take again the notations of the proof of our last result. We saw that
P+il =o(i) and (P —4iI)"" = (o(—i))"".
Since o(t) = exp(®(t)), we can then write

1

£ = 5 oglexp(®(i)) exp(~B(~i))] = - H(B(i), ~B(~4))

where H(a,b) = log[exp(a) exp(b)] is the Hausdorff series in two variables. This gives us an
interesting Hausdorff-type expression for the Lie series £ defined by Equation (8).

5 Enumeration

The main result of this section will allow us to count the compositions I of weight n such
that Dp, (R;) = 0 or equivalently such that I or I is k-solid according to Theorem 4.6. Note
first that I and I are certainly different in such a case since Lemma, 2.13 shows that I and T
cannot be both k-solid compositions. Note also that Corollary 3.8 shows that n is necessarily
not a multiple of k in the situation that we are studying.

Theorem 5.1 Let n and k be two integers such that n mod k # 0 and let a,  be the number
of compositions I of n which are either k-solid or mirror images of k-solid compositions (i.e.
such that Dp, (Rr) =0). Then one has

ke =2(¢+2)" " g+ 1)
where q¢ and r are the quotient and the remaining part of the euclidean division of n by k.

Proof. According to the preliminary remarks, one has a, ; = 2 b, ; where b, ; stands for the
number of mirror images of k-solid compositions of n. Suppose now that n > k. Then these
last compositions are exactly the compositions I of n that satisfy the following properties:

e [ passes through k,
e [ does not pass through n — k&,
e if I passes through 7, then I passes through i + k if i + k < n.

Using the usual bijection between compositions of n and subsets of {1,...,n} which contain
the element n, we see that by, j is exactly the number of subsets E of {1,...,n} which have
the following properties:

e kEFE,
en—k¢FE,

e ificFandi+k <n,theni+kecFE.
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Notice that the first and third conditions imply that 2k,...,qgk € E whereas the second and
the third conditions imply that n — 2k, ...,n — gk = r € E. Moreover, if an integer j belongs
to E, all the integers j + [k are in F, as long as j + [k < n. Hence such a set F is uniquely
determined by the set

o(E)={j, j#k jeFand(j—k¢Eorj—k<0)}.

Indeed an integer i belongs to E if and only if there exists j € ¢(F) and [ € [0, ¢] such that
i =7+ k.

Let us introduce some more new notations. We can decompose every element j € ¢(X)
as j = g;jk + rj where one has 0 <r; < k and

0<¢gj<g¢q if0<r; <,
Oﬁqj'fq—l if’r‘<‘l“j<k.

Note that the integers r; are never 0 because otherwise j; would be a multiple of k, say [k,
with [ > 1 and we would have Ik — k ¢ E. Note also that the integers r; are never equal to
r since otherwise 7 would be equal to n — kl for some [ which is impossible according to a
previous remark. Finally observe that, if t and s are in ¢(E) with ¢ # s, then 7, and r are
distinct. Indeed if we had 74 = rs and r > s, thent = s + [k for some [ > 1. Butt —k ¢ E
because r € ¢(F). Hence s =t — [k ¢ X, which is not possible. This contradiction proves
the assertion.

It follows that ¢(F) is uniquely determined by the pair of partial functions

fll{l,...,T—l}_){O,---;Q}a

for{r+1,...,k—1} - {0,...,q — 1}
defined by setting
fi(r;) = gq;, for every r; € {1,...,r — 1},
fa(rj) = gq;, forevery rj € {r+1,...,k -1} .
These two functions are only partial since there might not exist any j € ¢(E) such that r; = ¢
for some i € {1,...,7 —1}U{r +1,...,k — 1}. Note now that there are exactly (¢ +2)" !

such functions f; and (g + 1) "1 such functions fs. Hence, b, = (g +2)" (g + 1)F 1
when one has n > k.

To complete the proof note that if n < k, all the compositions of weight n are k-solid.
Hence by, = 27—1 in this case. This is however exactly the formula to prove here since ¢ = 0
and r = n in this case. O
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