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Recognizable Subsets of the Two Letter Plactic

Monoid

A. Arnold∗ M. Kanta † D. Krob ‡

January 10, 2003

Abstract

The plactic monoid P la(a, b) on two letters will be studied from the
point of view of classical language theory. In particular, we will give the
fine structure of its recognizable subsets.

1 Introduction

The history of the plactic monoid can be traced back to Schensted’s paper
of 1961 [?] in which an algorithm was given that allows to find the length of
the largest increasing subsequence of a sequence of integers. This algorithm
sets up a correspondence between words w over some totally ordered alphabet
A and Young tableaux. The Young tableau P (w) associated with a word by
Schensted’s algorithm is called its insertion tableau and the length of its last
row is the length of the longest increasing subsequence of the word.

In 1970, Knuth proved that the insertion tableaux of two words u and v
coincide if and only if these words are equivalent with respect to the congruence
of A∗ generated by the relations

{

aba ≡ baa, bba ≡ bab when a < b
acb ≡ cab, bca ≡ bac when a < b < c.

(1)

However, Knuth did not exploit the fact that these relations were the defining re-
lations of a monoid, a feat which was performed by Lascoux and Schützenberger
in [?]. They decided to call it plactic monoid and put it to good use in one of the
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†Liafa (CNRS), Université Paris 7 - 2, Place Jussieu - 75251 Paris Cedex - France -
mkanta@litp.ibp.fr

‡Corresponding author: Liafa (CNRS), Université Paris 7 - 2, Place Jussieu - 75251 Paris
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first proofs of the so called Richardson-Littlewood rule. The continued develop-
ment of the theory of the plactic monoid turned it into a major tool in a variety
of combinatorial contexts, such as the Kosta-Foulkes polynomials, charge and
cocharge of Young tableaux etc.

In more recent developments it turned out that the plactic monoid also fig-
ures prominently in the theory of quantum groups mainly due to the strong rela-
tionship, discovered by Jimbo and Miwa, between the usual Robinson-Schensted
correspondence and quantum Uq(gln). Leclerc and Thibon even managed to ob-
tain a quantum characterization of the plactic monoid in [?].

Thus it becomes clear that the plactic monoid is an object worthy of further
attention. In this paper, we study it from the classical point of view of language
theory. In particular, we give the fine structure of the recognizable subsets of
the plactic monoid on two letters. Due to the fact that it has a cross section of
entropy zero, the recognizable subsets are of a particularly simple form.

2 Generalities

2.1 Rational and Recognizable Subsets of a Monoid

Let M be a monoid. A subset R of M will be called recognizable if there exists a
finite monoid N and a monoid morphism φ : M → N such that φ−1 (φ(R)) = R
(cf. [?]). A subset R of M is rational if it can be constructed in a finite number
of steps, each of which consists of choosing a one element subset {m} ⊆ M
or of forming the union, product or the star of sets obtained in previous steps.
The set of rational subsets of M will be denoted by Rat(M) whereas the set of
recognizable subsets will be denoted by Rec(M). In general there is no strong
relationship between the two sets. In some cases of practical relevance, however,
such a relationship exists.

Proposition 2.1 Let M be a monoid.

1. If M is finitely generated then Rec(M) ⊆ Rat(M).

2. If M is free then Rec(M) = Rat(M).

In order to determine whether or not a given subset of a monoid is recognizable,
it often pays to consider the residuals of the set.

Definition 2.2 Let M be a monoid, L ⊆ M and m ∈ M. Then the set

m−1L = {x ∈ M|mx ∈ L}

is called a (left) residual of L.

Note that (m1m2)
−1L = m−1

2 (m−1

1 L). The fact relevant to the determination
of the recognizability of a set L is the following.

Proposition 2.3 Let M be a monoid and L ⊆ M. Then L is recognizable if
and only if {m−1L|m ∈ M} is a finite set.
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2.2 Cross Sections and Entropy

If A is an alphabet, R a family of pairs of elements of A∗ and ≡ is the congruence
defined by R on A, then a language S ⊆ A∗ is said to be a cross section of the
quotient monoid M = A∗/ ≡ if and only if for each w ∈ A∗ there is a unique
s ∈ S such that w ≡ s. In particular, two elements s, t ∈ S are equivalent with
respect to ≡ iff and only if they are equal. Furthermore, a cross section S will
be called rational if S is a rational subset of A∗. Cross sections are important
tools for the description of quotient monoids since they give a representative for
each equivalence class of ≡ and thus can be viewed as elements of the quotient
monoid A∗/ ≡. Thus, it is often necessary to decide whether or not a given set
constitutes a cross section of a certain monoid. This can be achieved by defining
an action S × A∗ → S and verifying certain properties of this action.

Lemma 2.4 If there exists an action . : S × A∗ → S of A∗ on S such that

1. s.ui = s.vi for all (ui, vi) ∈ R,

2. s.1A∗ = s for all s ∈ S,

3. (s.u).v = s.uv for all s ∈ S and u, v ∈ A∗,

then S is a cross section of A∗/ ≡, where ≡ is the congruence on A∗ generated
by R.

The idea behind this action is that for a cross section S, s ∈ S and w ∈ A∗

there is a unique element s′ ∈ S such that s′ ≡ sw. This element s′ is then the
result of the action, that is s′ = s.w.

If the action from S×A∗ into S is extended into a mapping from A∗×A∗ into
A∗ by defining u.v to be the element in S equivalent to uv then the following
is true, where, for a word u ∈ A∗, nor necessarily in S, and a set X ⊆ S,
u1X = {v ∈ S | u.v ∈ X}.

Lemma 2.5 Let X ⊆ S and u, v ∈ A∗. If u ≡ v then u−1X = v−1X.

Rational cross sections of slow growth have a particular impact on the form of
the recognizable sets of a monoid.

Definition 2.6 Let P be a subset of A∗. The entropy of P is

e(P ) = lim sup
n→∞

log |P ∩ An|

n
.

Zero entropy of the star of a language L has a marked effect since it prohibits
the existence of free monoids on more than one generator inside L∗. More
specifically:

Lemma 2.7 Let L be a non-empty subset of A∗. Then the following are equiv-
alent.
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1. e(L∗) = 0.

2. There exists t ∈ A∗ and I ⊆ IN such that L∗ = {ti|i ∈ I}.

3. There exists t ∈ A∗, n, m ∈ IN and a finite subset I of IN such that

L∗ =

(

⋃

i∈I

ti

)

∪ tm(tn)∗.

Proof: The equivalence between 2 and 3 is the classical characterization of one
letter rational languages. Part 3 implies part 1 quite obviously, whereas part 2
follows from part 1 by the observation that an entropy 0 subset of A∗ cannot
contain a free monoid on more than one generator. 2

Proposition 2.8 If M = A∗/ ≡ has a rational cross section of entropy 0 then
the recognizable subsets of M are finite unions of finite products of words and
stars of words.

Proof: Let X ⊆ M be recognizable and suppose π : A∗ → M is the natural pro-
jection. If S is a rational cross section, then X = π

(

π−1(X)
)

= π
(

π−1(X) ∩ S
)

.
Since inverse images of recognizable languages are recognizable, π−1(X) is rec-
ognizable. Furthermore, since A∗ is finitely generated and free, the notions of
recognizability and rationality coincide, hence π−1(X) ∩ S is rational in A∗.
Since it is contained in S, its entropy is zero and its stars can thus be decom-
posed according to Lemma ??. Hence, π−1(X) ∩ S can be written as a finite
union of finite products of words and stars of words. But then its image X is
of this form as well since π(B ∪ C) = π(B) ∪ π(C), π(BC) = π(B)π(C) and
π(C∗) = π(C)∗. 2

2.3 The Plactic Monoid

As mentioned in the introduction, the plactic monoid is closely related to Young
tableaux via Schensted’s algorithm. So a few explanations with regard to that
subject are in order here. Let (λ1, . . . , λr) be a partition of a positive integer n,
that is a sequence of positive integers such that λ1 ≤ λ2 · · · ≤ λr and

∑

i λi = n.
Then the Ferrers diagram associated with this sequence consists of rows of boxes
with λi boxes in the r− i+1-st row for 1 ≤ i ≤ r. A Young tableau is a Ferrers
diagram where the boxes are filled by the elements of a totally ordered alphabet
in such a way that the elements increase from left to right in each row and
strictly decrease from top to bottom in each column. Schensted’s algorithm
assigns to each word w of a language A∗ a Young tableau, called its insertion
tableau P (w), as follows.

1. The first letter a1 of w is put in a box.
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2. If the n-th letter an of w is greater or equal to every letter in the last row
of the insertion tableau of a1a2 . . . an−1 then put it in a box and adjoin it
to the right of the last row of this last tableau.

3. Otherwise find the leftmost letter al in the last row of P (a1 . . . an−1) which
is strictly greater than an, put an into al’s box and do step 2 with al

starting in the row above the last row.

Thus the insertion tableau of bba with a < b is constructed in the following way.

b
→ b

b
→ b b

a
→

b

a b

The insertion tableau for bab is obtained as follows.

b
→ b

a
→ a

b
b
→

b

a b

Thus, different words may lead to the same insertion tableau, suggesting the
introduction of a relation on the words of A∗ that takes account of this phe-
nomenon. It is clear that the relation on A∗ defined by w ∼= u if and only if
P (w) = P (u) is an equivalence relation. Knuth proved that this equivalence
relation is, in fact, the congruence generated by

{

aba ≡ baa, bba ≡ bab for every pair a, b ∈ A with a < b
acb ≡ cab, bca ≡ bac for every triple a, b, c ∈ A with a < b < c.

(2)

Thus, the plactic monoid P la(A) on the alphabet A is defined to be the quotient
of A∗ by this congruence relation.

Since the map P from A∗ to Young tableaux is onto, there exist right inverses
of P from the Young tableaux to A∗ whose images will yield cross sections
of the plactic monoid P la(A). The two most obvious ones are obtained by
concatenating the rows or the columns, respectively, of a Young tableau. The
cross section obtained from concatenating the columns yields a rational cross
section of the plactic monoid (cf [?]). In the case of the plactic monoid P la(a, b)
this cross section has the form S = (ba)∗a∗b∗. The action S × A∗ → S related
to this cross section by Lemma ?? is given by

(ba)iajbk.a =

{

(ba)i+1ajbk−1 if k ≥ 1
(ba)iaj+1 if k = 0

and
(ba)iajbk.b = (ba)iajbk+1
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on the generators of A∗. It is easy to check that

(ba)iajbk.bba = (ba)iajbk.bab = (ba)i+1ajbk+1

and

(ba)iajbk.aba = (ba)iajbk.baa =

{

(ba)i+2ajbk−1 if k ≥ 1
(ba)i+1aj+1 if k = 0

Note that the restriction of this action to S×S → S defines a monoid structure
on S which turns S into a monoid isomorphic to P la(a, b). Thus P la(a, b) will
be identified with (S, .) in the sequel. Note that

(ba)iajbk.bn = (ba)iajbk+n,

(ba)man.(ba)iajbk = (ba)i+maj+nbk,

and

bn.(ba)iajbk =

{

(ba)i+jbn−j+k if n ≥ j
(ba)i+naj−nbk if j < n

.

plactic

3 Recognizable Subsets of Pla(a, b)

Before starting the search for the recognizable subsets of the plactic monoid, note
the following relationship between the recognizable subsets of the free monoid
A∗ and a cross section (S, .).

Lemma 3.1 Let L be a subset of S ⊆ A∗. Then L is a recognizable subset of
(S, .) if and only if

[L] = {u ∈ A∗|there is a v ∈ L such that u ≡ v}

is recognizable in A∗.

Thus, if S is recognizable in A∗ then the recognizability of L ⊆ S in S implies
the recognizability of L in A∗. The converse of this statement, however, is
not true. For example, in the case of the two letter plactic monoid, (ba)∗ is
recognizable in A∗, while it is not recognizable in S for [(ba)∗] is the semi Dyck
language.

In order to study the recognizable subsets of the plactic monoid on two
letters, it is worth noticing that every subset L ⊆ P la(a, b) can be written in
the form

L =
⋃

i,j≥0

(ba)i ajLi,j (3)

where Li,j is a subset of b∗. The reason for this is that (ba)
∗
a∗b∗ is a cross

section of P la(a, b). This representation is unique and the residuals of a subset
L of P la(a, b) represented in this form look as follows.


