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Abstract

This paper discusses various deformations of free associative algebras and of
their convolution algebras. Our main examples are deformations of noncommutative
symmetric functions related to families of idempotents in descent algebras, and a
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1 Introduction

This article is devoted to the investigation of certain deformations of free associative (or
tensor) algebras and of their convolution algebras. Typically, the deformations we are
interested in depend on one or several parameters and are trivial in the sense of the
deformation theory of algebras. That is, for generic values of these parameters there
exists a conjugating isomorphism

u� v = f(f−1(u)f−1(v))

between the deformed product � and the original one. However, for specific values of
the parameters, the deformed product degenerates in a non-trivial way, a situation which
allows for the representation of complicated algebras as limiting cases of well-understood
ones.

The motivation for this investigation was provided by examples of direct sum de-
compositions of the free associative algebra K〈A〉, regarded as the universal enveloping
algebra of the free Lie algebra L(A)

K〈A〉 =
⊕

λ

Uλ (1)

analogous to the Poincaré-Birkhoff-Witt decomposition, i.e. λ runs through the set of all
partitions, U0 = K and U1 = L(A).

In these examples, each module Uλ is the image of the homogeneous component K〈A〉n

of degree n of K〈A〉 by a certain idempotent eλ of the group algebra of the symmetric
group K[Sn], acting on the right by (x1x2 · · ·xn) · σ = xσ(1)xσ(2) · · ·xσ(n) (where xi ∈ A).

In the case of the Poincaré-Birkhoff-Witt decomposition, coming from the identifi-
cation of K〈A〉 with the symmetric algebra S(L(A)), Uλ is the subspace spanned by
symmetrized products of Lie polynomials

(P1, P2, . . . , Pr) =
1

r!

∑

σ∈Sr

Pσ(1)Pσ(2) · · ·Pσ(r)

such that each Pi is homogeneous of degree λi. The corresponding idempotents, intro-
duced by Garsia and Reutenauer [9], are refinements of the so called Eulerian idempotents
(cf. [30]), which arise for example in the computation of the Hausdorff series [25], or in
the study of the Hochschild cohomology of commutative algebras [13, 22].

The Garsia-Reutenauer idempotents eλ form, taking all partitions of a given n, a com-
plete set of orthogonal idempotents of a remarkable subalgebra Σn of K[Sn], discovered
by L. Solomon [36] and called the descent algebra. It has been shown in [20] that such
complete sets can be constructed for all descent algebras from any sequence e(n) of Lie
idempotents of Σn, i.e. idempotents projecting K〈A〉n onto Ln(A). In particular, using
the deformation theory of noncommutative symmetric functions, one can obtain interest-
ing sequences of Lie idempotents, depending on one or more parameters, and interpolating
in a natural way between all known examples [6, 20]. This leads to various deformations
of the Garsia-Reutenauer idempotents and of the Eulerian idempotents, and the first
question is certainly to explicit the modules Uλ on which they project. The deformation
technique presented in Section 3 provides the following answer (Section 7, Prop. 7.4):

There exists for each n a vector p = (pI) indexed by compositions of n, satisfy-
ing

∑
I pI = 1, such that Uλ is spanned by the weighted symmetrized products

(P1, P2, . . . , Pr)p =
∑

σ∈Sr

pλ·σPσ(1)Pσ(2) · · ·Pσ(r)
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where λ = (λ1, . . . , λr) and each Pi ∈ Lλi
(A).

The weights pI are explicited for several interesting examples.
The only recorded example of decomposition (1) which does not come from a sequence

of Lie idempotents in descent algebras is the so-called orthogonal decomposition (cf. [4]).
It has been shown by Ree [28] that if one endows K〈A〉 with the scalar product for which
words form an othonormal basis, the orthogonal complement of L(A) is the space spanned
by proper shuffles u v, u, v 6= 1. The orthogonal Lie idempotent πn is the orthogonal
projector from K〈A〉n onto Ln(A). This idempotent is not in the descent algebra, and
it would be of interest to understand its structure. The orthogonal decomposition of the
K〈A〉 can be refined into a decomposition of type (1), where Uλ is now spanned by shuffles
of homogeneous Lie elements

P1 P2 · · · Pr

with each Pi of degree λi. The relationship between the projectors πn = e(n) of this
decomposition and the other projectors eλ is somewhat analogous to the one encountered
in the case of the descent algebra, but considerably more intricate.

To understand this analogy, we were led to introduce a q-analogue of the shuffle prod-
uct, which, strictly speaking, is rather a deformation of the concatenation product (ob-
tained for q = 0), recursively defined by

au�q bv = a(u�q bv) + q|au|b(au�q v) (2)

where a, b ∈ A and u, v ∈ A∗. This product degenerates at roots of unity, and in particular
gives the standard (commutative) shuffle product for q = 1. We conjecture that its
convolution algebra degenerates for q → 1 into a commutative algebra which is associated
with a Ree type decomposition

K〈A〉 = K ⊕ L⊕ L L⊕ · · ·

where L is a subspace which has the same Hilbert series as the free Lie algebra (this
subspace can be explicited). A challenging problem would be to find a good deformation
of the shuffle product giving the convolution algebra relevant to the case of the orthogonal
idempotent as a degenerate case.

It turns out that the q-shuffle, as well as the elements Un(q) =
∑

σ∈Sn
q`(σ)σ, which

are naturally associated with it, already occured in the literature, in several apparently
unrelated contexts.

First of all, the q-shuffle algebra is the simplest non-trivial case of a very general
construction due to M. Rosso, obtained in the context of the theory of quantum groups.
Moreover, the q-shuffle algebra is isomorphic to the free associative algebra iff Un(q) is
invertible for all n. The computation of its determinant (as an operator of the regular
representation of Sn) already occured in a problem of physics (the Hilbert space repre-
sentability of the quon algebra, describing hypothetical particles violating Bose or Fermi
statistics [15]), and was solved by D. Zagier who also computed Un(q)−1 by means of
certain factorization formulas. Surprisingly enough, Zagier’s formula for detUn(q) turns
out to be a special case of a recent formula of Varchenko [38], giving the determinant
of what he calls the quantum bilinear form of a hyperplane arrangement. To complete
the picture, we mention that the q-shuffle also has a natural interpretation whithin the
representation theory of the 0-Hecke algebras of type A [7]. These aspects of the q-shuffle
are reviewed, and the various connections are exploited in order to give generalizations or
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simplifications of known results when possible. For example, we will see that one can con-
struct a quantum shuffle from any solution of the Yang-Baxter equation (without spectral
parameters), and that the Hall-Littlewood symmetric functions or the q-Fock spaces of
Kashiwara, Miwa and Stern [18] can be regarded as examples of this construction. Also,
we generalize Zagier’s factorizations to identities in the algebra of the infinite braid group,
and give some applications.

This paper is structured as follows. We first recall the basic definitions concerning
noncommutative symmetric functions [10], which provide the convenient formalism for
computing in convolution algebras (Section 2). Next, we present a general deformation
pattern and give some simple properties (Section 3). In Section 4 we introduce the q-shuffle
and derive its fundamental properties. We review the quon algebra, the work of Zagier,
and give some details on the interpretation in terms of the 0-Hecke algebra. In Section 5,
we study the q-shuffle algebra as a Hopf algebra, and present our conjecture concerning
the limit q → 1 of its convolution algebra. In Section 6, we give a simplified presentation
of Rosso’s quantum shuffles and exhibit some new examples. Next, we generalize to the
braid group some of the formulas which occured in the study of the q-shuffle, explain the
connection with Varchenko’s construction, and illustrate the general results on an example
constructed from the standard Hecke-type solution of the Yang-Baxter equation. Finally,
Section 7 is devoted to the description of the decompositions of the free associative algebra
obtained from deformations of the Garsia-Reutenauer idempotents.

Aknowledgements — The authors are grateful to R. Stanley for communicating Varchenko’s reference

[38] and to D. Zagier for interesting conversations concerning his work [40].
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2 Noncommutative symmetric functions

2.1 Definitions

The algebra of noncommutative symmetric functions, defined in [10], is the free associative
algebra Sym = Q〈S1, S2, . . .〉 generated by an infinite sequence of noncommutative inde-
terminates Sk, called the complete symmetric functions. We set for convenience S0 = 1.
Let t be another variable commuting with all the Sk. Introducing the generating series

σ(t) :=
∞∑

k=0

Sk t
k ,

one defines other families of noncommutative symmetric functions by the following rela-
tions

λ(t) = σ(−t)−1 ,

d

dt
σ(t) = σ(t)ψ(t) , σ(t) = exp(Φ(t)) ,

where λ(t), ψ(t) and φ(t) are the generating series

λ(t) :=
∞∑

k=0

Λk t
k

ψ(t) :=
∞∑

k=1

Ψk t
k−1 , Φ(t) :=

∞∑

k=1

Φk

k
tk .

The noncommutative symmetric functions Λk are called elementary functions, and Ψk

and Φk are respectively called power sums of first and second kind.

The algebra Sym is graded by the weight function w defined by w(Sk) = k. Its
homogeneous component of weight n is denoted by Symn. If (Fn) is a sequence of
noncommutative symmetric functions with Fn ∈ Symn for n ≥ 1, we set for a composition
I = (i1, . . . , ir)

F I = Fi1 Fi2 . . . Fir .

The families (SI), (ΛI), (ΨI) and (ΦI) are homogeneous bases of Sym.

The algebra Sym can also be endowed with a Hopf algebra structure. Its coproduct
∆ is defined by any of the following equivalent formulas:

∆(Sn) =
n∑

k=0

Sk ⊗ Sn−k , ∆(Λn) =
n∑

k=0

Λk ⊗ Λn−k ,

∆(Ψn) = 1 ⊗ Ψn + Ψn ⊗ 1 , ∆(Φn) = 1 ⊗ Φn + Φn ⊗ 1 .

The free Lie algebra L(Φ) generated by the family (Φn)n≥1 is then the Lie algebra of
primitive elements for ∆.

The set of all compositions of a given integer n is equipped with the reverse refinement
order, denoted �. For instance, the compositions J of 4 such that J � (1, 2, 1) are exactly
(1, 2, 1), (3, 1), (1, 3) and (4). The ribbon Schur functions (RI), originally defined in terms
of quasi-determinants (cf. [11, 12]), can also be defined by one of the two equivalent
relations

SI =
∑

J�I

RI , RI =
∑

J�I

(−1)`(I)−`(J) SJ ,
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where `(I) denotes the length of the composition I. One can easily check that the family
(RI) is a homogenous basis of Sym.

The commutative image of a noncommutative symmetric function F is the (commuta-
tive) symmetric function f obtained by applying to F the algebra morphism which maps
Sn onto hn (using here the notations of Macdonald’s book [23]). The commutative image
of Λn is en and the power sums Ψn and Φn are both mapped to pn. Finally RI is sent to
an ordinary ribbon Schur function, which will be denoted by rI .

2.2 Relations with Solomon’s descent algebra

There is a noncommutative analog of the well known correspondence between symmetric
functions and characters of symmetric groups, where the character ring of a symmetric
group is replaced by the descent algebra, in the sense of Solomon [36]. Recall that an
integer i ∈ [1, n− 1] is said to be a descent of a permutation σ ∈ Sn iff σ(i) > σ(i + 1).
The descent set of a permutation σ ∈ Sn is the subset of [1, n − 1] consisting of all
descents of σ. If I = (i1, . . . , ir) is a composition of n, one associates with it the subset
D(I) = { d1, . . . , dr−1 } of [1, n − 1] defined by dk = i1 + . . . + ik. Let DI be the sum in
Z[Sn] of all permutations with descent set D(I). Solomon showed that the DI form a
basis of a subalgebra of Z[Sn] which is called the descent algebra of Sn and denoted by
Σn [36]. One can define an isomorphism of graded vector spaces

α : Sym =
∞⊕

n=0

Symn −→ Σ =
∞⊕

n=0

Σn

by
α(RI) = DI .

The direct sum Σ can be endowed with A an algebra structure by extending the natural
product of its components Σn, setting xy = 0 for x ∈ Σp and y ∈ Σq when p 6= q. The
internal product ∗ on Sym is then defined by requiring that α be an anti-isomorphism,
i.e. by

F ∗G = α−1(α(G) ◦ α(F )) ,

for F,G ∈ Sym. The fundamental property for computing with the internal product is
the following formula:

Proposition 2.1 [10] Let F1, F2, . . . , Fr, G be noncommutative symmetric functions. Then,

(F1 F2 . . . Fr) ∗G = µr[(F1 ⊗ F2 ⊗ . . .⊗ Fr) ∗ ∆r(G)]

where in the right-hand side, µr denotes the r-fold ordinary multiplication and ∗ stands
for the operation induced on Sym⊗n by ∗.

2.3 Quasi-symmetric functions

As shown by Malvenuto and Reutenauer [24], the algebra of noncommutative symmetric
functions is in natural duality with the algebra of quasi-symmetric functions, introduced
by Gessel [14].

Let X = { x1, x2, . . . , xn . . . } be a totally ordered infinite alphabet (indexed by N).
An element f ∈ C[X] is said to be a quasi-symmetric function iff for any composition
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K = (k1, . . . , km) and xi, yj ∈ X such that y1 < y2 < . . . < ym and z1 < z2 < . . . < zm,
one has

(f | yk1
1 yk2

2 . . . ykm
m ) = (f | zk1

1 zk2
2 . . . zkm

m )

where (f, | xK) denotes the coefficient of the monomial xK in f . The quasi-symmetric
functions form a subalgebra of C[X] denoted by QSym.

One associates to a composition I = (i1, i2, . . . , im) the quasi-monomial function MI

defined by
MI =

∑

y1<y2<...<ym

yi1
1 y

i2
2 . . . yim

m .

The family of quasi-monomial functions is clearly a basis of QSym. Another important
basis of QSym is formed by the quasi-ribbon functions, defined by

FI =
∑

J�I

MJ

where � is the refinement order (i.e. J � I iff D(J) ⊇ D(I)). For example, F122 =
M122 +M1112 +M1211 +M11111.

The duality between Sym and QSym is realized by the pairing

〈SI ,MJ〉 = δI,J or 〈RI , FJ〉 = δI,J .

The Hopf algebra QSym can then be identified with the (graded) Hopf algebra dual of
Sym.

2.4 Differences and products of alphabets

We recall here some basic definitions concerning transformations of alphabets. We refer to
[20] for more details. The basic idea is to embed noncommutative symmetric functions in a
noncommutative polynomial algebra (for example by defining σ(A; t) =

∏
i≥1(1−tai)

−1 for
some noncommutative alphabet A), and then to regard the images of the generators Sn(A)
by an algebra morphism as being the symmetric functions Sn(A′) of another alphabet A′,
which can sometimes be explicited, but may also be virtual. For example, the formal
difference of two genuine alphabets A and B is generally only a virtual alphabet, having
nevertheless well-defined symmetric functions, expressible in terms of those of A and B.

We first recall the definition of the product of a totally ordered alphabet by a non-
commutative alphabet.

Definition 2.2 Let X be a totally ordered commutative alphabet and let A be a noncom-
mutative alphabet. The complete symmetric functions Sn(XA) of the alphabet XA are
defined by the generating series

σ(XA; t) =
∑

n≥0

Sn(XA) tn :=
∏

x∈X

σ(A; xt) ,

the product being taken relatively to the total ordering of X.

Example 2.3 Let Xq = 1/(1− q) denote the totally ordered alphabet Xq = { . . . < qn <
. . . < q < 1 }. The complete symmetric functions of the alphabet A/(1 − q) are

σ(
A

1 − q
; t) =

∑

n≥0

Sn(
A

1 − q
) tn :=

←∏

n≥0

σ(A; qn t) .

8



We recall the following important property [20].

Proposition 2.4 Let X, Y be two totally ordered commutative alphabets and let A be a
noncommutative alphabet. Then, for any Fn of Symn,

Fn((X × Y )A) = Fn(XA) ∗ Sn(Y A) ,

where X × Y denotes the direct product of the two alphabets X and Y endowed with the
lexicographic ordering.

This property suggests the notation Sn(A/X) for the ∗-inverse of Sn(XA) in Symn.
Finally, here is the definition of the difference of two noncommutative alphabets.

Definition 2.5 Let A,B be two noncommutative alphabets. The complete symmetric
functions Sn(A− B) of the alphabet A−B are defined by the generating series

σ(A−B; t) =
∑

n≥0

Sn(A− B) tn := σ(B; t)−1 σ(A; t) = λ(B;−t) σ(A; t) .

The notation (1 − q)A = A − qA denotes therefore the alphabet whose complete
symmetric functions are

σ((1 − q)A; t) =
∑

n≥0

Sn((1 − q)A) tn := λ(A;−qt) σ(A; t) .

These notations are coherent since it can be checked that Sn((1 − q)A) is actually the
inverse of Sn(A/(1 − q)) in Symn for the internal product.

9



3 Deformations of Cauchy and convolution products

In the sequel, K will denote a field of characteristic 0, and A will always be an infinite
alphabet whose letters are indexed by N, i.e. A = { a1, a2, . . . , an, . . . }.

3.1 The general case

Consider, for all n ≥ 1, an invertible element

βn =
∑

σ∈Sn

b(n)
σ σ ∈ K[Sn] .

We require that β1 = IdS1. This data defines a linear operator β on K〈A〉 by

β(ai1 . . . ain) = ai1 . . . ain · βn =
∑

σ∈Sn

b(n)
σ aiσ(1)

. . . aiσ(n)

where ai1 , . . . , ain ∈ A.
This allows us to equip K〈A〉 with a new product �β, defined by

u�β v = β(β−1(u) · β−1(v)) (3)

for u, v of A∗. In other terms, this product is defined in such a way that β becomes an
isomorphism of algebras between K〈A〉 equipped with its usual concatenation (or Cauchy)
product and K〈A〉 equipped with the new product �β.

Thus, (K〈A〉,�β) is a free associative algebra on β(A) = β1(A) = A. It is therefore
endowed with a canonical comultiplication cβ, defined by

cβ(a) = 1 ⊗ a+ a⊗ 1

for a ∈ A, and by the requirement that cβ is an algebra morphism for �β.

Let Cβ(A) be the convolution algebra of the Hopf algebra (K〈A〉,�β, cβ), that is,
Cβ(A) = End grK〈A〉 endowed withe the convolution product

f ⊕×β g = µβ ◦ (f ⊗ g) ◦ cβ (4)

where µβ : u⊗ v 7→ u�β v is the multiplication. When β = I, it is well known that the
direct sum of the group algebras of all symmetric groups

K[S] =
⊕

n≥0

K[Sn] (5)

is a subalgebra of the convolution algebra (cf. [30]). This is also true for the β-deformed
products.

Proposition 3.1 The β-convolution algebra (K[S],⊕×β) is isomorphic to the usual con-
volution algebra (K[S],⊕×) (which corresponds to the case where β is the identity).

Proof — Let c be the comultiplication of K〈A〉 (for its usual Cauchy structure) making
letters primitive. By definition of �β,

β(a1 . . . an) = a1 �β . . .�β an

10



for ai of A. Using this property, it is easy to see that the following diagram is commutative

K〈A〉 ⊗K〈A〉 K〈A〉 ⊗K〈A〉-
β ⊗ β

K〈A〉 K〈A〉-β

?

c

?

cβ

In other words, cβ = (β ⊗ β) ◦ c ◦ β−1, so that

σ ⊕×β τ = �β ◦ (σ ⊗ τ) ◦ cβ

= β ◦ � ◦ (β−1 ⊗ β−1) ◦ (σ ⊗ τ) ◦ (β ⊗ β) ◦ c ◦ β−1

= β ◦ � ◦
(

(β−1 ◦ σ ◦ β) ⊗ (β−1 ◦ τ ◦ β)
)
◦ c ◦ β−1

where we identify an element x of K[S] with the endomorphism corresponding to its left
action y −→ x ◦ y on K[S] (� denotes here the usual concatenation product of K〈A〉).
Consider now the bijection fβ from K[S] into itself defined by

fβ(σ) = βn ◦ σ ◦ β−1
n

for σ ∈ Sn. We have just proved that

fβ(σ ⊕×β τ) = fβ(σ) ⊕× fβ(τ) , (6)

and fβ is the required isomorphism. 2

Note 3.2 The definition of β shows that

σ ◦ β(τ) = β(σ ◦ τ)

for any two permutations σ and τ . This just means that the left and right actions of the
symmetric group commute. One can then easily check that

σ ⊕×β τ = β(σ ⊕× τ) (7)

for permutations σ and τ of arbitrary orders.

Consider now the subalgebra Σβ of (K[S],⊕×β) which is generated by all the elements
Idn = 1 2 . . . n for every n ≥ 0. When β is the identity of K〈A〉, Σβ is isomorphic to
the direct sum Σ of all descent algebras equipped with the convolution product (cf. [30]),
hence to the algebra of noncommutative symmetric functions (cf. Section 2). An explicit
isomorphism between these algebras is given by

Si1 Si2 . . . Sin −→ Idi1 ⊕× Idi2 ⊕× . . . ⊕× Idin .

One can deform this isomorphism by constructing a new isomorphism denoted αβ from
Sym into Σβ which maps the complete function SI (where I = (i1, . . . , in) is a composi-
tion) to the convolution product

Idi1 ⊕×β Idi2 ⊕×β . . . ⊕×β Idin .

It is interesting to observe that the isomorphism αβ can be seen as a deformation of the
classical interpretation α of noncommutative symmetric functions into Solomon’s descent
algebra. One can therefore obtain by this method different interpretations of noncom-
mutative symmetric functions. The following result gives an explicit expression for the
deformed interpretation map αβ.

11



Proposition 3.3 For Fn ∈ Symn,

αβ(Fn) = β−1
n ◦ α(Fn) ◦ βn . (8)

Proof — With the same notations as in the proof of Proposition 3.1, one has

fβ(αβ(SI)) = fβ(Idi1 ⊕×β . . . ⊕×β Idin) = fβ(Idi1) ⊕× . . . ⊕× fβ(Idin) = α(SI)

according to (6) and to the fact that fβ(Idk) = Idk for every k ≥ 0. Hence, fβ(αβ(SI)) =
α(SI). That is, αβ(SI) = β−1

n ◦ α(SI) ◦ βn. 2

As an immediate consequence, we can state:

Corollary 3.4 The convolution algebra Σβ is a subalgebra of K[S] equiped with the usual
composition product.

Proof — Let x and y be two homogenous elements of the same order n of Σβ. By
construction, there exists two elements f and g of Symn such that x = αβ(f) and
y = αβ(g). It follows then from Proposition 3.3 that

x ◦ y = (β−1
n ◦ α(f) ◦ βn) ◦ (β−1

n ◦ α(g) ◦ βn)

= β−1
n ◦ α(f) ◦ α(g) ◦ βn

= β−1
n ◦ α(g ∗ f) ◦ βn

= αβ(g ∗ f) ∈ Σβ .

2

Note 3.5 The proof of the corollary shows that

αβ(F ) ◦ αβ(G) = αβ(G ∗ F )

for homogenous elements F,G of the same weight of Sym. It follows in particular that
the image by αβ of a homogenous idempotent of Sym (for the internal product) is still
an idempotent in Σβ.

Example 3.6 Let us explicit the interpretation of the image by αβ of the Eulerian idem-
potent φn (which is the image by α of the element Φn/n of Symn). Let L denote the
image of the free Lie algebra L(A) by β. Transporting by β the Poincaré-Birkhoff-Witt
decomposition of K〈A〉, we obtain

K〈A〉 = K ⊕ L ⊕ (L,L)β ⊕ . . . ⊕ (L, . . . ,L︸ ︷︷ ︸
n terms

)β ⊕ . . .

where

(x1, . . . , xn)β =
1

n!

( ∑

σ∈Sn

xσ(1) �β . . .�β xσ(n)

)

for x1, . . . , xn ∈ K〈A〉. Then, αβ(Φn/n) = βn ◦φn ◦βn is the idempotent corresponding to
the projection of the homogenous component of degree n of L with respect to the above
direct sum decomposition of K〈A〉.
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Note 3.7 In many interesting cases, the elements βn = βn(q) depend on some parameter
q and are invertible for generic values of q. In such situations, the convolution algebra
Σβ(q) degenerates when q takes a value q0 for which β = β(q) is not an isomorphism. We
will however still use the notation Σβ(q0) to denote the limit of Σβ(q) for q → q0 when-
ever it exists. Several interesting problems arise in the investigation of these degenerate
convolution algebras.

Note 3.8 The framework presented here can be easily generalized to some other situa-
tions. Among them is the case of the so-called orthogonal Lie idempotent (see [4, 30]).
The orthogonal Lie idempotent πn is the idempotent of Q[Sn] which corresponds to the
orthogonal projection from K〈A〉 (endowed with its standard scalar product for which
words form an orthonormal basis) onto the homogenous component L(A)n of order n
of the free Lie algebra L(A). πn is also the projection onto L(A)n with respect to the
decomposition of K〈A〉 given by Ree’s theorem, i.e.

K〈A〉 = K ⊕ L(A) ⊕ L(A) L(A) ⊕ . . . ⊕ L(A) . . . L(A)︸ ︷︷ ︸
n terms

⊕ . . .

where denotes the usual shuffle product on Q〈A〉.

Let B be any linear basis of L(A). The shuffle algebra (Q〈A〉, ) is a free commutative
algebra with B as generating family (cf. [30]). This property allows us to define a
comultiplication c on Q〈A〉 by

1. c (L) = 1 ⊗ L+ L⊗ 1 for every Lie element L ∈ L(A);

2. c (P Q) = c (P ) ( ⊗ ) c (Q) for every polynomials P,Q ∈ Q〈A〉.

One can then consider the associated convolution product ⊕× on Q[S], defined by

σ ⊕× τ = ◦ (σ ⊗ τ) ◦ c (1 2 . . . n+m)

for σ ∈ Sn and τ ∈ Sm. The commutativity of the shuffle product implies the cocommu-
tativity of c . Hence the convolution algebra (Q[S],⊕× ) is here commutative. It follows
that its subalgebra Σ generated by the identity elements of all symmetric groups is also
commutative. Consider now the morphism from Sym into Σ defined as in the general
case by

α (S(i1,...,in)) = Idi1 ⊕× . . . ⊕× Idin .

This is a degenerate situation in which the image by α of the algebra of noncommu-
tative symmetric functions is not isomorphic to Solomon’s descent algebra. The generic
interpretation of the image by α of the Eulerian idempotent Φn given in Example 3.6 is
however still valid here. It follows from this interpretation that Ree’s decomposition is
equivalent to

α (Φn) = πn .

It follows that πn belongs to the homogenous component Σ
(n)

of order n of Σ. It is easy to
see that this set is a subalgebra of K[Sn] of dimension p(n) (the number of partitions of
n). An interesting research direction would be to characterize this subalgebra and to give
explicit formulas for the images of the standard bases of Sym by α . The decomposition
of πn on such bases would then be immediately given by decomposition relations of Φn in
Sym.
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Example 3.9 Let us describe Σ
(n)

for n = 2 and n = 3. In the first case, Σ
(2)

is just the
descent algebra Σ2 = Q[S2]. In the second case, Σ

(3)
is the commutative algebra spanned

by

α (R3) = 123 , α (R12) = α (R21) =
1

2
(132 + 213 + 231 + 312 ) , α (R111) = 321 ,

and the orthogonal projector is

π3 = α (Φ3) = α (R3 −
1

2
R21 −

1

2
R21 +R111) = 123 −

1

2
(132 + 213 + 231 + 312) + 321 .

It is also interesting to see that the image by α of the homogenous component Ln(Ψ)
of order n of the free Lie algebra L(Ψ) ⊂ Sym generated by the family (Ψn)n≥1 (or
equivalently by the family (Φn)n≥1) collapses here onto a line, which is necessarily equal
to Qπn.

3.2 Deformations using noncommutative symmetric functions

Here is an interesting special case of the previous constructions. Let F = (Fn)n≥1 be a
family of elements of Symn, with F1 = S1. We assume that every Fn is invertible for the
internal product of Symn. We can then consider the bijection βn defined by

βn = α(Fn) ,

where we identify an element of K[Sn] with the linear morphism defined by its right
action. In other words, βn is given by

βn : x ∈ K[Sn] −→ x ◦ α(Fn) .

Denote by �F the product of K〈A〉 associated with the family (βn)n≥1 by the above
construction. We also denote by ⊕×F and αF the corresponding convolution product and
interpretation morphism (of Sym into the convolution algebra ΣF = Σβ).

Note first that Proposition 3.3 shows that the image of αF is here exactly Solomon’s
descent algebra. Using α−1, we can therefore reinterpret the convolution product ⊕×F .
Formula (7) shows in particular that the algebra (Σ,⊕×F ) is isomorphic to the algebra of
noncommutative symmetric functions endowed with the F -product defined by

U ∗F V = Fn+m ∗ (UV )

for homogenous elements U and V of weight n and m respectively. Identifying again α(U)
with U and applying Proposition 3.3, one has has

αF (U) = Fn ∗ U ∗ F ∗(−1)
n

for U ∈ Symn, where F ∗(−1)
n denotes the inverse of Fn for the internal product of Symn.

We will study in the final Section of this paper the situations corresponding to the
families given by the q-bracketing and its inverse, i.e. the cases Fn = Sn((1 − q)A) and
Fn = Sn(A/(1 − q)).
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4 The q-shuffle product

We present in this section the q-shuffle product which is an interesting deformation of the
usual Cauchy product in K〈A〉. We first give the formal definition of this product and
then show that this deformation is a special case of the general framework introduced in
Section 3.

4.1 Definition

The shuffle product can be recursively defined by the formula

au bv = a(u bv) + b(au v) (9)

where a, b ∈ A and u, v ∈ A∗. Inserting a power of an indeterminate q in this definition,
one obtains an interesting deformation, which turns out to be a particular case of a
construction of Rosso [31].

Definition 4.1 The q-shuffle product is the bilinear operation �q on N[q]〈A〉 recursively
defined by

1 �q u = u�q 1 = u , (10)

(au) �q (bv) = a (u�q bv) + q|au| b (au�q v) , (11)

where u, v (resp. a, b) are words (resp. letters) of A∗ (resp. A).

This operation interpolates between the concatenation product (for q = 0) and the
usual shuffle product (for q = 1) on N[q]〈A〉. The following property is a particular case
of a result proved in Section 6.

Proposition 4.2 The q-shuffle product is associative.

2

As an exercise, let us check it directly. It is clearly sufficient to prove that

(au �q bv) �q cw = au �q (bv �q cw) (12)

for u, v, w ∈ A∗ and a, b, c ∈ A. Applying (11), one finds

(au �q bv) �q cw = a(u �q bv) �q cw + q|au| b(au �q v) �q cw

= a((u �q bv) �q cw) + q|au|+|bv| c(a(u �q bv) �q w)

+q|au| b((au �q v) �q cw) + q2|au|+|bv| c(b(au �q v) �q w)

= a((u �q bv) �q cw) + q|au| b((au �q v) �q cw)

+q|au|+|bv| c(
(
a(u �q bv) + q|au| b(au�q v)

)
�q w) .

so that

(au �q bv) �q cw = a((u �q bv) �q cw)

+q|au|b((au �q v) �q cw) + q|au|+|bv|c((au �q bv) �q w) . (13)

On the other hand,

au �q (bv �q cw) = au �q (b(v �q cw) + q|bv| c(bv �q w))

= a(u �q b(v �q cw)) + q|au| b(au �q (v �q cw))

+q|bv| a(u �q c(bv �q w)) + q|au|+|bv| c(au �q (bv �q w))

= a(u �q

(
b(v �q cw) + q|bv| c(bv �q w)

)
)

+q|au| b(au�q (v �q cw)) + q|au|+|bv| c(au �q (bv �q w)) .
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It follows that

au �q (bv �q cw) = a(u �q (bv �q cw))

+q|au| b(au�q (v �q cw)) + q|au|+|bv| c(au �q (bv �q w)) , (14)

which implies the result by induction.

4.2 The operator U(q)

As already observed, the q-shuffle can also be interpreted as a deformation (in the sense
of the deformation theory of algebras) of the concatenation product of a free associa-
tive algebra. It is known that these algebras are rigid, which implies that for generic
q the q-shuffle product is necessarily a deformation of the concatenation product in the
sense of Section 3. It is easy to exhibit the conjugation isomorphism. Let U(q) be the
endomorphism of Z(q)〈A〉 defined by

U(q)(a1 a2 . . . an) = a1 �q a2 �q . . .�q an

for w = a1 a2 . . . an of A∗. The product �q being multihomogeneous, the restriction of
U(q) to Z(q)〈A〉λ defines an endomorphism U(q)λ of Z(q)〈A〉λ for each multidegree λ, and
one can write

U(q) =
⊕

λ

U(q)λ .

Moreover U(q) clearly commutes with letter to letter substitutions. This shows that
one can recover U(q) from its restriction to standard words U(q)1n . This endomorphism
corresponds to the right action of an element Un(q) of Z[q][Sn], which is given by the
following formula.

Proposition 4.3

Un(q)(12 . . . n) = 1 �q 2 �q . . .�q n =
∑

σ∈Sn

q`(σ) σ . (15)

This formula follows by induction from the following one, itself established by induc-
tion:

Lemma 4.4

12 . . . n−1 �q n =
n−1∑

i=0

qn−1−i (1 . . . i n i+1 . . . n−1) . (16)

2

It follows that for a word of length n,

U(q)(a1 a2 . . . an) = a1 a2 . . . an · Un(q)

and one sees that the q-shuffle is a deformation of the Cauchy product in the sense of
Section 3 whenever Un(q) is a bijection.

Indeed, detUn(q) is an analytic function of q, and Un(0) being the identity of Z[Sn],
Un(q) is invertible for small complex values of q, and thus also for generic q (that is, for q
an indeterminate, or for q a complex number avoiding a discrete set of values). It follows
that U(q) itself is also generically invertible and hence that the q-shuffle is generically a
deformation of the Cauchy product in the sense of Section 3. One can restate this result
as follows.
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Proposition 4.5 For generic q, U(q) is an isomorphism between the concatenation al-
gebra (Z(q)〈A〉, ·) and the q-shuffle algebra (Z(q)〈A〉,�q).

Equivalently, when U(q) is invertible,

x�q y = U(q) (U(q)−1(x) · U(q)−1(y) ) . (17)

4.3 U(q) in physics: the quon algebra

The problem arises now of finding the values of q for which Un(q) is actually invertible. It
turns out that this problem has already been solved by D. Zagier [40] in a totally different
context. The starting point was a problem in physics, related to a model of quantum
field theory allowing the existence of particles (“quons”) displaying small violations of
Bose or Fermi statistics [15]. Classically, bosons and fermions are described by creation
and annihilation operators ai, a

∗
j satisfying canonical commutation or anticommutation

relations. Here, the problem was to determine whether it was possible to realize the
q-commutator (“q-mutator”) relations

ai a
∗
j − q a∗j ai = δi,j (i, j ≥ 1) (18)

by operators ai, a
∗
j of a Hilbert space H, such that a∗i be the adjoint of ai, and such that

there exists a distinguished vector |0〉 ∈ H (the vacuum state) annihilated by all the ai

ai|0〉 = 0 for all i . (19)

D. Zagier proved the realizability of this model for −1 < q < 1 (another proof appears
in [8]). It is easy to see that the realizability problem can be reduced to the case where
H is equal to the vector space H(q) generated by the images of |0〉 under all products of
ak and a∗k. This space has a basis consisting of all states

|K〉 = a∗k1
. . . a∗kn

|0〉

for K = (k1, . . . , kn) ∈ (N∗)n. Consider now the infinite matrix A(q) defined by

A(q) = ( 〈K|L〉 )K,L∈(N∗)n,n≥0 ,

where the scalar product is defined by the condition 〈0|0〉 = 1. The Hilbert space re-
alizability of relations (18) is equivalent to the positive definiteness of the matrix A(q).
Moreover, one can prove that this condition is equivalent to the positive definiteness of
all submatrices of A(q) indexed by permutations of Sn. An easy computation gives

〈σ|τ〉 = q`(τ−1 σ)

which is the matrix of Un(q) in the regular representation.
Hence, one has to prove that all operators Un(q) are positive definite for −1 < q < 1.

By continuity, since Un(0) is the identity, it is sufficient to show that Un(q) is non singular
in this range. This reduces the realizability problem to the invertibility of the q-shuffle
operator for −1 < q < 1. This will follow from the computations of the forthcoming
section, as well as the complete determination of the values for which Un(q) is invertible.
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4.4 Zagier’s inversion of U(q)

Define

Tn(q) = 12 . . . n−1 � n =
n−1∑

i=0

qn−1−i (1 . . . i n i+1 . . . n−1) (20)

(by Lemma 4.4). Embedding Sn−1 in Sn, one can write

Un(q) = (1 �q · · · �q n− 1) �q n = Un−1(q)Tn(q)

so that Un(q) = T2(q)T3(q) · · ·Tn(q). Taking reduced decompositions of the factors, we
obtain:

Proposition 4.6 For n ≥ 2, one has the factorization

Un(q) = (1 �q 2) (12 �q 3) . . . (12 . . . n−1 �q n) (21)

= (1 + q σ1) (1 + q σ2 + q2 σ2σ1) . . .

(1 + q σn−1 + q2 σn−1 σn−2 + . . .+ qn−1 σn−1 . . . σ1) . (22)

2

Thus, Un(q) will be invertible if and only if all the Ti(q) are invertible for i ≤ n.
These elements can themselves be factorized. To this purpose, we need to introduce two
elements Gn(q) and Dn(q) of Z(q)[Sn], which are defined by induction. One first sets

G1(q) = D1(q) = 1 .

Let now n ≥ 2 and suppose that Gn−1(q) and Dn−1(q) are defined. Denote by gn−1(q)
and dn−1(q) the images of these elements in Z(q)[Sn] where we identify Sn−1 with the
stabilizer of 1 in Sn. That is,

gn−1(q) = ηn
n−1(Gn−1(q)) and dn−1(q) = ηn

n−1(Dn−1(q))

where ηn
n−1 is the group morphism of Sn−1 into Sn defined by

ηn
n−1(σ) = (1 σ(1)+1 . . . σ(n− 1)+1)

for σ ∈ Sn−1. Then one defines





Gn(q) = (1 − qn γn) gn−1(q)

Dn(q) = dn−1(q) (1 − qn−1 δn)−1
,

where
γn = (n−1 1 2 . . . n−2 n) and δn = (n 1 2 . . . n−1) .

The complete factorization of Tn(q) is then given by

Proposition 4.7 [40] For all n ≥ 1,

Tn(q) = Gn(q)Dn(q) . (23)
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Proof — Let n ≥ 2 and suppose by induction and that the formula is valid for Tn−1(q).
Then,

Gn(q)Dn(q) = (1 − qn γn) gn−1(q) dn−1(q) (1 − qn−1 δn)−1

= (1 − qn γn) tn−1(q) (1 − qn−1 δn)−1

where tn−1(q) = ηn
n−1(Tn−1(q)). It suffices therefore to check that

Tn(q) (1 − qn−1 δn) = (1 − qn γn) tn−1(q)

which follows from a straightforward computation. 2

Example 4.8 For n ≤ 4, this gives

T2(q) = (1 − q2) (1 − q (21))−1 ,

T3(q) = (1 − q3 (213)) (1− q2) (1 − q (132))−1 (1 − q2 (312))−1 ,

T4(q) = (1 − q4 (3124)) (1− q3 (1324)) (1 − q2)

(1 − q (1243))−1 (1 − q2 (1423))−1 (1 − q3 (4123))−1 .

It is now easy to obtain an explicit formula for Tn(q)−1 (which is a factorization of
this element into 2n− 3 terms). To state it, we need to introduce the elements G′n(q) and
D′n(q) defined by G′1(q) = D′1(q) = 1 and by the recursive formulas





G′n(q) = (1 − qn−1 γn) g
′
n−1(q)

D′n(q) = d′n−1(q) (1 + qn δn + q2n (δn)2 + . . .+ q(n−2)n (δn)n−2)
,

where g′n−1(q) = ηn
n−1(G

′
n−1) and d′n−1(q) = ηn

n−1(D
′
n−1).

Proposition 4.9 [40] If q is an indeterminate, Tn(q) is invertible, and its inverse is

Tn(q)−1 =
1

(1 − q2) (1 − q6) . . . (1 − qn(n−1))
D′n(q)G′n(q) . (24)

Proof — It suffices to find the inverses of the linear factors, which are given by

(1 − qn δn)−1 =
1

1 − qn(n−1)
(1 + qn δn + q2n (δn)2 + . . .+ q(n−2)n (δn)n−2) .

2

Example 4.10 For n = 2, 3, 4, one has

T2(q)
−1 = 1

1 − q2 (1 − q (21)) ,

T3(q)
−1 = 1

(1 − q2)(1 − q6)
(1 − q2 (312)) (1 − q (132)) (1 + q3 (213)) ,

T4(q)
−1 = 1

(1 − q2)(1 − q6)(1 − q12)
(1 − q3 (4123)) (1 − q2 (1423))

(1 − q (1243)) (1 + q3 (1324)) (1 + q4 (3124) + q8 (2314)) .
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We can now describe the exact values of q for which the operator Un(q) is not invertible.

Corollary 4.11 [40] For every n ≥ 1, the operators Un(q) and Tn(q) are invertible iff q
is not a k(k − 1)-root of unity with some k ∈ [1, n].

Corollary 4.12 [40] The operator U(q) is invertible iff q is not a root of unity.

We have also the following result of Zagier, which is also a special case of a general
formula due to Varchenko (cf. [38], Theorem 1.1 or Section 6.4).

Corollary 4.13 [40, 38] The determinant of Un(q) considered as an operator for the
regular representation of Sn is

det Un(q) =
n∏

k=2

(1 − qk(k−1))(n−k+1)n!/(k(k−1)) .

Proof — Using the factorization of Tn(q) and the the fact that det (1− qγ) = (1− ql)n!/l

if γ is a cycle of order l in Sn, we obtain

det Ti(q) =
i∏

k=2

(1 − qk(k−1))n!/(k(k−1)) .

2

4.5 A representation theoretical interpretation of the q-shuffle

The 0-Hecke algebra Hn(0) is the C-algebra obtained by specialization of the generic Hecke
algebra Hn(q) at q = 0. It is generated by elements T1, T2, . . . , Tn−1 and has the following
presentation :

T 2
i = −Ti for i ∈ [1, n− 1] ,

Ti Tj = Tj Ti for |i− j| > 1 ,

Ti Ti+1 Ti = Ti+1 Ti Ti+1 for i ∈ [1, n− 2] .

For generic values of q, the Hecke algebra is semi-simple, and isomorphic to CSn. This
is not the case when q = 0. In particular, the families of irreducible and indecomposable
Hn(0)-modules are not equal.

The irreducible Hn(0)-modules are 1-dimensional, and parametrized by subsets of
1, . . . , n− 1 [27]. To see this, it is sufficient to observe that (TiTi+1 − Ti+1Ti)

2 = 0.
Thus, all the commutators [Ti, Tj] are in the radical. But the quotient of Hn(0) by
the ideal generated by these elements is the commutative algebra generated by n − 1
elements t1, . . . , tn−1 subject to t2i = −ti. It is easy to check thet this algebra has no
nilpotent elements, so that it is Hn(0)/(radHn(0)). The irreducible representations are
thus obtained by sending a set of generators to (−1) and its complement to 0. For
reasons which will become transparent later, it is better to label these representations by
compositions rather than by subsets. Let I = (i1, . . . , ir) be a composition of n and let
D(I) the associated subset of [1, n − 1]. The irreducible (1-dimensional) representation
ϕI of Hn(0) is defined by

ϕI(Ti) =

{
−1 if i ∈ D(I) ,

0 if i /∈ D(I) ,
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and the associated Hn(0)-module will be denoted by CI . Let now M be an arbitrary

finite dimensional Hn(0)-module and consider a composition series of M , i.e. a decreasing
sequence

M1 = M ⊃M2 ⊃ . . . ⊃Mk ⊃Mk+1 = {0}

of Hn(0)-modules where every Mi/Mi+1 is irreducible. There exists therefore for each
i ∈ [1, k] a composition Ii of n such that Mi/Mi+1 ' CIi

. The Jordan-Hölder theorem
ensures that the quasi-symmetric function

F(M) =
k∑

i=1

FIi

is independent of the choice of the composition series. The quasi-symmetric function
associated with M is called the characteristic of M . One can show that it has several
properties in common with the usual Frobenius characteristic of a Sn-module [7]. In
particular, the characteristic of an induced module

M = CI1 ⊗ CI2 ⊗ · · · ⊗ CIr ↑
Hn1+···+nr

Hn1⊗Hn2⊗···⊗Hnr

is the product of the characteristics of the factors [7]

F(M) = FI1FI2 · · ·FIr . (25)

These induced modules are cyclic, with generator the basis vector e = 1 ⊗ 1 ⊗ · · · ⊗ 1 of
the one-dimensional space CI1 ⊗ CI2 ⊗ · · · ⊗ CIr . The length filtration

Hn(0)(k) =
⊕

`(w)≥k

CTw (26)

of the 0-Hecke algebra induces a filtration of M

M (k) = Hn(0)(k) e (27)

and this suggest the definition of a graded characteristic (for these particular modules)
by

Fq(M) =
∑

k≥0

qkF(M (k)/M (k+1)) (28)

Example 4.14 Take I = (2), J = (1, 1) and let M((2),(1,1)) be the H4(0)-module obtained
by inducing the H2(0) ⊗ H2(0)-module C(2) ⊗ C(1,1), identifying H2(0) ⊗ H2(0) to the
subalgebra of H4(0) generated by T1 and T3. Let e = 1 ⊗ 1 be its standard generator, so
that T1e = 0, T3e = −e, and T2e is independent of e. The following automaton gives a
complete description of the induced module. Its states, which correspond to images of e
under the action of some basis element Tw of H4(0), form a basis of M((2),(1,1)). An arrow
indexed by Ti going from the state f to g means that Ti · f = g, and a loop issued from
a state f and labelled by Ti|ε (with ε = 0 or ε = −1) means that Ti · f = ε f .
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This automaton is naturally graded by the distance d(f) of a state f to the initial state
e as indicated on the picture, and it is clear that this grading corresponds precisely to
the filtration used in the definition of Fq. To be more explicit, if one associates with each
state f of the automaton the composition I(f) of 4 whose associated subset is

D(f) = { i ∈ [1, 3] |Ti · f = −f } ,

one has
Fq(M((2),(1,1))) =

∑

f

qd(f) FI(f) .

The graded characteristic of M((2),(1,1)) is equal to

Fq(M((2),(1,1))) = F31 + q F22 + q2 (F13 + F211) + q3 F121 + q4 F112 .

For q = 1, this characteristic is the product F2F11, which can be obtained from the shuffle
of 12 and 43 [30]. On the other hand, the q-shuffle of 12 and 43 is

12 �q 43 = 1243 + q1423 + q21432 + q24123 + q34132 + q44312

and taking the descent compositions of the permutations in the right hand side, one
recovers the graded characteristic of M((2),(1,1)).

This example illustrates a general fact. The following proposition shows that the
graded characteristic of an induced module as above is always given by the q-shuffle.
As it is an associative operation, one obtains in this way a q-deformation of the ring of
quasi-symmetric functions.

We denote here by C(σ) the composition of n associated with the descent set of a
permutation σ of Sn.
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Proposition 4.15 Let I, J be compositions of n and m. Let also σ and τ be respectively
two permutations of S[1,m] and S[m+1,m+n] such that C(σ) = I and C(τ) = J . Then,
the graded characteristic of the Hn+m(0)-module obtained by inducing the Hn(0)⊗Hm(0)-
module CI ⊗ CJ (identifying Hn(0) ⊗ Hm(0) to the subalgebra of Hn+m(0) generated by
T1, . . . , Tn−1, Tn+1, . . . , Tn+m−1) is given by

Fq(CI ⊗ CJ ↑
Hn+m(0)
Hn(0)⊗Hm(0)) =

∑

ν∈Sn+m

qd(ν) FC(ν)

where one has
σ �q τ =

∑

ν∈Sn+m

qd(ν) ν .

Proof — Let MI,J be the induced Hn+m(0)-module considered in the proposition. This
module is generated by a e = 1 ⊗ 1 on which T1,. . .,Tn−1,Tn+1,. . ., Tn+m−1 act by

Ti · e =

{
−1 if i ∈ D(I) or i ∈ n +D(J) ,

0 if i /∈ D(I) or i /∈ n +D(J) .

A basis of MI,J is given by elements of the standard basis Tσ of Hn(0) indexed by permu-
tations σ ∈ Sn whose descent set D(σ) is contained in {n}, i.e.

Bn = {Tσ · e | σ ∈ Sn+m and D(σ) ⊆ {n} } .

Let Rn,m be the permutation

Rn,m = m+1 m+2 . . . m+n 1 2 . . . m

of Sn+m. The following lemma gives a simple characterization of the permutations index-
ing the elements of the basis Bn.

Lemma 4.16 The set Dn = { σ ∈ Sn+m |D(σ) ⊆ {n} } is equal to the interval [id, Rn,m]
in the permutohedron of Sn+m. 2

We are now in position to prove proposition 4.15. We first suppose that I = (n) and
J = (m). In this case, Ti · e = 0 when i 6= n. It follows that the action of the generators
of Hn(0) on the basis Bn of M((n),(m)) is

Ti · (Tσ · e) =





0 ifD(σiσ) 6⊆ {n} ,
−Tσ · e if i ∈ D(σ−1)
Tσiσ · e if i /∈ D(σ−1) and D(σiσ) = {n} ,

for i ∈ [1, n + m − 1] and σ ∈ Dn. Let Jn,m be the linear subspace of C[Sn+m] spanned
by all permutations σ such that D(σ) 6⊆ {n}, and consider the left action of Hn+m(0) on
C[Sn+m]/Jn,m defined by

Ti · σ =

{
−σ if σ(i) < σ(i + 1) ,

σσi if σ(i) > σ(i + 1)
(29)

and let ϕn,m be the map from M((n),(m)) into C[Sn+m]/Jn,m sending Tσ · e to the permu-
tation σ−1. Thus, ϕn,m is an isomorphism between M((n),(m)) and the Hn+m(0)-module
generated by the identity permutation for the action (29). On the other hand,

∑

σ∈Dn

σ−1 = (1 2 . . . n) (n+1 n+2 . . . n+m) .
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As an example, we give below the image of the module M((2),(2)) under ϕ2,2.
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As in Example 4.14, the graded characteristic ofM((n),(m)) can be read on the permutations
indexing the states of the automaton, which are given by the formula

Fq(M((n),(m))) = Fq(ϕn,m(M((n),(m)))) =
∑

σ∈Dn

q`(σ) FC(σ−1) .

To get the proposition, it suffices therefore to prove that

(1 2 . . . n) �q (n+1 n+2 . . . n+m) =
∑

σ∈Dn

q`(σ) σ−1

or equivalently that

(1 2 . . . n) �q (n+1 n+2 . . . n+m) =
∑

σ∈(1 2 ...m) (n+1 n+2 ... n+m)

q`(σ) σ

which is clearly true. This proves therefore the proposition in special case I = (n) and
J = (m). The general case follows from a similar argument. 2

Using the formula expressing the product of two quasi-ribbon functions in terms of
shuffle product [14, 30] and taking q = 1, we recover (25).
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5 The q-shuffle Hopf algebra and its convolution al-

gebra

This section is devoted to the study of the q-shuffle algebra as a Hopf algebra. We describe
the primitive elements, and discuss the degeneration of the convolution algebra for q → 1.

5.1 The q-shuffle Hopf algebra

Let A be an alphabet and let (K〈A〉,�q) be the corresponding q-shuffle algebra. As shown
in Section 3, one can associate with it the coproduct cq defined by the following properties
:

• ∀ a ∈ A, cq(a) = 1 ⊗ a+ a⊗ 1,

• ∀ P,Q ∈ K〈A〉, cq(P �q Q) = cq(P ) �q cq(Q).

Recall (from the proof of Proposition 3.1) that

cq = (U(q) ⊗ U(q)) ◦ c ◦ U(q)−1 (30)

where c = c0 is the usual coproduct of K〈A〉. That is,

cq(12 . . . n) = c(Un(q)−1) · (Un(q) ⊗ Un(q)) ,

and it suffices to apply the substitution i→ ai to this formula to get cq(a1 a2 . . . an).

Let ω be the involution sending a word w to (−1)|w| w̃ and let ε be the constant term
homomorphism.

Proposition 5.1 (K〈A〉,�q, cq) is a Hopf algebra with antipode ω and counit ε.

Proof — It suffices to check that ω is the antipode, with ε as counit. Note first that U(q)
and ω commute since

Un(q) ◦ ωn = ωn ◦ Un(q)

(where ωn denotes the maximal permutation of Sn). The property follows then from (30),
since ω is also the antipode for the usual coproduct c. 2

The combinatorial structure of the coproduct cq is however not clear at all. We have
tabulated cq(1 2 . . . n) up to n = 6 and no simple formula seems to emerge. We list below
the results for n ≤ 3.

Example 5.2 For n = 2 and n = 3, one has

cq(12) = 12 ⊗ ∅ +
1

1 + q
(1 ⊗ 2 + 2 ⊗ 1) + ∅ ⊗ 12 ,

cq(123) = 123⊗ ∅−
q2

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(1⊗ 32 + 32⊗ 1 + 3⊗ 21 + 21⊗ 3)

+
1 + q4

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(2 ⊗ 13 + 13 ⊗ 2)

+
q + q3

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(2 ⊗ 31 + 31 ⊗ 2)

+
1 + q + q2 + q3 + q4

(1 + q)(1 + q + q2 + q3 + q4 + q5)
(1 ⊗ 23 + 23 ⊗ 1 + 12 ⊗ 3 + 3 ⊗ 12) + ∅ ⊗ 123 .
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Based on these computations, we propose the following conjecture, which would imply
in particular that the convolution algebra associated with the q-shuffle algebra degenerates
into a commutative algebra when q → 1 (see Section 5.3 below).

Conjecture 5.1 There exists a family (fσ,τ (q)) of rational functions in Z(q) which do
not have 1 as zero nor as pole, such that for all n ≥ 1,

cq(12 . . . n) =
∑

σ,τ

12...n∈σ τ

fσ,τ (q) σ ⊗ τ .

Note 5.3 The dual Hopf algebra of the q-shuffle algebra is the algebra (K〈A〉,2q,∆q)
with product 2q and coproduct ∆q defined by

(u 2q v|w) = (u⊗ v|cq(w)) and (∆(w)|u⊗ v) = (w|u�q v)

for u, v, w ∈ A∗. The product 2q dual to the coproduct cq is not easily described. On the
other hand, one can completely describe the coproduct ∆q by the following formula

∆q(12 . . . n) =
∑

12...n∈σ τ

ql(σ·τ) σ ⊗ τ

where σ · τ denotes here the permutation obtained by concatenating σ and τ considered
as words.

5.2 Primitive elements for cq

We shall now have a look at the set Primq of primitive elements for cq. These elements
occur in several decompositions of the free associative algebra and in the description of
the associated convolution algebra. According to the general theory, Primq is just the
image under U(q) of the set of primitive elements for the shuffle coproduct c, i.e. of the
free Lie algebra L(A). That is,

Primq = U(q)(L(A)) =
⊕

n≥1

Ln(A) · Un(q) .

This shows that a basis of the standard component of Primq is for instance given by
(σ ◦ θn ◦Un(q))σ∈Sn,n≥1 where θn is the Dynkin idempotent of order n. Hence any explicit
formula for θn ◦ Un(q) gives us an explicit description of Primq.

In order to obtain a description of θn ◦ Un(q), let us introduce the left t-bracketing
operator Θn(t) which is the element of Z[t][Sn] defined by

Θn(t) = [[. . . [[1, 2]t, 3]t, . . . ]t, n]t

where [P,Q]t = P Q− t QP .

Proposition 5.4

Θn(t) ◦ Un(q) =
∑

σ∈Sn

Pσ(t, q) σ , (31)

where Pσ(t, q) is the polynomial of Z[t, q] recursively defined by

P1 = 1 and Pσ(t, q) =

{
qi−1 (qn−2i+1 − t)Pτ (t, q) if 1 ≤ i ≤ [n+1

2
] ,

qn−i (1 − t q2i−n−1)Pτ (t, q) if [n+1
2

] ≤ i ≤ n ,
(32)

where i = σ−1(n) and where τ is the permutation of Sn−1 obtained from σ by deleting n.
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Proof — This is proved by induction using Lemma 4.4 and the well-known factorization
of Θn(t) given by

Θn(t) = (1 − t g2) (1 − t g3) . . . (1 − t gn) ,

where gi denotes here the cycle (i 1 . . . i− 1) of Si. 2

Example 5.5 Let σ = 23541 ∈ S5. Then,

P23541(t, q) = q2 (1 − t)P2341(t, q)

= (q2 (1 − t)) q (1 − t q)P231(t, q)

= (q3 (1 − t) (1 − t q)) q (1 − t)P21(t, q)

= (q4 (1 − t)2 (1 − t q)) (q − t)P1(t, q)

= q4 (q − t) (1 − t)2 (1 − t q) .

Specializing t = 1 in the proposition leads to an explicit formula for θn ◦ Un(q). To
state precisely this result, we need to introduce the elements τn(q) of Z(q)[Sn] defined
according to the parity of n by





τ2n(q) =
n∑

i=1

qi−1 [2n− 2i+ 1]q
[2n− 1]q

(12 . . . 2n−i 2n 2n−i+1 . . . 2n− 1)

−
n∑

i=1

qn−i [2i− 1]q
[2n− 1]q

(12 . . . n−i 2n n−i+1 . . . 2n− 1) ,

τ2n+1(q) =
n∑

i=1

qi−1 [2n− 2i+ 2]q
[2n]q

(12 . . . 2n−i+1 2n+1 2n−i+2 . . . 2n)

−
n∑

i=1

qn−i [2i]q
[2n]q

(12 . . . n−i 2n+1 n−i+1 . . . 2n) .

As a consequence of Proposition 5.4, we can give a factorization formula for θn ◦ Un(q).

Corollary 5.6 For all n ≥ 2,

θn ◦ Un(q) = (1 − q) (1 − q2) . . . (1 − qn−1) τ2(q) τ3(q) . . . τn(q) . (33)

Example 5.7 For n = 4, 5, we have

θ4 ◦ U4(q) = (1 − q)(1 − q2)(1 − q3) (1234 − 2134) (1234− 3124)

(1234 + q
1 + q + q2 1243 − q

1 + q + q2 1423 − 4123) ,

θ5 ◦ U5(q) = (1 − q)(1 − q2)(1 − q3)(1 − q4) (12345− 21345) (12345− 31245)

(12345 + q
1 + q + q2 12435 − q

1 + q + q2 14235 − 41235)

(12345 + q
1 + q2 12354 − q

1 + q2 15234 − 51234) .

Let us now introduce the element λn(q) of Z(q)[Sn] defined by

λn(q) = [(n− 1)]q! τ2(q) τ3(q) . . . τn(q) ,

so that
θn ◦ Un(q) = (1 − q)n−1 λn(q) . (34)

The image of the operator w → w · λn(q) (where w runs through words of length n) is
exactly the set of homogeneous primitive elements of order n for cq. In other words, one
has the following description:

Primq =
⊕

n≥1

K(q)<A>n · λn(q) .
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5.3 The convolution algebra

According to the general theory, the convolution algebra Σn(q) associated with the q-
shuffle Hopf algebra is equal to

Σn(q) =
⊕

|I|=n

K Un(q)−1 ◦DI ◦ Un(q)

where DI is the sum of all permutations with descent set D(I) . Unfortunately, due to
the intricate structure of Un(q), it does not seem possible to give a simple description of
Σn(q) for n ≥ 4 (for n = 2 and n = 3, one can check that Σn(q) is in fact equal to the
usual descent algebra Σn).

The following conjecture, basically due to Zagier [40], would give some indications on
the structure of Un(q)−1.

Conjecture 5.2 Let ωn denote the maximal permutation of Sn. For all n ≥ 1, the
inverse of Un(q) has the form

Un(q)−1 =
1

(1 − q2) . . . (1 − qn(n−1))
(
∑

σ∈Dn

(−1)|D(σ)| pσ(q) σ ) (1 + (−1)n−1 qn(n−1)/2 ωn) ,

where pσ(q) is a polynomial in N[q] and where Dn is a subset of Sn whose cardinality is
equal to the number of planar trees with n leaves.

Zagier’s conjecture would give a description of the limit of the convolution algebra
Σn(q) when q → 1 whenever this degenerate limit exists1. Indeed, a basis of Σn(q) is
given by

αq(Ψ
I) = (Ui1(q)

−1 ◦ θi1 ◦ Ui1(q)) ⊕×q . . . ⊕×q (Uir(q)
−1 ◦ θir ◦ Uir(q))

for |I| = n. The conjecture would imply, taking into account (34), that

lim
q→1

Un(q)−1 ◦ θn ◦ Un(q) =
1

n!
(
∑

σ∈Dn

(−1)|D(σ)| pσ(1) σ ) (1 + (−1)n−1 ωn) λn(1) .

These elements would therefore generate the limit convolution algebra Σn(1), if it exists.
The expression of Un(q)−1 given by Zagier’s Conjecture can be interpreted as the

decomposition on the family (σλn(1)) of the idempotent corresponding to the projection
on the homogeneous component of order n of

L =
⊕

n≥1

K〈A〉n · λn(1)

with respect to the decomposition

K〈A〉 = K ⊕ L⊕ L L⊕ . . .⊕ L . . . L︸ ︷︷ ︸
n times

⊕ . . .

of the free associative algebra K〈A〉.

1 The existence of a limit convolution algebra Σn(1) would be a consequence of Conjecture 5.1.
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6 Some generalizations of the shuffle operator

The aim of this section is to present interesting generalizations of the shuffle operator of
which the q-shuffle product is the simplest case.

6.1 Rosso’s quantum shuffles

Rosso showed, by expliciting their multiplication, that certain Hopf algebras obtained by
very general constructions can be interpreted as generalizations of the shuffle algebra [31].
These algebras are constructed as follows.

Let H be a Hopf algebra over a field K. A Hopf bimodule M over H is a K-vector
space endowed with compatible structures of H-bimodule and H-bicomodule [26]. In
other words, a Hopf bimodule over H is a H-bimodule M equipped with left and right
coactions δL : M → H ⊗M and δR : M →M ⊗H commuting with each other (i.e. such
that (id⊗ δR) δL = (δL ⊗ id) δR) and which are morphisms of H-bimodules.

The following proposition is a particular case of a result of Woronowicz.

Proposition 6.1 [39] Let M be a Hopf H-bimodule. There exists a unique H-bimodule
endomorphism σM of M ⊗H M such that

∀ m,n ∈M, δL(m) = 1 ⊗m, δR(n) = n⊗ 1 =⇒ σM (m⊗ n) = n⊗m .

Moreover σM is invertible and satisfies to the braid equation

(IdM ⊗ σM) (σM ⊗ IdM) (IdM ⊗ σM) = (σM ⊗ IdM) (IdM ⊗ σM) (σM ⊗ IdM) .

Recall that the braid group Bn is the (infinite) group generated by n − 1 elements
(si)i=1,n−1 subject to the relations

si sj = sj si for |i− j| > 1 ,

si si+1 si = si+1 si si+1 for i ∈ [1, n− 2] .

For each permutation σ ∈ Sn, one can define an element Tσ of Bn by Tσ = si1 . . . sir

where σi1 . . . σir is an arbitrary reduced decomposition of σ.
Let M be a Hopf H-bimodule and let ML = {m ∈ M, δL(m) = 1 ⊗ m } be the

submodule of left coinvariants. The proposition allows to define a right action of the
braid group Bn on (ML)⊗n by

x1 ⊗ . . .⊗ xn · si = (Id
⊗(i−1)
ML ⊗ σM ⊗ Id

⊗(n−i−1)
ML ) (x1 ⊗ . . .⊗ xn) (35)

for every x1, . . . , xn ∈ML.
On the other hand, it can be shown that T (ML) is isomorphic to the space of left

coinvariants of the cotensor coalgebra T c
H(M), which is known by a result of Nichols [26]

to be a Hopf algebra. This isomorphism endows therefore T (ML) with a new product �,
and Rosso shows that it can be explicited as follows, in terms of the braid group action
on T (ML).

Proposition 6.2

(x1 ⊗ . . .⊗ xp) � (xp+1 ⊗ . . .⊗ xn) =
∑

σ ∈ 12...p p+1p+2...n

(x1 ⊗ . . .⊗ xn) · Tσ

where · denotes the right action of Bn on (ML)⊗n defined by (35).
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For our purposes, one can consider the following reversed presentation. Let V be any
vector space, and R ∈ End (V ⊗ V ) be a solution of the Yang-Baxter equation

R12R13R23 = R23R13R12 (36)

where as usual Ri,j is the endomorphism of V ⊗ V ⊗ V acting as R on the i-th and j-th
factors. Also, let Ř = PR, where P (u⊗ v) = v ⊗ u, so that Ř satisfies the braid relation

Ř12Ř23Ř12 = Ř23Ř12Ř23 . (37)

One defines then as usual a right action of Bn on V ⊗n by

v1 ⊗ v2 ⊗ · · · ⊗ vn · si = Ři,i+1(v1 ⊗ v2 ⊗ · · · ⊗ vn) . (38)

The fundamental observation is the following

Lemma 6.3 Define a multiplication � on T (V ) by

(x1 ⊗ . . .⊗ xp) � (xp+1 ⊗ . . .⊗ xn) =
∑

σ ∈ 12...p p+1p+2...n

(x1 ⊗ . . .⊗ xn) · Tσ

for x1, . . . , xn ∈ V . Then, � is associative.

Proof — Consider first the case where R is the identity of V ⊗V . Then � is the ordinary
shuffle product, which is indeed associative. Let ρ be the representation of B∞ defined by
R, and let

sh (p, q) =
∑

σ∈12...p p+1...p+q

Tσ

The associativity of � is equivalent to the validity of the identities

ρ(sh (p, q)sh (p+ q, r)) = ρ(sh (q, r)sh (p, q + r)) (39)

in the given representation. But taking reduced decompositions of both sides and ex-
panding the products, one obtains only reduced words. The identity being true for the
symmetric group, it is valid in the algebra of the braid group, and therefore in any rep-
resentation. 2

Example 6.4 1) The q-shuffle �q is the particular case obtained by taking R = q · I,
where I is the identity of V ⊗ V (and V is

⊕
a∈AK a).

2) Let (ei) be a basis of V . Diagonal matrices R(ei ⊗ ej) = qijei ⊗ ej satisfy the
Yang-Baxter equation. If A = (aij) is a symmetrizable Cartan matrix and if (di) are
relatively prime positive integers such that (diaij) is symmetric, Rosso shows that the
triangular part of the quantized enveloping algebra associated to A is a subalgebra of the
corresponding quantum shuffle algebra.

3) Take V = K[x], where K = C(q), and identify V ⊗n with K[x1, x2, . . . , xn]. The
standard action of the Hecke algebra Hn(q) on K[x1, . . . , xn] by symmetrizing operators
[5]

Ti = (q − 1)πi + σi (40)
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where πi is the isobaric divided difference operator

πi(P ) =
xiP − xi+1σi(P )

xi − xi+1

gives a solution of the Yang-Baxter equation and induces as above an action of the braid
group on V ⊗n. The subspace of V ⊗n spanned by � products of elements of V can be
identified with the space of symmetric polynomials in x1, . . . , xn, and the factorization
formula for the total symmetrizer S(n) =

∑
σ∈Sn

Tσ given in [5], Theorem 3.1, implies that
for a partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λn > 0), the product

xλ1 � xλ2 � · · · � xλn

is equal, up to a scalar factor, to the Hall-Littlewood polynomial Qλ(x1, . . . , xn ; 1/q).

4) Other families of symmetric functions can be obtained by considering degenerate
actions, for example the Schur functions or the augmented monomial functions

5) The q-wedge product introduced by Stern [37] and Kashiwara-Miwa-Stern [18] can
also be regarded as a special case of this construction, obtained from an action of the
affine Hecke algebra commuting with Uq(ŝln).

6.2 Twisted derivations and multi-parameter deformations of

the shuffle product

This section explains how the consideration of twisted derivations allows one to recover
in a natural way the multi-parameter deformations of the shuffle product associated to
diagonal solutions of the Yang-Baxter equation.

Definition 6.5 A twisted derivation for a K-algebra structure (K〈A〉,+,�) constructed
over K〈A〉 is a linear map ∂ from K〈A〉 into K〈A〉 which satisfies for words u, v ∈ A∗ to
the Leibnitz rule

∂(u� v) = ∂(u) � v + χ(u) u� ∂(v) ,

where χ is a monoid morphism from A∗ into K.

Example 6.6 Let (qa)a∈A (resp. (∂(a))a∈A) be an arbitrary family of elements ofK (resp.
of K〈A〉). One can define a derivation ∂ on the free associative algebra (K〈A〉,+, ·) by

∂(w) =
∑

uav=w

qu u ∂(a) v ,

where for u = a1 · · ·an ∈ A∗, qu denotes the element qa1 . . . qan .

Consider now the classical twisted derivations (∂a)a∈A on K〈A〉, defined for each letter
a ∈ A by

∂a(w) =

{
u if w = a u

0 if w /∈ aA∗

for w ∈ A∗. These operators are widely used in automata theory, e.g. for defining the
algebra of rational series (cf. [2]). They are also twisted derivations for the q-shuffle
algebra, since by definition

∂a(u�q v) = ∂a(u) �q v + q|u| u�q ∂a(v)

for u, v ∈ A∗. One can then ask whether there are other products for which all operators
∂a are still twisted derivations. The following proposition answers this question in the case
where the twisting morphism χ is given by means of a matrix of commutation factors.
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Proposition 6.7 Let M = (qa,b)a,b∈A be an A× A-matrix of indeterminates, and set

q(u, v) =
∏

i,j

qai,bj

for all words u = a1 . . . an and v = b1 . . . bm. There exists then a unique graded product
�M on K〈A〉 such that

∀ u ∈ A∗, u�M 1 = 1 �M u = u ,

∀ u, v ∈ A∗, ∂a(u�M v) = ∂a(u) �M v + q(a, u) u�M ∂a(v) ,

for every a ∈ A. This product can be computed by the following recursive formulas

u�M 1 = 1 �M u = u ,

(au) �M (bv) = a(u�M bv) + q(b, au) b(au�M v) ,

where u, v ∈ A∗ and a, b ∈ A.

Proof — A straightforward calculation, which is left to the reader. 2

The product �M defined in the proposition is associative. One can therefore consider
the algebra (K〈A〉,+,�M). Observe that this algebra reduces to the q-shuffle algebra
when all indeterminates qa,b are equal to q. In the general case, the product �M is still a
special case of the construction of Section 3. Indeed,

a1 �M a2 �M . . .�M an = a1 a2 . . . an · Un(M)

for ai ∈ A, and where

Un(M) =
∑

σ∈Sn

( ∏

1≤i<j≤n

σ(i)>σ(j)

qaσ(i),aσ(j)

)
σ .

Thus, (K〈A〉,+,�M) is shuffle Hopf algebra associated to the diagonal solution R(x⊗y) =
qx,y(x⊗ y) of the Yang-Baxter equation.

Note 6.8 If one forgets about the first condition in the proposition, there are other inter-
esting solutions, such as the T -operation of Schützenberger [32], also called “chronological
product” [19].

Note 6.9 When the matrix M is skew-symmetric in the multiplicative sense, i.e. when
qa,b = q−1

b,a for every a, b ∈ A, one recovers the bicharacters introduced by Ree in [28]. Let

us recall that a bicharacter χ is a bilinear mapping from N
(A) × N

(A) into (K,×), i.e. a
mapping such that

χ(x, y + z) = χ(x, y)χ(x, z) and χ(x + y, z) = χ(x, z)χ(y, z)

hold for every x, y, z ∈ N(A). Let now (εa)a∈A be the basis of N(A) defined by εa(b) = δa,b for
a, b ∈ A. The mapping which associates to a skew-symmetric matrix M = (qa,b)a,b∈A the
bicharacter χ(εa, εb) = qa,b is then clearly a one-to-one correspondence between bicharac-
ters and skew-symmetric A× A-matrices.

It is also interesting to observe that Endgr(K〈A〉) can be equipped in this case with
a structure of Lie superalgebra defined by

[f, g] = fg − χ(deg(f), deg(g)) gf .

The space of graded twisted derivations over (K〈A〉,+,�M) becomes then a super Lie
subalgebra of this superalgebra. Moreover it can be shown that the derivations (∂a)a∈A

generates the free Lie superalgebra Lχ(A).
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6.3 Shuffle operators in the braid group algebra

Rosso’s construction suggests that the combinatorics of generalized shuffles has to be ud-
erstood at the level of the braid group algebra. This point of view leads to a uniform
presentation of several factorization results, and reveals a connection between quantum
shuffles and Varchenko’s construction of a quantum bilinear form associated to a hyper-
plane arrangement.

6.3.1 A shuffle element in the braid group algebra

Let B∞ denote the infinite braid group, generated by elements (si)i≥1 satisfying to the
relations si sj = sj si for |i − j| > 1 and si si+1 si = si+1 si si+1. Since every braid group
Bn can be embedded in B∞, the notation Tσ will be still used in this context.

One can define a shuffle element Un in K[B∞] by

Un =
∑

σ∈Sn

Tσ .

The q-shuffle operator is the image of Un under the representation si → q σi. Thus any
factorization of Un will also hold in particular for the q-shuffle operator Un(q).

6.3.2 Factorizations

More generally any factorization of Un will provide similar decompositions in any homo-
morphic image of the braid group. We will first give a decomposition formula for Un which
can be viewed as the generalization of Zagier’s factorization of the q-shuffle operator.

Consider the element Tn of the algebra of B∞ defined by

Tn = 1 + sn−1 + sn−1 sn−2 + . . .+ (sn−1 sn−2 . . . s1) .

One can then give the following factorization of Un in N[B∞].

Proposition 6.10 For every n ≥ 2, one has

Un = T2 T3 . . . Tn .

Proof — The formula is true in the representation si 7→ σi, and expanding the product
yields only reduced words. 2

The elements Tn can themselves be factorized, and we obtain in this way a factorization
of Un in Z[[B∞]], which projects onto Zagier’s factorization under si → qσi.

Proposition 6.11 For n ≥ 2, one has in Z[[B∞]] :

Tn = (1 − s2
n−1 sn−2 . . . s1) (1 − s2

n−1 sn−2 . . . s2) . . . (1 − s2
n−1)

(1 − sn−1)
−1 (1 − sn−1 sn−2)

−1 . . . (1 − sn−1 sn−2 . . . s1)
−1 .

Proof — The proposition follows from the following lemma, whose proof is left to the
reader.
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Lemma 6.12 For n ≥ 3, one has

Tn (1 − sn−1 sn−2 . . . s1) = (1 − s2
n−1 sn−2 . . . s1) tn−1

where tn−1 denotes the image of Tn−1 under the algebra morphism η of N[B∞] defined by
η(si) = si+1 for all i ≥ 1.

Example 6.13 For n = 2, 3, 4,

T2 = (1 − s2
1) (1 − s1) ,

T3 = (1 − s2
2 s1) (1 − s2

2) (1 − s2)
−1 (1 − s2 s1)

−1 ,

T4 = (1 − s2
3 s2 s1) (1 − s2

3 s2) (1 − s2
3) (1 − s3)

−1 (1 − s3 s2)
−1 (1 − s3 s2 s1)

−1 .

Specializing these results in a homorphic image of the braid group, we get the following
useful corollary:

Corollary 6.14 For any representation ρ of Bn, one has

ρ(Un) = ρ(T2) ρ(T3) . . . ρ(Tn) ,

and if the inverses are defined,

ρ(Tn) =
→∏

1≤i≤n−1

(1 − ρ(s2
n−1 sn−2 . . . si))

←∏

1≤i≤n−1

(1 − ρ(sn−1 sn−2 . . . si))
−1 .

Note 6.15 Typical examples where the inverses are well defined are the representa-
tions si −→ qsi in C[Sn] or the Hecke algebra Hn(t) where the factors of the ele-
ments ρ(Ti) satisfy polynomial equations with non-zero constant terms and hence are
invertible. For example for the symmetric group, with X = ρ(sn−1 sn−2 . . . si) (resp.
Y = ρ(s2

n−1 sn−2 . . . si)) one has

Xn−i+1 = q(n−i+1)(n−i); (1 −X)(
n−i∑

j=0

Xj) = 1 − q(n−i+1)(n−i)

Hence

(1 −X)−1 = (1 − q(n−i+1)(n−i))−1(
n−i∑

j=0

Xj)

similarly

Y n−i−1 = q(n−i+1)(n−i); (1 − Y )(
n−i−2∑

j=0

Y j) = 1 − q(n−i+1)(n−i)

and then

(1 − Y )−1 = (1 − q(n−i+1)(n−i))−1(
n−i−2∑

j=0

Y j)

so that the denominator of Zagier’s formula can be lowered to

n∏

m=2

m−1∏

i=1

(1 − q(m−i+1)(m−i)) =
n−1∏

k=1

(1 − qk(k+1))n−k
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6.3.3 Action of the braid group on words

Let M = (qa,b)a,b∈A be a matrix of indeterminates. The action of Bn defined in Example
6.4 can be described as the right action · of Bn on words defined by

(a1 a2 . . . an) · si = qai,ai+1
(a1 . . . ai−1 ai+1 ai ai+2 . . . an)

for ai ∈ A.

Example 6.16 The matrices of T2 and T3 considered as operators on the spaceK a1a1a2⊕
K a1a2a1 ⊕K a2a1a1 with respect to this action are given by

T2 =




1 + qa1,a1 0 0
0 1 qa1 ,a2

0 qa2,a1 1


 , T3 =




1 qa1,a2 q2
a1,a2

qa2,a1 + qa1 ,a1qa2,a1 1 0
0 qa2 ,a1qa1 ,a1 1 + qa1,a1


 .

This subsection will be devoted to the study of the determinant of Un considered as an
operator acting on words of fixed multihomogeneity. According to the results of Section
6.3.2, one can compute this determinant if one knows the values of

det( 1 − s2
n sn−1 . . . sm ) and det( 1 − sn sn−1 . . . sm )

for all m < n. But for the representation under consideration,

det( 1 − s2
n sn−1 . . . sm ) = det( 1 − s2

n−m+1 sn−m . . . s1) ,

det( 1 − sn sn−1 . . . sm ) = det( 1 − sn−m+1 sn−m . . . s1) ,

for 1 ≤ m ≤ n−1. Hence it is sufficient to compute the determinants of 1−sn−1 sn−2 . . . s1

and 1 − s2
n−1 sn−2 . . . s1. The following proposition gives an answer to this question by

providing explicit formulas for the characteristic polynomials det (1−x s) of the elements
s = sn sn−1 . . . s1 and s = s2

n sn−1 . . . s1.

For I ∈ N(A), let K〈A〉I be the multihomogenous component of multidegree I of K〈A〉.
Every braid s ∈ B|I|−1 stabilizes K〈A〉I . We can therefore consider s as an operator of
K〈A〉I. The characteristic polynomial of this operator will be denoted by PI(s; x). Finally,
let us set

q(I, J) =
∏

a,b∈A

qIa×Jb

a,b and q(I) =
∏

a∈A

qIa

a,a

for I = (Ia)a∈A and J = (Ja)a∈A of N(A).

Proposition 6.17 For n ≥ 1 and I ∈ N
(A) of weight |I| = n, one has

PI(sn−1 sn−2 . . . s1; x) =
∏

I=kJ
k∈N

(x|J | −
q(J, J)k

q(J)
)lJ ,

PI(s
2
n−1 sn−2 . . . s1; x) =

∏

I=kJ+εa

k∈N,a∈A

(x|J | −
q(J, J)k q(J, εa) q(εa, J)

q(J)
)lJ ,

where (εa) = δa,b and where lJ denotes the dimension of the multihomogeneous component
of multihomogeneity J of the free Lie algebra L(A).
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Proof — These formulas are obtained by expliciting the eigenvectors of the powers of s.
2

Example 6.18 Consider the multidegree I = (2, 2, 0, 0, . . .). In this case, the matrix
of the operator s3 s2 s1 in the basis {a1a1a2a2, a1a2a1a2, a1a2a2a1, a2a1a1a2, a2a1a2a1,
a2a2a1a1} of K〈A〉I is

Ms3s2s1 =




0 0 q11q
2
21 0 0 0

0 0 0 0 q11q
2
21 0

0 0 0 0 0 q11q
2
21

q2
12q22 0 0 0 0 0
0 q2

12q22 0 0 0 0
0 0 0 q2

12q22 0 0




where we write for convenience qi,j in place of qai,aj
. Then,

PI(s3s2s1; x) = (x4 − q4
21q

4
12q

2
11q

2
22) (x2 − q2

21q
2
12q11q22)

according to the first formula of the proposition.

As an illustration, we can give an expression of the characteristic polynomial of the
permutation σn−1 . . . σ1 in an irreducible representation Vλ of Sn.

Corollary 6.19 Let λ be a partition of n. The characteristic polynomial of the permuta-
tion σn−1 . . . σ1 in the irreducible representation Vλ of Sn is

PVλ
(σn−1 . . . σ1; x) =

∏

µ

( ∏

λ=kI,k∈N

(x|I| − 1)lI
)〈sλ,mµ〉

where sλ =
∑

µ〈sλ, mµ〉hµ denotes the decomposition of the Schur function sλ on the basis
of complete symmetric functions.

Proof — For a K[Sn]-module V and for s ∈ Sn, denote by PV (s; x) the characteristic
polynomial of s in the representation V . The corollary follows from the property

PV +W (s; x) = PV (s; x)PW (s; x)

and from the fact that the characteristic polynomial of σn−1 . . . σ1 in the permutation
representation Sλ of Sn whose Frobenius characteristic is hλ is given by

PSλ(σn−1 . . . σ1; x) =
∏

λ=kI,k∈N

(x|I| − 1)lI

according to Proposition 6.17. 2

This gives the characteristic polynomial of any permutation σi−1 σi−2 . . . σ1 in the
regular representation of Sn,

PSn(σi−1 . . . σ1; x) = PSi
(σi−1 . . . σ1; x)

n!/i! .
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Example 6.20 The characteristic polynomial of σn−1 . . . σ1 in any irreducible represen-
tation of Sn is a product of cyclotomic polynomials. Here is a table of these polynomials
for n ≤ 6.

representation characteristic polynomial
2 x − 1
11 x + 1
3 x − 1
21 1 + x + x2

111 x − 1
4 x − 1
31 (x − 1)(x2 + 1)
22 x2 − 1
211 x3 + x2 + x + 1
1111 x + 1

5 x − 1
41 x4 + x3 + x2 + x + 1
32 x5 − 1
311 (x5 − 1)(x − 1)
221 x5 − 1
2111 x4 + x3 + x2 + x + 1
11111 x − 1

6 x − 1
51 x5 − x4 + x3 − x2 + x − 1
42 (x6 − 1)(x3 + 1)
411 (x + 1)(x6 − 1)(x3 − 1)
33 (x3 − 1)(x2 − 1)
321 (x4 + x2 + 1)3(x2 − 1)2

3111 (x − 1)(x6 − 1)(x3 + 1)
222 (x3 + 1)(x2 − 1)
2211 (x6 − 1)(x3 − 1)
21111 x5 + x4 + x3 + x2 + x + 1
111111 x + 1

6.4 Diagonal hyperplane arrangements

6.4.1 The quantum bilinear form Bn

Varchenko associated to every real configuration C of hyperplanes2 a bilinear form BC,
called the quantum bilinear form of C, which is defined as follows. One first associates to
each hyperplane H of C a weight aH in some fixed commutative ring. An edge of C is any
nonempty intersection of some subset of the hyperplanes of C. The weight aE of an edge
E is defined as the product of the weights of all the hyperplanes containing E. The set
of all edges of C is denoted by EC.

The connected components of the complement of the hyperplanes of C are called
domains. Denote by DC the set of all domains of C. Let also AC be the ring of polynomials
in the commutative variables (aH)H∈C. The quantum bilinear form BC associated with C
is the bilinear form on the space MC of the AC-linear combinations of the domains of DC
which is defined by

BC(P,Q) =
∏

aH ,

2 A configuration of hyperplanes is any finite set of hyperplanes in some affine or projective space.
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the product being taken over all hyperplanes H ∈ C separating the domains P and Q.
Varchenko showed that the determinant of the form BC is given by the following formula

det BC =
∏

E∈EC

(1 − a2
E)m(E) (41)

where m(E) is an integer, called the multiplicity of the edge E (see Section 2 of [38] for
more details).

Consider now the configuration Dn of diagonal hyperplanes: it consists of the hyper-
planes Hij of Rn defined by xi = xj for 1 ≤ i < j ≤ n. Let aji be the weight of the
hyperplane Hij. Here, the domains are the cones Pσ defined by

Pσ = { (x1, . . . , xn) ∈ R
n, xσ(1) < xσ(2) < . . . < xσ(n) }

for all permutations σ of Sn. The quantum bilinear form BDn = Bn associated with Dn

can therefore be considered as a bilinear form on Z[aji][Sn]. The matrix of Bn is given by

Bn(σ, τ) =
∏

(σ−1(i)−σ−1(j))(τ−1(i)−τ−1(j))<0

1≤i<j≤n

aji (42)

for σ, τ ∈ Sn. In other words, the entry of order (σ, τ) of Bn is obtained by taking the
products of all aji for which the pair ji does not appear in the same order in τ and σ,
i.e. for which σ = . . . i . . . j . . . and τ = . . . j . . . i . . . (or the converse). The bilinear
form Bn can also be interpreted as the contravariant form of a suitable quantum group
(cf. [34]).

Varchenko’s formula (41) reduces here to

det Bn =
∏

Ik

(1 −
∏

(j,i)∈Ik

a2
ji)

nk (43)

where Ik runs through all subsets of k(k − 1)/2 elements of { (j, i), 1 ≤ i < j ≤ n } for
k ∈ [2, n] and where nk denotes the integer

nk =
(n− k + 1)n!

k(k − 1)
(
n(n− 1)/2
k(k − 1)/2

) .

Finally, relation (42) shows that Bn is the matrix of an element of Z[aji][Sn] (considered as
an operator in the regular representation of Sn) iff aji = akl for all j > i and k > l. If we
call q this common value, we see that Bn = Un(q). Thus, Un(q) has the same matrix as the
quantum bilinear form associated with the diagonal hyperplane arrangement when every
hyperplane as the same weight q and one sees that Corollary 4.13 can be also obtained
by specializing formula (43).

Example 6.21 The matrix of the quantum bilinear form B3 is

123 132 213 231 312 321

‘

123
132
213
231
312
321




1 a32 a21 a21a31 a31a32 a21a31a32

a32 1 a21a32 a21a31a32 a31 a21a31

a21 a21a32 1 a31 a21a31a32 a31a32

a21a31 a21a31a32 a31 1 a21a32 a32

a31a32 a31 a21a31a32 a21a32 1 a21

a21a31a32 a21a31 a31a32 a32 a21 1




.
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In this case,

det B3 = (1 − a2
21)

2 (1 − a2
31)

2 (1 − a2
32)

2 (1 − (a21a31a32)
2) .

B3 is the matrix of an element of Z[a21, a31, a32][S3] iff a21 = a31 = a32.

6.4.2 A decomposition of Bn

We shall now see that one can recover formula (43) from a factorization of Bn which is
in fact a specialization of Corollary 6.14. We shall therefore define first a representation
µn of the braid group Bn. For n ≥ 2 and i ∈ [1, n− 1], consider the Sn×Sn matrix S

(n)
i

defined by

S
(n)
i (σ, τ) =

{
ãσ(i)σ(i+1) if τ = σσi ,

0 in all other cases ,
(44)

where ãij denotes aji if j > i and aij if j < i. These matrices are obtained from the
diagonal solutions R(ei ⊗ ej) = ãijei ⊗ ej of the Yang-Baxter equation by restriction of Ř
to the n!-dimensional subspace of V ⊗n spanned by multilinear elements eσ(1) ⊗· · ·⊗ eσ(n),
σ ∈ Sn. Thus,





S
(n)
i S

(n)
j = S

(n)
j S

(n)
i if |i− j| > 1 ,

S
(n)
i S

(n)
i+1 S

(n)
i = S

(n)
i+1 S

(n)
i S

(n)
i+1 if i ∈ [1, n−2]

so that
µn(si) = S

(n)
i

defines a representation of Bn. The matrix of Varchenko’s quantum bilinear form is then

Bn = µn(Un) =
∑

σ∈Sn

µn(Tσ) , (45)

the results of Section 6.3 can be applied. The images T
(n)
k = µn(Tk) are the Sn×Sn

matrices
T

(n)
k = I + S

(n)
k−1 + S

(n)
k−1 S

(n)
k−2 + . . .+ S

(n)
k−1 S

(n)
k−2 . . . S

(n)
1 (46)

whose elements are

T
(n)
k (σ, τ) =





1 if σ = τ ,
k−1∏

i=l

ãσ(k)σ(l) if τ = σσk−1 . . . σl with l = 1, k − 1 ,

0 in all other cases .

In other words, T
(n)
k is the matrix obtained from Bn by taking all entries indexed by a

pair of the form (σ, σ σk−1 . . . σl) with some l ∈ [1, n] and by replacing all other entries
by 0. The first formula of Corollary 6.14 reduces then to the following one:

Proposition 6.22

Bn = T
(n)
2 . . . T (n)

n . (47)
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Example 6.23 For n = 3, one has B3 = T
(3)
2 T

(3)
3 , with

123 132 213 231 312 321

T
(3)
2 =

123
132
213
231
312
321




1 0 a21 0 0 0

0 1 0 0 a31 0

a21 0 1 0 0 0

0 0 0 1 0 a32

0 a31 0 0 1 0

0 0 0 a32 0 1




,

123 132 213 231 312 321

T
(3)
3 =

123
132
213
231
312
321




1 a32 0 0 a31a32 0

a32 1 a21a32 0 0 0

0 0 1 a31 0 a31a32

a21a31 0 a31 1 0 0

0 0 0 a21a32 1 a21

0 a21a31 0 0 a21 1




.

The second formula of Corollary 6.14 applied to Varchenko’s quantum bilinear form
will give us a factorization of the matrix T

(n)
k which reduces to the decomposition (23)

when all the aji are specialized to q. As in the Tn(q) case, it will give us a closed formula

for the inverse of T
(n)
k (and hence of Bn) and for its determinant.

For n ≥ 2, k ∈ [2, n], i ∈ [2, k] and j ∈ [1, k− 1], we define Sn×Sn-matrices Γ(n,k)
γi,k

and

Γ
(n,k)
γ′

j,k
by

Γ(n,k)
γi,k

(σ, τ) =





ã2
σ(k−1)σ(k)

k−2∏

l=k−i+1

ãσ(k−1)σ(l) if τ = σγi,k ,

0 in all other cases ,

Γ
(n,k)
γ′

j,k
(σ, τ) =





k−1∏

l=k−j

ãσ(k)σ(l) if τ = σγ′j,k ,

0 in all other cases ,

where
γi,k = (1 . . . k−i k−1 k−i+1 . . . k−2 k . . . n) ,

γ′j,k = (1 . . . k−j−1 k k−j . . . k−1 k+1 . . . n) .

The specialization of the second identity of Corollary 6.14 gives here the following factor-
ization.

Proposition 6.24 For n ≥ 2 and k ∈ [2, n],

T
(n)
k = (I − Γ(n,k)

γk,k
) . . . (I − Γ(n,k)

γ2,k
) (I − Γ

(n,k)
γ′
1,k

)−1 . . . (I − Γ
(n,k)
γ′

k−1,k
)−1 . (48)
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Example 6.25 For k = 3 and n = 3, the different matrices involved in (48) are given
below

123 132 213 231 312 321

I − Γ
(3,3)
(213) =




1 0 −a2
32a21 0 0 0

0 1 0 0 −a2
32a31 0

−a2
31a21 0 1 0 0 0

0 0 0 1 0 −a2
31a32

0 −a2
21a31 0 0 1 0

0 0 0 −a2
21a32 0 1




,

123 132 213 231 312 321

I − Γ
(3,3)
(123) =




1 − a2
32 0 0 0 0 0

0 1 − a2
32 0 0 0 0

0 0 1 − a2
31 0 0 0

0 0 0 1 − a2
31 0 0

0 0 0 0 1 − a2
21 0

0 0 0 0 0 1 − a2
21




,

123 132 213 231 312 321

I − Γ
(3,3)
(132) =




1 −a32 0 0 0 0

−a32 1 0 0 0 0

0 0 1 −a31 0 0

0 0 −a31 1 0 0

0 0 0 0 1 −a21

0 0 0 0 −a21 1




,

123 132 213 231 312 321

I − Γ
(3,3)
(312) =




1 0 0 0 −a31a32 0

0 1 −a21a32 0 0 0

0 0 1 0 0 −a31a32

−a21a31 0 0 1 0 0

0 0 0 −a21a32 1 0

0 −a21a31 0 0 0 1




.

In this case, (48) reduces to

T
(3)
3 = (I − Γ

(3,3)
(213)) (I − Γ

(3,3)
(123)) (I − Γ

(3,3)
(132))

−1 (I − Γ
(3,3)
(312))

−1 ,

and
T

(3)
2 = (I − Γ

(3,2)
(123)) (I − Γ

(3,2)
(213))

−1 .

Note 6.26 One can check that

(I − Γ(n,k)
γi,k

) (
i−2∑

l=0

(Γ(n,k)
γi,k

)l ) = ∆
(n,k)
i (49)
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where ∆
(n,k)
i is the diagonal matrix

∆
(n,k)
i (σ, τ) =





1 −
∏

k−i+1≤r<s≤k

ã2
σ(r)σ(s) if σ = τ ,

0 if σ 6= τ .

One has ∆(n,n)
n = (1 −

∏
1≤i<j≤n a2

ji) I, and

(I − Γ
(n,k)
γ′

j,k
) (

j∑

l=0

(Γ
(n,k)
γ′

j,k
)l ) = ∆

(n,k)
j+1 . (50)

Formulas (49) and (50) both give a more explicit version of decomposition (48) and a

closed form for the inverse of T
(n)
k (and hence also for the inverse of Bn).

Note 6.27 It can also be checked that

det (I − Γ(n,k)
γi,k

) =
( ∏

I⊂[1,n]

|I|=i

(1 −
∏

r,s∈I

r<s

a2
sr)

)mn,i

(51)

where

mn,i =
i n!

2
(
i
2

)(
n
i

) =
(n− i)! i!

i− 1
.

On the other hand,

det (I − Γ
(n,k)
γ′

j,k
) =

( ∏

I⊂[1,n]

|I|=j+1

(1 −
∏

r,s∈I

r<s

a2
rs)

)m′
n,j

(52)

with

m′n,j =
j n!

2
(
j + 1

2

)(
n

j + 1

) = (n− j − 1)! j! .

It is interesting to observe that (51) and (52) show that the determinants of I − Γ(n,k)
γi,k

and I − Γ
(n,k)
γ′

j,k
are independent of k.

6.5 The t-shuffle operator in the Hecke algebra

The representations of the braid group considered in the foregoing sections were all ob-
tained from trivial (diagonal) solutions of the Yang-Baxter equation. The simplest non-
trivial solutions are those which factorize through the Hecke algebra Hn(q). It is therefore
of interest to consider the element

Vn(t) =
∑

σ∈Sn

t`(σ) Tσ

of Hn(q) ⊗ C[t], i.e. the image of Un under the morphism from the braid group Bn into
Hn(q) defined by si → t Ti. All the factorizations of Section 6.3.2 are valid for Vn(t), and
we shall also obtain an explicit formula for the determinant of this operator, which can
be regarded as a q-analogue of the determinant formula for Un(t).
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According to the results of Section 6.3.2, it is sufficient to compute the determinants
of the elements

1 − Tn−1 . . . T1 and 1 − T 2
n−1 . . . T1

considered considered as operators of the (left or right) regular representation of Hn(q).
But one has

det(1 − Tn−1 . . . T1) =
( ∏

λ`n

PVλ
(Tn−1 . . . T1; x)

fλ

)∣∣∣∣∣
x=1

,

det(1 − T 2
n−1 . . . T1) =

( ∏

λ`n

PVλ
(T 2

n−1 . . . T1; x)
fλ

)∣∣∣∣∣
x=1

,

where fλ is the number of standard Young tableaux of shape λ and where PVλ
(s; x) is the

characteristic polynomial det (1 − x s) of s ∈ Hn(q) in the irreducible representation of
Hn(q) indexed by λ (see e.g. [5]).

Let Kλ,µ = 〈sλ, hµ〉 be the Kostka numbers. The following proposition expresses
the characteristic polynomial of Tn−1 · · ·T1 in the q-Specht module Vλ(q) in terms of the
corresponding polynomial for the symmetric group, as computed in Section 6.3.3.

Proposition 6.28 Let λ be a partition of n and Vλ(q) be the corresponding irreducible
representation of Hn(q). Then, the characteristic polynomial of Tn−1 Tn−2 . . . T1 in Vλ(q)
is

PVλ(q)(Tn−1 Tn−2 . . . T1; x) = PVλ(1)(σn−1 σn−2 . . . σ1; q
(n−1) αλ x)

where Vλ(1) is the Specht module for the symmetric group, and αλ = Kλ,21n−2/Kλ,1n.

Proof — The existence of a homogeneity factor between the characteristic polynomials of
Tn−1 . . . T1 and σn−1 . . . σ1 can be seen on the Kazhdan-Lusztig model of the irreducible
Hn(q)-module Vλ, and this factor is determined by the equality

det Vλ
(Tn−1 . . . T1) = (det Vλ

T1)
n−1 = q(n−1) K

λ,21n−2

which is easily checked. 2

Corollary 6.29 The characteristic polynomial of T 2
n−1 Tn−2 . . . T1 in the irreducibleHn(q)-

module Vλ(q) is equal up to a homogeneity factor to the characteristic polynomial of the
corresponding permutation in the irreducible Sn-module Vλ(1), i.e.

PVλ
(T 2

n−1 Tn−2 . . . T1; x) = PWλ
(σn−2 . . . σ1; q

nαλ x)

where αλ = Kλ,21n−2/Kλ,1n.

Example 6.30 For |λ| ≤ 4, these polynomials are

λ PVλ
(Tn−1 . . . T1; x) PVλ

(T 2
n−1 Tn−2 . . . T1; x)

2 1 − xq 1 − xq2

11 1 + x 1 − x
3 1 − xq2 1 − xq3

21 1 + xq + x2q2 1 − q3x2

111 1 − x 1 + x
4 1 − xq3 1 − q4x
31 1 − xq + x2q2 − x3q3 1 − x3q4

22 1 − x2q3 1 + xq2 + x2q4

2111 1 + xq2 + x2q4 + x3q6 1 − q8x3

1111 1 + x 1 − x
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Note 6.31 Consider the elements 3i(t) of Hn(q) defined by

3i(t) = 1 + t Ti

for i ∈ [1, n− 1]. These elements interpolate between two interesting elements of Hn(q)

3i(1) = 2i = 1 + Ti , 3i(−1/q) =
−1

q
∇i =

−1

q
(Ti − q)

(see [5] for more details). The operators 3i(t) satisfy Yang-baxter type relations

3i(t)
(
3i+1(t) −

1 + t(q − 1)

2 + t(q − 1)

)
3i(t) = 3i+1(t)

(
3i(t) −

1 + t(q − 1)

2 + t(q − 1)

)
3i+1(t) ,

and as a special case of a construction of Cherednik, one can associate with the maximal
permutation ωn of Sn the element

�ωn = 31

(
(32 − f13)31

)
. . .

(
(3n−1 − f1n) . . . (32 − f13) 31

)

of Hn(q) ⊗ C(t), where

f1k = [1]t,q
[1]n−1

t,q − 1

[1]nt,q − 1

with [1]t,q = 1 + t(q − 1). It would be interesting to clarify the relation between 3ωn and
Vn(t). These elements are clearly related in the two extreme cases t = 1 and t = −1/q
but we do not know if such relations still exist in the general case.
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7 Deformations of the algebra of noncommutative

symmetric functions

7.1 Deformations and Lie idempotents

This section is devoted to a special case of the deformations of the usual Cauchy and
convolution products of K〈A〉 obtained by means of noncommutative symmetric functions
(cf. Section 3.2). We are here interested in the case where the set of primitive elements of
the deformed algebra is still the free Lie algebra L(A). This case is of some importance,
since it leads to a complete understanding of a class of interesting decompositions of the
free associative algebra.

We use the notations of Section 3.2. We will restrict the families F = (Fn)n≥1 used to
construct the deformations to those satifying for all n

Fn ∗ Ψn = kFn Ψn

where kFn is a constant. These equations have of course many solutions. An interesting
class is given by Fn = Sn(XA), where X is a totally ordered alphabet (which can be
virtual, i.e. defined by the specialization of a transcendance basis of QSym). Indeed, the
following result shows that such a family satisfies to the desired property.

Proposition 7.1 Let X be a totally ordered commutative alphabet, let A be a noncom-
mutative alphabet and let πn be a homogenous element of weight n in L(Ψ). Then,

Sn(X A) ∗ πn(A) = ψn(X) πn(A)

for all n ≥ 1, where ψn(X) is the usual power sum symmetric function.

Proof — Using Proposition 2.1, we can write

σ(X A; t) ∗ πn(A) = µ∞

(( ⊗

x∈X

σ(A; xt)
)
∗ ∆∞(πn)

)

= µ∞

(( ⊗

x∈X

σ(A; xt)
)
∗
∑

1 ⊗ . . .⊗ 1 ⊗ πn ⊗ 1 . . .

)

from which it follows that

σ(X A; t) ∗ πn(A) =
∑

x∈X

(Sn ∗ πn) xn tn =
( ∑

x∈X

xn
)
πn t

n = ψn(X) πn t
n .

2

Let now X denote a fixed totally ordered commutative alphabet. According to Sec-
tion 3, one can deform the ordinary Cauchy product of K〈A〉 by means of the family
(α(Sn(XA))n≥1. The product �X obtained by this method is here given by

u�X v =
(

(u · α(Sn(XA))∗−1)(v · α(Sm(XA))∗−1)
)
· α(Sn+m(XA))

for words u and v of respective lengths n and m. The associated convolution algebra is
still equal here to Solomon’s descent algebra. It can be interpreted as the K-vector space
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Sym of noncommutative symmetric functions endowed with the new product ·X defined
by

U ·X V = Sn+m(XA) ∗ (UV )

for U ∈ Symn and V ∈ Symm (cf. Section 3.2). The deformed interpretation morphism
αX is here

αX(U) = Sn(XA) ∗ U ∗ Sn(
1

X
A) = Sn(XA) ∗ U(

1

X
A) ,

and in particular the interpretation of the Eulerian Lie idempotent Φn is

αX(Φn) = Sn(XA) ∗ Φn(
1

X
A) = ψn(X) Φn(

1

X
A) =

Φn( 1
X
A)

ψn( 1
X

)
,

according to Proposition 7.1. This situation is interesting since the forthcoming proposi-
tion shows that every Lie idempotent of Solomon’s descent algebra can be described in
this way.

Proposition 7.2 Let A be a noncommutative alphabet and let πn be an arbitrary homo-
geneous Lie idempotent of order n in L(Ψ). The following properties are equivalent:

1. Πn is a homogenous Lie idempotent of order n in L(Ψ).

2. There exists a virtual totally ordered commutative alphabet X such that

Πn =
πn(X A)

ψn(X)
,

where ψn is the usual power sum symmetric function.

Proof — (2 =⇒ 1) follows essentially from Proposition 7.1. Indeed this allows to write

Πn ∗ πn =
1

ψn(X)
πn(XA) ∗ πn =

1

ψn(X)
πn ∗ Sn(XA) ∗ πn = πn ∗ πn = πn .

On the other hand,

πn ∗ Πn =
1

ψn(X)
πn ∗ πn(XA) =

1

ψn(X)
πn ∗ πn ∗ Sn(XA) =

1

ψn(X)
πn ∗ Sn(XA) = Πn ,

so that πn ∗ Πn = Πn and Πn ∗ πn = πn for all n ≥ 1, which implies that Πn is a Lie
idempotent of L(Ψ).

(1 =⇒ 2) Consider a totally ordered commutative alphabet X. Let ([πL])L∈Ly be the
Lyndon basis of the free Lie algebra L(Ψ) associated with the generating family (πn)n≥1

(where Ly denotes the set of Lyndon words over the alphabet N). ¿From the case πn = Ψn,
one can see that there exists a family (pL(X)(n))L∈Lyn of quasi-symetric functions such
that

πn(X A) =
∑

L∈Lyn

pL(X) [πL] (53)

where Lyn denotes the set of Lyndon words over N of weight n. The coefficient p(n)(X)
of πn in this expansion is equal to ψn(X), since

p(n)(X) πn = π(X A) ∗ πn = πn ∗ Sn(X A) ∗ πn = ψn(X) πn ∗ πn = ψn(X) πn ,
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according to Proposition 7.1.

We shall now prove that the family (pL(X))L∈Lyn,n≥1 is a transcendance basis for the
algebra QSym of quasi-symmetric functions over X (which is a free commutative algebra
according to a result of Malvenuto and Reutenauer [24]). Let (π∗I ) be the dual basis of
(πI). As shown in [24], the family (π∗L)L∈Lyn,n≥1 is a transcendance basis of Qsym. On
the other hand, using the Cauchy formula, one can write

Sn(XA) =
∑

I`n

π∗I (X) πI .

Expanding Sn(A) on the basis (πI) and applying (53), one obtains another expression of
Sn(XA) on the (πI) basis. Identifying the coefficients, one finds

π∗L = kL pL +
∑

L1,...,Lk
k≥2

pL1 . . . pLk

for any Lyndon word L of weight n, the sum being taken over Lyndon words L1, . . . , Lk

of length strictly less than |L| (and whose total length is equal to |L|). Also, the constant
kL must be non-zero, as follows from using a simple argument on the cardinality of finite
transcendance bases. This shows that (pL)L∈Lyn,n≥1 is a transcendance basis of QSym, as
required.

Let now Πn be an arbitrary Lie idempotent in L(Ψ). One can expand it on the Lyndon
basis associated with the family (πn), i.e.

Πn =
∑

L∈Lyn

qL [πL] ,

where the qL are scalars. According to the previous discussion, one can now define a totally
ordered commutative (virtual) alphabet X by setting pL(X) = qL for every L ∈ Ly. Since
q(n) is here necessarily equal to 1, it follows that

πn(XA)

ψn(X)
=
πn(XA)

p(n)(X)
=
πn(XA)

q(n)
= πn(XA) = Πn ,

as required. 2

Recall now that the Lie (quasi) idempotent

αX(Φn) =
Φn( 1

X
A)

ψn( 1
X

)

is the element of Symn corresponding to projection onto the free Lie algebra with respect
to the decomposition

K〈A〉 = K ⊕ L(A) ⊕ (L(A), L(A))�X
⊕ . . . ⊕ (L(A), . . . , L(A)︸ ︷︷ ︸

n terms

)�X
⊕ . . . , (54)

where (L(A), . . . , L(A))�X
is the submodule of K〈A〉 spanned by the �X -symmetrized

products

(P1, . . . , Pn)�X
=

1

n!

∑

σ∈SGn

Pσ(1) �X . . .�X Pσ(n)

of Lie polynomials. Hence it follows from Proposition 7.2 that all Lie idempotents of the
descent algebra are the Lie projectors associated to some deformation of the canonical
decomposition of K〈A〉 given by (54).
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Note 7.3 Interesting specializations are obtained by taking X = 1−q and X = 1/(1−q).
In the latter case, the associated interpretation αq is

αq(F ) = Sn(
1

1 − q
A) ∗ F ((1 − q)A) .

In particular,

αq(π
I) = Sn(

1

1 − q
A) ∗ πn((1 − q)A)

for every family (πn)n≥1 of homogeneous Lie idempotents. On the other hand [21]

Sn(
1

1 − q
A) ∗ πI =

∑

σ∈Sr

qmajI(σ)

(1 − qiσ(1))(1 − qiσ(1)+iσ(2)) . . . (1 − qiσ(1)+...+iσ(r))
πσ·I . (55)

Hence,

αq(π
I) =

∑

σ∈Sr

qmajI (σ)

(1 − qiσ(1))(1 − qiσ(1)+iσ(2)) . . . (1 − qiσ(1)+...+iσ(r))
π((1 − q)A)σ·I .

But it has been shown in [20] that the limit for q → 1 of of πn((1−q)A)/(1−qn) is always
equal to Ψn/n. Thus,

lim
q→1

αq(π
I) =

∑

σ∈Sr

1

iσ(1)(iσ(1) + iσ(2)) . . . (iσ(1) + . . .+ iσ(r))
Ψσ·I = Eλ(I)(Ψ) ,

where λ(I) denotes the partition obtained by sorting I. Hence the convolution algebra
associated with the deformed Cauchy product corresponding to Sn(A/(1−q)) degenerates
when q → 1 into the commutative algebra generated by the elements (Eλ(Ψ))λ`n. One
should observe that these elements form a family of orthogonal idempotents, similar to
those of Garsia and Reutenauer ([9], see also [20]).

7.2 Structure of the multihomogeneous modules associated with

Lie idempotents

We first recall some results of [20]. Let π = (πn)n≥1 a family of homogeneous Lie idem-
potents. One can decompose Sn on the basis (πI), say

Sn =
∑

I

pI π
I

where pI are constants. One associates then with each partition λ = (l1, . . . , lr) of n the
noncommutative symmetric function Eλ(π) defined by

Eλ(π) =
∑

λ(I)=λ

pI π
I ,

where λ(I) denotes the partition obtained by reordering the components of I. As shown
in [20], these elements form a complete system of orthogonal idempotents. When π is
the family (Φn) of Eulerian idempotents, these idempotents reduce to the family de-
scribed by Garsia and Reutenauer [9]. In this case, Eλ(Φ) is the projector on the module
(L(A)l1 , . . . , L(A)lr) in the decomposition

K〈A〉 = K ⊕ L(A) ⊕ (L(A), L(A)) ⊕ . . . ⊕ (L(A), . . . , L(A)︸ ︷︷ ︸
n terms

) ⊕ . . .
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In the case of an arbitrary family of Lie idempotents, the structure of the target modules
is not imediately clear. According to previous discussion, one can just say that Eλ(π)
is the projector on (L(A)l1 , . . . , L(A)lr)�X

with respect to the decomposition (54) if one
interprets the Lie idempotents πn as Φn(XA)/ψn(X) for some totally ordered alphabet
X (which is always possible according to Proposition 7.2). It remains however to give a
more explicit description of the images of the Eλ(π), i.e. of

Im Eλ(π) = K〈A〉|λ| · α(Eλ(π)) .

This will be done in the next proposition. Before stating it, we introduce some notations.
If λ = (λ1, . . . , λr) is a partition of n, we denote by λ · σ the composition of n defined by

λ · σ = (λσ(1), . . . , λσ(r)) .

We can now give the main result of this subsection.

Proposition 7.4 Let π = (πn)n≥1 be a family of homogeneous Lie idempotents, with
πn ∈ Symn, let λ = (l1, l2, . . . , lr) be a partition of n and let

Eλ(π) =
∑

λ(I)=λ

pI π
I

be the idempotent associated with λ as above. The image Im Eλ(π) of this idempotent is
then the module spanned by the polynomials

∑

σ∈Sr

pλ·σ Plσ(1)
Plσ(2)

. . . Plσ(r)

where Plk is a homogeneous Lie polynomial of degree lk.

Proof — The proposition is a special case of the following lemma:

Lemma 7.5 With the same hypotheses, let

E =
∑

λ(I)=λ

pI π
I

be an arbitrary linear combination of all πI indexed by a permutation of λ. The image
Im E = K〈A〉|λ| · α(E) of this element is then spanned by the polynomials

∑

σ∈Sr

pλ·σ Plσ(1)
Plσ(2)

. . . Plσ(r)

where as above, Plk is a homogeneous Lie polynomial of degree lk.

Proof of the lemma — Let M be the module defined by

M =

{
∑

σ∈Sr

pλ·σ Plσ(1)
Plσ(2)

. . . Plσ(r)
| ∀ k ∈ [1, r], Plk ∈ L(A)lk

}
.

We first prove that Im E ⊂M . To get this inclusion, it suffices to show that α(E) ∈M .
This follows from the fact that

α(E) =
∑

I=(i1,...,ir)
λ(I)=λ

pI θi1 ⊕× . . . ⊕× θir .
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Going back to the definition of the convolution product, we see that

α(E) = µ
( ∑

I=(i1,...,ir)
λ(I)=λ

pI ϑi1 ⊗ . . .⊗ ϑir

)
◦ c(12 . . . n)

= µ
( ∑

I=(i1,...,ir)

λ(I)=λ

pI ϑi1 ⊗ . . .⊗ ϑir

)
◦
( ∑

12...n∈u1 ... ur

u1 ⊗ . . .⊗ ur

)

=
∑

I=(i1,...,ir), λ(I)=λ

12...n∈u1 ... ur, |uk|=ik

pI (ϑi1 · u1) . . . (ϑir · ur)

where ϑi = α(Ψi) is Dynkin’s element and where c is for the usual coproduct on K〈A〉.
Observe that if u1 ⊗ . . .⊗ ur is in the support of c(12 . . . n), then uσ(1) ⊗ . . .⊗ uσ(r) also
belongs to the support of this coproduct. Taking now a set S of representatives of the
orbits of r-uples (u1, . . . , ur) of words under the action of Sr, we obtain

α(E) =
∑

σ∈Sr
(u1,...,ur)∈S

pλ·σ (ϑlσ(1)
· uσ(1)) . . . (ϑlσ(r)

· uσ(r)) .

This shows that α(E) ∈M from which it follows that Im E ⊂M , as desired.

On the other hand, a simple manipulation of the definition of the convolution product
shows that

α(E) · (ϑl1 . . . ϑlr) =
1

m1! . . .mn!

( ∑

σ∈Sr

pλ·σ ϑlσ(1)
. . . ϑlσ(r)

)

if λ = (1m1 , . . . , nmn), which implies that M ⊂ Im E. 2

The following corollary is essentially a reformulation of Proposition 7.4.

Corollary 7.6 Let, for all n ≥ 1, πn be a Lie idempotent of degree n and set π = (πn)n≥1.
For every partition λ = (λ1, . . . , λr), there exists then a probability distribution pλ on Sr

with the following properties :

• pλ(σ) = pλ(τ) whenever the compositions λ · σ and λ · τ are equal. This common
value will be denoted by pλ(σ · λ) in the sequel.

• The image of the projector Eλ(π) is the module generated by all pλ-symmetrized
products

(P1, . . . , Pr)pλ
=

∑

σ∈Sr

pλ(σ · λ) Pσ(1) . . . Pσ(r)

where each Pi is a homogeneous Lie polynomial of degree λi.

Example 7.7 The family Φ = (Φn)n≥1 of Solomon idempotents is characterized by the
fact that the associated probability distributions are uniform.

As another simple consequence of Proposition 7.4, we can also give the structure of
the multihomogeneous modules associated with Dynkin idempotents.

Corollary 7.8 Let λ = (λ1, . . . , λr) be a partition of n. The image of the projector
Eλ(Ψn) is the module spanned by the elements

(Pλ1 , . . . , Pλr)Ψ =
∑

σ∈Sr

λ1 . . . λr

λσ(1) (λσ(1) + λσ(2)) . . . (λσ(1) + . . .+ λσ(r))
Pλσ(1)

. . . Pλσ(r)
.

where Pλi
is a homogeneous Lie polynomial of degree λi.
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Another consequence of Lemma 7.5 is the following result of independent interest.

Corollary 7.9 Let (πn)n≥1 be a family of Lie idempotents and let I = (in1
1 , . . . , i

nr
r ) be

any composition of n (with ik 6= ik+1 for all k). The element πI is then, up to a constant
factor, an idempotent whose image under α is a projector onto the module

(L(A)i1 , . . . , L(A)i1︸ ︷︷ ︸
n1 terms

) (L(A)i2 , . . . , L(A)i2︸ ︷︷ ︸
n2 terms

) . . . (L(A)ir , . . . , L(A)ir︸ ︷︷ ︸
nr terms

) ,

generated by the products (P
(1)
1 , . . . , P

(n1)
1 ) . . . (P (1)

r , . . . , P (nr)
r ) where P

(l)
k is a homoge-

neous Lie polynomial of degree ik for k ∈ [1, r] and where (•, . . . , •) denote the usual
symmetrized product in K〈A〉.

Proof — The only thing to check is the fact that πI is actually quasi-idempotent. This
follows from Proposition 2.1 and a simple computation. 2

7.3 Structure of the modules associated with deformations of

some classical Lie idempotents

We describe here without proof the structure of the multihomogeneous modules associated
with the deformations of Φn and Ψn defined by the transformations of alphabets A →
(1−q)A and A→ A/(1−q). All these results can be proved by variants of the arguments
of the preceding subsection.

7.3.1 Φn((1 − q)A)

We need first to introduce a q-analogue of the factorial, connected with the combinatorics
of descents and compositions.

Let r ≥ 1 be an integer and let S be a subset of [1, r]. We associate with S the vector
v(S) = (v(S)1, . . . , v(S)r) ∈ {0, 1}r where v(S)i = 1 iff i ∈ S. We can then consider a
new vector s(S) = (s(S)1, . . . , s(S)r) ∈ Nr defined by

s(S)i = v(S)i + . . .+ v(S)r

for i ∈ [1, r].

Example 7.10 The following table gives the values of the above vectors and numbers
for all subsets of [1, 1], [1, 2] and [1, 3].
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C(S) S v(S) s(S) dS

2 ∅ (0) (0) 1
11 ∅ (1) (1) 1

3 ∅ (0, 0) (0, 0) 1
21 {2} (0, 1) (1, 1) 2
12 {1} (1, 0) (1, 0) 2
111 {1, 2} (1, 1) (2, 1) 1

4 ∅ (0, 0, 0) (0, 0, 0) 1
31 {3} (0, 0, 1) (1, 0, 0) 3
22 {2} (0, 1, 0) (1, 1, 0) 5
211 {2, 3} (0, 1, 1) (2, 2, 1) 3
13 {1} (1, 0, 0) (1, 0, 0) 3
121 {1, 3} (1, 0, 1) (2, 1, 1) 5
112 {1, 2} (1, 1, 0) (2, 1, 0) 3
1111 {1, 2, 3} (1, 1, 1) (3, 2, 1) 1

2

Let now I = (i1, . . . , ir) be a composition of length r. We associate with I the q-
analogue of (r + 1)! defined by

[(r + 1)!]I,q =
∑

S⊂[1,r]

dS q
s(S)1 i1+...+s(S)rir , (56)

where dS = |{ σ ∈ Sr+1, D(σ) = S }| denotes the number of permutations of Sr+1 whose
descent set is equal to S.

Example 7.11 For r = 1, r = 2 and r = 3, one can read on the table the following
formulas:

[2!](i1),q = 1 + qi1 ,

[3!](i1,i2),q = 1 + 2 qi1+i2 + 2 qi1 + q2i1+i2 ,

[4!](i1,i2,i3),q = 1+3 qi1+i2+i3+5 qi1+i2+3 q2i1+2i2+i3+3 qi1+5 q2i1+i2+i3+3 q2i1+i2+q3i1+2i2+i3 .

2

For a composition I = (i1, . . . , ir) of length r, set

aI(q) =
[r!](i1,...,ir−1),q

r!

[i1]q [i2]q . . . [ir]q
[i1]q [i1 + i2]q . . . [i1 + . . .+ ir]q

. (57)

Let now λ = (λ1, . . . , λr) be a partition of n. We can now define a q-deformation of the
usual symmetrized product by

(xλ1 , . . . , xλr)Φ((1−q)A) =
∑

σ∈Sr

aσ·λ(q) xλσ(1)
. . . xλσ(r)

. (58)

This product clearly reduces to the ordinary symmetrized product for q = 0. Also, the
family a = (aσ·λ(q))σ∈Sr is a probability distribution over Sr, as we will see in the sequel.
The following result provides therefore a complete description, of the multihomogeneous
modules associated with the Lie idempotents Φn((1 − q)A)/(n(1 − qn)).
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Proposition 7.12 Let λ = (λ1, . . . , λr) be a partition of n. Then the image of the pro-
jector Eλ(Φn((1 − q)A)/(1 − qn)) is the module generated by all products of the form

(Pλ1, . . . , Pλr)Φ((1−q)A)

where Pλi
is an arbitrary homogeneous Lie polynomial of order λi.

Note that the case q = 1 gives again Corollary 7.8.

7.3.2 Φn(A/(1 − q))

For a composition I = (i1, . . . , ir), define now

BI(q) =
r∑

k=1

(
r − 1
k − 1

)
(−1)k−1 qi1+...+ik−1 [ik]q ,

and set

bI(q) =
BI(q)

(1 − q)r−1 r! [i1]q . . . [ir]q
.

The relevant q-deformation of the symmetrized product is defined by

(xλ1 , . . . , xλr)Φ(A/(1−q)) =
∑

σ∈Sr

bσ·λ xλσ(1)
. . . xλσ(r)

.

Indeed, we have:

Proposition 7.13 Let λ = (λ1, . . . , λr) be a partition of n. Then the image of the pro-
jector Eλ(Φn(A/(1 − q))/(1 − qn)) is the module generated by the products

(Pλ1 , . . . , Pλr)Φ(A/(1−q))

where Pλi
is an arbitrary homogeneous Lie polynomial of degree λi.

7.3.3 Ψn((1 − q)A)

Let I = (i1, . . . , ir, ir+1) be a composition of length r+ 1. We associate with it the family
(γS,I)S⊂[1,r] of N2r

defined by γ∅,(i1) = 1 for every i1 ≥ 1 (when r = 0) and by the inductive
rules

∀ S ⊂ [1, r − 1],





γS∪{r},I =
(

ir−1+ir−1

ir

)
γS,(i1,...,ir−2,ir−1+ir) ,

γS,I =
(

i1+...+ir

ir

)
γS,(i1,...,ir−1) −

(
ir−1+ir−1

ir

)
γS,(i1,...,ir−2,ir−1+ir)

(when r ≥ 1). Next, we introduce the polynomial CI(q) ∈ N[q] defined by

CI(q) =
∑

S⊂[1,r]

γS,I q
s(S)1 i1+...+s(S)r ir .

Example 7.14 Let us show how to compute C(2,3,1)(q). We need first to compute

γ{1},(2,3) =
(

4

3

)
= 4 , γ∅,(2,3) =

(
5

3

)
−
(

4

3

)
= 10 − 4 = 6 ,
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γ{1},(2,4) =
(

5

4

)
= 5 , γ∅,(2,4) =

(
6

4

)
−
(

5

4

)
= 15 − 5 = 10 .

It follows that

γ{1,2},(2,3,1) =
(

3

1

)
γ{1},(2,4) = 3 × 5 = 15 , γ{2},(2,3,1) =

(
3

1

)
γ∅,(2,4) = 3 × 10 = 30 ,

γ{1},(2,3,1) =
(

6

1

)
γ{1},(2,3) − γ{1,2},(2,3,1) = 6 × 4 − 15 = 9 ,

γ∅,(2,3,1) =
(

6

1

)
γ∅,(2,3) − γ{2},(2,3,1) = 6 × 6 − 30 = 6 .

Hence we finally get

C(2,3,1)(q) = 15 q2×2+1×3 + 30 q1×2+1×3 + 9 q1×2+0×3 + 6 q0×2+0×3

= 15 q7 + 30 q5 + 9 q2 + 6 .

For a composition I = (i1, . . . , ir) of length r, let us set

cI(q) =
[i1]q . . . [ir]q

[i1]q [i1 + i2]q . . . [i1 + . . .+ ir]q

CI(q)
(

i1+...+ir

i1,...,ir

) .

Let λ = (λ1, . . . , λr) be a partition of n. The q- symmetrized product will be in this case

(x1, . . . , xn)Ψ((1−q)A) =
∑

σ∈Sr

cσ·λ(q) xλσ(1)
. . . xλσ(r)

,

and we have:

Proposition 7.15 Let λ = (λ1, . . . , λr) be a partition of n. Then the image of the pro-
jector Eλ(Ψn(A/(1 − q))/(1 − qn)) is the module generated by all products of the form

(Pλ1, . . . , Pλr)Ψ((1−q)A)

where Pλi
is an arbitrary homogeneous Lie polynomial of degree λi.

7.3.4 Ψn(A/(1 − q))

For I = (i1, . . . , ir), define the polynomial DI(q) by the recurrence relations




Di1 = [i1]q

DI(q) =
r∑

k=1

Di1,...,ik−1,ik−1,ik+1,...,ir(q) +
(
|I| − 1
i1 − 1

)
qi1−1Di2,...,ir(q) for l(I) ≥ 2

with the convention that D...,0,...(q) = 0. We set

dI(q) =
DI(q)(

|I|
i1, . . . , ir

)
[i1]q . . . [ir]q

.

The q-analogue of the symmetrized product will be defined by

(xλ1 , . . . , xλr)Ψ(A/(1−q)) =
∑

σ∈Sr

dσ·λ xλσ(1)
. . . xλσ(r)

.

Proposition 7.16 Let λ = (λ1, . . . , λr) be a partition of n. Then the image of the pro-
jector Eλ(Ψn(A/(1 − q))/(1 − qn)) is the module generated by all products of the form

(Pλ1 , . . . , Pλr)Ψ(A/(1−q))

where Pλi
is an arbitrary homogeneous Lie polynomial of degree λi.
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Poincaré characteristic and polynomial representations of Iwahori-Hecke algebras, Publications of
the R.I.M.S., Kyoto University, 31 (1995), 179–201.

[6] G. Duchamp, D. Krob, B. Leclerc and J.-Y. Thibon, Déformations de projecteurs de Lie,
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