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Abstract

This paper discusses various deformations of free associative algebras and of
their convolution algebras. Our main examples are deformations of noncommutative
symmetric functions related to families of idempotents in descent algebras, and a
simple g-analogue of the shuffle product, which has unexpected connections with
quantum groups, hyperplane arrangements, and certain questions in theoretical
physics (the quon algebra).

* LIR, Université de Rouen, 76134 Mont Saint-Aignan Cedex, France — e-mail: ged@litp.ibp.fr
T Bilkent University, Ankara, Turkey — e-mail: klyachko@fen.bilkent.edu.tr
P LITP (IBP, CNRS), Université Paris 7, 2, place Jussieu, 75251 Paris Cedex 05, France — e-mail:

dk@litp.ibp.fr
§ IGM, Université de Marne-la-Vallée, 2, rue de la Butte-Verte, 93166 Noisy-le-Grand Cedex, France

— e-mail: jyt@litp.ibp.fr



Introduction 3

Noncommutative symmetric functions 6
2.1 Definitions . . . . . . .. 6
2.2 Relations with Solomon’s descent algebra . . . . . . . ... ... ... ... 7
2.3  Quasi-symmetric functions . . . . . ... ..o 7
2.4 Differences and products of alphabets . . . . . . ... ... 8
Deformations of Cauchy and convolution products 10
3.1 The general case . . . . . . . . .. 10
3.2 Deformations using noncommutative symmetric functions . . . . . . . . .. 14
The ¢-shuffle product 15
4.1 Definition . . . . . . .. 15
4.2 The operator U(q) . . . . o v v v v i i 16
4.3 U(q) in physics: the quon algebra . . . . . . . ... ... ... 17
4.4 Zagier’sinversion of U(q) . . . . . . . .. 18
4.5 A representation theoretical interpretation of the g-shuffle. . . . . . . . .. 20
The ¢-shuffle Hopf algebra and its convolution algebra 25
5.1 The g-shuffle Hopf algebra . . . . . . . . .. .. ... ... ... ...... 25
5.2 Primitive elements forc, . . . . .. ..o 26
5.3 The convolution algebra . . . . . . . .. ... o o 28
Some generalizations of the shuffle operator 29
6.1 Rosso’s quantum shuffles . . . . . ... ... oL 29
6.2 Twisted derivations and multi-parameter deformations of the shuffle product 31
6.3 Shuffle operators in the braid group algebra . . . . . . . ... .. ... .. 33

6.3.1 A shuffle element in the braid group algebra . . . . . . . . ... .. 33

6.3.2 Factorizations . . . . . . . ... 33

6.3.3 Action of the braid group on words . . . . . .. ... 35
6.4 Diagonal hyperplane arrangements . . . . . . . . . .. .. ... ... ... 37

6.4.1 The quantum bilinear form B,, . . . . . . . . .. ... ... ... .. 37

6.4.2 A decompositionof B, . . . . .. ... 39
6.5 The t-shuffle operator in the Hecke algebra . . . . . . .. ... ... .. .. 42

Deformations of the algebra of noncommutative symmetric functions 45
7.1 Deformations and Lie idempotents . . . . . . . ... ... ... ... ... 45
7.2 Structure of the multihomogeneous modules associated with Lie idempotents 48
7.3 Structure of the modules associated with deformations of some classical Lie

idempotents . . . . . ... 51
731 D, (L—q)A) . . . 51
732 O (A/(1—q)) . . 53
733 U (L—qA) .. .. 53
734 W (A/(1—=q)) . . o 54



This article is devoted to the investigation of certain deformations of free associative (or
tensor) algebras and of their convolution algebras. Typically, the deformations we are
interested in depend on one or several parameters and are trivial in the sense of the
deformation theory of algebras. That is, for generic values of these parameters there
exists a conjugating isomorphism

u®v=f(fH(u)f(v))

between the deformed product ® and the original one. However, for specific values of
the parameters, the deformed product degenerates in a non-trivial way, a situation which
allows for the representation of complicated algebras as limiting cases of well-understood
ones.

The motivation for this investigation was provided by examples of direct sum de-
compositions of the free associative algebra K (A), regarded as the universal enveloping
algebra of the free Lie algebra L(A)

K(A) = DU, (1)

analogous to the Poincaré-Birkhoff-Witt decomposition, i.e. A runs through the set of all
partitions, Uy = K and U; = L(A).

In these examples, each module U), is the image of the homogeneous component K (A),,
of degree n of K(A) by a certain idempotent e, of the group algebra of the symmetric
group K[&,], acting on the right by (2122 --2,) - 0 = T,1)To(2) - To@m) (Where z; € A).

In the case of the Poincaré-Birkhoff-Witt decomposition, coming from the identifi-
cation of K(A) with the symmetric algebra S(L(A)), U, is the subspace spanned by
symmetrized products of Lie polynomials

(P, Ps,...,P) = i' > PoyPo@) - Pow)
r oeES,
such that each P; is homogeneous of degree \;. The corresponding idempotents, intro-
duced by Garsia and Reutenauer [9], are refinements of the so called Eulerian idempotents
(cf. [30]), which arise for example in the computation of the Hausdorff series [25], or in
the study of the Hochschild cohomology of commutative algebras [13, 22].

The Garsia-Reutenauer idempotents e form, taking all partitions of a given n, a com-
plete set of orthogonal idempotents of a remarkable subalgebra ¥,, of K[&,], discovered
by L. Solomon [36] and called the descent algebra. It has been shown in [20] that such
complete sets can be constructed for all descent algebras from any sequence e, of Lie
idempotents of 3, i.e. idempotents projecting K(A), onto L,(A). In particular, using
the deformation theory of noncommutative symmetric functions, one can obtain interest-
ing sequences of Lie idempotents, depending on one or more parameters, and interpolating
in a natural way between all known examples [6, 20]. This leads to various deformations
of the Garsia-Reutenauer idempotents and of the Eulerian idempotents, and the first
question is certainly to explicit the modules Uy on which they project. The deformation
technique presented in Section 3 provides the following answer (Section 7, Prop. 7.4):

There exists for each n a vector p = (p;) indexed by compositions of n, satisfy-
ing >°; pr = 1, such that U, is spanned by the weighted symmetrized products

(P17P27"'7pr)p = Z p)vcrpa(l)Pa(Q) "'Pa(r)

oeES,

3



The weights p; are explicited for several interesting examples.

The only recorded example of decomposition (1) which does not come from a sequence
of Lie idempotents in descent algebras is the so-called orthogonal decomposition (cf. [4]).
It has been shown by Ree [28] that if one endows K (A) with the scalar product for which
words form an othonormal basis, the orthogonal complement of L(A) is the space spanned
by proper shuffles ullv, u,v # 1. The orthogonal Lie idempotent m, is the orthogonal
projector from K(A), onto L,(A). This idempotent is not in the descent algebra, and
it would be of interest to understand its structure. The orthogonal decomposition of the
K (A) can be refined into a decomposition of type (1), where U, is now spanned by shuffles
of homogeneous Lie elements

PR --- WP,

with each P; of degree )\;. The relationship between the projectors m, = e(,) of this
decomposition and the other projectors ey is somewhat analogous to the one encountered
in the case of the descent algebra, but considerably more intricate.

To understand this analogy, we were led to introduce a g-analogue of the shuffle prod-
uct, which, strictly speaking, is rather a deformation of the concatenation product (ob-
tained for ¢ = 0), recursively defined by

au Oy bv = a(u ®, ) + ¢*b(au ©, v) (2)

where a,b € A and u,v € A*. This product degenerates at roots of unity, and in particular
gives the standard (commutative) shuffle product for ¢ = 1. We conjecture that its
convolution algebra degenerates for ¢ — 1 into a commutative algebra which is associated
with a Ree type decomposition

KA =K&L®LUL®---

where L is a subspace which has the same Hilbert series as the free Lie algebra (this
subspace can be explicited). A challenging problem would be to find a good deformation
of the shuffle product giving the convolution algebra relevant to the case of the orthogonal
idempotent as a degenerate case.

It turns out that the g-shuffle, as well as the elements U, (q) = Y,ce, ¢/“o, which
are naturally associated with it, already occured in the literature, in several apparently
unrelated contexts.

First of all, the ¢-shuffle algebra is the simplest non-trivial case of a very general
construction due to M. Rosso, obtained in the context of the theory of quantum groups.
Moreover, the g-shuffle algebra is isomorphic to the free associative algebra iff U,(q) is
invertible for all n. The computation of its determinant (as an operator of the regular
representation of &,,) already occured in a problem of physics (the Hilbert space repre-
sentability of the quon algebra, describing hypothetical particles violating Bose or Fermi
statistics [15]), and was solved by D. Zagier who also computed U,(q)~! by means of
certain factorization formulas. Surprisingly enough, Zagier’s formula for det U,(q) turns
out to be a special case of a recent formula of Varchenko [38], giving the determinant
of what he calls the quantum bilinear form of a hyperplane arrangement. To complete
the picture, we mention that the ¢-shuffle also has a natural interpretation whithin the
representation theory of the 0-Hecke algebras of type A [7]. These aspects of the ¢g-shuffle
are reviewed, and the various connections are exploited in order to give generalizations or



struct a quantum shuifle Irom any solution or the Yang-baxter equation (without spectral
parameters), and that the Hall-Littlewood symmetric functions or the ¢g-Fock spaces of
Kashiwara, Miwa and Stern [18] can be regarded as examples of this construction. Also,
we generalize Zagier’s factorizations to identities in the algebra of the infinite braid group,
and give some applications.

This paper is structured as follows. We first recall the basic definitions concerning
noncommutative symmetric functions [10], which provide the convenient formalism for
computing in convolution algebras (Section 2). Next, we present a general deformation
pattern and give some simple properties (Section 3). In Section 4 we introduce the g-shuffle
and derive its fundamental properties. We review the quon algebra, the work of Zagier,
and give some details on the interpretation in terms of the 0-Hecke algebra. In Section 5,
we study the g-shuffle algebra as a Hopf algebra, and present our conjecture concerning
the limit ¢ — 1 of its convolution algebra. In Section 6, we give a simplified presentation
of Rosso’s quantum shuffles and exhibit some new examples. Next, we generalize to the
braid group some of the formulas which occured in the study of the ¢g-shuffle, explain the
connection with Varchenko’s construction, and illustrate the general results on an example
constructed from the standard Hecke-type solution of the Yang-Baxter equation. Finally,
Section 7 is devoted to the description of the decompositions of the free associative algebra
obtained from deformations of the Garsia-Reutenauer idempotents.

AXKNOWLEDGEMENTS — The authors are grateful to R. Stanley for communicating Varchenko’s reference

[38] and to D. Zagier for interesting conversations concerning his work [40].



2.1 Definitions

The algebra of noncommutative symmetric functions, defined in [10], is the free associative
algebra Sym = Q(S1, S, ...) generated by an infinite sequence of noncommutative inde-
terminates Sy, called the complete symmetric functions. We set for convenience Sy = 1.
Let t be another variable commuting with all the Sy. Introducing the generating series

o(t) = > Spt",
k=0

one defines other families of noncommutative symmetric functions by the following rela-
tions

%g(t} =o(t)Y(t), o(t)=exp(P(t)),

where A(t), ¥(t) and ¢(t) are the generating series

k=0

Y(t) = i U th =t o) = i %tk.
k=1 k=1

The noncommutative symmetric functions Ay are called elementary functions, and ¥y
and @, are respectively called power sums of first and second kind.

The algebra Sym is graded by the weight function w defined by w(Sy) = k. Its
homogeneous component of weight n is denoted by Sym,. If (F,) is a sequence of
noncommutative symmetric functions with F,, € Sym,, for n > 1, we set for a composition
I=(iy,...,4)

The families (S7), (A7), (¥7) and (®7) are homogeneous bases of Sym.

The algebra Sym can also be endowed with a Hopf algebra structure. Its coproduct
A is defined by any of the following equivalent formulas:

k=0 k=0

AT =1079,+7, 21, AP, =100, +P, 1.

The free Lie algebra L(®) generated by the family (®,),>; is then the Lie algebra of
primitive elements for A.

The set of all compositions of a given integer n is equipped with the reverse refinement
order, denoted <. For instance, the compositions J of 4 such that J < (1,2, 1) are exactly
(1,2,1), (3,1), (1,3) and (4). The ribbon Schur functions (Ry), originally defined in terms
of quasi-determinants (c¢f. [11, 12]), can also be defined by one of the two equivalent
relations

S'= S Ry, R= Y (1) gT

J=I J=I



(f17) 1s @ homogenous basis oI Sym.

The commutative image of a noncommutative symmetric function £ is the (commuta-
tive) symmetric function f obtained by applying to F' the algebra morphism which maps
Sy, onto h, (using here the notations of Macdonald’s book [23]). The commutative image
of A, is e, and the power sums ¥, and ®,, are both mapped to p,. Finally R; is sent to
an ordinary ribbon Schur function, which will be denoted by 7;.

2.2 Relations with Solomon’s descent algebra

There is a noncommutative analog of the well known correspondence between symmetric
functions and characters of symmetric groups, where the character ring of a symmetric
group is replaced by the descent algebra, in the sense of Solomon [36]. Recall that an
integer ¢ € [1,n — 1] is said to be a descent of a permutation o € &, iff o(i) > o(i + 1).
The descent set of a permutation ¢ € &, is the subset of [1,n — 1] consisting of all
descents of o. If [ = (iy,...,4,) is a composition of n, one associates with it the subset
D(I) ={dy,...,d.—1 } of [1,n — 1] defined by dy = i1 + ...+ ix. Let D; be the sum in
Z]&,] of all permutations with descent set D(I). Solomon showed that the D; form a
basis of a subalgebra of Z[&,,| which is called the descent algebra of &, and denoted by
¥, [36]. One can define an isomorphism of graded vector spaces

[e.e] o
a: Sym=@ Sym, — = %,

n=0 n=0

by
Oé(R[) = D[ .

The direct sum > can be endowed with A an algebra structure by extending the natural
product of its components ¥,,, setting xy = 0 for z € ¥, and y € ¥, when p # ¢q. The
internal product x on Sym is then defined by requiring that o be an anti-isomorphism,

i.e. by
FxG=a"(a(G)oa(F)),
for F,G € Sym. The fundamental property for computing with the internal product is

the following formula:

Proposition 2.1 [10] Let Fy, Fs, . .., F,., G be noncommutative symmetric functions. Then,
(FlFQ FT)*G:MT[(Fl(XJFQ@®FT)*AT(G)]

where in the right-hand side, p, denotes the r-fold ordinary multiplication and * stands
for the operation induced on Sym®" by *.

2.3 Quasi-symmetric functions

As shown by Malvenuto and Reutenauer [24], the algebra of noncommutative symmetric
functions is in natural duality with the algebra of quasi-symmetric functions, introduced
by Gessel [14].

Let X = {x1,29,...,2, ...} be a totally ordered infinite alphabet (indexed by N).
An element f € C[X] is said to be a quasi-symmetric function iff for any composition



one has
(Flyrtus? . oyhm) = (flar 252 . 2hm)

where (f,|z%) denotes the coefficient of the monomial 2% in f. The quasi-symmetric
functions form a subalgebra of C[X] denoted by QSym.

One associates to a composition I = (iy, s, ..., 4,) the quasi-monomial function M;
defined by
M; = Z Yy oy

Y1<y2<...<Ym

The family of quasi-monomial functions is clearly a basis of QSym. Another important
basis of QSym is formed by the quasi-ribbon functions, defined by

Fr=> M,
J=1
where > is the refinement order (i.e. J > I iff D(J) O D(I)). For example, Fiog =
Mo 4+ Mivig + Mg + My

The duality between Sym and Q. Sym is realized by the pairing
<SI,MJ> = (5]“] or <R[,FJ> = (5]“] .

The Hopf algebra QSym can then be identified with the (graded) Hopf algebra dual of
Sym.

2.4 Differences and products of alphabets

We recall here some basic definitions concerning transformations of alphabets. We refer to
[20] for more details. The basic idea is to embed noncommutative symmetric functions in a
noncommutative polynomial algebra (for example by defining o(A;t) = [I;>;(1—ta;)~" for
some noncommutative alphabet A), and then to regard the images of the generators S,,(A)
by an algebra morphism as being the symmetric functions S,,(A’) of another alphabet A’
which can sometimes be explicited, but may also be virtual. For example, the formal
difference of two genuine alphabets A and B is generally only a virtual alphabet, having
nevertheless well-defined symmetric functions, expressible in terms of those of A and B.

We first recall the definition of the product of a totally ordered alphabet by a non-
commutative alphabet.

Definition 2.2 Let X be a totally ordered commutative alphabet and let A be a noncom-
mutative alphabet. The complete symmetric functions S,(XA) of the alphabet X A are
defined by the generating series

o(XA;t)= > Su(XA)t":= [ o(4;at),

n>0 zeX

the product being taken relatively to the total ordering of X.

Example 2.3 Let X, = 1/(1 —¢) denote the totally ordered alphabet X, = {... < ¢" <
. < q < 1}. The complete symmetric functions of the alphabet A/(1 — q) are

A —
1 Z S H o(A;q"t) .
- q n>0 n>0



Proposition 2.4 Let X,Y be two totally ordered commutative alphabets and let A be a
noncommutative alphabet. Then, for any F, of Sym,,,

Fo(X x Y)A) = Fo(XA) % S,(YA) |

where X XY denotes the direct product of the two alphabets X and Y endowed with the
lexicographic ordering.

This property suggests the notation S,(A/X) for the *-inverse of S, (X A) in Sym,,.
Finally, here is the definition of the difference of two noncommutative alphabets.

Definition 2.5 Let A, B be two noncommutative alphabets. The complete symmetric
functions S,(A — B) of the alphabet A — B are defined by the generating series

c(A=B;t)= > Su(A—DB)t":=0(B;t) " o(A;t) = \(B; —t) 0(A; 1) .

n>0

The notation (1 — ¢g)A = A — gA denotes therefore the alphabet whose complete
symmetric functions are

a(l=q)At) = D Su((1—q)A)t" := X(A4; —qt) o(Ast) .

n>0

These notations are coherent since it can be checked that S,((1 — ¢)A) is actually the
inverse of S, (A/(1 — q)) in Sym,, for the internal product.



In the sequel, K will denote a field of characteristic 0, and A will always be an infinite
alphabet whose letters are indexed by N, i.e. A ={aj,as,...,a,,...}.

3.1 The general case

Consider, for all n > 1, an invertible element

Bo= > Mo €K[s,.

Ueen

We require that 3; = Ide,. This data defines a linear operator 5 on K(A) by

ﬂ(ail ce ain) = Qi ... QG - ﬁn = Z bg_n) &ia(l) ce &id(n)

oES,
where a;,,...,qa;, € A.
This allows us to equip K (A) with a new product ®g, defined by
uGgv=LF(67 (u)- 57 (v)) (3)

for u,v of A*. In other terms, this product is defined in such a way that g becomes an
isomorphism of algebras between K (A) equipped with its usual concatenation (or Cauchy)
product and K (A) equipped with the new product ®g.

Thus, (K(A), ®s) is a free associative algebra on F(A) = (1(A) = A. It is therefore
endowed with a canonical comultiplication cg, defined by

csla)=1®a+a®]1

for a € A, and by the requirement that cg is an algebra morphism for ©g.

Let C3(A) be the convolution algebra of the Hopf algebra (K(A), ®g,cs), that is,
Cs(A) = End ® K (A) endowed withe the convolution product

f&sg=pso(f®g)ocs (4)

where g : u ® v — u ©g v is the multiplication. When = I, it is well known that the
direct sum of the group algebras of all symmetric groups

Kle| = P K[s,)] ()

n>0

is a subalgebra of the convolution algebra (c¢f. [30]). This is also true for the §-deformed
products.

Proposition 3.1 The (3-convolution algebra (K|[&|, &) is isomorphic to the usual con-
volution algebra (K[&], ®) (which corresponds to the case where [3 is the identity).

Proof — Let ¢ be the comultiplication of K(A) (for its usual Cauchy structure) making
letters primitive. By definition of ©g,

Blai...an) =a1 Og...Ogay
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K(A) b K(A)

c cp

K(A) ® K(A)

EEY: K(A) @ K(A)

In other words, cs = (B ® () o co 371, so that
o®sT = Opo(0®T)ocCs
= fo@o(f'®p ) o(c®T)o(B®B)ocos™
- ﬂo@o((ﬁ*loaoﬁ)g@(ﬁ*lomﬁ))ocoﬁfl

where we identify an element x of K[&] with the endomorphism corresponding to its left
action y — x oy on K[&] (® denotes here the usual concatenation product of K(A)).
Consider now the bijection fsz from K[&] into itself defined by

fa(0) = Baooop?
for 0 € &,,. We have just proved that

falo &p 1) = fs(o) & fa(r), (6)

and fg is the required isomorphism. O

Note 3.2 The definition of § shows that
ogof(1)=p(cor)

for any two permutations ¢ and 7. This just means that the left and right actions of the
symmetric group commute. One can then easily check that

o&gT=0(c&T) (7)
for permutations o and 7 of arbitrary orders.

Consider now the subalgebra ¥ of (K[&], &) which is generated by all the elements
Id, =12 ...n for every n > 0. When [ is the identity of K(A), ¥4 is isomorphic to
the direct sum ¥ of all descent algebras equipped with the convolution product (cf. [30]),
hence to the algebra of noncommutative symmetric functions (cf. Section 2). An explicit
isomorphism between these algebras is given by

One can deform this isomorphism by constructing a new isomorphism denoted ag from
Sym into X5 which maps the complete function ST (where I = (iy,...,4,) is a composi-
tion) to the convolution product

Id;, ®p Idy, ®p ... ®g1d;, .

It is interesting to observe that the isomorphism ag can be seen as a deformation of the
classical interpretation a of noncommutative symmetric functions into Solomon’s descent
algebra. One can therefore obtain by this method different interpretations of noncom-
mutative symmetric functions. The following result gives an explicit expression for the
deformed interpretation map asg.

11



Proof — With the same notations as in the proof of Proposition 3.1, one has

folag(Sh) = folds, ®p ... ®p Id;,) = fo(lds) & ... & fe(Id;,) = (ST)

according to (6) and to the fact that fz(Idy) = Idy, for every k > 0. Hence, f5(ag(S?)) =
a(ST). That is, ap(ST) = 8,1 o a(ST) o B,,. O

As an immediate consequence, we can state:

Corollary 3.4 The convolution algebra X5 is a subalgebra of K|[&| equiped with the usual
composition product.

Proof — Let z and y be two homogenous elements of the same order n of ¥3. By
construction, there exists two elements f and g of Sym, such that z = ag(f) and
y = ag(g). It follows then from Proposition 3.3 that

zoy = (Bl oalf)oB)o (B, oalg)of)
Bl oa(f)oalg)o By,
Byloalg* f)o B

= aglg*[f) €Xp .

Note 3.5 The proof of the corollary shows that
ag(F)oag(G) = as(G * F)

for homogenous elements F, G of the same weight of Sym. It follows in particular that
the image by as of a homogenous idempotent of Sym (for the internal product) is still
an idempotent in >3.

Example 3.6 Let us explicit the interpretation of the image by ag of the Eulerian idem-
potent ¢, (which is the image by « of the element @, /n of Sym,). Let £ denote the
image of the free Lie algebra L(A) by . Transporting by [ the Poincaré-Birkhoff-Witt
decomposition of K(A), we obtain

KA =K & L ® (L,L)s @ ... D (E,...,ﬁ),g ® ...

———
n terms
where
1
(Il,...,l'n)ﬁ = E ( Z Ts(1) ®ﬂ “‘Qﬂxa(n) )

0'6677.

for zy,..., 2, € K(A). Then, ag(®,/n) = 3,0 ¢, 0B, is the idempotent corresponding to
the projection of the homogenous component of degree n of £ with respect to the above
direct sum decomposition of K(A).

12



g and are 1nvertible 1or generic values oI . In such situations, the convolution algebra
¥5(q) degenerates when ¢ takes a value gy for which 8 = ((¢) is not an isomorphism. We
will however still use the notation ¥5(qo) to denote the limit of ¥5(q) for ¢ — gy when-
ever it exists. Several interesting problems arise in the investigation of these degenerate
convolution algebras.

Note 3.8 The framework presented here can be easily generalized to some other situa-
tions. Among them is the case of the so-called orthogonal Lie idempotent (see [4, 30]).
The orthogonal Lie idempotent m, is the idempotent of Q[&,] which corresponds to the
orthogonal projection from K(A) (endowed with its standard scalar product for which
words form an orthonormal basis) onto the homogenous component L(A), of order n
of the free Lie algebra L(A). m, is also the projection onto L(A), with respect to the
decomposition of K(A) given by Ree’s theorem, i.e.

K(A)=K @& L(A) © LAWLA) @ ... ® LA W ... WLA) & ...

n terms

where W denotes the usual shuffle product on Q(A).

Let B be any linear basis of L(A). The shuffle algebra (Q(A),W) is a free commutative
algebra with B as generating family (¢f. [30]). This property allows us to define a
comultiplication ¢y on Q(A) by

1. cu(L) =1® L+ L ®1 for every Lie element L € L(A);
2. au(Pw@)=cu(P) (Wow) a,(Q) for every polynomials P, Q € Q(A).

One can then consider the associated convolution product &, on Q[&], defined by
o&yT=Wo(c®@T)oay(l2... n+m)

foro € &, and 7 € &,,. The commutativity of the shuffle product implies the cocommu-
tativity of ¢y. Hence the convolution algebra (Q[&], &) is here commutative. It follows
that its subalgebra ¥, generated by the identity elements of all symmetric groups is also
commutative. Consider now the morphism from Sym into ¥, defined as in the general
case by

o (SO )Y = Td;, @y ... Ry Id;, .

This is a degenerate situation in which the image by oy, of the algebra of noncommu-
tative symmetric functions is not isomorphic to Solomon’s descent algebra. The generic
interpretation of the image by ay, of the Fulerian idempotent ®,, given in Example 3.6 is
however still valid here. It follows from this interpretation that Ree’s decomposition is
equivalent to

aw(P,) =7, .

It follows that , belongs to the homogenous component EL(U") of order n of 3. It is easy to
see that this set is a subalgebra of K[&,,] of dimension p(n) (the number of partitions of
n). An interesting research direction would be to characterize this subalgebra and to give
explicit formulas for the images of the standard bases of Sym by ay,. The decomposition
of m, on such bases would then be immediately given by decomposition relations of ®,, in
Sym.
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descent algebra 2o = Q|&s|. In the second case, 2u,” 1s the commutative algebra spanned
by

aw(Rs) =123, aw(Riz) = aw(Ra) = = (1324 213 + 231 + 312) , aw(Ri1y) = 321,

N —

and the orthogonal projector is
1 1 1
Ty = Oq_u(q)g) == OéLU(Rg - §R21 - §R21 + Rlll) =123 — 5(132 + 213 + 231 + 312) + 321 .

It is also interesting to see that the image by ay, of the homogenous component L, (¥)
of order n of the free Lie algebra L(V) C Sym generated by the family (V,),>1 (or
equivalently by the family (®,),>1) collapses here onto a line, which is necessarily equal
to Qm,.

3.2 Deformations using noncommutative symmetric functions

Here is an interesting special case of the previous constructions. Let F' = (F),),>1 be a
family of elements of Sym,,, with 7 = S;. We assume that every F), is invertible for the
internal product of Sym,,. We can then consider the bijection 3, defined by

ﬁn - a(Fn) )

where we identify an element of K[&,] with the linear morphism defined by its right
action. In other words, 3, is given by

Bn:x € K[6,] — zoa(F,) .

Denote by @ the product of K(A) associated with the family (3,),>1 by the above
construction. We also denote by & r and ap the corresponding convolution product and
interpretation morphism (of Sym into the convolution algebra Xy = ¥j3).

Note first that Proposition 3.3 shows that the image of ar is here exactly Solomon’s
descent algebra. Using a~!, we can therefore reinterpret the convolution product & p.
Formula (7) shows in particular that the algebra (X, & r) is isomorphic to the algebra of
noncommutative symmetric functions endowed with the F-product defined by

UsxpV = Fyim*x (UV)

for homogenous elements U and V' of weight n and m respectively. Identifying again a(U)
with U and applying Proposition 3.3, one has has

ap(U) = F, + U+ F;CY

for U € Sym,,, where F(=Y denotes the inverse of F), for the internal product of Sym,,.

We will study in the final Section of this paper the situations corresponding to the
families given by the g-bracketing and its inverse, i.e. the cases F,, = S,((1 — ¢)A) and

F, = Sn(A/(l - Q))
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We present in this section the g-shuffle product which is an interesting deformation of the
usual Cauchy product in K(A). We first give the formal definition of this product and
then show that this deformation is a special case of the general framework introduced in
Section 3.

4.1 Definition
The shuffle product can be recursively defined by the formula
aullby = a(ullbv) + b(auWv) (9)

where a,b € A and u,v € A*. Inserting a power of an indeterminate ¢ in this definition,
one obtains an interesting deformation, which turns out to be a particular case of a
construction of Rosso [31].

Definition 4.1 The g-shuffle product is the bilinear operation ®, on N[q|(A) recursively
defined by
1Oju=u®,1=u, (10)
(au) @y () = a(u©, bv) + ¢ b (au ©,v) , (11)
where u,v (resp. a,b) are words (resp. letters) of A* (resp. A).
This operation interpolates between the concatenation product (for ¢ = 0) and the

usual shuffle product (for ¢ = 1) on N[g|(A). The following property is a particular case
of a result proved in Section 6.

Proposition 4.2 The g-shuffle product is associative.

As an exercise, let us check it directly. It is clearly sufficient to prove that
(au ©q bv) Oq cw = au Oq (bv Og cw) (12)
for u,v,w € A* and a,b,c € A. Applying (11), one finds
(au@qbv) Ogcw = a(u®qbv) O cw + ¢l* blau ©,v) O4 cw

a((u ®g bv) ©q cw) + ¢+l c(a(u @4 bv) ©4 w)
+q1 b((au ©4 v) Oy cw) + g2 e(b(au O v) O w)
= a((u®qbv) O cw) + ¢ b((au ©,v) O4 cw)

+qlaulF bl e (a(u @4 bv) + ¢l blau ©g v)) O w) .

so that
(au @qbv) Ogcw = a((uOq bv) ©f cw)
+4¢!b((au O v) @4 cw) + ¢ H P e((au @, bv) O4w) . (13)
On the other hand,
au®g (bv Ogcw) = au®y (b(v Oy cw) + ¢ c(bv ©4 w))
= a(u®gb(vog cw)) + q'** b(au ©q (v Og cw))
+¢l a(u g c(bv ©4 w)) + ¢l@H b c(au @, (v O, w))
= a(u®, (b(v Oq cw) + ¢** c(bv ©4 w)))
+q1" blau ©q (v O cw)) + ¢laH 0 clau @4 (bv O4 w)) .

15



au @q (v Oq cw) = a(u®q (bv Oq cw))
+4!% blau O (v O cw)) + ¢ clau o, (v O, w)) , (14)

which implies the result by induction.

4.2 The operator U(q)

As already observed, the g-shuffle can also be interpreted as a deformation (in the sense
of the deformation theory of algebras) of the concatenation product of a free associa-
tive algebra. It is known that these algebras are rigid, which implies that for generic
q the g-shuffle product is necessarily a deformation of the concatenation product in the
sense of Section 3. It is easy to exhibit the conjugation isomorphism. Let U(q) be the
endomorphism of Z(q)(A) defined by

Ulg)arag ... a,) = a1 Oy a2 Oy ... Of ap

for w = ajay ... a, of A*. The product ®, being multihomogeneous, the restriction of
U(q) to Z(q)(A) defines an endomorphism U(q), of Z(q)(A), for each multidegree A\, and
one can write

Moreover U(q) clearly commutes with letter to letter substitutions. This shows that
one can recover U(q) from its restriction to standard words U(q)i». This endomorphism
corresponds to the right action of an element U, (q) of Z[g][&,], which is given by the
following formula.

Proposition 4.3
Ud(@)(12..0) = 10420, ...0,n= Y ¢7o. (15)

oES,
This formula follows by induction from the following one, itself established by induc-
tion:

Lemma 4.4

n—1

12..n—=1G0;n= > ¢ "' (1...ini+l...n—-1). (16)
=0

It follows that for a word of length n,

Ulg)(aras ... a,) =ayay ... a, - Uy(q)

and one sees that the ¢-shuffle is a deformation of the Cauchy product in the sense of
Section 3 whenever U, (q) is a bijection.

Indeed, det U, (q) is an analytic function of ¢, and U,(0) being the identity of Z[&,],
Un(q) is invertible for small complex values of ¢, and thus also for generic ¢ (that is, for ¢
an indeterminate, or for ¢ a complex number avoiding a discrete set of values). It follows
that U(q) itself is also generically invertible and hence that the g-shuffle is generically a
deformation of the Cauchy product in the sense of Section 3. One can restate this result
as follows.
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geora (2Z{q)\A), ) and the g-shufjie atgebdra (£Z(q)(A), Oq)-
Equivalently, when U(q) is invertible,

z@qy=U(q) (U(g) "' (2) - U(a)"'(y)) - (17)

4.3 U(q) in physics: the quon algebra

The problem arises now of finding the values of ¢ for which U, (q) is actually invertible. It
turns out that this problem has already been solved by D. Zagier [40] in a totally different
context. The starting point was a problem in physics, related to a model of quantum
field theory allowing the existence of particles ( “quons”) displaying small violations of
Bose or Fermi statistics [15]. Classically, bosons and fermions are described by creation
and annihilation operators a;, a} satisfying canonical commutation or anticommutation
relations. Here, the problem was to determine whether it was possible to realize the
g-commutator (“g-mutator”) relations

a; a; — qaja; = 6 (1,7 >1) (18)

by operators a;, aj of a Hilbert space H, such that a; be the adjoint of a;, and such that
there exists a distinguished vector |0) € H (the vacuum state) annihilated by all the a;

a;]0) =0 for all 7 . (19)

D. Zagier proved the realizability of this model for —1 < ¢ < 1 (another proof appears
in [8]). It is easy to see that the realizability problem can be reduced to the case where
H is equal to the vector space H(q) generated by the images of |0) under all products of
ar, and ay. This space has a basis consisting of all states

|K) =ay, ... a |0)
for K = (ky,...,k,) € (N*)". Consider now the infinite matrix A(q) defined by

Alq) = ((K|L) )K,LG(N*)",nZO )

where the scalar product is defined by the condition (0|0) = 1. The Hilbert space re-

alizability of relations (18) is equivalent to the positive definiteness of the matrix A(q).

Moreover, one can prove that this condition is equivalent to the positive definiteness of

all submatrices of A(q) indexed by permutations of &,. An easy computation gives
<U’7‘> _ qé(ffla)

which is the matrix of U,(¢q) in the regular representation.

Hence, one has to prove that all operators U, (q) are positive definite for —1 < ¢ < 1.
By continuity, since U, (0) is the identity, it is sufficient to show that U, (¢) is non singular
in this range. This reduces the realizability problem to the invertibility of the ¢-shuffle
operator for —1 < ¢ < 1. This will follow from the computations of the forthcoming
section, as well as the complete determination of the values for which U, (q) is invertible.
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Define

n—1

To(lq)=12..n=10n= > ¢ "' (1...ini+l...n—1) (20)

1=0

(by Lemma 4.4). Embedding &,,_; in &, one can write
Un(q) = (1Og -+ ©Ogn — 1) ©gn = Un-1(q)Tu(q)

so that U,(q) = T2(q)T5(q) - - - Tn(q). Taking reduced decompositions of the factors, we
obtain:

Proposition 4.6 Forn > 2, one has the factorization

Un(q) = (1042)(12043) ... (12...n—=1O4n) (21)
= (1+qo)(1+qos+q°oa0y) ...

(1 +q0n71 +q2 Opn_10n—9+ ... +qn71 On—1 ...0'1) . (22)

O

Thus, U,(¢) will be invertible if and only if all the T;(q) are invertible for i < n.
These elements can themselves be factorized. To this purpose, we need to introduce two
elements G,,(q) and D,(q) of Z(¢q)[&,], which are defined by induction. One first sets

Gi(q) =Di(q)=1.

Let now n > 2 and suppose that G,_1(¢) and D,,_1(q) are defined. Denote by g,-1(q)
and d,_1(¢q) the images of these elements in Z(q)[&,] where we identify &,_; with the
stabilizer of 1 in &,,. That is,

9n-1(q) = 1,-1(Gn-1(q)) and dn-1(q) = 1M1 (Dr-1(q))
where 7n_, is the group morphism of &,,_; into &,, defined by
n_1(c)=1c(1)+1...0(n—1)+1)
for o € &,_;. Then one defines

{ Gule) = (1=q" ") gn-1(q)
Dn(Q) = dn—l(Q) (1_qn_16n)_1

Y

where
YTn=M—112...n—2n) and dp=Mm12...n-1).

The complete factorization of T, (g) is then given by

Proposition 4.7 [40] For alln > 1,

T.(q) = Gn(q) Dn(q) - (23)
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1hen,
Gn(@) Dn(@) = (1=¢" ) gn-1(q) dn-a(q) (L — ¢ 0,) "

= (1=q" ) taa(q) (1 —¢" " 0,)7"

where t,,_1(q) = n'_(Tn-1(q)). It suffices therefore to check that
To(a) (1= q"""60) = (1 = ¢" %) ta-1(q)
which follows from a straightforward computation. O

Example 4.8 For n < 4, this gives

T(q) = (1—¢*)(1—q(21)!

Ts(q) = (1—¢*(213)) (1 —¢%) (1 —q(132))7" (1 —¢*(312))"

Ti(q) = (1—¢*(3124)) (1 —¢*(1324)) (1 —¢)
(1—q(1243))7 (1 — ¢% (1423))~1 (1 — ¢® (4123))~!

It is now easy to obtain an explicit formula for T},(¢)~' (which is a factorization of
this element into 2n — 3 terms). To state it, we need to introduce the elements G! (¢) and
D! (q) defined by G'(q) = D}(q) =1 and by the recursive formulas

{ Gha)=(1—q¢""7) g, (q)
Di(q) =d,_1(q) (14 ¢" 00+ ¢™ (6,)2 + ...+ ¢ 2" (6,)"72)

where g, _(q) = n;_1(G},_,) and d;,_,(q) = n,_1(D,,_1).

Y

Proposition 4.9 [40] If q is an indeterminate, T, (q) is invertible, and its inverse is

1
1—¢®)(1—gf) ... (1—qD)

To(q) ' = Dy (q) Gr(q) - (24)

Proof — 1Tt suffices to find the inverses of the linear factors, which are given by

(1—q" (5n)’1 =

o m (1+q¢" 6, + q2” (5n)2 + ...+ q(n72)n (5n)n72) '

Example 4.10 For n = 2,3, 4, one has

Tog)" = 15 (1-q(21),
—(q
-1 _ 1 ) . 3
Tilg)™" = A=A A=7) (1—¢°(312)) (1 — ¢ (132)) (1 + ¢ (213)) ,
Tiq)™ = - (1—¢* (4123)) (1 — ¢* (1423))

(1-¢*)(1-¢°)(1-¢")
(1 —q(1243)) (1 + ¢* (1324)) (1 + ¢* (3124) + ¢° (2314)) .
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Corollary 4.11 [40] For every n > 1, the operators U,(q) and T,(q) are invertible iff q
is not a k(k — 1)-root of unity with some k € [1,n].

Corollary 4.12 [40] The operator U(q) is invertible iff q is not a root of unity.

We have also the following result of Zagier, which is also a special case of a general
formula due to Varchenko (cf. [38], Theorem 1.1 or Section 6.4).

Corollary 4.13 [40, 38] The determinant of U,(q) considered as an operator for the
reqular representation of &,, is

n

det Un(q) = ] (1 — g D)mktin/=)
k=2

Proof — Using the factorization of T),(q) and the the fact that det (1 —¢7y) = (1 — ql)n!/l
if v is a cycle of order [ in &,,, we obtain
det T;(q) = ﬁ (1-— qk(k’*l))n!/(k(k—l)) ‘
k=2

4.5 A representation theoretical interpretation of the ¢-shuffle

The 0-Hecke algebra H,,(0) is the C-algebra obtained by specialization of the generic Hecke
algebra H,(q) at ¢ = 0. It is generated by elements T}, Ts, ..., T, and has the following
presentation :
T? = —T, forie[l,n—1],
T, = 1,7, for i — j| > 1,
LTinT, =TT, Ty forie[l,n—2].

For generic values of ¢, the Hecke algebra is semi-simple, and isomorphic to C&,,. This
is not the case when ¢ = 0. In particular, the families of irreducible and indecomposable
H,,(0)-modules are not equal.

The irreducible H,(0)-modules are 1-dimensional, and parametrized by subsets of
1,...,n—1 [27]. To see this, it is sufficient to observe that (T;T;1; — T;11T3)* = 0.
Thus, all the commutators [T},7}] are in the radical. But the quotient of H,(0) by
the ideal generated by these elements is the commutative algebra generated by n — 1
elements ti,...,t, 1 subject to t? = —t;. It is easy to check thet this algebra has no
nilpotent elements, so that it is H,(0)/(rad H,(0)). The irreducible representations are
thus obtained by sending a set of generators to (—1) and its complement to 0. For
reasons which will become transparent later, it is better to label these representations by
compositions rather than by subsets. Let I = (i,...,4,) be a composition of n and let
D(I) the associated subset of [1,n — 1|. The irreducible (1-dimensional) representation
oy of H,(0) is defined by

~1 ifieD(),
“‘”(T"):{ 0 ifig¢ D),
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finite dimensional H,,(0)-module and consider a composition series of M, i.e. a decreasing
sequence
My=MD>DM;D...D> M, D Mg, ={0}

of H,(0)-modules where every M;/M, ., is irreducible. There exists therefore for each
i € [1,k] a composition I; of n such that M;/M;,; ~ C;,. The Jordan-Holder theorem
ensures that the quasi-symmetric function

F =Y

is independent of the choice of the composition series. The quasi-symmetric function
associated with M is called the characteristic of M. One can show that it has several
properties in common with the usual Frobenius characteristic of a &,-module [7]. In
particular, the characteristic of an induced module

;.
M=cC,L®CL® - ®C Ty, o goH,
is the product of the characteristics of the factors [7]

F(M)=FpFyp,---Fy, .

T

(25)

These induced modules are cyclic, with generator the basis vector e =1 ® 1 ® --- ® 1 of
the one-dimensional space C;;, ® Cy, ® - -+ ® Cy,.. The length filtration

H,0% = @ cT, (26)
L(w)>k

of the 0-Hecke algebra induces a filtration of M
M® = [, (0)" e (27)

and this suggest the definition of a graded characteristic (for these particular modules)
by
Fo(M) =" " F(M®W /M) (28)

k>0

Example 4.14 Take I = (2), J = (1,1) and let M((2),1,1)) be the H,(0)-module obtained
by inducing the Hy(0) ® H(0)-module Cyy ® C(i,), identifying H5(0) ® H»(0) to the
subalgebra of Hy(0) generated by 77 and T3. Let e = 1 ® 1 be its standard generator, so
that Tie = 0, Tse = —e, and The is independent of e. The following automaton gives a
complete description of the induced module. Its states, which correspond to images of e
under the action of some basis element T, of Hy(0), form a basis of M) 1,1)). An arrow
indexed by T; going from the state f to g means that T; - f = ¢, and a loop issued from
a state f and labelled by T;|e (with e = 0 or € = —1) means that T; - f =€ f.
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This automaton is naturally graded by the distance d(f) of a state f to the initial state
e as indicated on the picture, and it is clear that this grading corresponds precisely to
the filtration used in the definition of F,. To be more explicit, if one associates with each
state f of the automaton the composition I(f) of 4 whose associated subset is

D(f)={ieL3T-f=—f},

one has
Fo(M((2),1,1) Z ¢ Fry) .

The graded characteristic of M((9) 1,1)) 18 equal to
Fo(My2),a,1)) = Fa1 +q Foy + ¢ (Fis + Foit) + ¢° Fio1 + ¢* Fiis

For g = 1, this characteristic is the product F5Fi;, which can be obtained from the shuffie
of 12 and 43 [30]. On the other hand, the ¢-shuffle of 12 and 43 is

12 ®, 43 = 1243 + q1423 + ¢*1432 + ¢*4123 + ¢*4132 + ¢"4312

and taking the descent compositions of the permutations in the right hand side, one
recovers the graded characteristic of M) (1,1))-

This example illustrates a general fact. The following proposition shows that the
graded characteristic of an induced module as above is always given by the g-shuffle.
As it is an associative operation, one obtains in this way a ¢-deformation of the ring of
quasi-symmetric functions.

We denote here by C(o) the composition of n associated with the descent set of a
permutation o of &,,.
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two permutalions of Spu m) and Symy1 myn) Such that C(o) = 1 ana C(1) = J. 1hen,
the graded characteristic of the Hyn(0)-module obtained by inducing the H,,(0) ® H,,(0)-
module Cr ® C; (identifying H,(0) ® H,,(0) to the subalgebra of H,m(0) generated by
Ty, ..., T 1, Thsr, oo, Tavm—1) is given by

Ho+m v
Fo(Cre Cy Ty o) ®Hm(0)) = > "y

veESptm

where one has
0Oy T = Z qd(”) v

I/EGn-&-m

Proof — Let My ; be the induced H,,,(0)-module considered in the proposition. This
module is generated by a e =1® 1 on which T,.... 7, 1,11, .., Thim—1 act by

o[~ ifieD()orien+ D),
"6_{ 0 ifi¢ D{I)ori¢n+D(J).

A basis of M ; is given by elements of the standard basis T, of H,(0) indexed by permu-
tations 0 € &,, whose descent set D(o) is contained in {n}, i.e.

B,={1, -¢e|lo € &,imand D(o) C{n}}.
Let R, ,, be the permutation
Rym=m+1m+2 ... m+nl1l2 ... m

of &, 1m. The following lemma gives a simple characterization of the permutations index-
ing the elements of the basis B,,.

Lemma 4.16 The set D, = {0 € &, | D(0) C {n}} is equal to the interval [id, R, m)
in the permutohedron of &,y . O

We are now in position to prove proposition 4.15. We first suppose that I = (n) and
J = (m). In this case, T; - ¢ = 0 when 7 # n. It follows that the action of the generators
of H,(0) on the basis B,, of M(n),m)) is

0 iftD(oy0) € {n},
T, (Ty-e)={ —T,-e ifie D)
T,o-¢ ifi¢ D(c™!) and D(oy0) = {n},

fori € [1,n+m — 1] and 0 € D,.. Let J,,, be the linear subspace of C[&,,1,,] spanned
by all permutations o such that D(o)  {n}, and consider the left action of H,,,(0) on
C[&ntm)/ Tnm defined by

T,-0=

{ —o if o(i) <o(i+1), (20)

oo; if o(i) > o(i+1)

and let ¢, ,, be the map from M) m)) into C[&y i)/ Tn,m sending T, - e to the permu-
tation o~!. Thus, ©n,m 18 an isomorphism between M) ) and the H, i (0)-module
generated by the identity permutation for the action (29). On the other hand,

o t=(012...n)Wn+tln+2 ... n+m).
0€Dy,
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Asin Example 4.14, the graded characteristic of M) (m)) can be read on the permutations
indexing the states of the automaton, which are given by the formula

Fo(Mwy,(my)) = Fq(@nm (M) = Y ¢ Fopm

c€Dy

To get the proposition, it suffices therefore to prove that

(12 ...0)0,n+lnt2 ... ndtm)= > ¢ Do
o€D,,

or equivalently that

(12 ...n)0,(n+1n+2 ... n+m) = > ¢ o
o€(12...m)W(nH nd2 ... ntm)

which is clearly true. This proves therefore the proposition in special case I = (n) and
J = (m). The general case follows from a similar argument. O

Using the formula expressing the product of two quasi-ribbon functions in terms of
shuffle product [14, 30] and taking ¢ = 1, we recover (25).
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gebra

This section is devoted to the study of the g-shuffle algebra as a Hopf algebra. We describe
the primitive elements, and discuss the degeneration of the convolution algebra for ¢ — 1.

5.1 The g-shuffle Hopf algebra

Let A be an alphabet and let (K (A), ®,) be the corresponding g-shuffle algebra. As shown
in Section 3, one can associate with it the coproduct ¢, defined by the following properties

evVacA ¢gla)=1®a+a®1,
o VP Qe K(A), ci(PO,Q) =cy(P) ®qce(Q).
Recall (from the proof of Proposition 3.1) that
cg= (U@ @U(g))ocolU(g)™ (30)
where ¢ = ¢ is the usual coproduct of K(A). That is,
¢g(12...n) = c(Un(@)™") - (Un(a) ® Un(q)) ,

and it suffices to apply the substitution ¢ — a; to this formula to get ¢ (a1 as ... ay).

Let w be the involution sending a word w to (—1)*!@ and let € be the constant term
homomorphism.

Proposition 5.1 (K(A), ®y,¢,) is a Hopf algebra with antipode w and counit e.

Proof — 1t suffices to check that w is the antipode, with € as counit. Note first that U(q)
and w commute since

Un(q) 0 wn = wy 0 Un(q)

(where w,, denotes the maximal permutation of &,,). The property follows then from (30),
since w is also the antipode for the usual coproduct c. O

The combinatorial structure of the coproduct ¢, is however not clear at all. We have
tabulated ¢,(12 ... n) up to n = 6 and no simple formula seems to emerge. We list below
the results for n < 3.

Example 5.2 For n =2 and n = 3, one has
1
cq(12):12®®+1—+q(1®2+2®1)+®®12,

q2

I+ +q+¢+¢+q¢* +¢°)
N 1+q¢*
I+q)(1+q+¢*+¢+q*+°)
N q+q°
I+ +q+ ¢+ ¢+ ¢+ )
l+q+@+¢P+¢"

1®23+23®1+1203+3®12 123 .
+(1+q)(1+q+q2+q3+q4+q5)( ®23+23@1+12®@3+3®12) + 0®

c(123) =123 @ () —

(123243201 +3221+21®3)

2213+ 13®2)

(2©31+31®2)
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In particular that the convolution algebra assoclated with the g-shullle algebra degenerates
into a commutative algebra when g — 1 (see Section 5.3 below).

Conjecture 5.1 There exists a family (f,-(q)) of rational functions in Z(q) which do
not have 1 as zero nor as pole, such that for all n > 1,

(12...n) = > forlQ)o®T.

o,T
12...n€ollir

Note 5.3 The dual Hopf algebra of the g-shuffle algebra is the algebra (K(A4),0,,A,)
with product O, and coproduct A, defined by

(uw Oy vjw) = (u®v|c,(w)) and (Aw)|lu®@v) = (wju©,v)

for u,v,w € A*. The product O, dual to the coproduct ¢, is not easily described. On the
other hand, one can completely describe the coproduct A, by the following formula

AN12...0) = "o

12..n€ollir

where o - 7 denotes here the permutation obtained by concatenating o and 7 considered
as words.

5.2 Primitive elements for ¢,

We shall now have a look at the set Prim, of primitive elements for ¢,. These elements
occur in several decompositions of the free associative algebra and in the description of
the associated convolution algebra. According to the general theory, Prim, is just the
image under U(q) of the set of primitive elements for the shuffle coproduct ¢, i.e. of the
free Lie algebra L(A). That is,

Primg = U(q)(L(A)) = D Lu(A) - Un(q) -

n>1

This shows that a basis of the standard component of Prim, is for instance given by
(006,0U,(q))sece,.n>1 Where 6, is the Dynkin idempotent of order n. Hence any explicit
formula for 6, o U,(q) gives us an explicit description of Prim,.

In order to obtain a description of 6,, o U,(q), let us introduce the left ¢-bracketing
operator ©,(t) which is the element of Z[t]|&,] defined by

O.) =1[...[[1,2], 3 -], nle
where [P,Q]; = PQ —tQ P.
Proposition 5.4
O,(t) o Upn(q) = Z P,(t,q) o, (31)

O’G@n

where P,(t,q) is the polynomial of Z[t, q| recursively defined by

i—1 n—2i+1 —t PT t, if1 < ,

<
Pr=1 and Pa(t,q):{ . . e tnall
" (1=t ") Po(t,q) if[]<i<n,

where i = 0~ (n) and where T is the permutation of &,_1 obtained from o by deleting n.
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or ©,(7) given by
On(t) = (1 —tga) (1 —tgs) ... (1—tgn),
where g; denotes here the cycle (i1 ...7—1) of &;. O

Example 5.5 Let 0 = 23541 € &5. Then,

Possur(t,q) = q* (1 —1) Pasu(t,q)

= (@ (1=1)q(l—tq) Pt q)

= (A1 —-t)(1—tq)q(l—1t) Pult,q)
(" (1=t (1 —tq)) (¢ —t) Pi(t,q)

= q'(g—t)(1-1)*(1—tq) .
Specializing ¢t = 1 in the proposition leads to an explicit formula for 6,, o U,(q). To

state precisely this result, we need to introduce the elements 7,(q) of Z(q)[&,] defined
according to the parity of n by

"o 2n—20+1 _ .
i=1 q

— g ———— oo n— — —
> (12...n—i2nn—i+l ...2n—1),
i=1 2n — 1],
"o [2n—20+2

Tont1(q) = D ¢ % (12 ... 2n—i+1 2n+1 2n—i+2 ... 2n)

i=1 q

- > 21, (12...n—i2n+1n—i+1 ...2n) .
i=1 2n],

As a consequence of Proposition 5.4, we can give a factorization formula for 6,, o U,(q).
Corollary 5.6 For alln > 2,
OnolUn@)=(1—q)(1—¢*) ... (1—¢"") m(q) 13(q) ... Tulq) . (33)
Example 5.7 For n = 4,5, we have
O,0Us(q) = (1—q)(1—¢*)(1—¢?) (1234 — 2134) (1234 — 3124)

1234+ —4 19243 — — 91493 — 4123) ,
( 14+q+¢* 1+q+¢° )

q
O50Us(q) = (1—q)(1—¢*)(1—¢*)(1—q*) (12345 — 21345) (12345 — 31245)

123454+ — 9 19435 — — 9 14235 — 41235

( +1+q+q2 1+q+q2 )
q __q _

(12345 + e 12354 — o 15234 — 51234) .

Let us now introduce the element A,(q) of Z(q)[&,] defined by

M(@) = [(n = D! (@) 7(q) - 7ala) ,
so that
On o Un(q) = (1= )" Au(q) - (34)
The image of the operator w — w - A, (¢q) (where w runs through words of length n) is

exactly the set of homogeneous primitive elements of order n for ¢,. In other words, one
has the following description:

Prim, = @ K(q)<A>, - \(q) .

n>1
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According to the general theory, the convolution algebra ¥, (¢) associated with the ¢-
shuffle Hopf algebra is equal to

En(Q) = @ K Un(Q>_1 oDjo Un(q)

[|=n

where Dj is the sum of all permutations with descent set D(I) . Unfortunately, due to
the intricate structure of U,(q), it does not seem possible to give a simple description of
¥n(q) for n > 4 (for n = 2 and n = 3, one can check that 3,(¢q) is in fact equal to the
usual descent algebra ¥,,).

The following conjecture, basically due to Zagier [40], would give some indications on
the structure of U, (q)".

Conjecture 5.2 Let w, denote the mazimal permutation of &,. For all n > 1, the
inverse of U,(q) has the form

1
1-¢)...(1—

Un(@)™ = (X 0P o) o ) (4 (1) g )

UGDn

where py(q) is a polynomial in Nlg| and where D, is a subset of &, whose cardinality is
equal to the number of planar trees with n leaves.

Zagier’s conjecture would give a description of the limit of the convolution algebra
¥.(q) when ¢ — 1 whenever this degenerate limit exists!. Indeed, a basis of ¥,(q) is
given by

Oéq(‘ljl) - (U’L (q>_1 © Qil © Uil (q)) ®q e ®q (Uir(q>_1 © Qir © Ulr(q>>
for |I| = n. The conjecture would imply, taking into account (34), that
: - 1 - e
lim Ua(0) ™ 0600 Un(a) = 5 ( 3 (=) (1)) (14 (1) ) A1)
: UEDn

These elements would therefore generate the limit convolution algebra ¥,,(1), if it exists.

The expression of U,(q)~! given by Zagier’s Conjecture can be interpreted as the
decomposition on the family (oA, (1)) of the idempotent corresponding to the projection
on the homogeneous component of order n of

L= @ KA M)

n>1

with respect to the decomposition

KA =KoLSLWLS.. LW ... WLS. ..

n times

of the free associative algebra K(A).

I The existence of a limit convolution algebra 3, (1) would be a consequence of Conjecture 5.1.

28



The aim of this section is to present interesting generalizations of the shuffle operator of
which the g-shuffle product is the simplest case.

6.1 Rosso’s quantum shuffles

Rosso showed, by expliciting their multiplication, that certain Hopf algebras obtained by
very general constructions can be interpreted as generalizations of the shuffle algebra [31].
These algebras are constructed as follows.

Let H be a Hopf algebra over a field K. A Hopf bimodule M over H is a K-vector
space endowed with compatible structures of H-bimodule and H-bicomodule [26]. In
other words, a Hopf bimodule over H is a H-bimodule M equipped with left and right
coactions 6y : M — H ® M and dg : M — M ® H commuting with each other (i.e. such
that (id ® 0g) d; = (0; ® id) dg) and which are morphisms of H-bimodules.

The following proposition is a particular case of a result of Woronowicz.

Proposition 6.1 [39] Let M be a Hopf H-bimodule. There exists a unique H-bimodule
endomorphism oy of M @y M such that

Vm,ne M, op(m)=1@m, ép(n) =n®l = oy(mn)=n®m.
Moreover oy is invertible and satisfies to the braid equation

Recall that the braid group B, is the (infinite) group generated by n — 1 elements
(8i)i=1.n—1 subject to the relations

SiSj = S; 8 for i —j|>1,

Si Si+1 Si = Si+1 Si Si+1 for i € []_, n — 2] .

For each permutation ¢ € &, one can define an element 7, of B, by T, = s;; ... S;
where o;, ... 0;, is an arbitrary reduced decomposition of o.

Let M be a Hopf H-bimodule and let MY = {m € M, 6,(m) = 1 ®@ m} be the
submodule of left coinvariants. The proposition allows to define a right action of the
braid group B, on (M*)®" by

T

T1R...QTy 8 = (Id?}(fl) Koy ® Id?}(fflfl)) (21 ®...®@x,) (35)
for every x1,...,x, € MF*.

On the other hand, it can be shown that T'(M’) is isomorphic to the space of left
coinvariants of the cotensor coalgebra T (M), which is known by a result of Nichols [26]
to be a Hopf algebra. This isomorphism endows therefore T'(M*) with a new product ®,
and Rosso shows that it can be explicited as follows, in terms of the braid group action
on T(M*%).

Proposition 6.2

(T1®...01) O (X1 ®...QT,) = > (11 ®...Qx,) T,
oc12..pp+1p+2..n

where - denotes the right action of B, on (ML)®™ defined by (35).
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vector space, and v € End (V & V') be a solution or the Yang-baxter equation
Rya Ri3Ro3 = RozRizRio (36)

where as usual R;; is the endomorphism of VeV eV acting as R on the ¢-th and j-th
factors. Also, let R = PR, where P(u® v) = v ® u, so that R satisfies the braid relation

R12R23R12 = R23R12R23 . (37>

One defines then as usual a right action of B, on V%" by

VRV RUp-8=Rii1(V1 @ua® - @uy) . (38)
The fundamental observation is the following

Lemma 6.3 Define a multiplication © on T(V) by

(T1®...01) O (X1 ®...QT,) = > (11 ®...Qx,) T,
o€ 12..plp+1p+2..m

forxy,...,x, € V. Then, ® is associative.

Proof — Consider first the case where R is the identity of V ® V. Then ® is the ordinary
shuffle product, which is indeed associative. Let p be the representation of B, defined by

R, and let
sh (p,q) = > T,

ocl2..pWlp+1...p+q

The associativity of ® is equivalent to the validity of the identities

p(sh (p,q)sh (p+q,7)) = p(sh (¢,7)sh (p,q + 1)) (39)

in the given representation. But taking reduced decompositions of both sides and ex-
panding the products, one obtains only reduced words. The identity being true for the
symmetric group, it is valid in the algebra of the braid group, and therefore in any rep-
resentation. O

Example 6.4 1) The ¢-shuffle ®, is the particular case obtained by taking R = ¢ - I,
where [ is the identity of V@V (and V is @,cq K a).

2) Let (e;) be a basis of V. Diagonal matrices R(e; ® ;) = g;je; ® e; satisfy the
Yang-Baxter equation. If A = (a;;) is a symmetrizable Cartan matrix and if (d;) are
relatively prime positive integers such that (d;a;;) is symmetric, Rosso shows that the
triangular part of the quantized enveloping algebra associated to A is a subalgebra of the
corresponding quantum shuffle algebra.

3) Take V = K]lz], where K = C(q), and identify V®" with K[z, 2s,...,2,]. The
standard action of the Hecke algebra H,(q) on K[xy,...,z,| by symmetrizing operators
[5]

,Ti = (q — 1)7TZ + oy (40)
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_ x; P — xiJrlUi(P)
Ti — Tiy1

gives a solution of the Yang-Baxter equation and induces as above an action of the braid
group on V®*. The subspace of V®" spanned by ® products of elements of V' can be
identified with the space of symmetric polynomials in xz1,...,z,, and the factorization
formula for the total symmetrizer S = Yoce, L» given in [5], Theorem 3.1, implies that
for a partition A = (A > Ag > ... > A, > 0), the product

x)q@x)‘Q@...@x)‘”

is equal, up to a scalar factor, to the Hall-Littlewood polynomial Qy(x1,...,2,; 1/q).
4) Other families of symmetric functions can be obtained by considering degenerate
actions, for example the Schur functions or the augmented monomial functions

5) The g-wedge product introduced by Stern [37] and Kashiwara-Miwa-Stern [18] can
also be regarded as a special case of this construction, obtained from an action of the
affine Hecke algebra commuting with U,(sl,).

6.2 Twisted derivations and multi-parameter deformations of
the shuffle product

This section explains how the consideration of twisted derivations allows one to recover
in a natural way the multi-parameter deformations of the shuffle product associated to
diagonal solutions of the Yang-Baxter equation.

Definition 6.5 A twisted derivation for a K-algebra structure (K(A),+,®) constructed
over K(A) is a linear map 0 from K(A) into K(A) which satisfies for words u,v € A* to
the Letbnitz rule

Auo©v)=0(u) ®v+x(u)ued(v),

where x s a monoid morphism from A* into K.

Example 6.6 Let (¢q)aca (resp. (0(a))aca) be an arbitrary family of elements of K (resp.
of K(A)). One can define a derivation 0 on the free associative algebra (K(A),+,-) by

o(w) = 2; qui(a)v ,

where for u = ay - - -a, € A*, q, denotes the element q,, ... qq,.

Consider now the classical twisted derivations (0, )sca on K(A), defined for each letter
a € A by
u fw=au
Oa(w) = { 0 ifwé¢aA*
for w € A*. These operators are widely used in automata theory, e.g. for defining the
algebra of rational series (c¢f. [2]). They are also twisted derivations for the g¢-shuffle
algebra, since by definition

Oa(t ©q v) = 0a(u) ©g v+ ¢"u ©q Oa(v)

for u,v € A*. One can then ask whether there are other products for which all operators
0, are still twisted derivations. The following proposition answers this question in the case
where the twisting morphism y is given by means of a matrix of commutation factors.
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q(u,v) = I daip,
ivj

for all words w = ay...a, and v = by...b,,. There exists then a unique graded product
On on K(A) such that

Vue A, uOyl=10pyu=mu,
Vu,ve A", 0,(u®pv) =0,(u) On v+ qla,u) u©y 0,(v)
for every a € A. This product can be computed by the following recursive formulas
uOul=10pyu=u,
(au) O (bv) = a(u @y bv) + (b, au) blau ©p v)
where u,v € A* and a,b € A.

Proof — A straightforward calculation, which is left to the reader. O

The product ®j; defined in the proposition is associative. One can therefore consider
the algebra (K(A),+,®). Observe that this algebra reduces to the ¢-shuffle algebra
when all indeterminates g, are equal to ¢. In the general case, the product ©,, is still a
special case of the construction of Section 3. Indeed,

a1 Opn Ay Opp - Oppay = agas ... ay - Uy (M)

for a; € A, and where

Un(M) = > ( 11 qdo(i)vaam)a‘

oES, 1<i<j<n
o(i)>o(j)

Thus, (K (A), +, ®yr) is shuffle Hopf algebra associated to the diagonal solution R(z®y) =
¢zy(r @ y) of the Yang-Baxter equation.

Note 6.8 If one forgets about the first condition in the proposition, there are other inter-
esting solutions, such as the T-operation of Schiitzenberger [32], also called “chronological
product” [19].

Note 6.9 When the matrix M is skew-symmetric in the multiplicative sense, 7.e. when
Qap = G, 1 for every a,b € A, one recovers the bicharacters introduced by Ree in [28]. Let
us recall that a bicharacter y is a bilinear mapping from N x N into (K, x), i.e. a
mapping such that

X(@,y+2)=x@y)x(r,z) and  x(*+y,2)=x(2) XY, *?)

hold for every z,y, 2 € NI, Let now (g,)qe be the basis of N defined by e,(b) = dq, for
a,b € A. The mapping which associates to a skew-symmetric matrix M = (¢up)apea the
bicharacter x(€q,€5) = qup is then clearly a one-to-one correspondence between bicharac-
ters and skew-symmetric A x A-matrices.

It is also interesting to observe that End9" (K (A)) can be equipped in this case with
a structure of Lie superalgebra defined by

[f, 9] = fg— x(deg(f),deg(g)) 9f -

The space of graded twisted derivations over (K(A),+,®)s) becomes then a super Lie
subalgebra of this superalgebra. Moreover it can be shown that the derivations (0,)aca
generates the free Lie superalgebra L, (A).
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Rosso’s construction suggests that the combinatorics of generalized shuffles has to be ud-
erstood at the level of the braid group algebra. This point of view leads to a uniform
presentation of several factorization results, and reveals a connection between quantum
shuffles and Varchenko’s construction of a quantum bilinear form associated to a hyper-
plane arrangement.

6.3.1 A shuffle element in the braid group algebra

Let By denote the infinite braid group, generated by elements (s;);>1 satisfying to the
relations s; s; = s;5; for |t — j| > 1 and 8; Si+1 8 = Sit18; Sip1. Since every braid group
B,, can be embedded in B, the notation T, will be still used in this context.

One can define a shuffle element U,, in K[B.] by

U= S T, .

0’6671

The ¢-shuffle operator is the image of U, under the representation s; — qo;. Thus any
factorization of U,, will also hold in particular for the ¢g-shuffle operator U, (q).

6.3.2 Factorizations

More generally any factorization of U,, will provide similar decompositions in any homo-
morphic image of the braid group. We will first give a decomposition formula for ¢/, which
can be viewed as the generalization of Zagier’s factorization of the g-shuffle operator.

Consider the element 7,, of the algebra of B,, defined by
Tn=1481+S 152+ ...+ (Sn_181-2...51) .
One can then give the following factorization of U, in N[By.

Proposition 6.10 For every n > 2, one has

U, =TT ... 7T, .

Proof — 'The formula is true in the representation s; — o;, and expanding the product
yields only reduced words. g

The elements 7,, can themselves be factorized, and we obtain in this way a factorization
of U,, in Z[[Bs]], which projects onto Zagier’s factorization under s; — qo;.

Proposition 6.11 Forn > 2, one has in Z[[Bs]] :

T, = (1—8% 180 9...8)(1—582 1 8,9...8) ... (1—52_))
(]_ — Sn_l)il (]_ — Sp—1 Sn_g)il R (1 — Sp—1Sp—2 ... 81)71 .
Proof — The proposition follows from the following lemma, whose proof is left to the

reader.
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T (1 =5, 18p9...5) =1 =8 [ 8p9...5)tn1

where t,_1 denotes the image of T,y under the algebra morphism n of N[By| defined by
n(s;) = Siy1 for alli > 1.

Example 6.13 For n =2, 3,4,
T=(1-s1)(1—s1),
Ty=(1—s351) (1 —s3) (1—=s2)7 (1 =s251)7",
Tio=(1—s55281) (1 —8559) (1 —53) (1 —s3)" 1 (1 —s382) " (1 —538981)"

Specializing these results in a homorphic image of the braid group, we get the following
useful corollary:

Corollary 6.14 For any representation p of B,,, one has

pUn) = p(T) p(T3) ... p(71n) ,

and if the inverses are defined,

— —

p(T)= Tl Q=piisns..s)) I A =plsaisns...5))".

1<i<n—1 1<i<n—1

Note 6.15 Typical examples where the inverses are well defined are the representa-
tions s; — ¢s; in C[&,] or the Hecke algebra H,(t) where the factors of the ele-
ments p(7;) satisfy polynomial equations with non-zero constant terms and hence are
invertible. For example for the symmetric group, with X = p(s,—1 Sp—2 ... s;) (resp.
Y = p(s2_ 18,2 ...5;)) one has

il q(n7i+1)(n7i); (1 . X)(Tf Xj) -1 q(n*’iﬁ*l)(nf’i)

Hence
(1 . X)—l — (1 (n i+1)(n— z) Z
similarly
n—i—2
yn—i-1 _ q(n—i-l—l)(n—i); (1 . Y)( Z Yj) —1— q(n—i-l—l)(n—i)
and then »
(1-Y) = (1— g Z Y7)

so that the denominator of Zagier’s formula can be lowered to

n m— 1 n—1
H (m i+1)(m— z)) H (1 o qk(k+1))n7k
m=2 z:l k=1
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Let M = (qap)apea be a matrix of indeterminates. The action of B, defined in Example
6.4 can be described as the right action - of B,, on words defined by

(Cbl as ... an) S, = qai,ai+1 (CLl e Qi1 Qi1 QG Qg2 - - an)
for a; € A.

Example 6.16 The matrices of 75 and 73 considered as operators on the space K aja1a,®
K ajasay & K asaya; with respect to this action are given by

1 + qa17a1 O O 1 qa1,a2 qglan
7—2 = 0 1 Gaq,az s ,]E') = Gas,a; + Ga1,a19a2,a1 1 0
0 Jagar 1 0 Jaz,ar1ar,ar 1+ Qay,a

This subsection will be devoted to the study of the determinant of I/, considered as an
operator acting on words of fixed multihomogeneity. According to the results of Section
6.3.2, one can compute this determinant if one knows the values of

det(1—s28,1...8,) and det(1— 8,5, 1 ... 8n)

for all m < n. But for the representation under consideration,

det(1—525,1 ... 8n)=det(1 —sifmﬂsn,m S 81)

det(1— 8,801 ... Sm) =det(1 — Sp_mi1 Snm --- 51) ,
for 1 < m < n—1. Hence it is sufficient to compute the determinants of 1—s,,_1$,_2 ... $1
and 1 — s2 |8, 9 ... 8. The following proposition gives an answer to this question by

providing explicit formulas for the characteristic polynomials det (1 —z s) of the elements
$=8,8,-1...5 and s = sisn_l ... 81.

For I € N let K(A); be the multihomogenous component of multidegree I of K(A).
Every braid s € Bjj_; stabilizes K(A);. We can therefore consider s as an operator of
K (A);. The characteristic polynomial of this operator will be denoted by Py(s; x). Finally,

let us set
o, J)= T[ a3" and q()= I] o
a,be A acA

for I = (I,)aea and J = (J,)aca of N,

Proposition 6.17 Forn > 1 and I € N of weight |I| = n, one has

P J, J)*
n18nz...sr)= ][ (V- aJ, J)"
I(S 1Sn—2 81,%) 1L (1‘ (J)

keN

)"

k
P[(S%il S+ .. S1: x) _ H (I'J‘ . q(‘]7 ‘]) q(J7 6(1) q(€a7 J)
I=kJ+eq q(J>

kEN,a€A

)"

where (£,) = dap and where l; denotes the dimension of the multihomogeneous component
of multihomogeneity J of the free Lie algebra L(A).
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Example 6.18 Consider the multidegree I = (2,2,0,0,...). In this case, the matrix
of the operator s3s;s; in the basis {ajajasaq, aiasaias, ajasasay, asajaiasz, asaasas,
agagalal} of K<A>[ 18

0 0 qqul 0 0 0
0 0 0 0 qnq%l 0
M _ 0 0 0 0 0 qnq%l
535251 Q%Q q22 0 0 0 0 0
0 012022 0 0 0 0
0 0 0 Giagee 0 0

where we write for convenience ¢; ; in place of qq, ;. Then,

Pr(s3ses1;2) = ($4 - qgl(ﬁﬂiqgﬂ ($2 - qng%QQllQQQ)
according to the first formula of the proposition.

As an illustration, we can give an expression of the characteristic polynomial of the
permutation ¢,,_; ... o7 in an irreducible representation V) of &,,.

Corollary 6.19 Let X be a partition of n. The characteristic polynomial of the permuta-
tion o,_1 ... o1 in the irreducible representation Vy of &, is

PV)\(O-n—l Ul;x) = H ( H (xm - 1)l1 )(sx,mm

K A=kl ,keN

where sy = 3°,,(sx, mu)h, denotes the decomposition of the Schur function sy on the basis
of complete symmetric functions.

Proof — For a K[&,]-module V and for s € &,,, denote by Py (s;z) the characteristic
polynomial of s in the representation V. The corollary follows from the property

Pyyw(s;x) = Py(s;x) Pw(s; )

and from the fact that the characteristic polynomial of o,,_; ... o1 in the permutation
representation S* of &, whose Frobenius characteristic is hy is given by
Po(op 1 ...opx)= ] @H—1n
A=kl kEN
according to Proposition 6.17. O
This gives the characteristic polynomial of any permutation o; 1 0; 5 ... 01 in the

regular representation of &,,

PGn(Uifl O—lax) = PGi(Ui—l 0.171,)71'/2' ]
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tation or &, 1s a product oI cyclotomic polynomials. kere 1s a table oI these polynomials
for n <6.

representation | characteristic polynomial

2 r—1

11 rz+1

3 z—1

21 14z + 22

111 z—1

4 z—1

31 (x—1)(z% +1)

22 22 —1

211 B4t +r+1
1111 z+1

) rz—1

41 t+ad+at+a+1

32 x® —1

311 (% = 1)(x — 1)

221 x® —1

2111 sttt +a+1
11111 z—1

6 z—1

o1 2 -zt 2?41

42 (8 —1)(z® +1)

411 (x4 1) (2% — 1)(3:3 -1)

33 (2% — 1) (2% - 1)
321 (% + 2% +1)3(2? - 1)2
3111 (x —1)(2® —1)(x3+1)
222 (23 +1)(z2 - 1)
2211 (26 —1)(23 - 1)
21111 P4zttt +r+1
111111 z+1

6.4 Diagonal hyperplane arrangements
6.4.1 The quantum bilinear form B,

Varchenko associated to every real configuration C of hyperplanes? a bilinear form Be,
called the quantum bilinear form of C, which is defined as follows. One first associates to
each hyperplane H of C a weight ay in some fixed commutative ring. An edge of C is any
nonempty intersection of some subset of the hyperplanes of C. The weight ag of an edge
FE is defined as the product of the weights of all the hyperplanes containing E. The set
of all edges of C is denoted by &¢.

The connected components of the complement of the hyperplanes of C are called
domains. Denote by D¢ the set of all domains of C. Let also A¢ be the ring of polynomials
in the commutative variables (ay)pec. The quantum bilinear form B¢ associated with C
is the bilinear form on the space M of the Ac-linear combinations of the domains of D¢
which is defined by

Be(P,Q) = ]I an .

2 A configuration of hyperplanes is any finite set of hyperplanes in some affine or projective space.
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Varchenko showed that the determinant oI the rorm bH¢ 1S given Dy the 1ollowing rormula

det Be= [] (1-a3)™® (41)

Eeé&e

where m(E) is an integer, called the multiplicity of the edge F (see Section 2 of [38] for
more details).

Consider now the configuration D,, of diagonal hyperplanes: it consists of the hyper-
planes H;; of R" defined by z; = x; for 1 < ¢ < j < n. Let a;; be the weight of the
hyperplane H;;. Here, the domains are the cones P, defined by

P, :{(1‘17...,xn) € R", To) < Toz) < ... < {L’U(n)}

for all permutations o of &,,. The quantum bilinear form Bp, = B,, associated with D,
can therefore be considered as a bilinear form on Z[a;][&,]. The matrix of B,, is given by

By (o,7) = 11 ji (42)
(0= )= =L (-~ -T=1())<0
1<i<j<n

for 0,7 € &,. In other words, the entry of order (o, 7) of B, is obtained by taking the

products of all aj; for which the pair ji2 does not appear in the same order in 7 and o,

i.e. for which o = ...7...j...and 7= ...7...4... (or the converse). The bilinear

form B, can also be interpreted as the contravariant form of a suitable quantum group
(cf. [34]).

Varchenko’s formula (41) reduces here to
det B, = [[ - [[ &)™ (43)
Iy, (j,i)EIk

where I runs through all subsets of k(k — 1)/2 elements of {(j,i), 1 <i < j <n} for
k € [2,n] and where n; denotes the integer

(n—k+1)n!
M= n(n—1)/2\ °
k=) (" y7a )

Finally, relation (42) shows that B,, is the matrix of an element of Z[a;][&,] (considered as
an operator in the regular representation of &,,) iff aj; = ay, for all j > ¢ and k > [. If we
call ¢ this common value, we see that B,, = U,(q). Thus, U,(q) has the same matrix as the
quantum bilinear form associated with the diagonal hyperplane arrangement when every
hyperplane as the same weight ¢ and one sees that Corollary 4.13 can be also obtained
by specializing formula (43).

Example 6.21 The matrix of the quantum bilinear form Bj is

123 132 213 231 312 321
123 1 a32 21 a21a31 a31a32 a21a310A32
132 asz 1 Q21Q32  A21A31432 asi Q21031
. 213 aa1 (21032 1 asi (21031032 (31032
231 21031 21031032 a3 1 21032 a3z2
312 431432 a3y A21a310A32 21032 1 21
321 a21a31032 a21a31 a31a32 a32 21 1
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det By = (1 —a3;)? (1 —a3,)* (1 — a3,)* (1 — (az1a31032)%) .

Bs is the matrix of an element of Z[agy, as;, ass)[S3] iff as = az; = ass.

6.4.2 A decomposition of B,

We shall now see that one can recover formula (43) from a factorization of B,, which is
in fact a specialization of Corollary 6.14. We shall therefore define first a representatlon
t, of the braid group B,,. For n > 2 and i € [1,n — 1], consider the &,, X &,, matrix s
defined by

Uo(i)o(iv1) if T =00y,

S (o, 1) = {

where a;; denotes a;; if j > 7 and a;; if j < 7. These matrices are obtained from the
diagonal solutions R(e; ® e;) = @;je; ® e; of the Yang-Baxter equation by restriction of R
to the n!-dimensional subspace of V®" spanned by multilinear elements Eo(1) R+ R Eq(n),
o € &,. Thus,

. (44)
0 in all other cases ,

{ S s\ = gt g if li—j|>1,
S g g — gim g gt it i e [1,n—2]

(2

so that
a(si) = S

defines a representation of B,. The matrix of Varchenko’s quantum bilinear form is then

B - ,LLn Z :un U ’ (45>
UEGn
the results of Section 6.3 can be applied. The images T}" (n) tn(7Zy) are the &, X &,
matrices
T = T4+ 55 4+ 50, S, + .+ S5, s, ... s (46)
whose elements are
1 ifo=r1,
T,gn)(a, T) = H Ao(yoy HT=00p1...00 withli=1k—1
=1
0 in all other cases .

In other words, Tk(") is the matrix obtained from B, by taking all entries indexed by a
pair of the form (0,001 ... 0;) with some [ € [1,n] and by replacing all other entries
by 0. The first formula of Corollary 6.14 reduces then to the following one:

Proposition 6.22
B, =T ... T . (47)
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123 132 213 231 312 321

123 1 0 ay;y O 0 0
132 0 1 0 0 az; O
T _ 213 an 0 1 0O 0 O
2 231 0 0 0 1 0 azp |’
312 0 asy 0 0 1
2LV 0 0 0 ax 0 1
123 132 213 231 312 321
123 1 as32 0 0 31032 0
132 asz I anazx 0 0 0
T(3) _ 213 0 0 1 asy 0 31032
3 231 91431 0 asq 1 0 0
312 0 0 0 a21a32 1 921
321 0 a921a31 0 0 a921 1

The second formula of Corollary 6.14 applied to Varchenko’s quantum bilinear form
will give us a factorization of the matrix 7, k,") which reduces to the decomposition (23)
when all the a;; are specialized to ¢. As in the T),(q) case, it will give us a closed formula
for the inverse of 7, ,5") (and hence of B,,) and for its determinant.

Forn > 2,k € [2,n],i € [2,k] and j € [1,k— 1], we define &, X &,-matrices Fg"}f) and
(k)

F’y;',k by
k—2
~2 ~ .
nk ooty 11 Gote—vowy H7=0%ik,
ng,k)(@ T) = (b=l I=k—i+1
0 in all other cases ,
k—1
=(n,k) . H acr(k)cr(l) if 7= 0-,}/',]6 )
F%k (0,7) =19 1=, I
0 in all other cases ,
where

vie= (1. k—i k=1 k—i+1... k=2 k...n),
V=0 k—j—1k k—=j ... k=1 k+1...n) .

The specialization of the second identity of Corollary 6.14 gives here the following factor-
1zation.

Proposition 6.24 Forn > 2 and k € [2,n],

T = (1 —T0D) (1 =Ty (=T =T )t (48)

Vh k Y2,k Vi—1.k
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pelow

123 132 213 231 312 321
1 0 —a2,a9 0 0 0
0 1 0 0 —a35a31 0
I— F(3’3) _ —aglagl 0 1 0 0 0
(213) 0 0 0 1 0 —a2az |’
0 —a3 a3 0 0 1 0
0 0 0 —Q5, 032 0 1

1—-a, 0O 0 0 0 0
0 1-d3 O 0 0 0
(3.3) 0 0 1-a3 O 0 0
I =T = 2 ’
) 0 0 0 1-ad} 0 0
0 0 0 0 1-da% 0
0 0 0 0 0 1-—a3

1 —as2 0 0 0 0

—aso 1 0 0 0 0

. =(3,3) 0 0 1 —a31 0 0

=lam =10 0 ey 1 0 0 ’
0 0 0 0 I —an

0 0 0 0 —a921 1
123 132 213 231 312 321
1 0 0 0 —a31a32 0
0 1 —a921032 0 0 0

I— f(?, ,3) 0 0 1 0 0 —as310a32

(312) - —a921031 0 0 1 O 0
0 0 0 —a210a32 1 0
0 —Q921031 0 0 0 1

In this case, (48) reduces to
3 3,3 3,3 (3:3) 7(3,3) \—
T3 = (1 =Tt (1 = Tz (1 = Tim) ™ (1= Taig) ™

and 52
3 3,2 (3:2) \—
Tz( )= (I I‘E123))) (I B F(213)) t

Note 6.26 One can check that

(1T (3 (M) = Al (1)
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1— II Q2o it o=1,
AZ(””“)((L T) = k—it1<r<s<k (1)

0 if o#£71.
One has A" = (1 — [li<icj<n a?i) I, and
J
—(n7k:) —(n,k) TL,k’
(1 -TU) (Y @) = ald (50)
1=0

Formulas (49) and (50) both give a more explicit version of decomposition (48) and a
closed form for the inverse of T,ﬁ”) (and hence also for the inverse of B,,).

Note 6.27 It can also be checked that

det (1-T0P)=( [T - T a2) )™ (51)
IC[1,n] r,s€l
ME r<s
where
in! (n—a)ld!

On the other hand,

a)(E)

det (1-Tu)=( [T - I &))" (52)

!
Js

IC[1,n] r.sel
[T|=5+1 r<s
with o
e Jn = — 3 —1\1q
my 2<j+1)< n ) (n—j—=1jt.
2 j+1

It is interesting to observe that (51) and (52) show that the determinants of I — ['(™*)

Vi, k
and I — fg}’f) are independent of k.
Js

6.5 The t-shuffle operator in the Hecke algebra

The representations of the braid group considered in the foregoing sections were all ob-
tained from trivial (diagonal) solutions of the Yang-Baxter equation. The simplest non-
trivial solutions are those which factorize through the Hecke algebra H,(q). It is therefore
of interest to consider the element

Vo)=Y 9T,

0'6677,

of H,(q) ® C[t], i.e. the image of U,, under the morphism from the braid group B,, into
H,(q) defined by s; — tT;. All the factorizations of Section 6.3.2 are valid for V,,(¢), and
we shall also obtain an explicit formula for the determinant of this operator, which can
be regarded as a g-analogue of the determinant formula for U, (t).
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oI the elements
1-T,y...Ty and 1-T2,... T}

considered considered as operators of the (left or right) regular representation of H,(q).
But one has

det(1 =Ty ... 1) = ( I] Py(Tos ... Ti;)™ )

AFn =1
det(1=T2, ... T\) = ( I] Pu(T2, .. Ty )|
AFn =1

where f) is the number of standard Young tableaux of shape A and where Py, (s;z) is the
characteristic polynomial det (1 — xs) of s € H,(q) in the irreducible representation of
H,(q) indexed by A (see e.g. [5]).

Let Ky, = (s, h,) be the Kostka numbers. The following proposition expresses
the characteristic polynomial of T,,_; - - - 77 in the ¢-Specht module V)(g) in terms of the
corresponding polynomial for the symmetric group, as computed in Section 6.3.3.

Proposition 6.28 Let A be a partition of n and V\(q) be the corresponding irreducible
representation of H,(q). Then, the characteristic polynomial of T, 1T, o ... T} in Vy(q)
18

PVA(q)(TnA Tho ... Ty;o) = PVA(l)(O—nfl Op—2 ... 01, q(rhl)CYA )

where V(1) is the Specht module for the symmetric group, and oy = Ky ain—2/Ky 1n.
Proof — The existence of a homogeneity factor between the characteristic polynomials of

T,_1...T) and 0,_1 ... 01 can be seen on the Kazhdan-Lusztig model of the irreducible
H,(q)-module V), and this factor is determined by the equality

det Vi (Tn—l e Tl) = (det V) Tl)n_l = q(nil) K 21n-2
which is easily checked. a

Corollary 6.29 The characteristic polynomial of T? | T,,_o ... Ty in the irreducible H,(q)-
module Vy\(q) is equal up to a homogeneity factor to the characteristic polynomial of the
corresponding permutation in the irreducible &,-module Vy(1), i.e.

Py (T? T, o ... Ty;x) = Py, (0p_o ... 01;¢"* x)
where ay = K o1n—2/ Ky 1n.

Example 6.30 For |\| < 4, these polynomials are

N | Po(Tos . Ti2) | Pr(T2,Ths.. Tria)
2 1—2aq 1 — 2q¢®

11 1+ 1—2

3 1 — zq¢* 1 —a¢

21 1+ zq + 2%¢? 1 — ¢32?
111 11—z 1+

4 1 — 2 1—q*

31 | 1—aq+ 22¢®> — 23¢° 1 —a3¢*

22 1 —2%¢? 1+ 2¢? + 2%¢*
2111 | 1+ 2¢® + 2%¢* + 23¢° 1 — g%
1111 1+ 1—=x
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Oit) =1+t T;
for i € [1,n — 1]. These elements interpolate between two interesting elements of H,,(q)

—1 —1
Ci(l)=0;=1+T;, Oi(_l/Q):YviZF(Ti_ )

(see [5] for more details). The operators <,(t) satisfy Yang-baxter type relations

_1+t(¢-1)
2+4+t(g—1)

_1+t(¢-1)
24+t(g—1)

i(t) (O (1) ) 0ilt) = Gia(t) (0i(t) ) Cialt)

and as a special case of a construction of Cherednik, one can associate with the maximal
permutation w,, of &, the element

Oun = 01 ((C2 = f12)01) oo ((Cnia = fin) - (O2— f13) O1)

of H,(q) ® C(t), where
g =1
[y — 1

d

Jie = mt,q
with [1];, = 1 +t(¢ — 1). It would be interesting to clarify the relation between <, and

Vo(t). These elements are clearly related in the two extreme cases t = 1 and t = —1/q
but we do not know if such relations still exist in the general case.
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symmetric functions

7.1 Deformations and Lie idempotents

This section is devoted to a special case of the deformations of the usual Cauchy and
convolution products of K (A) obtained by means of noncommutative symmetric functions
(cf. Section 3.2). We are here interested in the case where the set of primitive elements of
the deformed algebra is still the free Lie algebra L(A). This case is of some importance,
since it leads to a complete understanding of a class of interesting decompositions of the
free associative algebra.

We use the notations of Section 3.2. We will restrict the families F' = (F},),,>1 used to
construct the deformations to those satifying for all n

Fp+ U, = kp, U,

where kg, is a constant. These equations have of course many solutions. An interesting
class is given by F,, = S,(XA), where X is a totally ordered alphabet (which can be
virtual, i.e. defined by the specialization of a transcendance basis of QSym). Indeed, the
following result shows that such a family satisfies to the desired property.

Proposition 7.1 Let X be a totally ordered commutative alphabet, let A be a noncom-
mutative alphabet and let m, be a homogenous element of weight n in L(¥). Then,

Sp(X A) 1, (A) = (X)) m,(A)

for allm > 1, where ¥, (X) is the usual power sum symmetric function.

Proof — Using Proposition 2.1, we can write

o(XAt)xm(A) = oo (( Q) o(4; wt)) * A°°(7Tn)>

zeX

= uoo<( ® o(Aiat)) « Y 1®...®1®7rn®1...>

zeX

from which it follows that

o(X Ast) s ma(A) = 3 (Sprma) 2"t = (3 2" ) mut" = v (X) mut" .

zeX zeX

O

Let now X denote a fixed totally ordered commutative alphabet. According to Sec-
tion 3, one can deform the ordinary Cauchy product of K(A) by means of the family
((Sp(XA))p>1. The product ®x obtained by this method is here given by

uOx v = ((u-a(Su(XA) ) (v a(Sn(XA))) - a(Spim(XA))

for words u and v of respective lengths n and m. The associated convolution algebra is
still equal here to Solomon’s descent algebra. It can be interpreted as the K-vector space
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Dy
U-xV =Snm(XA) % (UV)

for U € Sym, and V' € Sym,, (¢f. Section 3.2). The deformed interpretation morphism
ax 18 here

1 1
ax(U) = S,(XA)xU * SH(XA) = Sn(XA) * U(XA) ,
and in particular the interpretation of the Fulerian Lie idempotent ®,, is

1 1 Ca(5A)
OéX(ch) = Sn(XA) * q)n(yA) = wn(X) (Dn(_A) = W )

X
according to Proposition 7.1. This situation is interesting since the forthcoming proposi-
tion shows that every Lie idempotent of Solomon’s descent algebra can be described in
this way.

Proposition 7.2 Let A be a noncommutative alphabet and let w,, be an arbitrary homo-
geneous Lie idempotent of order n in L(V). The following properties are equivalent:

1. T1,, is a homogenous Lie idempotent of order n in L(V).

2. There exists a virtual totally ordered commutative alphabet X such that

(X A)
=20

where 1, is the usual power sum symmetric function.

Proof — (2 = 1) follows essentially from Proposition 7.1. Indeed this allows to write

I, x 7, = ¢n(1X) (X A) x 7, = ﬂm(lX) Tn % Sp(XA) x 71, = 7 x M, = T
On the other hand,
o kT = e (XA) = sk S (XA) = ——— 5 Sy (XA) =TI, |
Un(X) Un(X) Un(X)

so that m, = II,, = II,, and II, * 7, = 7, for all n > 1, which implies that II, is a Lie
idempotent of L(¥).

(1 = 2) Consider a totally ordered commutative alphabet X. Let ([7%])rer, be the
Lyndon basis of the free Lie algebra L(V) associated with the generating family (7,),>1
(where Ly denotes the set of Lyndon words over the alphabet N). ;From the case 7, = U,,,
one can see that there exists a family (pr(X)™)rer,, of quasi-symetric functions such
that

m(XA) = > pu(X)[r"] (53)
LeLyn

where Ly, denotes the set of Lyndon words over N of weight n. The coefficient p¢,)(X)
of m, in this expansion is equal to 1, (X), since

Py (X) T =X A) k= 7 % Sp (X A) xm, = 0 (X) 1y 1 = 0 (X) 71,

46



We shall now prove that the family (pr(X))rery,n>1 is a transcendance basis for the
algebra QQSym of quasi-symmetric functions over X (which is a free commutative algebra
according to a result of Malvenuto and Reutenauer [24]). Let (7}) be the dual basis of
(7). As shown in [24], the family (7} )rcry, n>1 1S a transcendance basis of Qsym. On
the other hand, using the Cauchy formula, one can write

Sn(XA) = ; ’/T}k(X)’/TI.

Expanding S, (A) on the basis (7!) and applying (53), one obtains another expression of
Sn(XA) on the (77) basis. Identifying the coefficients, one finds

= ki pr + Z PrLy -+ PLy

for any Lyndon word L of weight n, the sum being taken over Lyndon words Ly, ..., Ly
of length strictly less than |L| (and whose total length is equal to |L|). Also, the constant
kr, must be non-zero, as follows from using a simple argument on the cardinality of finite
transcendance bases. This shows that (pr)rery, n>1 1S a transcendance basis of QSym, as
required.

Let now II,, be an arbitrary Lie idempotent in L(¥). One can expand it on the Lyndon
basis associated with the family (), i.e.

Hn = Z qL [ﬂ-L] )

LELyn

where the g7, are scalars. According to the previous discussion, one can now define a totally
ordered commutative (virtual) alphabet X by setting pr(X) = gz, for every L € Ly. Since
q(n) is here necessarily equal to 1, it follows that

T(XA) 7 (XA) 7 (XA)

as required. O
Recall now that the Lie (quasi) idempotent
D, (+A)
ax(®,) = LD, Gud
Un(%)

is the element of Sym,, corresponding to projection onto the free Lie algebra with respect
to the decomposition
K(A)=K & L(A) & (L(A),L(A)oy ® ... & (L(A),...,L(A)oy & ..., (54)
n terms

where (L(A),...,L(A))s, is the submodule of K(A) spanned by the ®yx-symmetrized
products

1
(Pl,...,Pn)QX:ﬁ Z PO'(I)@X-'-QXPU(TL)
: O'ESGn

of Lie polynomials. Hence it follows from Proposition 7.2 that all Lie idempotents of the
descent algebra are the Lie projectors associated to some deformation of the canonical
decomposition of K(A) given by (54).
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In the latter case, the assoclated 1nterpretation &, 18
1
a(F) = Sy(7—A) = F((1 = 0)4) .

In particular,
1
ag(n!) = Sn(fq A) xmp((1 = q)A)

for every family (m,),>1 of homogeneous Lie idempotents. On the other hand [21]

maj,(a)

1 q
St Aysnl = 3 | ¢ EE—T
(1 p ) * T el (1 _ qZU(l))(l . qza(1)+lc(2)) o (1 _ ng(1)+..-+za(r)) ™ ( )

Hence,

majl(a)

Iy __ q . o1
a(m) = 2 (1—¢om)(1 — gle o) | (1 — gloTFiow) (1 =g A7

UEGT

But it has been shown in [20] that the limit for ¢ — 1 of of 7, ((1 —¢)A)/(1—¢") is always
equal to ¥, /n. Thus,
1

lim ag(r") = — : : . Ul = By (V) ,
g—1 1 U;T Za(l)(la(l) + 20(2)) - (10(1) + ...+ ZU(T)) 0

where A(I) denotes the partition obtained by sorting I. Hence the convolution algebra
associated with the deformed Cauchy product corresponding to S, (A/(1—¢q)) degenerates
when ¢ — 1 into the commutative algebra generated by the elements (Ey(V))x-,. One
should observe that these elements form a family of orthogonal idempotents, similar to
those of Garsia and Reutenauer ([9], see also [20]).

7.2 Structure of the multihomogeneous modules associated with
Lie idempotents

We first recall some results of [20]. Let 7 = (m,)n>1 a family of homogeneous Lie idem-
potents. One can decompose S, on the basis (71), say

Sn: ZPIWI
1

where p; are constants. One associates then with each partition A = (Iy,...,[,) of n the
noncommutative symmetric function F)(7) defined by

Ex(m)= > prr’,
A=A

where A\(I) denotes the partition obtained by reordering the components of I. As shown
in [20], these elements form a complete system of orthogonal idempotents. When 7 is
the family (®,,) of Eulerian idempotents, these idempotents reduce to the family de-
scribed by Garsia and Reutenauer [9]. In this case, F)(®) is the projector on the module
(L(A)y, ..., L(A);) in the decomposition

K(A)=K & L(A) & (L(A),L(A) & ... & (L(A),....L(A) & ...
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1Is not 1mediately clear. According to previous discussion, one can just say that £,(7)
is the projector on (L(A);, ..., L(A);)e, With respect to the decomposition (54) if one
interprets the Lie idempotents m,, as ®,(XA)/1,(X) for some totally ordered alphabet
X (which is always possible according to Proposition 7.2). It remains however to give a
more explicit description of the images of the E, (), i.e. of

Im Ex(r) = K(A)py - a(Ex(r)) .

This will be done in the next proposition. Before stating it, we introduce some notations.
If A= (A1,...,\) is a partition of n, we denote by A - o the composition of n defined by

Ao= ()\0(1), ey )\U(r)) .
We can now give the main result of this subsection.

Proposition 7.4 Let 7 = (7,)n>1 be a family of homogeneous Lie idempotents, with
T, € Sym,,, let A = (ly,1a,...,1.) be a partition of n and let

Ex(m)= Y pn
A=A

be the idempotent associated with X as above. The image Im Ey(m) of this idempotent is
then the module spanned by the polynomaials

Z DPro Pla(1) Plo'(2) s Pld(r)

0’667‘

where Py, is a homogeneous Lie polynomial of degree lj.

Proof — The proposition is a special case of the following lemma:

Lemma 7.5 With the same hypotheses, let

E = Z p[7TI
A=A

be an arbitrary linear combination of all 7' indexed by a permutation of X. The image
Im E = K(A) 5 - a(E) of this element is then spanned by the polynomials

Z Pro Pla(1) Plo'(2) s Pld(r)

UEGT

where as above, P, is a homogeneous Lie polynomial of degree lj.

Proof of the lemma — Let M be the module defined by
M= { Z DPxo Pla(1) Plo'(2) Pld(r) ‘ VEke [17T]7 Plk € L(A)lk } .
oES,

We first prove that Im E C M. To get this inclusion, it suffices to show that a(E) € M.
This follows from the fact that



alE) = u( Z pﬂ?il®...®19ir)oc(12...n)

I=(iy,..., ir)
AI)=X
— ,U( Z P1§i1®...®19ir)o( Z u1®...®ur)
I=(iq,..., ir) 12..n€ulll.. L,
A=A

= Z Pr (19“ -ul) (19” -ur)
I=(iy,..., ir), A(I)=X
12..n€ull.. Wuy, |ug|=ig
where ¥; = a(V;) is Dynkin’s element and where c is for the usual coproduct on K (A).
Observe that if u; ® ... ® u, is in the support of ¢(12...n), then u,q) ® ... ® Uq() also
belongs to the support of this coproduct. Taking now a set S of representatives of the

orbits of r-uples (uy, ..., u,) of words under the action of &,., we obtain
a(E) = Z Pxo (1910(1) ) uﬂ(l)) (/l9lo'(r) 'UU(T)) :
ocESY
(Upyeees ur)ES

This shows that «(E) € M from which it follows that Im E C M, as desired.

On the other hand, a simple manipulation of the definition of the convolution product
shows that

1
aB)- (O ... 0) = —— Pro D o D0,
(E) - (0 ) mll...mn!(agér Ao laq) l“)
if A= (1™ ..., n™), which implies that M C Im E. O

The following corollary is essentially a reformulation of Proposition 7.4.

Corollary 7.6 Let, for alln > 1, m, be a Lie idempotent of degree n and set m = () n>1-
For every partition X\ = (Ay,..., \.), there exists then a probability distribution py on &,
with the following properties :

e py(0) = pA(T) whenever the compositions X - o and X - T are equal. This common
value will be denoted by px(o - A) in the sequel.

e The image of the projector Ex(m) is the module generated by all py-symmetrized
products
(Pl, ey Pr)p/\ = Z p)\(U . )\) Pa(l) Ce PU(T)
0667‘

where each P; is a homogeneous Lie polynomial of degree \;.

Example 7.7 The family ® = (®,,),>; of Solomon idempotents is characterized by the
fact that the associated probability distributions are uniform.

As another simple consequence of Proposition 7.4, we can also give the structure of
the multihomogeneous modules associated with Dynkin idempotents.

Corollary 7.8 Let A = (\i,...,\.) be a partition of n. The image of the projector
E\(V,,) is the module spanned by the elements

A
(Pry-- s P o= > !

Py
vea, Ao1) Aoy T Ae) - Aoy + -+ Aory)

o) " "

where Py, is a homogeneous Lie polynomial of degree \;.
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Corollary 7.9 Let (m,)n>1 be a family of Lie idempotents and let I = (i7*,... i) be

any composition of n (with iy # ix11 for all k). The element ©! is then, up to a constant
factor, an idempotent whose image under o is a projector onto the module
(L(A)iy, .-, L(A);) (L(A)iy, .., L(A)y,) - (L(A);,.,...,L(A);,) ,

ni terms ny terms n, terms

generated by the products (Pl(l), . .,Pl(nl)) o (PW L PM)) where P,gl) is a homoge-
neous Lie polynomial of degree iy, for k € [1,r] and where (e, ... ®) denote the usual
symmetrized product in K(A).

Proof — The only thing to check is the fact that 7/ is actually quasi-idempotent. This
follows from Proposition 2.1 and a simple computation. O

7.3 Structure of the modules associated with deformations of
some classical Lie idempotents

We describe here without proof the structure of the multihomogeneous modules associated

with the deformations of ®, and W, defined by the transformations of alphabets A —

(1—g)A and A — A/(1—q). All these results can be proved by variants of the arguments
of the preceding subsection.

7.31 O,((1—q)A)

We need first to introduce a ¢g-analogue of the factorial, connected with the combinatorics
of descents and compositions.

Let 7 > 1 be an integer and let S be a subset of [1,r]. We associate with S the vector
v(S) = (v(S)1,...,v(S9),) € {0,1}" where v(S); = 1iff i € S. We can then consider a
new vector s(S) = (s(S)1,...,s(5),) € N defined by

s(S)i =v(S)i+...+v(5),
for i € [1,7].

Example 7.10 The following table gives the values of the above vectors and numbers
for all subsets of [1,1], [1,2] and [1, 3].

ol



O

i

11 0

3 0
21 {2}
12 {1}
111 {1,2}
4 0
31 {3}
22 {2}
211 {2,3}
13 {1}
121 {1,3}
112 {1,2}
1111 | {1,2,3}

—_

= O Ol
— O = Ol

F—‘HOOJ—‘HOO\'
N — = Ofl—~ —

N =~ O N = O O =
- — O~ Ol ~——=

—_ O, O~ O O Ol ———<=—
S S N e N N N

— W Ot W W OtW [ NN R

_ O = O = O = O
LWODNDNRFRDNRF B~ O~ —~—

e N R N i i N R
~— — —— — — — N —
P U Py

Let now I = (iy,...,i.) be a composition of length r. We associate with I the ¢-
analogue of (r + 1)! defined by

[(r+Wg= > dgg*Sit-terir (56)
SC[1,r]

where ds = [{ 0 € &,41, D(0) = S }| denotes the number of permutations of &,,, whose
descent set is equal to S.

Example 7.11 For »r = 1, »r = 2 and r = 3, one can read on the table the following
formulas: .
26 =1+4¢",

[3!](2'1,2‘2),11 =1+2 quHQ +2 qil + q2il+i2 )

[4!](“72,272,3)’(1 — 1+3qi1+i2+i3 +5qi1+i2 +3q2i1+2i2+i3 43 qi1 +5q2i1+i2+i3 +3q2i1+i2 +q3i1+2i2+i3 ]

O
For a composition I = (iy,...,4,) of length r, set
1,. . ; ; ;
a[(q) _ [T'](h,---‘,lr—l),q : : [Zl]‘q [7’2]4 : [ZT]Q : ) (57>
rl [i1]q [t +i2)g - [i1+ ...+ ir)g
Let now A = (A1,...,\.) be a partition of n. We can now define a g-deformation of the
usual symmetrized product by
(Tags - T )a(-g)a) = D o) Do) - Doy - (58)

0’667‘

This product clearly reduces to the ordinary symmetrized product for ¢ = 0. Also, the
family a = (a,.1(q))see, is a probability distribution over &,., as we will see in the sequel.
The following result provides therefore a complete description, of the multihomogeneous
modules associated with the Lie idempotents ®,,((1 — ¢)A)/(n(1 — ¢")).
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gector £ (Py((L —q)A)/ (L —q7)) 18 the moaute generated 0y aitl proaucts oj the jorm

(Pays -5 Pr)a(1-g)4)
where Py, is an arbitrary homogeneous Lie polynomial of order \;.

Note that the case ¢ = 1 gives again Corollary 7.8.

7.3.2 O,(A/(1—q))
For a composition I = (iy,...,1,.), define now
Bty = S° (TN (Lphet gt |
I(Q)— Z E—1 ( ) q [Zk]q )
k=1

and set
Bi(q)
(1 —q) =t ig]y ... [ir]g

The relevant ¢-deformation of the symmetrized product is defined by

bi(q) =

(Tags T )eA/0-0) = D Doa®a,gy -+ Ty -
0667‘

Indeed, we have:

Proposition 7.13 Let A = (A, ..., \.) be a partition of n. Then the image of the pro-
jgector Ex(®,(A/(1 —q))/(1 —q™)) is the module generated by the products

(Prys - Pr)aa/—q)

where Py, is an arbitrary homogeneous Lie polynomial of degree \;.

7.3.3 U, ((1— q)A)

Let I = (iy,...,%,4r+1) be a composition of length r 4 1. We associate with it the family
(vs,1)scp, of N** defined by 7g,;,) = 1 for every i1 > 1 (when r = 0) and by the inductive
rules

ir—1+ip—1
Ysu{r},I = ( ; ) VS, (i1, sir—2,ir—1+ir)
vVScllr—1] ’

Zl++lr 7;'r‘—1“l’7;'r*1
,75"[ - ( i ) rySv(il,---,i'rfl) - ( . ) 75’(i17---7ir72,i'r71+i7‘)

T ir

(when r > 1). Next, we introduce the polynomial C;(q) € N[q] defined by

OI(Q) frnd Z 75,[ q’s(s)l Zl++S(S)T i .
SC[1,r]

Example 7.14 Let us show how to compute C(231y(q). We need first to compute

Tares = (1) =4 wes=(,) - (})=10-4=6,

3
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Ng /7 T N4g / Ng /7
It follows that

3 3

Y{1,2},(2,3,1) = (1) Yane4a) =3 X5 =15, Y231 = (1) Y0,2,4) = 3 x 10 =30,
6
V{1, (2,3.1) = (1) Y123 — Y2hesny =6 x4—-15=9,
6
V0,(2,3,1) = (1) 70,2:3) — V2231 =6 x6—-30=6.

Hence we finally get
0(2 3 1)((]) — 15 q2><2+1><3 + 30 q1><2+1><3 + 9 q1><2+0><3 + 6 q0><2+0><3

= 15¢"+30¢° +9¢>+6 .

For a composition I = (iy,...,4,) of length r, let us set

[t1]q - [irlg Cr(q)
in)g [t +ia)g - [0+ .o+ i)y (il+...+ir) '

(ST ip

CI(Q) = [

Let A = (Aq, ..., A.) be a partition of n. The ¢- symmetrized product will be in this case

(xla ) J;n)\lf((l—q)A) - Z Co‘~>\(q) x)\(,(l) s I)\a(r) ’
0’667‘

and we have:

Proposition 7.15 Let A = (A1, ..., \.) be a partition of n. Then the image of the pro-
jgector Ex(V,(A/(1—q))/(1 —q")) is the module generated by all products of the form

(P>\17 sy P)\T)\I/((l—q)A)

where Py, is an arbitrary homogeneous Lie polynomial of degree \;.

7.3.4 U, (A/(1—q))

For I = (iy,...,14,), define the polynomial D;(q) by the recurrence relations
Di1 - [il]q
- =1\ i
Di(q) = Y Diyoigrin—tigsrimin (@) + i1 )9 Do iw(q) forI(I) >2
k=1
with the convention that Do (q) = 0. We set

The g-analogue of the symmetrized product will be defined by

(Tags - TA)WA/ ) = D dorTa,g - Ta, -
0’667‘

Proposition 7.16 Let A = (A1, ..., \.) be a partition of n. Then the image of the pro-
jector Ex(V,(A/(1—q))/(1 —q")) is the module generated by all products of the form

(Prys - Pr)wiasa—g)

where Py, is an arbitrary homogeneous Lie polynomial of degree \;.
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