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Algebraic Combinatorics with MAPLE and ACE

D. Krob: A. Lascoux, B. Leclerc}
J.-Y. Thibon| B.C.V. Ung| S. Veigneau'

We illustrate the use of Maple in algebraic
combinatorics with three examples: double
Schubert polynomials, ribbon tableaux and
noncommutative symmetric functions. Most
of the calculations presented in this paper
were done by means of ACE, a collection of
Maple packages developed at the University
of Marne-la-Vallée.

Introduction

Experimentation in Algebraic Combinatorics, as in any
other branch of Discrete Mathematics, requires large
samples of data obtained by means of computer pro-
grams. Due to the algebraic aspects of the field, these
data can then be processed in many different ways, e.g.
one can compute generating polynomials for different
statistics on a given set of combinatorial objects, try to
factorize these polynomials, use them as coefficients of
symmetric functions, specialize the variables, and so on.
A computer algebra system like Maple is well suited for
this kind of manipulations. Specialized Maple packages
for handling the usual objects of Algebraic Combina-
torics (permutations, words, Young tableaux, symmetric
functions, Schubert polynomials etc.) have been written
in recent years and regrouped in a coherent environ-
ment called ACE (Algebraic Combinatorics Environ-
ment), developed at the University of Marne-la-Vallée.
Here, we illustrate the use of Maple and ACE on
three problems rather representative of the field. The
first one is the search for a “Pieri formula” for double
Schubert polynomials. Experimental data were easily
obtained by means of the SP package of ACE, and we
explain how it was analyzed and eventually led to a cor-
rect conjecture. The second one is a problem on sym-
metric functions, formulated in terms of generalizations
of Young tableaux called ribbon (or rim-hook) tableaux.
We explain how the generating functions (spin polyno-
mials) of these objects have been implemented. Taking

*Institut Blaise Pascal, L.I.T.P., Université Paris VII, 2, place
Jussieu, 75251 Paris Cedex 5, France.

fUniversité de Marne-la-Vallée, Institut Gaspard Monge, 2, rue
de la Butte Verte, 93166 Noisy-le-Grand Cedex, France.

{Université de Caen, Département de Mathématiques, Es-
planade de la Paix, BP 5186, 14032 Caen Cedex, France.

the spin polynomials as coefficients of symmetric func-
tions and specializing the parameter at a root of unity,
we arrived at an interesting conjecture in representa-
tion theory (which is still unproved at the time of writ-
ing). Finally, we explain how the same kind of ma-
nipulations with noncommutative symmetric functions
(using NCSF) led to the discovery of a one-parameter
family of idempotents in the group algebra of the sym-
metric group, interpolating between all known examples
of Lie idempotents, i.e. idempotents projecting a homo-
geneous component of the free associative algebra onto
the free Lie algebra.

The choice of Maple for developing ACE was moti-
vated by the fact that this system, which is widely used
among combinatorists, provides a good interface and can
be used on all classical computer systems (Uniz, MsDos
or Macintosh).

Schubert polynomials

Computations in the ring Z [x] of polynomials in several
variables x := {z1,...,z,} become rapidly intractable
since dimensions grow very quickly with the number
of variables and with the degree. For certain specific
problems, appropriate linear bases allow to compact the
data, but we need to keep track of the multiplicative
structure. Geometry motivates the definition of such
bases ([3],[1])-

Lascoux and Schiitzenberger [14] defined the simple
Schubert polynomials, which form a basis of Z [x] as a
free module over the ring of symmetric functions. This
basis is indexed by permutations of &, (and thus is
finite) and algebraic manipulations of simple Schubert
polynomials mostly reduce to combinatorial construc-
tions on permutations.

Computations can be simplified by introducing a se-
cond set of parameters y := {y1,...,yn} and defining
the corresponding (double) Schubert polynomials [11] as
follows. The maximal Schubert polynomial X,,, with
wo = (n,...,2,1) is:

Xuo 1= H (i —yj)
i+j<n
and the general Schubert polynomials are all its images

by divided differences [15] acting only on x. More pre-
cisely:

Xw = w—lwo(X’wo) y
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where 0,,-1,,, denotes the divided difference associated
with the permutation w=wyq (cf. [15]).

Simple Schubert polynomials X,, are obtained by
specializing all y; to 0 in X,,. They contain as a subfami-
ly the Schur functions which form a fundamental linear
basis of the ring of symmetric functions. Combinatorics
on symmetric functions mostly involves partitions and
Young tableaux and extends to a combinatorics on per-
mutations to deal with Schubert polynomials.

For example, the multiplicative structure of Z [y][x]
with basis Schubert polynomials relies on the Monk for-
mula [16], [8]. This formula gives the decomposition
on the Schubert basis of the product of any Schubert
polynomial by a single variable. The remarkable fact
is that there is no multiplicity in this multiplication,
e.9. T4X5273641 = —Xs5372641 + X5,2,763,4,1 +
Xs,2,7,4,6,3,1 T ¥3X5,2,7,3,6,4,1-

On the other hand, the multiplicative structure of
the ring of symmetric functions is given by Pieri’s for-
mula that gives the decomposition on the Schur basis of
the product of a Schur function by a complete or elemen-
tary symmetric function. Lascoux and Schiitzenberger
have given the corresponding Pieri formula [14] for sim-
ple Schubert polynomials, i.e. the product of a simple
Schubert polynomial by a complete or elementary sym-
metric function. This Pieri formula still has no multi-
plicity.

We were naturally led to investigate a Pieri formula
for Schubert polynomials in x and y. For that purpose,
Maple was used to experiment, with ACE and more
precisely the SP package devoted to computations with
Schubert polynomials.

Elementary symmetric functions are defined via the
recursion: €;(%1,...,%n) = Tpei—1(Ti,-..,Tp-1) +
ei(Z1,.-.,%Tn-1), implemented as follows:

e2x:=proc(i, n) local j;
if (i=0) then
1
elif (i>n) then
0
else
x.n*e2x(i-1, n-1) + e2x(i, n-1)
fi
end;

VVVVVVYVVYV

The SP package provides the ToXX function that trans-
forms any algebraic expression in x, y and Schubert po-
lynomials into a linear combination of Schubert polyno-
mials by iterating Monk’s formula. The following Maple
procedure computes then the decomposition on the ge-
neral Schubert basis of the product of e;(z1,...,z,) by
Xy -

> Pieri:=proc(i, n, w)
> ToXX(e2x (i, n)*XX[op(w)], ’collect’);
> end;

Now, a sample computation such as:

> w:=[4,7,1,5,6,2,3]:

> Pieri(3, 5, w);

(ysyayr + YeYsy1 + YeY1Y7 + YeYsyr + Yay1yr + Yeysya +
YsY1Y7 + Yey1Ya + Yeyayr + Ysy1Y4)Xa7,1,5,6,2,3 + (Ysyr +
Y1y7 + Ysya + Yay7 + y1ya + Ysy1)Xe,7,1,5,8,2,3.6 + (Y1 +
ys + )Xy 7168235 + (Yayr + ysyr + Yeys + ysys +
Yey7 +Y6y4)Xa,7,2.5.6,1,3 + X4,8,1,6,7,2,3,5 + (Yey1 +ysy1 +
Y6Ys + Y1ys + ysya + Yeva)Xas1,56,237 + (Ya + ys +
Y7)X4,7,2,5,8,1,3,6 T X5,7,1,6,8,2,3,4 + X4,7,2,6,8,1,3,5 + (Y2 +
ys + ¥1)Xu81,572,36 + We + Ya + y5)Xu8,256,1,37 +
X4,8,2,5,7.1,3,6

shows that coefficients in the expansion are symmetric
polynomials (and in fact elementary symmetric func-
tions) in some subsets of y. Pieri’s formula for simple
Schubert polynomials is obtained by specializing all yy,
to 0. All coefficients e; are sent to 0 except eg = 1.
Thus, the coefficients “1” in Pieri’s formula for simple
Schubert polynomials should be interpreted as elemen-
tary symmetric functions of degree 0.

To further describe the previous output Y ¢, X, of
the computation of e;(x1,...,z,) Xy, we shall rather
write Y ¢, cycle(vw™!) where cycle(vw™1) is the cycle

decomposition of vw~1:

XX2Cycle:=proc(expr, w)
if (type(expr, ‘+‘) or type(expr, ‘*‘)) then
map (XX2Cycle, expr, w)
elif (type(expr, indexed)) then
Perm2Cycle (MultPerm( [op(expr)],
InvPerm(w)))
else
expr
fi
end:
XX2Cycle(Pieri(3, 5, w), w);
(Ys5yay7 + YeYsy1 + Yey1Y7 + Y6Ysyr + Yay1yr + YeYsya +
Y5197 + Yey1Ya + Yeyayr + ysyrya)ll + (ysyr + y1yz +
YsYa +Yayr + Y194 +y5y1)[[6, 8]] + (y1 +y4 +y7)[[5, 6, 8] +
[[17 2]; [51 67 8]] + (y4 +.’Us +Z/7) [[11 2]: [6a 8]] + (y4y7+y5y7 +
YeYs + Ysya + yeyr + yeya)[[1,2]] + [[5,6,7,8]] + (y4 +
ys + y1)[[6,7,8]] + (yey1 + Ysy1 + Ysys + Y1ya + Ysya +
y6y4)[[77 8]] + [[4757678]] + [[17 2]7 [67 77 8]] + (yﬁ + ys +
y5)[[17 2]7 [77 8]]

VVVVVVVYVVYV

2

The combinatorial description of the cycles appearing in
this formula is very simple and is obtained from the case
of simple Schubert polynomials (see [14]). This type of
experiments leads us to the obtention of an explicit Pieri
formula for (double) Schubert polynomials.
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Generating functions of ribbon ta-
bleaux

The investigation of certain problems in representation
theory leads to the consideration of k-ribbon tableauz,
which are generalizations of Young tableaux obtained by
tiling a Ferrers diagram with k-ribbons (or rim hooks)
instead of boxes, and filling them with numbers weakly
increasing along rows and strictly increasing along co-
lumns [20, 12]. The precise condition for columns is
that the lowest and rightmost cell (called the root) of a
ribbon labelled ¢ should not be on the top of a ribbon
labelled j if j > i. A typical 3-ribbon tableau is shown
below:

6
IRE
4 B
2 3
2 L4
1 2 5
1 ] 1 2

With a ribbon tableau T', one associates a monomial z7
by associating with each ribbon labelled i the variable x;
and taking the product. For example, the monomial cor-
responding to the above example is z3z3xiziz3zs. The
sequence p = (3,4,1,2,3,1) of exponents of z7 is called
the weight of T', while the sequence A\ = (9,9,6,6,6,3,3)
of lengths of rows of T is the shape of T.

Let T'abg (A, ) denote the set of all k-ribbon tableaux
of shape A and weight . The 1-ribbon tableaux are just
ordinary Young tableaux, and the combinatorial expan-
sion of Schur polynomials:

sa(x) = Z zT |

TETaby(A,.)

can be generalized to:

Gg\k) (x) = Z zT .

TETabi(A,.)

It is not difficult to show that when this polynomial is
not zero (i.e. when X has empty k-core), Gg\k) (x) is equal
to a product of Schur functions sy (x)... $yx-1 (%),
where (A ... A1) is the k-quotient of . However,
for k > 2, one can read on ribbon tableaux an informa-
tion which is not available on ordinary Young tableaux,
namely the heights of the ribbons:

_—=

w

Define the spin of a ribbon tableau as:

S(T) = 5 S (h(R) - 1),

RET

and introduce the g-generating function:

Mxg= Y ¢MaT.
TETabk()\,.)

It is no longer obvious that Gg\k) (x;q) is actually sym-
metric in the z;’s. This was proved quite recently using
techniques from the theory of quantum affine algebras
[12]. Assuming that this is true we could write:

W)= > ¢@)mx),

w TETabk(\u)

where m,, is the monomial symmetric polynomial in-
dexed by the partition p.

It appeared on small examples that the symmetric
functions H gk) (x;9) = Gg;) (x;q) form for each k > 1
a basis of the ring of symmetric functions interpola-
ting between the Schur functions sy = H )(‘1) and the

Hall-Littlewood functions Q) = H /(\N) (x) (N sufficien-
tly large). By analogy with the results of [13] and [2],
we were led to conjecture that in the case A = v* :=
(V1,...,V1,V0,...Va,...) (each part repeated k times),
H )(\k) (x; q) has interesting properties when ¢ is speciali-
zed to a primitive k-th root of unity. To get some confi-
dence in this conjecture we needed some large examples.
The first really significant ones we were interested in be-
ing Hég)mn (x, €*™/3) and H2(g21111 (x, ).

The resulting conjecture in representation theory can
be stated as follows. Let V,, be a polynomial irreducible
representation of GL(n,C) with highest weight v, and
let v be the endomorphism of V®* such that y(v; ®- - -®
Vp) =12 ® - QUi ®uy. Let E(") be the eigenspace of v
with eigenvalue w”, where w = €2""/k. E(") is GL(n)-
stable, and the multiplicity of the irreducible V), in E()
is equal to the coefficient of s, in the reduction modulo
1—q* of Hﬁk) (x;q) with A = v*. In terms of symmetric
functions this amounts to say that:

H,(\k) (x,w) = (=1)F=DIlg, (gh gk ).
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To compute the spin polynomials:

TeTabr (A1)

we used a Maple program based on the following pro-
perties. First, 0( ) = k=02 (4=1/2) where o =
N+ pn, pn = (n— 1,n—2,...,1,0), n > A1, and the
polynomials FC(JZ) are defined by:

Z Z qw(R)—l ,

TeTabg (A\,u) RET

F{(q) =

w(R) being the width of R. These polynomials satisfy
the recurrence relation:

Op ™

where p = (p1,...,4r), p* = (p1,...,4r—1) and the
sequences oy, are obtained in the following way. Sub-
tract to « all the distinct permutations of the vector
[0,...,0,k,...,k] (n components, k repeated u, times).
Among the resulting vectors, discard all those having
at least two identical components, and sort the other
ones in decreasing order, storing the inversion number
of the sorting permutation. The a, are the resulting
sorted vectors, and the I, are the corresponding inver-
sion numbers.

The F polynomials are computed by the Maple pro-
gram F given below, which is the core of the H-function
program. The conversion to the Schur basis can be per-
formed either by Stembridge’s package SF (in the share
library) or by the SYMF package of ACE. Note the
use of the option remember which allows the simple
implementation of a complicated recursion. The auxi-
liary function:

> q_inv := proc(perm) ... end

returns ¢/ where I is the inversion number of a permu-
tation perm.

For example, the two domino tableaux of shape (4,4)
and weight (3,1) and the five standard domino tableaux
of the same shape have respective generating functions
given by:

> F(2, [2,3,4,5], [3,1]);
¢ +1
> F(2, [2,3,4,51, [1,1,1,11);
2¢* +3¢% +1

Similarly, a call to F (4, [4,5,6,7,12,13,14,15], [1$
12]) gives the generating function of the 5913600 stan-
dard 4-ribbon tableaux of shape (88884444) needed to

compute the coefficient of m 12y in H§§)221111, that is:

275 ¢°8 + 2596 ¢34 + 12881¢%2 +
44648 30+ 119438¢%® + 258259¢*¢ +
462332¢%* 4+ 694552¢%% + 883474¢%° +
956690 ¢'® + 883474¢'6 + 694552¢™ +
462332¢'2 + 258259¢'0 + 119438¢%° +
44648 ¢  + 12881¢" + 2596 ¢> +
275

## computes the polynomial F~(k)_{alpha,mu}
## alpha is entered as an increasing sequence

F := proc(k, alpha, mu)
local
r,weight,i,length, j,perm,fact,res,11;
option remember;
r:=nops(mu); length:=nops(alpha);
for i to length while alpha[il=i-1 do od;
if i=length+1l then

res:=1

elif r=0 then
res:=0

else

weight:=[seq(0, i=1..length-mu[r]),
seq(k, i=1..mu[r])];
11:=combinat[’permute’] (weight) ;
res:=0;
for i in 11 do
perm:=[seq(alphal[jl-i[j], j=1..length)];
fact:=invers(perm) ;
if fact=0 then
next
else
res:=expand(res+fact*
F(k,sort (perm) ,
[op(1..r-1,mu)]))
fi
od
fi;
res
end ;

VVVVVVVVVVVVVVVVVVVVVVVVVVVYVVYVYVYV

Noncommutative symmetric func-
tions

We give a brief introduction to the theory of noncommu-
tative symmetric functions (¢f. [7, 9, 4, 10] for more de-
tails). The algebra of noncommutative symmetric func-
tions is the free associative algebra Sym = Q(S1, 52, . ..)
generated by an infinite sequence of noncommutative in-
determinates (Sp)n>1, called complete symmetric func-
tions. One defines then two noncommutative analogues
¥, and ®,, of commutative power sums symmetric func-
tions by setting:

U= >
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(1)t

o= %

n
. A r
i1+ tir=n

Si ... Si, . 2)

A composition of n is a sequence I of strictly positive
integers whose sum |I| is equal to n. For any composi-
tion I = (i1,...,ir), one defines ST = S;, ... S;.. The
homogeneous component Sym,, of order n of Sym is
then the subspace of Sym generated by all S! where
I is a composition of n. Note that the family (S7)
forms an homogeneous basis of Sym. The set of all
compositions of an integer n can be equipped with the
reverse refinement order, denoted <. One has for exam-
ple (5,2,3) < (1,4,2,1,2). The noncommutative ribbon
Schur functions (Ry) are then defined by:

R; = Z (_l)Z(I)—Z(J) S7 , (3)
J=I
where £(I) denotes the length of I. The family (Ry) is
also an homogeneous basis of Sym.

We recall that an integer 7 € [1,n—1] is said to be a
descent of w € &, iff w(i) > w(i + 1). The set Des(w)
of these integers is called the descent set of w. We also
associate with any composition I = (i1,...,%,) of n the
subset D(I) = {7:1,7:1 449y y8y F o+ ZT} of [1,n—1].
Solomon showed that the subspace of Q[&,,] generated
by the elements:

D[ = Z w,
Des(w)=D(I)

is a subalgebra of Q[&,] (see [19]). This subalgebra is
called the descent algebra of &,, and is denoted by ¥,,.
One can now define a linear isomorphism:

o oo
a: Sym = @Symn — X = @En,

n=0 n=0

by setting a(Ry) = Dy for every composition I. It is
interesting to notice that the image of S’ by a is equal

to:
S ow.

Des(w)CD(I)

ch =

A Lie idempotent is an idempotent of the algebra
of some symmetric group of fixed order that projects
an homogeneous component of the free associative al-
gebra onto the free Lie algebra (see e.g. [6, 18]). It
turns out that several classical Lie idempotents belong
to Solomon’s descent algebra, which allows us to inter-
pret them as noncommutative symmetric functions (us-
ing a~1). It can for instance be proved that the image
by ! of Dynkin’s Lie idempotent & 6, where:

0, = [--11,2,3],...],n]

n—1
= Z (—1)k D={1,2,...,k} ,
k=0

(and [z,y] stands for the Lie bracketing zy — yx), is ex-
actly %lIln The noncommutative symmetric function
%@n can be interpreted in the same way as another
classical Lie idempotent, i.e. Solomon’s Eulerian idem-
potent (see [5, 7, 17]).

The complete symmetric functions of the alphabet
A/ (1-gq) are the noncommutative symmetric functions
Sn(12;) defined by:

Q
~~
St
i
I

o0 A
1 . n
+ ) Sal - _q)t
n=1
-
= ][ o t4)
£>0
= ... 0(’tA) o(gt;A) o(A)
where o(x; A) denotes the generating series (in the vari-

able z) of noncommutative complete symmetric func-
tions. Define

o) =L 0 ()

n 1—g¢q

where U, (ﬁ) is obtained by substituting Sn(lA%q) in
place of S, in (1). This element encodes an interesting
Lie idempotent of ¥,, that interpolates among several
classical Lie idempotents. It can be indeed shown that
©n(0) = ¥, /n which encodes Dynkin’s idempotent and
that ¢, (1) = ®,/n which corresponds to Solomon’s Eu-
lerian idempotent. Moreover, when q is a primitive nth
root of unity, ¢, (q) specializes to Klyachko’s idempotent
(cf. [18, 9]). This motivated the search of an explicit
formula for ¢, (q).

The following Maple program was used to compute
the decomposition of ¢, (q) on the basis of ribbon func-
tions:

varphi := proc(mn)
SpDirect (Ps[n], q) ;
ToR((1-q"n)*"/n, collect) ;
map (normal, ") ;

end ;

VVVVYV

It is based on the NCSF functions:
ToR #
SpDirect #

change to basis R

transformation of alphabet
A/(1-q)>A

NCSF is a package of ACE, devoted to computation
with noncommutative symmetric functions. For n =
3,4, the procedure varphi gives:
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_ Rs qR21 Ry Ri1,1
w0 = T T3.33 30437 3
R ¢°R3,1 qR>,2
(104(q) - T 2 - 2
4 49° +4q+4 49¢*°+4q9+4
¢’Ro,11 B Ri3
42 +4q9+4 4¢>2+4q+4
qR1,2,1 Ri1,2 _ Rii1,1
4¢2+4q+4  4q¢2+4q9+4 4

We were thus lead to look for a formula of the form:

Son(‘I):% D> (-1

[ I|=n

1)e) -1 qf() R;
9(I;q)

where f(I) denotes an integer and g(I;q) stands for a
polynomial in g. When |I| = 5, the first values of the
polynomials g(I;q) are:

9([5];9) =1,

9(4,1];9) = q3+q2+q+1—[ﬂ
9(13,2];9) = @+ +q+l= [ﬂ
(BL) = @+D@E+a+D)= 5]
9([2,3];9) = q3+q2+q+1=[ﬂ -7-‘1
9(2,2,1;q) = (@+D(@+q+1)= -;1- :
9(2,1,2iq) = (@+1(@+qg+1)= :;1:‘1,
9(12,1,1,1};q) = q3+q2+q+1:[§]q_._q

Here, [Z‘] stands for the g-binomial coefficient (or
q
Gaussian polynomial) defined by:

Mg

with (¢), = (1 —¢q)...(1 — ¢"). From other similar
observations, it was easy to conjecture that:

9(I;q) = [g(nl)__ll]q

Before stating the result for f(I), we need a defini-
tion. Let I be a composition of n and let D(I) =
{di,da,...,d._1} be the associated subset of [1,n—1].
The major index of I is defined by:

maj(I)=di +---+dr_1 .

For n = 5, explicit computations lead to the table:

T Bl [ @i [ B2 | Bl
[i6)) 0 3 2 4
maj (1) 0 1 3 7
maj (I) — f(I) 0 1 1 3
I 221] | [21,2] |[2LL1] | [1,4]
7 3 2 3 0
maj (I) 6 5 9 1
maj (1) — f(I) 3 3 6 1

We see that maj (I) — f(I) only depends on the length
of I. Furthermore, the corresponding values are here
{0,1,3,6} which are the four first triangular numbers.
Similar experimental results showed that:

s =m0 - (")) .

up to the order 8. Hence we were led to the experimental
formula

1 —1)¢nD-1 : on
on(q) = n Z % ™ —(*%") Ry .
[I|=n [z(z)_1]q

which was proved three months later [9].
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