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Abstract

Noncommutative analogues of classical operations on symmetric functions are investi-
gated, and applied to the description of idempotents and nilpotents in descent algebras.
Its is shown that any sequence of Lie idempotents (one in each descent algebra) gives
rise to a complete set of indecomposable orthogonal idempotents of each descent algebra,
and various deformations of the classical sequences of Lie idempotents are obtained. In
particular, we obtain several g-analogues of the Eulerian idempotents and of the Garsia-
Reutenauer idempotents.

Résumé

Nous étudions des analogues non-commutatifs de tranformations classiques sur les
fonctions symétriques, et nous les appliquons a la description des idempotents et des
nilpotents dans les algebres de descentes. On montre en particulier que toute suite
d’idempotents de Lie (un pour chaque algebre de descentes) permet de construire une
famille complete d’idempotents orthogonaux indécomposables, et diverses déformations
des suites classiques d’idempotents de Lie sont obtenues. En particulier, nous obtenons
plusieurs g-analogues des idempotents eulériens et des idempotents de Garsia-Reutenauer.
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1 Introduction

The algebra of noncommutative symmetric functions, introduced in [12], is the free asso-
ciative algebra over an infinite sequence (A,),>1 of noncommuting indeterminates (cor-
responding to the elementary symmetric functions), endowed with some extra structure
imitated from the algebra of commutative symmetric functions. The coefficients are taken
in some field K of characteristic zero.

Most of the numerous determinantal formulas of the commutative theory can be
adapted to the noncommutative case by means of the notion of quasi-determinant, de-
fined in [13] and further developed in [14, 18]. This point of view leads to a simple
and unified presentation of several topics, such as noncommutative continued fractions,
Padé approximants, orthogonal polynomials, and various generalizations of the determi-
nant and characteristic polynomial of noncommutative matrices arising in the study of
enveloping algebras and their quantum analogs [12, 26].

The characteristic feature of these quasi-determinantal computations is that they take
place in the skew field generated over K by the A,, rather than in the free algebra
Sym = K(Aj, Ay, ...) of integral noncommutative symmetric functions. At the time
of writing, the main applications of this algebra come from the following realization.
Introducing on Sym the structure of a graded algebra by means of the weight function
w(A;) = n, one can identify it with the direct sum @, 3, of the descent algebras of all
symmetric groups, endowed with a convolution product coming from the interpretation
of permutations as endomorphisms of tensor spaces (see e.g. [33]).

It has been observed for some time that those elements of the algebra of the sym-
metric group that are relevant to the study of free Lie algebras generally belong to the
descent algebra. This is true, for example, of the idempotents of Dynkin-Specht-Wever
9, 36, 38|, Solomon [35] and Klyachko [17] (projecting onto Lie elements), of the Eulerian
idempotents [25, 32, 20, 28], and of the projectors associated to the canonical decompo-
sition of the free algebra interpreted as the symmetric algebra of a free Lie algebra (see
[33]). The interpretation of these distinguished elements as noncommutative symmetric
funtions leads to a simple explanation of their properties, and to a systematic method of
calculation, which is a perfect noncommutative analog of the use of symmetric functions
for calculating with characters of symmetric groups.

In this paper, we pursue the study of integral noncommutative symmetric functions
and of their applications to the combinatorics of free Lie algebras, from the following point
of view. As it appears that the descent algebra has to be considered as a noncommutative
analog of the character ring, we systematically try to extend to the noncommutative case
the operations on commutative symmetric functions encountered in character computa-
tions.

Among them are the transformations A — (1—¢)A, A — A/(1—¢q) and A — }—:214 of
the argument of the symmetric functions (called here the alphabet), which means that the
power-sums 1, (A) = 3 a¥ are replaced by (1—¢%)vx(A), ¥x(A)/(1—¢*) and so on. These
transformations, which are of fundamental importance in the theory of Hall-Littlewood
and Macdonald functions, arise for example in the computation of character tables of
linear groups over finite fields (see [21]) and of their Hecke algebras (cf. [31]), and in the
description of the representations of the symmetric group in the cohomology rings of flag
manifolds.



Noncommutative analogs of these transformations can be consistently defined, and
one obtains from them new interesting elements of the descent algebras. For example,
one can exhibit a naturally defined one-parameter family of Lie idempotents interpolating
between the classical ones, and more general deformations can be obtained without greater
difficulty. It is also shown that any infinite sequence (m,),>1 of Lie idempotents gives
rise to decompositions of the descent algebras in the sense of [11], i.e. to a complete
set of orthogonal idempotents for each descent algebra. Thus, we obtain g-analogs and
other deformations of the Garsia-Reutenauer idempotents, and as a consequence, of the
Eulerian idempotents. An interesting example of this situation is provided by the spectral
projectors of the iterated g-bracketing.

This article is organized as follows. We first recall the necessary background on non-
commutative symmetric functions (Section 2). Then, we study idempotents and nilpo-
tents in descent algebras from the point of view of noncommutative symmetric functions.
The known results are reproved and generalized. In particular, we obtain a complete
orthogonal set of minimal idempotents for each descent algebra from any sequence of
Lie idempotents. It is shown that these minimal idempotents e, (which are indexed by
partitions \) generate, for a given A, isomorphic ideals in the algebra of the symmetric
group, and that the dimensions of the quasi-ideals eyX,e,, of the descent algebra are also
independent of the initial sequence of Lie idempotents (Section 3). Then, we define, imi-
tating the A-ring formalism of the commutative theory, sums, differences and products of
(virtual) noncommutative alphabets, and we establish the basic properties of these oper-
ations (Section 4). Some fundamental examples are developed in the next four Sections.
The transformation A — (1—¢)A (Section 5) is related to the g-bracket [a, b], = ab— gba.
For ¢ = 1, the iterated left bracketing operator ajas---a, = [...[[a1,as],as,...,a,] is
a projector (Dynkin’s theorem), but for generic values of g, the iterated g-bracketing is
an invertible operator, with a distinct eigenvalue for each partition of n. The spectral
projectors of this operator are computed, and it is shown that they are obtained from
an interesting family of Lie idempotents by the construction of Section 3. The consider-
ation of the inverse transformation A — A/(1 — q) leads to interesting formulas, and in
particular to a one-parameter family of Lie idempotents, giving all the previously known
examples for special values of the parameter. These considerations are then extended
to the two natural types of two-parameter deformations (Sections 7 and 8), and explicit
formulas are given for some families of symmetric functions. Finally, the study of Lie
quasi-idempotents in the descent algebra is completed by their description in some natu-
ral bases of the multilinear component of the free Lie algebra (Section 9).

Acknowledgements This work has been supported by the EC network “Algebraic Com-
binatorics” (Human Capital and Mobility) and the “PRC Mathématiques et Informa-
tique” (CNRS).



2 Background

The material in this section is taken from [12], to which the reader is referred for further
details.

2.1 The algebra of noncommutative symmetric functions

Let K be a field of characteristic 0. The algebra of formal noncommutative symmetric
functions over K is the free associative algebra Sym = K (A, Ay, ...,) generated over
K by an infinite sequence of noncommuting indeterminates Ay, called the elementary
symmetric functions. It is convenient to set Ag = 1. Let t be another indeterminate,
commuting with the Ax. One introduces the generating series

At)= > t"Ag

k>0

o(t)= Y t"Sy=A(-t)"",

k>0

o(t) = Y %@ktk — logo(t) .
k>1
The Sy are called complete symmetric functions, and the ®; are the power sums of the
second kind. The power sums of the first kind, denoted by ¥, are the coefficients of the
formal series
Y(t)= > "y,
k>1

defined by the equation
d
t) = XN—t)—o(t) .
9(1) = A1) o (1)

The algebra Sym is graded by the weight function w defined by w(Ay) = k, and
its homogeneous component of weight n is denoted by Sym,,. If (F,) is a sequence of
noncommutative symmetric functions such that F, € Sym,,, we set for any composition
I=(iy,...,4)

Fl = FyF,y- - F, . (1)
Then, it is not difficult to check that (AT), (ST), (®!) and (¥’) are homogeneous bases of
Sym.

The set of all compositions of a given integer n is equipped with the reverse refinement
order, denoted <. For example, the compositions J of 5 such that J < (2,1,2) are (2, 1, 2),
(3,2), (2,3) and (5). The basis (R;) of ribbon Schur functions, originally defined in terms
of quasi-determinants in [12], can also be defined by either of the two equivalent equations

SI _ Z R; ’ R; = Z (_1)6(1)—£(J)SJ ’ (2)

J=1 J=I

¢(I) being the length of the composition I.

The commutative image of a noncommutative symmetric function is given by the
algebra morphism A, — e,. Then, S, — h,, ¥, — p,, ®, — p,, and the image of
R; is the ordinary ribbon Schur function, denoted by r;. The definition of ribbon Schur
function is due to McMahon (see [22], t. 1, p. 200), and are denoted in his book by h;.
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2.2 Descent algebras of symmetric groups

Let 0 € &,, be a permutation with descent set A = {d; < ... < di} C [n—1]. The descent
composition I = C(o) is the composition I = (i1,...,i541) of n defined by iy = ds — ds_1,
where dy = 0 and dx,; = n. The sum in the group algebra of all permutations with
descent composition [ is denoted by D;. We also set I = C(A), and conversely, the
subset of [n — 1] associated to a composition I of n will be denoted by A = E(I). The
Dy with |I| = n form a basis of a subalgebra Z[&,], called the descent algebra of &,, [34].
We denote by ¥, the same algebra, with scalars extended to our ground field K, and we
define an isomorphism of graded vector spaces

a: =%, — Sym=&Sym, (3)
n>0 n>0
by requiring
a(Dr) = Ry (4)
for every composition I.

The direct sum > can be turned into an algebra by extending the natural product of
its components ¥,, by setting zy = 0 for x € ¥, and y € ¥, with p # ¢q. Then we define
the internal product, denoted *, on Sym by requiring that o be an anti-isomorphism. In
other words, we set

FxG=ala (@) (F)).

One also defines on Sym a coproduct A by any of the following equivalent conditions:

AS, =) Sk ®Snk, AN =D A ® Ay (5)
k=0 k=0
or
AP, =9, 1+1,, AV, =V, 1+1xVY, , (6)

and the fundamental property for computing with the internal product is the following
formula:

Proposition 2.1 [12| Let F, Fs, ..., F,,G € Sym. Then,
(F\Fy- F)«xG=p[(F1®--®F)xA"G|

where in the right-hand side, p, denotes the r-fold ordinary multiplication and * stands
for the operation induced on Sym®" by *.

A detailed study of the descent algebra can be found in [11]. Other relevant references
are [1, 3, 5, 24, 27, 29].
2.3 The star involution
We also define an anti-involution % of Sym by
(Sn)* = Sn )

and we record for later use the images of the usual bases of Sym under *. Define ¥,, by
the generating series

U(t) = o' (A=) - (7)



Proposition 2.2 For any composition I,
(ST =87, (A=A, (R)* =Ry, (@) =o', (W) =0T, (8)

where I denotes the mirror image of I, i.e. the composition obtained by reading I from
right to left.

Proof — The relations giving the images by * of Af, R; and ®! are immediate conse-
quences of their expressions in the basis ST (see [12]). To obtain the last formula, we
apply * to the equation

d
2 o(Ait) = (A ) (A;1)

which yields (¥,,)* = ¥,,. The conclusion follows. O
Note 2.3 The fact that (R;)* = Ry shows that * corresponds to the automorphism of
the descent algebra defined by

DeX, — w,Dw,

where w, = (nn—1 ... 1) is the maximal permutation of &,,.



3 Idempotents and nilpotents in descent algebras

3.1 Lie idempotents

An element 7 of the group algebra K[&,] is said to be a Lie element if it can be expressed
as a Lie polynomial over the alphabet {1,2,...,n}, permutations being identified with
standard words over this alphabet. A Lie (quasi-) idempotent is a Lie element which is
(quasi-) idempotent (an element x of an algebra is said to be quasi-idempotent if 22 = cx
for some scalar ¢). For a Lie idempotent, we also require that it generates the same left
ideal as the Dynkin element |[...[1,2],3],...,n].

The following result, proved in [12], characterizes the Lie quasi-idempotents in the
descent algebra.

Theorem 3.1 Let F' = a(m) be an element of Sym,,, where m € ¥,,.

(i) The following assertions are equivalent:
1. w is a Lie quasi-idempotent;
2. F is a primitive element for A;

3. F belongs to the Lie algebra L(V).
(il) Moreover, 7 is a Lie idempotent iff F — W, is in the Lie ideal [L(V), L(P)].

A characterization of Lie idempotents equivalent to (ii) was also obtained by Blessenohl
and Laue in [5] (using other methods). As pointed out by C. Reutenauer, Theorem 3.1 is
also an easy consequence of Theorem 9.19 of [33].

For the sake of brevity, a noncommutative symmetric function will be said to be a Lie
(quasi-) idempotent if it is the image under « of such an element of the descent algebra.

As a first application of the characterization theorem, let us give the following formula.

Proposition 3.2 Let F,, be a Lie quasi-idempotent of Sym,, and let I be a composition

of n. Then,
Ry« F, = (-1)"D-1E, (9)
Proof — Observe first that
I [ F, ifI=(n)
S b = { 0 ifI+4(n) (10)
Indeed, if I = (iy,...,4,) with r > 1, one can write

STk Fy =1, (S, ®.. 085, x> 19...0F,®...01]=0
according to Theorem 3.1. The result follows now from (10) since

Rr+Fy= (Y (-1) D875 B = (-1)" DL g, x F, = (-1)" DL E,

J=I



Note 3.3 One can also prove Proposition 3.2 by induction on ¢(I), using the fact that
R(il,...,ir) * I, = (Ril R(iQ,...,ir) - R(i1+i2,i3,...,ir)) * I, = _R(i1+i2,i3,...,ir) * I,

Example 3.4 Let x1, 25, ... be independent commutative indeterminates and consider
the noncommutative symmetric function

K,(x1,...,2q1) = Z ( H xd) R . (11)

[I|l=n \deE(I)

This is a generating function for permutations by descent class, which as we shall see is
especially interesting for z; = ¢'. Now let F}, be a primitive element of Sym,,. Then,
n—1
K,*F,=[[Q—=) F,. (12)

i=1

Indeed, using Proposition 3.2, we obtain

K, xF, = Z H (—xq) - F,

|I|=n deE(I)

= Z H(—ﬂfd>'Fn:(1—[12'1)(1—1'2)"'<1—1L’n_1)'Fn.

AC[n—1] deA
Proposition 3.2 implies the following simple characterization of Lie quasi-idempotents:

Corollary 3.5 Let F,, be in Sym,,. Then F), is a Lie quasi-idempotent iff one has
Rikp o * B, = (-1)FF, (13)
for k€ [0,n—1].

Proof — Proposition 3.2 shows that (13) is satisfied when F), is a Lie quasi-idempotent.
Conversely suppose that (13) holds. We then have

n—1

U, x = (> (=1)" Ry, ) *Fy=nk,.

k=0

Example 3.6 Let O,,(¢) be the noncommutative symmetric function defined by
n—1
@n(Q) = Z(_Q)lek,nfk .

k=0

It is the image under « of the iterated g-bracketing operator

mn(q) = [+ [1,2]g,3lg, -+ g



(see section 5.3). Formula (13) shows that for a primitive element F),,
On(q) * I, = (1+Q+q2+"'+qn_l)Fn :

This is a g-analogue of Dynkin’s characterization of Lie polynomials. Indeed, it means that
homogeneous Lie polynomials of degree n are eigenvectors of the iterated ¢-bracketing,
with the g-integer [n], as eigenvalue, and moreover, a homogeneous element P € K(A),
is a Lie polynomial iff P -1,(q) = [n],P. Another proof of this property in given in the
sequel (see Proposition 5.6). For ¢ = 1, n is the only nonzero eigenvalue. For generic
q, there are p(n) (number of partitions of n) distinct and nonzero eigenvalues, and the
corresponding eigenspaces are determined in section 5.4.

Let us now give the following lemma of independent interest.

Lemma 3.7 Let F' = (F,),>1 be a sequence of primitive elements such that F,, belongs
to Sym,, for everyn > 1. Then,

U, « FT =4 [[...[Fi,, F],....], Fi] (14)

for any composition I = (iy,1s,...,1,) of n.

Proof — Tdentifying compositions with words over N* and denoting by (I, J LLI K) the
coefficient of I in the shuffie of the two words J and K, one has

d

V() * FI = p[A(—t) ® %a(t) «> (I,PLLIQ)F’® F9]
PQ
= (Y (P (=)"Qlw(F") F2) i,

P’Q
since A, x ' = w(F) for every F' € Sym,,. It follows that

U, « F1 = 3" (1,P LU Q) (1) |Q FP F< (15)
P.Q

since one sees from Theorem 3.1 that w(F,) = (—1)""! F,, for every primitive element F,.
Setting J = (i1,...,4,—1), we get
Y(t)x ' =4(t)« ' F,
d
=M=t @ Zo(t) « 3 (L PLIQF'F, @ F¢ + 3 (J,PLUQ)F"® FOF, ]
P?Q P7Q

= (3 (J, P Q)(-1)"Q|F, FTF?
P,Q

+ 2 (P Q) Q i) FT FUE,) i
PQ
It follows from this last equality and relation (15) that

U5 F = —[F Wy 5 FY) 4 (30 (PO Q) (1) FPF9) F,
P?Q

10



=W FLF] + irp[(@© 1) A(F))]F,
Using the antipodal property of @, we finally obtain
U, x B = [V« F' F,)
from which the desired property follows by induction. O

This formula should be compared with the following property of ®,, [12]

o,
7*FI:(E1E2"'FZ%)¢T

n

where ¢, = a~1(®,./r) acts on the word F}, F,, - -- F;, by permutation of the subscripts.

Example 3.8 Lemma 3.7 implies that the restriction of the internal product to the Lie
ideal J = [L(W), L(W)] is zero. Indeed, if G! = G}, ---G;, € Sym,, is any product of
elements of positive weight, and if F,, € Sym, is a primitive element, Proposition 2.1
shows that G! * ¥,, = 0, and in particular that

Ul s W, =0 for £(I) > 1. (16)
But J is spanned by the elements
Dy=ii[.. [V, U], 0] =W, U (17)
with (1) > 1, and for any two of these elements,
DrsDy= (U, W) % (U, xU;) =0, « (U« T") U/ =0 . (18)
Moreover, the Lie ideal J is a two sided ideal for the internal product. To see this, let
r=F*T+G=(FxW,)* (U «G).

Expanding F' on the basis ¥/, we see that F'*W,, is proportional to ¥,,, so we may suppose
r=0r+G =V, * (¥ x@G). Computing now ¥/ x G by means of Proposition 2.1, we see
that the result cannot contain a term in W,,, i.e.
U« G = Z c 7
L(J)>1

and thus z = 37y el € J.
Example 3.9 The Magnus formula (expressing ¥,, in terms of the ®/, [23]) can also be

derived from Lemma 3.7. Indeed, for a sequence of Lie idempotents F;, € Sym, with
generating series F'(t) = 3,51 Ft", formula (14) can be rewritten

(1) * (F(t)F(t2) - F(t)) = {t. F'(t2) , F(t2)--- F(tr)} (19)
where {ay, as---a.} =[...[a1, as], as], ..., a,]. Thus,
tp(t) = > V" = (1) x o(t) = (1) x ™
= Y ) = Y (), B

which is the required expression.

11



3.2 The radical of the descent algebra

Let F € Sym denote the commutative image of F' € Sym. Solomon’s formula for S’ S’
implies that
FxG=F=xG. (20)

Thus, the commutative image of any nilpotent element is zero, since there exists no
nonzero nilpotent for the commutative internal product. Moreover, it follows from (20)
that the set

R={F€Sym : F=0},

which is the two-sided ideal of Sym generated by [L(W¥), L(W)], is also a two-sided ideal
for the internal product. Clearly, R contains all the nilpotent elements. It is known
that conversely, the elements of R are nilpotent (cf [34], [11], [1]), é.e. that R is the
nilpotent radical of Sym (for the internal product). This fact is usually derived from
the multiplicative properties of the basis (ST). It can also be derived from the following
lemma, which is a direct consequence of Proposition 2.1 and Lemma 3.7. Denote by &(1)
the set of all distinct reorderings of a composition 1.

Lemma 3.10 Let I = (iy,...,4,) and J = (j1,...,Js) be two compositions of n. Then,
(i) if £(J) < €(I) then W1 x ¥/ =0,
(i) if £(J) > £(I) then U1 x U/ € Vect (UK . K € &(J)) N'R. More precisely,

Ol p/ — Z (J, Wl J)y Ty (21)
J1sedy
|Jlk|:ik

where the I'c are defined by (17).
(iii) if €(J) = £(I), then W1 W7 =£ 0 only for J € &(I), in which case VI W’ = c; U1,
where ¢ = T1; i™im;!, m; being the multiplicity of the part i in I. O

Hence, if K and H are permutations of I, then ¥! x (VX — ¥#) = 0, and thus
(UK — ¥H)*2 = (0. Moreover, if L and M are of the same length r as I but are not
permutations of I, then (UM — ¥l & (UK — ) = (.

To rephrase this, let Sym™ be the subspace of Sym generated by the ¥/ with ¢ (1) =k,
and R = RN Sym*. Since R is clearly spanned by the elements UK — ¥ where K

and H are reorderings of the same partition of length k, we see that for any two elements
F and G of R¥, one has F « G = 0. Thus,

RIF  RIFI — {0} (22)

and it follows from the lemma that
for i<j RU«RE={0} (23)
Rl « RU ¢ RUI (24)

Thus, if F = Fy+Fs3+---+F,_; € R, where F}, € R we see that (Fy4- - -4-F,,_;)*™ D =
0, since all the terms arising in the expansion of the product are zero by (22), (23) or
(24).

12



Corollary 3.11 [34, 11, 1] The radical of the descent algebra ¥, is R, = a ' (R.,).
Moreover, the nilpotency index of R, is n — 1, that is, for any x1,...,x,_1 € R,, the
product xq -+ Ty_1 1S Z€T0. O

It follows that X,/R, is a commutative algebra of dimension p(n), the number of
partitions of n. The irreducible representations of ¥, are thus one-dimensional, and can
be labeled by the partitions A of n. These representations have been constructed in [11]
by means of a complete set of orthogonal idempotents, which are described in the next
section. A different construction, closely related to noncommutative symmetric functions,
appears in [1].

. From the above description, one can find the eigenvalues of the elements of the descent
algebra in the (left or right) regular representation.

Proposition 3.12 Let F' € Sym,, considered as an algebra for the internal product *
and let f be its commutative image. Let Ly and Rp be the two endomorphisms of Sym,,

defined by Lrp(G) = F x G and Rp(G) = G x F. Then,

1) The eigenvalues of R and of Lg are the same.

2) The eigenvalues of Rp and Lp are ezactly the eigenvalues of the commutative
endomorphism g — f * g (where % denotes here the commutative internal product of
Sym,, ). They are equal to

iy =< f,pr >

where X is a partition of n.

Proof — Let P(z) € K[z] be the minimum polynomial of Lp, which is also the mini-
mum polynomial of ' over K for the internal product. Let also Q(z) be the minimum
polynomial of the commutative image f = F of F',| for the commutative internal product.
For a polynomial F'(t), denote by F* the function on Sym obtained by evaluting F' by
means of the internal product. Then, since Q*(F) = Q*(f) = 0, Corollary 3.11 implies
that Q*(F) is nilpotent. Thus, P divides some power Q™ of (). Also, the corresponding
endomorphism Ls : g+ f * g of Sym, is clearly semisimple, having for any f the basis
(p») as eigenbasis. Moreover, the eigenvalue corresponding to py is given by t\ = (f, pa).
Thus, the eigenvalues of Lp are the scalar products (£, py). O

Example 3.13 With F' = S, the eigenvalues only depend on the partition y of which I
is a reordering, and the eigenvalues are the (h,, , px), which are the values of a permutation
character of the symmetric group, hence are positive integers. For F' = Rj, the eigenvalues
are also given by character values, and thus are also integers (not necessarily positive).

3.3 The Garsia-Reutenauer idempotents

The Poincaré-Birkhoff-Witt theorem shows that the homogeneous component of order n
of the free associative algebra can be decomposed as

K(aj,ag,...,ax ), = @ S L(ay, as, ... ay) ,
AFn
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where S*L(ay, as, ..., ay) denotes the submodule of K{ay,as,...,an), generated by the
symmetrized products of type A of elements of the free Lie algebra L(as,aq,...,ay) (i.e.
symmetrized products of Lie polynomials of degrees Ai, As...). One can prove that all
projectors 7y on the modules S*L(ay,as,...,ay) belong to the descent algebra. More
precisely, Garsia and Reutenauer [11] showed that

1 !
Oé(ﬂ')\) = E)\((I)) = N

|A]! o(I)=A m(I)
for every partition A of n. It follows that the family (E)(®P))y-, form a complete family
of orthogonal idempotents for the internal product. We give here a simple argument for

obtaining this result. Following [11], we introduce the series

o
d(z) = ) ?k
k>1
where z = (zj) is a sequence of commutative indeterminates. It is then easy to see that
exp(®(z)) = > 2 E). (25)
)
Lemma 3.14 One has
O(1) * exp(P(x)) = P(x) . (26)
Proof — One can write
(—D* k
®(1) x exp(®(z)) = logo (1) x exp(®(z)) = > ’ (o(1) = 1)" x exp(®(z)) .
i>1

Thus we are led to compute
(0(1) = 1)  exp(P()) = px[(0(1) — 1)® % A (exp(®()))]

= pil(0(1) = 1% x exp(®(2))*] = (exp(®(z)) — 1)*,

since exp(®(x)), being the exponential of a primitive element, is a group-like element.
Hence we get

Lemma 3.14 shows equivalently that

d, ifA=n

‘P”*EA:{ 0 ifA#n

14



Lemma 3.15 One has
exp( ®(x) ) x exp(P(y) ) = exp(P(zy) ) , (28)
where xy denotes the sequence vy = (T Yi)k>1-

Proof — We have

exp(@()) * exp(@(y)) = 3 1 () exp(@(y))

k>0

But, using the fact that exp(®(y)) is group-like, one obtains

®(2)" x exp(P(y)) = u[@(2)*" * exp(@(y))*"] = @(zy)"

since according to Lemma 3.14,

B(a) « exp(@(y) = 3wy} T By = Blay)

3}
Hence,
exp(8(2) # exp(@(y)) = 3 1 Bay) = exp(@(ay)
k>0 .
An immediate consequence of this lemma is that
ExxE, =06\,FE\ . (29)

Hence (E))-r is a complete family of orthogonal idempotents, since the decomposition
of S,, on the basis (®7) shows that

Su= Y E. (30)

AFn

3.4 Orthogonal idempotents associated with Lie idempotents

In fact, the result of the previous section is a particular case of a more general construction
that we shall now explain. Let F' = (F,,) be a sequence of Lie quasi-idempotents with
non-zero normalization factors, F;, belonging to Sym,. We define as usual

F'=F, F, .. F

for any composition I = (iy,4s,...,4,). The family (F?) is then a basis of Sym by an
obvious triangularity property. It follows that

Sp = Z pn,IFI

[I|=n
for some scalar coefficients (p, ;). Then we associate to a partition A of n the element

E,\(F) = Z pn,IFI

Ies())
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where &()\) is the set of all permutations of A\. Hence we have by construction

S, = S E\(F).

AFn

Moreover, the following result shows that the Garsia-Reutenauer construction is in fact
generic.

Theorem 3.16 The family (EX\(F))a-n s a complete family of orthogonal idempotents
of Sym,,.

Proof — Sym may be considered as the free associative algebra generated by the elements
F,,. Hence we can define an algebra automorphism s, of Sym by

S:(;(Fn) :ann )
x = (x,)n>1 being as above a sequence of commutative variables. Note that

s:(0(1)) = Y 2 E\(F) == E(x) .

The theorem will be a consequence of the following two lemmas.

Lemma 3.17 The series E(x) is a group-like element for A.

Proof — Indeed,

E(x) = sz(0(1)) = sa(exp(®(1))) = exp(so(P(1))) , (31)
and since ®,, € L(F) = L(®), the series s,(®(1)) is a Lie series. Hence F(x), being the
exponential of a Lie element, is a group-like element for A. O

Lemma 3.18 For any G € Sym,

$:(G) =G x* E(x) . (32)

Proof — This is true for G = S,,, since s,(0(1) = E(z) = (1) * E(x). Now, the formula
is also true for products of complete functions S’, because for a product GH,

(GH)* E(z) = u[(G® H)x (E(x) ® E(x))] = (G* E(x)) * (H *x E(x)) .

Thus, s,(S?) = ST E(x), and the lemma follows. O
The lemma implies that

E(x) « E(y) = E(xy) (33)

which is clearly equivalent to the claimed result. O
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Example 3.19 Taking F;,, = V¥,,, one finds

1 1
E@) (V) = 5\113 =3 [R3 — Riz + Run
oo 1o 1
E(Ql)(qf) = 6\11 + g\p - 6 [3R3 - R21 + R12 - 3R111] 5
1 1
E(111)(‘I/) = 6‘1’111 = 6 [R3 + Ro1 + Ri2 + R -
and for n = 4: .
E\(V) = 1 [Ry — Ri3 + Ri12 — Rin]

1
Einy(V) = B [4Ry + R31 — 3Ra + 3Ro11 + 2R13 — Rio1 — 2R112 + 4Rui)

1
E(3) = 3 [Ry — Rs1 + Ryy — Ro11 — Rig + Rig1 — R + Ru

1
Epi)(V) = 1 [BR4 4+ Rap — 2Ro11 + 2R3 — Rig1 — 3Run]

1

=51 Ry + Rg1 + Ros + Rot1 + Riz + Rio1 + Riiz + Rina] -

En(9)

One can also define analogues of the Eulerian idempotents associated to any series
(F,) of Lie idempotents, by the formula

EM(F)= Y E\F). (34)
A|=n, £(\)=Fk

In every case, these idempotents generate an n-dimensional commutative subalgebra of
Y-

Example 3.20 With F,, = U,,, the generating functions of the E¥/(¥) has an interesting
expression on the ribbon basis. For n = 4, we obtain

1 1 1
S dFEP (W) = Za(e +1)(x + 2)(x + 3)Ra + —a(z — 1)(z + 1) Ry
P 24 24

1, 1, 1
+ﬂl‘ (ZL’ — 1)(1‘ + 3)R22 + ﬂl’ (Z‘ — 3)(1’ — 1)R211 + ﬂl‘(l’ — 1)(ZL’ + 2)(ZE + S)ng
+ ! 2([E — 1)2R121 + il’(l’ — 2)([E — 1)(1‘ + 3)R112 + iZE(ZE — 3)(1‘ - 2)(5[] — 1)R1111 .

24" 24 24
A formula for the coefficients will be given in Section 7.

Other idempotents will be obtained in the sequel, in particular a g-deformation of the
usual FEulerian idempotents.
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3.5 Characters of the associated GL(N)-modules

Let V be a finite dimensional vector space over C, and consider the right action of &,, on
the tensor space T"(V'), defined as usual by

Ul@...@vn.O':/Uo_(l)®...®fua_(n) .
As this action commutes with the left action of GL(V') on T™(V), any idempotent e of

C[&,] determines a GL(V)-invariant subspace T"(V)e.

In particular, any complete set (ey)x-, of orthogonal idempotents of the descent alge-
bra Y, such as those constructed in Section 3.4, determines a decomposition

V)=V (35)
AFn
where V, =T (V)e,.
In the case where the ey are the Garsia-Reutenauer idempotents ey = o~ (E\(P))

the characters Ly of the GL(V')-modules V) are known. Indeed, if A = (1"™12™2 .. .n™")
then V), is isomorphic to a product of symmetric powers

S™M(LYV)) @ S™(L*(V)) ® - @ S™ (L"(V))

)
Y

of homogeneous components L‘(V) of the free Lie algebra L(V) over V. Thus, as a
symmetric function, L, is given by a product of plethysms

LA = hml [gl]th [62] T hmn [gn] (36)

where £, = 237, u(d)pg/d is the character of GL(V') in L™(V').

We shall show that the character of V) is always the same, whenever the e, are
defined by the construction of section 3.4. More generally, we shall see that in fact, this
character only depends on the commutative image of the noncommutative symmetric
function Ey = a(e,).

Theorem 3.21 Let ¢, and €} be two idempotents of ¥, such that the associated non-
commutative symmetric functions E\ = a(ey) and EY = a(e) both have as commutative
image the normalized product of power sums py/zx. Set Vi =T"(V)e\ and V' =T"(V)ey.
Then, the endomorphism ¢ of T™(V') defined by

P @ - Quy) = (11 @+ @vy,)(id — €\ — €5)

induces an isomorphism of GL(V')-modules between Vy and VY.

Proof — By construction, it is clear that ¢ commutes with the action of GL(V'). Also, if
u’ € V), then v’ = u'e) and ¢(u’) = —u'e} € V). Similarly, if u” € V)’ then ¢(u”) € V.
We have to show that ¢ is bijective. This will be true if we can prove that id — e — € is
invertible in 3,,, or equivalently that P = S, — £ — EY is invertible for * in Sym,,. But
we know the eigenvalues of the endomorphisms Lp: F'— Px F and Rp: F+— Fx P
(Proposition 3.12). These are the scalar products

tu:<Pvpu>:<hn_2

—1—26,,

Thus, all the eigenvalues of Lp are nonzero, which proves that ¢ is an isomorphism. O

Bx p)
Z/\’M
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Corollary 3.22 Let (e))x-n be a complete family of orthogonal idempotents of 3, such
that the commutative image of aey) is pa/zxn. Then the character of GL(V') in V) is the
symmetric function

Ly = hop, [O1)hiny [€2] -+ - B, [€0] -

Experimental material suggests that the intertwiners 7 = id — e}, — €} are in fact
involutions. The following property seems also to be true:

Conjecture 3.23 Let £, = {E\(F) | F € F}, where F is the set of all sequences (F,)
of Lie idempotents, with F,, € Sym,. Then, the convex hull Ay of E\ is an affine space,
and all its elements are idempotents.

3.6 Dimensions of the quasi-ideals e,X,¢,

Let (ex)x-n be any complete set of orthogonal idempotents of 3, such that, as in the
preceding section, the commutative image of each a(ey) is equal to py/z,. We have then
a decomposition of ¥, as a direct sum

Yn = @ exYiny

A, pkn

and the problem is to compute the dimensions of the subspaces e\¥,¢e,. For the Garsia-
Reutenauer idempotents, this problem is solved in [11]. This is sufficient to deal with
the general case. Indeed, let (€)) be a second family satifying the same condition on the
commutative images. Then, using the intertwiners constructed in the preceding section,
we see that

. / . N ot / / /
(id —ex — e\ )exXne,(id — e, — eu) = eyexXizeue, C e\Xne,

is in fact equal to €)X, €], since the left and right multiplication by the elements id —e — ¢
are one-to-one.

Theorem 3.24 Let (ey) be a complete set of orthogonal idempotents of ¥, satisfying the
above conditions on the commutative images. Then, the dimension of the subspace ex\Xne,
is equal to the number of multisets of primitive circular words of shape A and type p (see
[11], [3] or [33] for this terminology).

Proof — This follows from the above considerations, combined with Theorem 5.4. of
[11]. For the sake of completeness, we give an alternative proof of this last result in terms
of noncommutative symmetric functions. Suppose E) = F)(®), and for a composition [
of n, consider the Lie polynomial

P,
Pr=-—"%®"c L(®)=L(V) .
n

Then,
E,x®" = 3"

Ies(w)
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where, as above, &(u) denotes the set of all distinct reorderings of p, and for I =
(11, .., 1),
D,

P! P,
x @/ =p L@@ Y (J, W W) @ @ @
(1) i1 s 5

= > (J, i W W J)Py Py, -+ Py, .

J17~--Js
[T |=ik

Thus,
E, *® = > (J, JyWl... W J)Py Py, -+ Py,
(1]l s ES (1)

:8! Z <J7JlUJ...UJJs><PJ1,PJ2,...’PJS)
(|1, s ES(1r)

where (Fy, Fy, ..., Fy) = %ZUGGS Fo) -+ Fy(s) denotes the symmetrized product. Thus,
E,, x ®’ belongs to the space S*L(®), spanned by the symmetrized products of type u of
Lie polynomials in the ;.

Consider now the products ®” x E\. Using once more the splitting formula for internal
products, we see that for J = (ji,...,Jm),

(DJ*E/\: Z ((IDJI*EM)(CI)]m*E,\m)

ALy am=)\

where o V  denotes the reordered concatenation of two partitions a and . Indeed, the
generating series F/(x) being grouplike, we have

A"Ex= >  Eu®--®Ewm.

ALV am=)

Moreover, we know that ®; * E\ = 0 for A # (j) (Lemma 3.14). Thus,

N T X160
‘D *EA_{qﬂ if J e\

This shows that for any composition J, E,*®” % E\ belongs to the subspace [S*L(®)]»,
which is defined as the intersection of the subspace S*L(®) with the subspace

Sym, (®) = Vect (& | K € &()\)) .

To conclude, we know that the image of Lg, : F +— E, x F is the whole S#(®), since
Syrn By = Sy, and Sym, = @, S"L(®) |,. Hence, E, * Sym,, * £y = [S*L(®)],, and
thus the dimension of e X,e, is equal to the dimension of = [S*L(®)],, which is clearly
equal to the number of multisets of circular words of shape A and weight pu. O
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4 Sums, differences and products of alphabets

When we need to use simultaneously several copies of the algebra of noncommutative
symmetric functions, it is convenient to distinguish between them by labels A, B, C, ...
attributed to their elements, e.g. A’(A), Rr(B) and so on. It is even more convenient to
interpret these labels as virtual arguments (informally called alphabets) of the noncommu-
tative symmetric functions. In the commutative case, these arguments can be interpreted
as elements of some A-ring, by identifying a set of indeterminates with the formal sum of
its elements. Thus, in the commutative case, one can consider sums, differences, products,
and even more general functions of alphabets.

It is unlikely that noncommutative symmetric functions can be interpreted as operators
for a good notion of noncommutative A-ring , but it is still possible and useful to define
symmetric functions of sums and differences of noncommutative alphabets. As for the
product, the proper analog seems to be the product of a commutative ordered alphabet
with a noncommutative alphabet.

In the case of commutative ordered alphabets, which are the natural arguments of
quasi-symmetric functions [15], the notions of sum, product and difference correspond
to the two coproducts and antipode of the algebra of quasi-symmetric functions. Re-
mark that noncommutative alphabets also have to be regarded as totally ordered. The
noncommutative symmetric functions of an infinite ordered set of noncommuting letters
A ={a; < ay < ...} can be realized by defining

o(A;t) = ﬁ(l — tay) !

k>1

but it is more convenient to work at the abstract level, with virtual alphabets.

A different noncommutative extension of the A-ring formalism appears in [30].

4.1 Sums of alphabets

In the commutative case, a symmetric function f(X 4 Y') of a sum of alphabets can be
identified with its coproduct Af by means of the standard identification u(X)v(Y) =
u ® v. In the noncommutative case, these two notions bifurcate.

Definition 4.1 Let A and B be two noncommutative alphabets. The complete symmetric
functions S,(A @ B;t) of the alphabet A @ B are defined by the generating series

c(A® B;t):= Y S.(A® B)t" =0(A;t)o(B;t) . (37)

n>0

In the noncommutative case, the sum A @& B of two virtual alphabets A and B is an
ordered sum. It follows that A® B # B @ A.
The additivity of the Adams operators of a A-ring is replaced by the following identity.

Proposition 4.2 Let A and B be two noncommutative alphabets. Then,

V(A ® B;t) = o(B;t) (A t) o(B;t) + ¢(B;t) . (38)
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Proof — According to our definitions,

d
V(A® B;t)=0(A® B;t)™* pm o(A® B;t)

= o(B:t) o A0) ! (S o(A:0)) 0(B:t) + o(A:1) S 0(Bi1))

which is the required formula. a

This implies that ¥, (A @ B) differs from ¥, (A) + ¥,,(B) by a nontrivial Lie poly-
nomial in the W;(A), V,;(B). This property is in fact true of the symmetric functions
corresponding to any sequence of Lie idempotents:

Proposition 4.3 Let, for alln > 1, 7, be a Lie idempotent of ¥, and F,, = a(m,) €
Sym, . Then,

n

F.(A® B) = F,(A) + F,(B) + IZ*(r) (39)
where [Z2() is an element of the Lie ideal [L(F(A), F(B)), L(F(A), F(B))].

Proof — According to Theorem 3.1, it is sufficient to check this property for one given
family of Lie idempotents. Taking F,, = ®,,, we have

(A B) = log (o(A & B)) = log (o(A) 0(B)) = log (exp(®(4)) exp(®(B))) .

and the conclusion follows from the Baker-Campbell-Hausdorff formula. O

Example 4.4 Using Proposition 4.2, we find
Uy(A® B) = Uy(A) + Uy(B) + [V1(B), ¥, (A)] , (40)
U3(A® B) = V3(A) + V3(B) + [Va(B), V1 (A)] + [¥1(B), Uy(A)]
45 [[92(B), W1 (A)], 11 (4)] (41)

4.2 Differences of alphabets

Let us first recall the definition of the quasi-symmetric functions of the difference of
two totally ordered commutative alphabets [24]. Let F' and G be two quasi-symmetric
functions, and X, Y be two ordered alphabets. Identify F' ® G with F(X)G(Y'). Then,
the coproduct 7 of [24] is defined by

A(F) = F(X 1Y) (42)

where X +Y denotes the ordered sum of X and Y. Let also P be the permutation operator
PFRG)=GRF.

Definition 4.5 Let X and Y be two totally ordered commutative alphabets. The quasi-
symmetric functions of the difference X =Y are defined by

F(X-Y)=(v®1l)oPo~y(F), (43)

where v is the antipode of QSym, defined on the basis Fy by v(Fy) = (—1)1Fy~.
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Note 4.6 In other words, X —Y is the virtual ordered alphabet (—Y)+X.

In order that the difference operation on noncommutative alphabets be compatible
with the product operation to be defined in the next section, we have to define it as
follows:

Definition 4.7 Let A and B be two noncommutative alphabets. The complete symmetric
functions of the alphabet A— B are defined by the generating series

o(A=B;t) = > S,(A-B)t" := \(B; —t) o(A;t) . (44)

n>0

Thus, A—B = (—B) & A, as in Definition 4.5.
Definition 4.7 can be rewritten as

Su(A=B)= 3 (1) A(B) S,-i(A) . (45)
i=0
Inverting relation (44), we also obtain
AMA=B;t) = MA;t) o(B; —t) , (46)
so that
In particular, we have as in the commutative case
Sul—A) = (~1)" Au(A) . (48)

4.3 Products of alphabets

The product of two noncommutative alphabets does not seem to lead to interesting com-
putations. On the other hand, the product of a commutative ordered alphabet with a
noncommutative alphabet is an important notion, which accounts for the duality between
noncommutative symmetric functions and quasi-symmetric functions (cf. [24, 12]) and
gives rise to noncommutative analogs of Cauchy-type identities.

Definition 4.8 Let X be a totally ordered commutative alphabet and let A be a noncom-
mutative alphabet. The complete symmetric functions S, (X A) of the (noncommutative)
alphabet X A are defined by the generating series

o(XAt)= ) S.(XA)t":= [] o(Azt), (49)

n>0 zeX

the product being taken relatively to the total ordering of X.
This means that

S.(X A) = > a xSy S,

J1
zjy <...<zj,, [I|=n

= > Mi(X)S'(4), (50)

|=n

where M;(X) is the quasi-monomial function of the alphabet X indexed by I.
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Note 4.9 Applying w to (50) gives the formula

A(XA) = S M(X)A(A) . (51)

[|=n

Formula (50) is a particular case of the following identity, which expresses the dual-
ity between QSym and Sym, and appears to be the proper analog of the Cauchy-type
identities of the commutative theory:

Proposition 4.10 (Cauchy formula) Let (V;(A)) be any homogeneous basis of Sym and
let (Ur(X)) be its dual basis in QSym. Then one has

SuXA) = Y U(X)Vi(4). (52)

[I|l=n

Proof — Decomposing ST(A) in the basis (V;(A)), we can write

SI(A) = Z CI K VK(A) .

|K[=n

It follows then from (50) that

Sp(XA)= > M(X)( Y erxVe(A))= > (> cx Mi(X))Vg(A). (53)

[I|l=n |K|=n |K|=n |I|=n

But, for two compositions I and K, one has

(Uk(X)[S"(A) = ern (Ux(X)|VL(A)) = e

L
so that
Uk(X) = Z crx Mi(X) ,
[I|l=n
and reporting this relation in (53) gives the desired formula. O

Taking V; = Ry, the formula reads as

Su(XA) = 3 Fi(X) Ry(A) | (54)

[I|l=n
where (F7(X)) is the family of quasi-ribbon functions of QSym.

Proposition 4.11 Let X be a totally ordered commutative alphabet, let X denote the
opposite alphabet (i.e. X is X equipped with the opposite total order) and let A be a
noncommutative alphabet. Then,

F(XA) = (F(X A)" | (55)

for any noncommutative symmetric function F.
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Proof — 1t is sufficient to check the formula for complete functions, and since * is an
antiautomorphism,

o(X At)= [ oAiat)=( J] o(A;xt))" = (o(X A;t))* .

IEY rzeX

In particular, Proposition 4.11 and formula (50) give the (obvious) relation
M (X) = M7(X) .

One can now check the compatibility of the product of alphabets given by Definition
4.8 with the product of ordered alphabets.

Proposition 4.12 Let X,Y be two totally ordered commutative alphabets and let A be a
noncommutative alphabet. Then,

F((XXY)A) = F(X(Y A)) (56)

for every noncommutative symmetric function F'.

Proof — 1Tt is sufficient to check the formula for complete functions. In this case,

o(X(va)st) = [ o Aset) = TI (T o(Aayt)) = o((X3Y)Ast) .

zeX zeX yey

We can also connect products of alphabets and duality in the following way.

Proposition 4.13 Let X and A be respectively a totally ordered commutative and a non-
commutative alphabet in duality with each other, which means that the dual of Sym(A) is
identified with QSym(X), and write (P(X)|Q(A)) for the pairing between the two spaces.
Let Y be another totally ordered commutative alphabet. Then,

(F(X)|G(YA) = (F(YxX)|G(A)) , (57)
for any quasi-symmetric function F and any noncommutative symmetric function G.

Proof — Let us show first that (57) holds for ' = My and G = S,. In this case,
according to (50), one has

(Mg(X)| Sa(Y A)) = (Mg(X)| > Mi(Y)S'(A))

[[=n

- Z M (Y) (MK(X)’SI(A)) = Mg(Y) .
[I|l=n
On the other hand, one can write

MK(Y;(X) = Z CL[JM[(Y) MJ(X) y

1,J
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with some scalar coefficients ay;. It follows that

(Mg (Y xX)|Sn(A Z arn Mi(Y) = > (Mg(YxX)|S"® S,) M(Y) .
1

By duality, one has
(Mg(YxX) ST ®S,) = (§(Mg)| ST ®S,) = (Mg | S *S,)

= (M| 57) = {0 if I 4K

Reporting this result in the last formula, we obtain
(MK(Y;(X) |Sn<A>) = MK(Y) :

Hence,
(Mg (X)]Su(Y A)) = (Mg (Y xX)[S,(A)) = Mk (Y) (58)

which is (57) in the case under consideration. We now deal with the general case. Note
that by linearity, we may suppose that F' = My and G = S’. In this case,
(Mg(X)]| ST (Y A)) = (M(X1+...+X,) ]S, (YA ®@...08 (Y A)

> (Mp(X1)®...0 Mp,(X,) ]S, (YA)®...0 5, (Y A))

Pr..P.=K

= D (Mp(X0)|9, (Y 4) ... (Mp(X;)]S;,(Y A)),

P..Pr=K

where the quasi-symmetric functions of X; are in duality with the i-th factor of the tensor
product. Using (58), we get

(Mg(X)|S' (Y A) = > (Mp(YxX1)[S;,(A))... (Mp, (Y %X,)|S;,.(4)) ,

P ..P=K

and, backtracking these computations, it is easy to see that this last expression is equal

to (Mg (Y xX | SI(A)). O

Note 4.14 Observe that the proof of Proposition 4.13 gives also the formula
(M(X)|S'(YA) = > Mp(Y)... Mp,, (Y) = Mg((I)Y)

Pl...P[(I):K
where (1) Y denotes the alphabet Y+ ... +Y this sum involving ¢(I) copies of Y.

One can now connect the sum and difference of noncommutative alphabets with the
product of alphabets as defined in this section.

Proposition 4.15 Let X and Y be two totally ordered commutative alphabets and let A
be a noncommutative alphabet. Then,

F(X+Y)A) =F(XA®Y A) and F((X-Y)A) = F(XA-Y A) . (59)

for every noncommutative symmetric function F'.
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Proof — 1t is sufficient to check the relation for complete functions. In this case, one has

S (X4Y)A) = ||Z M (X+Y) S1(A) = HZ ( P%;I Mp(X) Mg(Y) ) S'(A)

= 3 Mp(X)Mg(Y) S"(4) SA) .
|Pl+|Ql=n

It follows that

Sl(XHY)A) = >0 (D Mp(X)S"(A)) ( X Mo(Y)S?(A))

prg=n_ [Pl=p 1Ql=¢

= > S(XA)S(YA)=S(XA®Y A),

ptq=n

as required. The second formula is a consequence of the first one. O

Note 4.16 Let X be a totally ordered commutative alphabet and let A, B be two non-
commutative alphabets. Observe that, in general, one has

F(X(A®B)) A F(XA® XB). (60)
For instance,
So(X (A® B)) — So(XAd X B) = M1 (X) [S1(B), A1(A)] .
In fact, one has for complete symmetric functions

o(XA® X B;t)—o(X (A® B);t)

=( II oAat)) (( IT oBiat) ) — II (o(Asat)o(B;at)) .

zeX reX rzeX

This expression is clearly not equal to zero in general. However it is zero when Sym(A)
commutes with Sym(B), i.e. when one has [S;(A),S;(B)] = 0 for every i,5 > 0. It
follows that relation (60) holds in this special case.

The transformation F(A) — F(XA), where X and A are allowed to be virtual, can
be performed by means of a “reproducing kernel identity”:

Theorem 4.17 Let X be a (virtual) commutative ordered alphabet, and A be a virtual
noncommutative alphabet. Then, for any noncommutative symmetric function F,

F(XA)=F(A)xo(XA;1) . (61)
The theorem is a consequence of the following two lemmas.

Lemma 4.18 Let X,Y be two totally ordered commutative alphabets and let A be a non-
commutative alphabet. Then, for every n > 0, one has

o(XA; 1) xo(YA; 1) =o((XxY)A4;1) . (62)
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Proof — Using the fact that o(Y A;t) is a group-like element for A, one gets

o(XA; 1) x0(YA; L) = pux[ Q) o(4;z) x o(YA; 1)) .

rzeX

But it is easy to see that
o(A;x)xo(YA; 1) =0(YVA;x)

for every x € X. Hence,

o(XA; ) xo(YA; 1) = ] o(YAz)=0(X(YA);1) =0((XXY)A;1)
zeX
according to Proposition 4.12. a

Lemma 4.19 Let X,Y be two totally ordered commutative alphabets and let A be a non-
commutative alphabet. Then, for any noncommutative symmetric function F,

F(XA)*o(YA;1) = F(XXY)A) . (63)

Proof — 1t is sufficient to check the formula for ' = S?. Lemma 4.18 shows the required
identity for I = (n), and in the general case, with I = (iy,...,4,), one has

SHUXA)xo(YA) = (S (XA) @ ...®@ 8, (XA) x a(YA)®) = SI((XXY)A) ,
using again Lemma 4.18. O
The most useful version of these formulas is the following:

Corollary 4.20 Let (V) be any homogeneous basis of Sym, and let (Uy) be its dual basis
in the space of quasi-symmetric funtions. Then, for any F € Sym, one has

F(XA) = Z[: Ur(X) (F +Vi)(A) . (64)

O
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5 Symmetric functions of the alphabet (1 —¢)A

The first nontrivial case of a difference of commutative ordered alphabets arises when X
and Y are reduced to one element. It is convenient, by analogy with some classical com-
mutative calculations, to take X = {1} and Y = {¢}. The commutative transformation
A+ (1 —¢q)A is of fundamental importance in the theory of Hall-Littlewood functions
(cf. [21]). It is explicitely used in the computation of the character tables of finite linear
groups and of Hecke algebras of type A, (see [31] for a A-ring version of this last ap-
plication). In the noncommutative case, this transformation is related to the g-bracket
operation [a, b], = ab — gba.

5.1 Complete functions

According to the definitions of Section 4, we can describe the complete symmetric func-
tions of the alphabet (1 — ¢)A by their generating series as follows.

Definition 5.1 The generating series of the complete symmetric functions S,((1—q)A)
of the alphabet (1—q)A is given by

o((1=q)A);t) = D Su((1=q)A) t" = a(A;qt) " o(Ast) = A(A; —qt) o(A;t) . (65)

n>0

The functions S, ((1 — ¢)A) are clearly noncommutative analogs of commutative com-
plete symmetric functions of the alphabet (1—¢)A (in the sense of A-rings).

We first give an expression of S, ((1—¢)A) in terms of ribbon Schur functions. To this
purpose, consider the noncommutative symmetric function defined by

n—1
i=0
for n > 1. Then, one can state :

Proposition 5.2

S(1-q) = {179 @ m= (67)

Proof — According to Definition 5.1,

(—q)" Mi(A) Sai(A) -

-

Il
=)

Sn((1=q)A) =

)

For 0 < 7 < n, one can also write
Az(A) Sn,l(A) - Rli (A) Rn,l(A) - Rli,n—i + Rlifl,n—i—&—l .

Reporting this identity in the defining relation of S, ((1—¢)A), we get
n—1
Su((1=q)A) = Ry + (—q)" Rin + Z (=)' (Riin—i + Rii-1nig1)
i=1
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O

Formula (65) shows that o((1 — ¢)A;t) is the product of two group-like series for the
coproduct A. Hence o((1 — ¢q)A;t) is also a group-like element for A. This means that

A(S,((1 =Y Si((1=q)A) @ Sui((1—g)A) . (68)

=0

This last formula can be equivalently rewritten as

A©) =190, + 6,0 91+ (=) (3 00 @0,) . ()
One can also compute the image by w of Sx((1—g)A).
Proposition 5.3 For every n > 1, one has
S ((1-0)4) = (0" S.((1-1/a)). (70)
Proof — One has
O = T (0 wlfn) = T (0 R = (0" 0,0/0) . (71
-

5.2 ¢-Newton formulas and consequences

It is interesting to observe that ©,(¢) can be considered under two different aspects.
Indeed, it interpolates between S, (¢ = 0) and ¥,, (¢ = 1). Thus it shares properties of
complete functions and of power sums of the first kind. We shall rather concentrate in
this section on the power-sum-like aspects.

Let us introduce the generating series ¥(t) defined by

_ w1 o((L—=q)A;t) —1
= 2 Gt = (1—q)t

n>1

and consider the g-derivative o/ (t) defined by

oq(t) = U=t n; [n]g Sa(A) 71, (72)

where [n], denotes the g-integer 1+ ¢+ ...+ ¢" . The generating series 9(¢) is given by
the following proposition:
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Proposition 5.4 One has
I(t) = MA; —qt) o (A;t) .

1 o((1—-—q)A;t) -1

o(A;t) — o(4; qt)

I(t) = ¢ "
it follows from (65) that
8() = 1iq A(A; qt);(A,t) 1 (A —at) 1iq
and it is easy to see that
1 o(At)—o(Aqt) 3 1—q"
1—gq t 1 1—g¢q

t

q" -
"t =o(t) .

Formula (73) gives a g-analog of Newton’s formulas. Indeed, it says that

04(t) = o(A; qt) V(1)

q

which can be equivalently expressed as

Using rather S,((1—¢)A), we also get

n—1

(1-¢")Su(A) = 3 ' Si(4) Sui((1-q)4) .

i=0

Y

(76)

These identities also give quasi-determinantal formulas expressing ©,,(¢q) or S,((1—¢)A)

in terms of the complete functions S,,(A).

Proposition 5.5 For everyn > 1, one has

Si(A) So(A) 0
215:(A) ¢ 5i(4) So(A)
0,(q) = [3]¢ S3(A) q* Sa(A) qS1(A)

©1(¢) ©200) ... On(q)

[y ¢©1(a) ... qOn-2(q)
], Su(A)=| 0 -2, ... ¢®O,3(q)
0 0 —[n — 1],
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Proof — These formulas are direct consequences of formula (75). O

The expression of S, on the basis ©!(q) can also be obtained by solving the ¢-
differential equation (74) in terms of iterated g-integrals, i.e.

oty =1+ [ "t o) + / "t / " ot D(gta)O(t) + - - (79)

5.3 The g-bracket

The symmetric function ©,,(¢q) corresponds to an interesting element of the descent alge-
bra. Indeed, it is easy to see that the image of ©,,(¢) under the isomorphism a~! is the
left g-bracketing of the standard word 12 ... n, that is,

o (Ou(@) = [+ 11 20y By - s ],

where [R,S], = RS — ¢ SR (see [6]). As an application of the ¢-Newton formulas, let
us give the following g-analog of Dynkin’s theorem, describing the left g-bracketing of a
homogeneous Lie polynomial:

Proposition 5.6 For alln > 1,

O,(q) * ¥, = [n], U, . (80)

Proof — See Example 3.6. Alternatively, using Proposition 5.4, one can write
V() Wy = p((MA; —qt) @0 (A; 1)« A(P,)) = p((MA; —qt)@og(A; 1))+ (1eV,+¥,®1))
from which it follows that

D(t) % Wy, = (A(A; —qt) % 1) (0 (A;t) % Uy,) = [n]g Upt" "

Example 5.7 Let P = [a,b] = ab — ba. Then,
la,b], — [b,a]l, = ab — gba — ba + qab = (1 + q)[a, b] .
For ¢ # 1, ©,,(q) does not correspond to an idempotent of the descent algebra. Nev-
ertheless, one can compute its square for the internal product. This will follow from a

more general result:

Proposition 5.8 For alln > 1,

On(p) * Onlq) = [n], Onlg) + (¢ — 1) nzl P =il ©i(1/q) ©nilq) - (81)
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Proof — Using again Proposition 5.4, one can write

On(p) * On(q) = p((A(A; —pt) @ 0, (A;t)) * A(On(q))) -

It follows then from (69) that the coefficient of ¢ in this last expression (which is the only
one different from 0) is equal to

P 0u(a) + (1= 0) 3 (=)' [n =], (A+€4(0)) Oei)
and it it suffices now to observe that
Ai % 0i(q) = w(©i(q)) = (—¢)" 1 ©:(1/q)
according to (71). O

Using the basis (Ry), one can give a more precise result:

Corollary 5.9 Forn > 1,

On(p) *Onlq) = Y Crp,q) Ri(A) , (82)

|[I|=n
where Cy(p, q) is the polynomial of Z[p,q| defined by
(=1)"(¢" [r+1lp/q +pgn—r—1l) if IT=(1"n-r)
(—1)trr=tprs=lgits=l (g — 1) if IT=(1"s,1" n—r—s—t) with s > 2

0 if T#(17)s,1% u)
(83)

Proof — Proposition 5.8 shows that

0u(p)* 0,(0) = nly ( 3 (=0)' Rrips)
Ha=1) T P = (D 07 Ri) (2 (0 Fuin)
=y (3 (=0) Rrps)

n—1 i—1 n—i—1

+(¢—1) 2. . Yo (=DM gt =y Ry Ruk ik
= [n]p( ' (—Q)i R1i,n4)
n—1 i—1 n—i—1

+(g—1) Z (=D)F I pf g tFI " [ — ilp (Ryji—jarm—iok + Rujioji11b—1n—i—k )
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n—1 i—1

Hag—=1) > > (=1 ¢7 n =iy (Ruijn—i + Riinj) - (84)

=1 j5=0
It follows from this last expression that

0.(p) ¥On(a) = Y Ci(p,q) Ri(4) ,

[I|=n

where C;(p, q) are polynomials in Z[p, ¢]. Note that these computations show that C;(p, ¢) =
0 when [ is not of the form (17, s, 1*,u), i.e. when I cannot be obtained as a concatenation
of two hooks. It is also easy to see that identity (84) shows that

017“73,1t,n—r—5—t(p7 Q) = (_1)t+7" pr+s qt+8_1 [TL—’I“—S]p (q - 1)
+(_1)t+r—1 pr-i-s—l qt+s—1 [H—T—S—I-l]p (q - 1)
= (=) T T g = D) (pn—r sy — [n—r—s+1],)
— (_1)t+r—1pr+s—1 qt+s—1 ((] _ 1)

when s > 2. Using again relation (84), one can also write

Crrnr(p,q) = [n], ()" + (¢ —1) (=1)"" Z g

+(g=1) (=) p" [n=r], + (¢ = 1) ( Z pa =i, (85)
Moreover,
(¢—1)(=1)* Zl p g n=il, = (1) Zl p'¢ " (plh—i=1], — [n—i,)

+H=D)™ g pIn=1], + (=1)"p" [n—7],
)Y B ) a1+ (<17 ],

Using (85), this shows that

Crrn—r(pq) = (1) ¢" ([n], — p[n—1],) + 2:: (1) p g
+(=D)"p [n—rlp+ (g—1)( Z p g [n—i],
D N e g R T IS g S TR

On the other hand,

(g—1)( Z P Z prq " ([n—ilp, — p[n—i—1])

i=r+1 i=r+1

34



+(_1)r+1 p’r—i-l [n—r—l]p + (_1)7"pn—1 qn—r—l

n—1
Z pz q—r-i—z 1)r+1 pr+1 [’I’L T—l]p ]
i=r+1

It follows from this identity that

Crraner(p.q) = (1) 3 p'd" ™+ (=1)"p" [n—ry + (=) [n—r—1],

Z pz —r+2 Z pz r—1 Z pz —r+1

i=r+1 1=r+1
=(-1)" (¢ [T+1]p/q +pr+1 q [n_r_l]pq)

which concludes the proof. O

Note 5.10 According to Lemma 4.19, we have
Su((1—p)x(1—q)) A)
(1-p)(1—q)

for n > 1. Tt follows that Corollary 5.9 gives the expansion of S, (((1—p)x(1—¢q)) A) on
ribbon Schur functions. In particular, the Cauchy formula shows that

Fr(1-p)x(1—q))
(I-p)(1—q)

O, (p) * Ounlg) =

(86)

Cr(p.q) = (87)

for every composition I of n.

Another useful property of the g-bracketing is given by the following ¢-analog of
Lemma 3.7, which is proved in the same way.

Lemma 5.11 Let (F,) be a sequence of Lie idempotents, with F,, € Sym,, for each n.
Then,

Ou(q) * I = lirgll. - [Fiy s Folga s - g s Filgr - (88)
Proof — Using the same method as in the proof of Lemma 3.7, one sees that
Ou(q) * F' = [Oyy(q) * F7, F Jgir + [ir]g ¢" p[(© ® 1) A(F)] F,
where J = (i1,...,4,_1). The antipodal property of @ implies that
On(q) * F1 = [015(q)  F7, F, |-

from which the lemma follows by induction. a

Note 5.12 It follows from the lemma that one has

Su((1 = @A) FL = (1= ¢ [[[Fs, Fialyas - -

119

FiJgr (89)

) ]qir—la

under the same hypotheses.
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5.4 Diagonalization of the left ¢-bracketing

We have seen in Proposition 5.6 that the Lie polynomials (in the free algebra) are eigen-
vectors of the standard left g-bracketing ajas---a, — [...[a1, az)q, ... an)s 1t turns
out that this operator is semisimple, with p(n) distinct eigenvalues, and that its spectral
projectors provide another example of a complete family of orthogonal idempotents of
the descent algebra, constructed from a sequence of Lie idempotents by the procedure of
Section 3.4.

Instead of ©,,(¢), it will be more convenient to deal with S,,((1 — ¢)A) considered as
left or right operator for the internal product, i.e. with the operators

F — S,(1-¢qA)«F or F — FxS,((1—¢A)
where F' € Sym,,. The eigenvalues of both operators are known from Proposition 3.12:

Lemma 5.13 The eigenvalues of S,((1 —q)A) (considered as a left or right operator for
the internal product) are the polynomials

PA-q)=01-¢")(1—q") ... (1—q") (90)
where X = (A1, Ag, ..., A\) is any partition of n.
O

The problem is now to describe the eigenspaces. This will be done in terms of the
corresponding spectral projectors.

Theorem 5.14 There exists a unique family m(q) = (7,(q))n>1) of Lie idempotents (with
mn(q) € Sym,, for all n) characterized by the property

(@) (1=q)A) = (1 = ¢") 7 (g)(A) - (91)

Let now E\(m(q)) be the orthogonal idempotents associated with the family w(q) by the
process described in Section 3.4. Then, regarding S, ((1—q)A) as a left or right operator
for the internal product,

1) The element Ex(m(q)) is a projector on the eigenspace of S,((1—q)A) associated
with the eigenvalue (1 — q) for every partition \ of n.

2) Sn((1—q)A) is diagonalizable.
Proof — We shall first prove the following lemma.

Lemma 5.15 Suppose that there exist Lie idempotents (m1(q))k=1.n Satisfying to property
(91). Then S,((1—q)A) is diagonalizable.

Proof — Consider the orthogonal idempotents F)(7) associated with the family 7(q) =
(7(q))k=1,n by the method of Section 3.4 for every partition A of k& < n. By definition of

these idempotents,
Sn(A) = > Ex(r(q))(A) .
AFn
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Changing A into (1—¢)A and using property (91), we deduce from this identity that

Sa((1=q)A) = > Ex(r(g)(1-q)A) = > v 1 —q) Ex(r(g))(4) . (92)

AFn AFn

On the other hand, one can write

Sn((1=q)A) = Su((1—q)A) * = > Sl A) x Ex(n(q)) . (93)

AFn

Finally, it follows from the multihomogeneity of E)(7(¢)) and from (89) that

Sn((1=q)A) * Ex(m(q)) C Sym,((q))

where Sym, (7(q)) denotes the subspace of Sym,, generated by the elements 7!(q) where
I is a composition of n with A\ as associated partition. Taking into account the fact that

Sym, = P Sym,(7(q))

AFn

and relations (92) and (93), we see that

Su((1=q)A) * Ex(n(q)) = (1 — q) Ex(n(q)) - (94)
Also, using property (91) and Theorem 4.17, it is immediate to get
E((q)) * Su((1=q)A) = (1 — q) Ex(n(q)) - (95)

It follows now from (94) and (95) that E\(m(¢)) may be considered as a (left or right)
projector onto the eigenspace associated with ¢*(1 — ¢) for the (left or right) operator
Sn((1—q)A). The fact that the Ey(7(q)) form a complete set of mutually orthogonal
idempotents implies then immediately that S,((1—q)A) is diagonalizable and that the
image of E(m(q)) is the required eigenspace. O

According to Lemma 5.15, it will be sufficient to establish the existence of the family
7(q) in order to conclude the proof of the theorem. We shall therefore suppose that
the m.(q) are constructed for & < n — 1. This implies in particular that all operators
Sk((1—q)A) are diagonalizable for every k < n. Let us now consider the polynomial

P()= [ (@-v¢*(1-q)) sz

A (n)

We can then give the following lemma. For F' € Sym, let F** denote the k-th power
FxFx---xF (k times), and for a polynomial P € K[z], let P* be the function on Sym
obtained by evaluating P with the internal product.

Lemma 5.16 The noncommutative symmetric function
P, =P (S.((1 Z pi(@) Su((1—q)A)™ (96)
1s a Lie quasi-idempotent of Sym,,.
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Proof — We have to check that P, is primitive for A. Using the fact that A is a morphism
for the internal product, we can write

n

A(P) = > pilg) AlS.(1=9)A))™ = 3 pila) ( 32 Si((1-)A) @ Snr((1-)A) )"

k=0

n

= > pilg) (X Su((1-0)A)" @ Sui((1-q)A)")

k=0

n—1

=P,®1+1®P,+ > P (Si((1—¢)A4) @ Sn_i((1—q)A)) .
k=1
Using now our induction hypothesis, we get that S,((1—¢)A) ® Sp_k((1—¢q)A) is diag-
onalizable for every k € [1,n—1]. Moreover, the eigenvalues of this operator are the
V(1 — @)¥" (1 — q), where p and v are respectively partitions of k& and n — k. Since
these values are all roots of the polynomial P(x), the diagonalizability of the operator

Sp((1—=q)A) ® Sp—k(Sn—r((1—¢)A) shows that
P (Sk((1-q)A) ® Sy—i((1—¢)A =0
for every k € [1,n—1]. It follows that P, is primitive for A as required. a

Define now m,(q) by P(S,((1—q)A)
n({1—¢q
mla) = P(1—q")

The last lemma shows that m,(q) is a Lie quasi-idempotent. We shall now show that this
Lie quasi-idempotent is in fact a Lie idempotent satisfying to (91). Note first that 7, (q),
being a polynomial in S, ((1—¢)A), commutes with this element for the internal product.
Hence,

(97)

Sn((1=q)A) x mn(q) = mn(q) * Su((1—=q)A) = (@) (1—q)A) .
On the other hand, since 7,(q) is a Lie idempotent, Proposition 5.6 implies that

Sn(1=q)A) * m,(q) = (1 — ¢") mn(q) -

The conjunction of the last two identities shows then that 7, (q) satisfies to property (91).
It remains to prove that m(q) is actually a Lie idempotent, i.e. that

malg) € 4 [L(D), L(D)]

n

Let us therefore calculate the multiplicity of 7,(¢q) on U,,. Recall first that

S((1-)4) = =L 0, +[L(W), L(V)]

Then, it follows from Example 3.8 that

1 ;qn)Z UH 4 [L(), L(V)] = %

Su((1=q)A)" = (
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for every ¢ > 0. Hence,
PHS,(1-q)4)) = P(1— ¢") 2 + [L(W), L(¥)]

which shows that 7, (¢) is a Lie idempotent. To finish the proof of the theorem, it suffices
to prove the unicity of the family 7(q). Thus, suppose that F,, is a Lie idempotent such
that F, x S,,((1 —¢)A) = (1 — ¢™)F,. As 7y, ..., m, are Lie idempotents, one can write

F,=m, + Z et
o(1)>2

so that, multiplying on the right by S,((1 — ¢q)A), we find

I
1_
F,=m, + E wl_qq) 7TI,
)>2

whence ¢; = 0 by linear independence of the 7?. O

Example 5.17 Here are the first idempotents ,(¢q) for n <5 :

1 1-
ml0) = Vi, mlo) = 5 w0 = g g (Y

Uy 1 (1—q)(2¢+1)
412 (1+q+2¢2)
2
) = B 5 i e e+

1 (1-9)°(4¢* +7¢* +7q+2)
60 (2¢* +q+2)(2¢* +¢*+q+1)
1 (1-9)*(4¢*+99+7)
120 (¢ + 3¢+ 1)(2¢> + 1+ 2q)
1 (1 —9)*(2¢° + 2¢* + ¢* + 5¢* + 9q + 6)
120 (2¢° — ¢* +q+3)(2¢* + ¢ +2)(2¢°* + ¢ + ¢ + 1)

1 (1-9)
Uy, U]+ — —
Vs, W] 24 (1+q -+ 2¢?)

1 (1-¢9)(g+2)
30 (2¢2 +2¢+1)

m4(q) = ([Wo, W], ¥q]

(W3, Uy

(W3, Uy, U]

(W1, Wy, Wy

[[W2, W], 1], 4]

Example 5.18 We also give here the first orthogonal projectors on the different eigen-
spaces associated with the operators S, ((1—¢)A).

B=w . B=" g, =
B= ™0 gy R0 @ e D)) s B
E211 — m (q\p211 _|_2qu121 + (q_|_2) \11112) ’ Ellll — \1121:1
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One can recover from Theorem 5.14 the character of the left ideal C&,,n,(q), as com-
puted in [6], or, which amounts to the same, the character f,,(¢) of the linear group GL(V)
of a vector space V in T™(V')n,(q).

For g not a root of unity of order n or less, the element S,,(A/(1—q)) is well defined, and
invertible for the internal product, with inverse S,,((1 — ¢)A). So in this case, f,(q) = pT.

When ¢ = w is a root of unity, W := T™(V')n, (w) is the direct sum of the eigenspaces
Wy = T"(V)ex(w) corresponding to nonzero eigenvalues (here, the e, are the spectral
projectors constructed in this section). Since these eigenvalues are ty = ¥*(1 — w), one
obtains, taking into account 3.12 :

Corollary 5.19 [6] The character of GL(V') in the image W = T"(V)n,(w) of the iter-
ated g-bracketing at a root of unity is

fu(w) = Z Ly (98)

wy (w)#0

where wy(q) = v (1 —q)/(1 — q). If w is a primitive k-th root of unity, the generating
series of the characters is

Z falw) =01 [ Z gm]

n>0 mZ0mod k

where a1 = Y50 b, flg] s the plethysm of g by f, and €, = (1/n) gy, p(d)p}".

Note 5.20 The arguments used in the proof of Proposition 5.14 can be extended to
a more general situation. Indeed, let X be an arbitrary totally ordered alphabet. Our
method shows then that the operator S, (X A) is diagonalizable with ¢*(X) as eigenvalues
(where A is a partition of n) and that the corresponding eigenspaces can still be constructed
by the method of Section 3.4 based on the unique family of Lie idempotents 7 x ,, satisfying
to the property

7TX,n(*X A) = 77/)n(X) 7TX,n(A) . (99)

Example 5.21 We here give the first values of wx ,,. Their coefficients are rational quasi-

symmetric functions of X.

U,
x1 =V, Tx2= 5

Uy & My — § My
— 34 Uy, U] .
S I Y v v AL

For n = 1 and n = 2, the associated orthogonal idempotents do not differ from the g-case.
For n = 3, we have

Mgl 7T§(1 —|— M12 W}(Q \I/Hl
3 =T7Tx3, L1 My + My, , L4111 6
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5.5 Specializations of the family 7,(q)

The idempotents m,(q) constructed in the preceding section have interesting specializa-
tions. The most easily identified is for ¢ = 1.

Proposition 5.22 For everyn > 1, one has

(1) = =2 . (100)

Proof — Using again the notations of the proof of Proposition 5.14, we can write

(g = PO =0A) _ P(S.(A-94) (1~ g1
n\q) = P(l — q") o (1 _ q)p(n)—l P(l _ qn>

Pa)= ][ @=yMN1-q) — 4 2?7,
AA(n)

where p(n) denotes the number of partitions of n. Observe now that

P(S((1-qg)4) = Sl =9)4)
(1—q)pm-1  — 0 (1 — g)=em-1)

— 1 \p;kz(p(n)—l) = pPM=2y

On the other hand,

(1 —g)rtm! 1 1
= _— BN .
P(1—q") L—q" ¢M1l-q) RO

1T « )

A T4 I—q

Corollary 5.23 Let F,, be some homogenous Lie idempotent of order n. Then one has

iy (=0 A)

101
q—1 1—qgn n (101)

Proof — Decomposing F), in the basis (77(q)), we have

E,o=m(0)+ > ai(g)n’

Using the basic property of the idempotents 7, (q), we get

Fo((l-q)A) _

1/1(1_(1) I
— )+ 3 e 7(q) |

I—gq"

where /(1 —q) = (1 —¢") ... (1 — ¢*). Proposition 5.22 shows that 7, (g) converges to
Y2 when ¢ — 1. It follows that a;(gq) converges when ¢ — 1 (up to some normalization)
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to the coefficient a; corresponding to the decomposition of F}, on the basis ¥!. Since one
also clearly has
I 1—
i U0
¢—1 1 —q"
for every composition I of length greater or equal to 2, we obtain that

o Fal(=04) W,

q—1 1—qn n
as desired. O

The following result shows that the specialization of the idempotent 7, (q) defined by
Proposition 5.14 at a primitive n-th root of unity is equal to Klyachko’s idempotent.

Proposition 5.24 Let ¢ be a primitive n-th root of unity. Then one has
() = Ka(() - (102)

Proof — Let Q(x) be the minimal polynomial of S, ((1 —¢)A). Using again the notations
of the proof of Proposition 5.14, we can write

QX) =PX)(X - (1-q") .

On the other hand, let us set
QX) = Z Qi(Q)Xi :

It follows that one has
(X = wle)
X
Substituting now X to S,((1 —¢)A) in this expression, we find that the inverse of S, ((1—
q)A) for the internal product is equal to

) X = —qo(q) + Q(X) .

A L sale) — QX)
Snlq —q) = q(q) X ) X=Su((1-q)d)
Observe now that
a0(q) = (¢" — 1) go(q)
where
w@= I vg-1).
AF#(n)

It follows that

B A q(q) — P(X)(X —(1—¢q"))

Kn(q) = (9)n Sn<1—_q> (@) ( (¢" — 1) qo(q) X ) X=54((1-q)4)
o () ~ P(X)
(@)1 90(9) x_s,((1-)1) +la | q(q) X ) X=5,((1-9)A)



Let now ¢ be a primitive n-th root of unity. Using the fact that (¢), = 0 and (¢),_1 = n,
we get from this last relation

P(Sa((1—q)A))
0(C) o=

K,(¢()=n =nma(C) ,

since we clearly have

Hence,

as required. O

Corollary 5.25 Let F,, be some homogenous Lie idempotent of order n and let { be some
primitive n-th root of unity. Then one has

A
li 1—q") F,(——) = ka(() . 103
lim (1= ") Fo(72) = #a(0) (103)
Proof — The technique is essentially the same as for proving Corollary 5.23. Decomposing
F, in the basis (77(q)), we have

Fo=mlg)+ Y arlg)m'(q) -
o1)>2
Using the basic property of the idempotents m,(q), we get

) mm@+ Y )i

I
— 7@,

(1—q") Fu(

where /(1 — q) = (1 —¢") ... (1 — ¢*). Proposition 5.24 shows that 7, (g) converges to
kn(C) when ¢ — (. It follows that a;(q) converges when ¢ — ¢ (up to some normalization)
to the coefficient a; corresponding to the decomposition of F, on the basis x’. Since one

also has
1—q"

lim ——— =0
e—¢ P11 —q)
for any composition I of length greater or equal to 2, we obtain that
A
lim (1 —q¢") Fo(——) = Ky,
liny (1= ") Fi(7=2) = #a(0)
as desired. O

To describe the next specialization, we need to introduce a new family of noncommu-
tative power sums.

Definition 5.26 The noncommutative power sum symmetric functions of the third kind
Zn are defined by the relation

o (A: ) = exp(Z1 4) exp(% 2) . exp(% o (104)
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The Fer-Zassenhauss formula (cf. [39]) shows that every Z,, is a Lie element. It is also
clear that Z,, reduces to v, in the commutative case.

Example 5.27 The first values of Z,, are
1
Zy =V, Zy=Vy, 232‘1’34-5[‘1’2,\1’1] ;

1 1
Zy=Vy+ 3 (W3, W] + 6 [Wo, Uy, W4]
1 1 1
Zs = Vs + — [V, U] + o [W3, Wo] + — [[¥3, ¥y], U]
4 3 12
SRS PR A ARARS
oq Y2 W2, ™1 oq WY2 ¥l ¥, Wl
Note 5.28 The explicit formula of Goldberg (see [33]) for the Hausdorff series gives the

decomposition of ®, on the basis Z7.
The specialization of m,(q) for ¢ = 0 seems to be the following:

Conjecture 5.29 For every n > 1, one has

Zn

5.6 Other expansions
5.6.1 S,((1—q)A) and A,((1— q)A)

Using the quasi-determinantal expressions given by Proposition 5.5, or the corresponding
g-integral formulas, we obtain :

Proposition 5.30 One has

Su((1=q)A) = > (=)D g™ (1—¢") S1(A), (105)
[I|l=n
Su(A) = Y i S'((1-q)4),  (106)
Ion (1 — qh) (1 — ql1+22) . (1 — qz1+...+w)
the above sums being taken over all compositions I = (iy,is,...,4,) of n.

Example 5.31 For n =2 and n = 3,

M-y s = (1,0 D)

1-¢ —¢*(1—-q) —q(1-¢* ¢(1—q)

M(S((1—q)A),S)s = 8 1_0q2 1—0q2 :38:23
0 0 0 l—gq
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Corollary 5.32 One has

A((1=q)A) = > (1) D (1 —¢") S'(4), (107)
[I|l=n
the sum being taken over all compositions I = (iy,...,i.) of n.

Proof — This follows from (105) and from Proposition 5.3, which shows that A, ((1—
7)A) = (=¢)" Sn((1=1/q)A). O

5.6.2 U,((1-q)A)
One can also give the expansion of ¥, ((1 —¢)A) on ST(A) and R;(A).

Proposition 5.33 One has
U (1=q)A) = > (=)D (1 —g¢") L) S'(A) , (108)
where for a composition I = (i1,...,i,) of n, we denote by I(q) the polynomial of N[q|
I(q) =iy +ir 1§ Fip g TR iy g (109)

Proof — According to Corollary 4.19,
U ((1=q)A) = Uy % Sy ((1—=q)A) = (1 — q) On(1) x On(q) (110)

for every n > 1. Then, Proposition 5.8 shows that

n—1
Uo((1-¢)A) = nSu((1-)A) + Y (n—1)q" S((1-1/q)A) Su-i((1-q)4) . (111)
i=1
Let now I = (i1,...,i,) be a composition of n. It follows from (105) and of this last

identity that the coefficient of W, ((1—¢)A) on S(A) is equal to

r—1

(D) (L= g") (g™ = D7 (g oo+ dn) (L= g ) gttt
k=1

Now, a simple computation shows that

r—1
- Z (ik+1 + ...+ ir) (1 _ q—ik) q’ik+...+ir—1
k=1

1 r

— P S : PP S . _ R T o o
= D> " (g — =) F Z S (b ) = Y g
k=1 k=1 k=1

ﬁ
I

which is exactly 1(q). O
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Proposition 5.34 One has

U, ((1-q)A) = (1—q) > Cilq) Ri(A), (112)

[]=n
where Cy(q) is the polynomial of Z|q] defined by

(=" (q" [r+1]iyg +qln—r=1g) if IT=(1"n-r)

(=1)r=tgtst (g - 1) if =151 n—r—s—t) with s > 2
0 if 1T (178,14 u)
(113)
Proof — This follows immediately from relation (110) and Corollary 5.9. O

Note 5.35 The polynomials C(q) are given by the following specialization of the quasi-

ribbons :
_ Fi((1=p)x(1-q)
Ci(q) = Cpni-0 | (114)
One can prove that
; Cir(q) (=)' = [n, [nl, | (115)

for n > 1. Indeed, the (commutative) specialization A =1 —z, i.e. ¥, (1 —2z)=1—2"
and Sy(1 — 2) =1 —x for k > 1 gives for ribbons R;(A) = (1 — z)(—z)“D~1 so that

(1=¢)(1=2") =V, (1 —q)(1—2)) = (1—q) > Cr(q)(1 —z)(—2) D"
[I|=n

5.6.3 0,((1—q)A)

Let H(a,b) denote the Lie series defined by the two variable Baker-Campbell-Hausdorff
formula

H(a,b) =log (ee®) .

One can then state

Proposition 5.36 One has

a(1-gan = 3 DD o g g wan) . ()

Proof — Indeed,
(1-q)4) = log (o((1-q)Ast)) = log (o(4; gt) ™ o(As) ) = log (e~ 40 )

from which the conclusion follows. O
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Note 5.37 Corollary 5.22 implies that

i 20 g (117)

q—1 1—qm

This shows that the expansion of ¥,, on the basis ®/ is directly connected to the two
variable Baker-Campbell-Hausdorff formula. To illustrate this point, let us recall that the
expansion of H up to the order 2 is equal to

1
H(a,b):a+b+§[a,b}—|—

A simple computation based on Proposition 5.36 shows then that

gfiggfglé2:=(l——q”)®754> %’Eif Mn?iz)[é”‘xf”’¢i@4ﬂ_k'”

®u(4) 1A (@ -

— (1 —a™ - \g—=9 )

(1=q") ==+ Z;

Using now relation (117), we get the Lie expansion of ¥, (A) on the basis ®'(A)

o (s (A), Dy(A)] + ...

n/2] 9

Un(A) = ) + Z [@—i(A), Ri(A)] + ...,

22 2i(n — 1)

the terms of higher order of H giving the terms of higher order of this Lie expansion.

5.6.4 Ri((1—q)A)

The decomposition of R;((1 — ¢)A) on the basis (R;), or, which amounts to the same,
the internal products Ry * R» ,,_r), can be deduced from a result of Blessenohl and Laue
[5]. To state it, we need the following definitions.

For any two compositions I, J of n we define an integer b(/, J) € NU{—o0} inductively
by b(0,0) = 0 and

b(I,J) if k=1

b(kl’lj):{b((k—l)[,J)+1 iftk>2 7

oo ifk >3 - o ith—1
“kL2J>{ b(I,J) k=2 ° b“kLQJ){ -1, 0)+1 ifk>2 o (18

b (I-1D)J)+1  ifk=1landl>3
MkLLD__{b«k—lﬂ,U—DJ) if k>2and >3

These relations just mean that the matrix B, = (b(I, J)),jn (indexed in the usual way)

satisfies to By = (0) and
[ Qn Bn—l + Jn—l
Bn B (bn Bn—l >

where a,, and b,, are square matrices of order 2”2 defined by a; = (0), by = (1) and the

relations
Q. = (an—l —00 ) — (an—l + Jn—2 Bn—2 + Jn—Q)
" bn—l Bn—2 B bn—l + Jn—2 —0o0 ’
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where J,,, denotes the matrix of order 2™~ whith all entries equal to 1.

A composition I can be written as a concatenation
[=H, - Hy- - Hyu

of hook compositions H; = (1¥,1). The integer hi(I) will be called the hook length of I.
The subset of [1,n — 1] associated with the composition (¢(Hy), ((Hs), ..., ((Hpyr)) will
be denoted by HP(I). For instance, with I = (1,3,1,4,2)

one has hi(I) =3 and HP(I) = {4,9}.

Lemma 5.38 Let I,J be two compositions of n and let E(I), E(J) be the corresponding
subsets of [1,n —1]. Then,

1)b(1,J) # —oo iff HP(J) C ((1+ E(I)) - E(I)U(E() - (1+E())),
2) For every I, J such that b(1,J) # —oo, one has
b(1,J) = [ (1 + (E(I) = E(J) U(E(J]) = E(I))] . (119)

We also need the following lemma.

Lemma 5.39 For every compositions I, J of n, one has hi(J) + b(1,J) < n. O

The following result is due to Blessenohl and Laue [5].

Proposition 5.40 Let I be a composition of n and let 0 < k <n. Then,

hi(J)—1
RI * R(lk,nfk) = XJ: <k _( 62[7 J)) RJ ’ (120)
the sum being taken over all J such that b(1,J) # —oc. O

Set (—q)~*° = 0. As a consequence of Proposition 5.40, we obtain a closed expression
for the ribbon Schur functions of the alphabet (1 — ¢)A on the usual ribbon functions.

Proposition 5.41 For every composition I of n, one has

Ri(1—=q)A)= > 1 —" ) (=¢)""" R; . (121)
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Proof — One can clearly write

n—1

Ri((1=q)A) = R+ Su((1 = q)A) = (1 = q) >_ (=0)" R * Rye oy, -

k=0

Using now Proposition 5.40, one obtains

—_

Ri-00=0-0 % (X (N5 5) o) R

=0

3

Ed

hl(J)—1

_ (1 —C]) Z (_q)b(I,J) ( Z <hl(l]]2— 1> (—q)k) R,

k=0

_ Z (_q>b(I,J) (1 . q)hl(.]) RJ ’
J

since one always has hl(J) + b(I, J) < n according to Lemma 5.39.

Example 5.42 For n =2 and n = 3, one has

M(R;((1-q)A), Rr)2 = (_ql(l_—qq) _q1<1—_qq>> ’

1—q 0 , —g(l_q) q2(1_q>
M(RA(1-g)A) Roa = | 020 e, om0 T
¢*(1-q) 0 —q(l—¢q) 1—¢q
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6 Symmetric functions of the alphabet A/(1 — q)

To define the noncommutative alphabet A/(1—¢), one has to choose a total ordering on the
commutative alphabet {1, ¢,¢?,...}. This is done in such a way that the transformations
A— (1 —g)Aand A — A/(1 — q) be inverse to each other.

6.1 Complete functions

Let X, denote the alphabet X, = {1, ¢, ¢, ..., ¢", ... }. We totally order it by setting
<< ... <@ <qg<.

According to Section 4, we can define the complete symmetric functions of the alphabet
X, A (that we shall rather denote here by %q) by its generating series as follows.

Definition 6.1 The generating series of the complete symmetric functions Sn(lA%q) of the
alphabet %q s given by

(1 il 7 nZ:O S . q ;}j[o oty = ... o(@Pt)o(Pt)o(qt)o(t) . (122)

These symmetric functions are clearly noncommutative analogs of the commutative
complete symmetric functions of the alphabet %q.

Note 6.2 Relation (122) shows that o(A/(1 — g);t) is a product of group-like elements
for the coproduct A. It follows that o(A/(1 — ¢);t) is itself a group-like element for A.

That is,
A

ZS’L ®Sn z(l_q

A(Sn(
( 1—q P 1—q

) - (123)

We now give an expression of Sn(%q) in terms of ribbon functions. To this purpose,
let us introduce the noncommutative symmetric functions K, (q) defined by

> " Ry(A) (124)

[I|=n

where maj (I) denotes the common major index of the permutations in the descent class
corresponding to R;. As shown in [12], one has the following formula.

Proposition 6.3 For every n > 0, one has

Sl (125)

1—q
where (q),, denotes the product (1 —q) (1 —¢?) ... (1 —q").

One can also find in [12] the explicit expansion of Sn(%q) over the basis S’ of non-
commutative complete symmetric functions.
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Proposition 6.4 For every n > 0, one has

Su(— A ! 126
ST ugn (I=q7) (1 —gr*2) ... (1 —ghtti) (126)
where the sum is taken over all compositions I = (iy,...,1i,) of weight n. O

Let us now consider the automorphism (3, of Sym defined by

A

ﬁq(sn(A)) = Sn(iq

)
for all n > 0. Applying (3, to (106) shows that

Fq(Sn((1 = q)A)) = 5n(A)

for every n > 0, therefore justifying the claim that the transformations A — (1—¢)A and
A — A/(1 — q) are mutually inverse.

Using the automorphism (3,;, one can translate all the results obtained in Section 5.6
in terms of symmetric functions of the alphabet A/(1 — ¢q).

Proposition 6.5 For alln > 1,

Su(A)=(1—=q)( > (=)D g [ir], Sl(fq)) ; (127)
[I|l=n
the sum being taken over all compositions I = (iy,...,i,) of n.
Proof — This formula is just the image under 3, of the identity (105). O

It is also interesting to have the expression of S, on the basis K’(q) of Sym which is
defined as usual by

K'(q) = Ki(q) .. Ki, ()
for every composition I = (iy,...,1,).
Corollary 6.6 For alln > 1,

1 n—1

Sn(A) = (=)D gnie | T K'(q) , (128)
( (@)n—1 |Iz::n iy o1yt — 11 (9)
the sum being taken over all compositions I = (iq,...,i.) of n.

Proof — This is a consequence of the last proposition and of the following relation:

A 1 n—1
)= . . - K'(q) .
- q (q)n—l Ly ee ey lr—152r 1 q

(1—q")S%(
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6.2 Klyachko’s idempotent
Using rather K, (q), one can rewrite (123) as

A =3 1] KoKt

It follows in particular from Theorem 3.1 that K,(q) is a Lie quasi-idempotent for every
q such that
7],
i

q
for all i € [1,n — 1]. This is the case when we take ¢ = ( a primitive n-th root of the
unity. To obtain an idempotent from the quasi-idempotent K,,(¢), we need the following
lemma ( [2], see also [12]):

Lemma 6.7 Let ¢ be a primitive n-th root of unity. For every n > 1, one has

Since (()n—1 = n, the lemma shows that the element

0(C) = = K(0)

is a Lie idempotent. This element has been introduced in [17], and is usually called
Klyachko’s idempotent.

According to the results of Section 3.4, the relation between K, (¢) and Klyachko’s
idempotent suggests to introduce for every n > 1 the family £, (K;q), A being a partition
of n, defined by

Loy yomrge [ 70 K. 30

(Q)n—l O’(]):L i17-”7ir—17i7~_1 q

EA(KEQ) =

the sum being taken over all compositions I which are permutations of .

Example 6.8 For n =2 and n = 3,

Ey(K;q) = 1—1(] Ks(q) , Eu(K;q) = % K'(q) ,
E3(K;q) = = C])El — 7 Ks(q) ,
Ep(K;q) = a _q;(ql 7 K*(q) + (1:qq)2 K"(q), Em(K;q)= (11])2 K'(q) .

The elements E,(K;q) are constructed by the same process as in Section 3.4 from
formula (128). In particular,

Sn(A) = Z EXK;q) .

It follows that when ¢ = ( is a primitive n-th root of unity, the F(K;() form a complete
set of orthogonal idempotents for the internal product (and thus provide a decomposition
for the descent algebra ¥, with coefficients in the cyclotomic field Q(()).
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6.3 Other symmetric functions

In this section, we give some explicit formulas for the different noncommutative symmetric
functions of the alphabet A/(1 — q).

6.3.1 A (A/(1—q))

Proposition 6.9 Forn > 1,

M= 2 e ST (131)
L q B = (1 — qil) (1 — qi1+2'2) L (1 _ qi1+...+ir)
Proof — One has
A A
1—gq =q 1—g¢ .
Hence we get
A A
M=) =M Ma 1)
or equivalently
A
o(A;—t) )\(?qﬂf) = \q i 0
It follows that
@ DA = 3 (1) S A) A1)
n]_—q =1 ? n—zl_q ,

which is a recursive definition of An(ﬁ). An induction based on this last formula imme-
diately shows that the coefficient of An(ﬁ) on ST with I = (iy,...,i,) is equal to

(—1)r (_1)n—z‘r+(r—1) (—1)m+r

" —1 (L—gi) ... (1—gut-Fir1)  (1—gi)... (1 —gat-tir)

as desired. O

As a corollary, we can explicit the substitution ¢ — 1/¢ on symmetric functions of the
alphabet lqu.

Corollary 6.10 Let F(A) be a noncommutative symmetric function. Then,

— (@(F(g-2

F(—) q—
a—1/q l=q

— DI (132

Proof — 1t suffices to prove the result for complete functions, and using Proposition 6.4,
one can write

S ( A ) q_maj (I) SI
1=y, 2 A (—ghR) L (L g
(=1)" I A\
=q" . — — — ST ) =(-1D)" Ap(¢g—) ",
( |I|Zn (1—g) (1 —gntez) .. (1= ghtet-tr) ) = 1" A 1— q)
according to Proposition 6.9 whence the result. a
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6.3.2 U,(A/(1-q))

The following formula leads to a new interesting family of Lie idempotents.

Theorem 6.11 The noncommutative power sums of the first kind of the alphabet A/(1—
q) are given by

A 1
=)=
q

, ( .S (=ptt i 0-("Y) Roa) (133)

Proof — Note again that one has

A A
—=q— D A.
1—gq ql—q69

It follows therefore from Proposition 4.2 that

A A
Y=gt = a(A;t) 7 (g oot T,
from which we get
At A 1) = A t)o(A;t At At
0( ) )1/}(?(]’ )_¢(q?q’ )U( ) >+U( ) )¢( ) )
:¢(Qfat)U(A;t)+d_U(A;t)~
That is,
n—1 A n—1 A
nSy(A) = Z Si(A) \Ijn—z(f) - " n—l(f) Si(A) (134)
=0 q =0 q

for all n > 1. This can be rewritten as

() = o (18 5 UGE ) S = T S )

which is a recursive definition of the functions ‘Iln(lA%q). Hence relation (134) is a char-
acterization of these functions. To prove the theorem, it is therefore sufficient to show
that the functions defined by (133) satisfy (134). Hence, from now on, we suppose that
\Ifn(ﬁ) is given by (133) and we shall check that (134) holds.

First, the coeflicients of R, (A) in both sides of (134) are equal, since

n—1 n—1 n—1 _
1 1 1-gq
n= - — q - = -
P qn—z ; qn—z ; 1 _ qn—z
Let now I = (iy,...,1,) be a composition of n distinct from (n). Let us denote by a;
the coefficient of R; in

n—1 A
i=0 q
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In the same way, let us denote by b; the coefficient of R; in

n—1 o A
Zq \I/n—z(fq

1=0

) Si(A) -

To establish (134), we must show that a; = by under the previous hypothesis. But, using
the multiplication formula for ribbon Schur functions, it is easy to see that

i1=1 gmai (N—(r—1)i—(}) (—1)! g (D—r—1)i—("3"4) (—1)2
— i — i1 + 1 _ gn—i1 -1
=0 1—g¢q [n { ] q [n 1 ]

ar =

r—1 r—2

q q

In the same way, one has

b — maj(I)—(5 r— maj (I)—(n—i,)— r-1 r—
S L GV PR L I G
T 1— g {n—z’—l} 1—gn—ir {n—z}—l}

r—1 r—2

q q

Observe now that we can write
ar = (—1)" g™ (n-(%) a(iy,n,r) and by = (—1)"" g™ (n-(3) b(ip,m,r)

where we set

k=1 —(r—1)i r=1)(1-k
(ko) — g =D 1 _q( )(1=F) 1
o g [n—i—l] 1—gn*k {n—’f—l} ’
r—1 1, r—=2 1,
k—1 n—i r—1
B q 1 q !
b(kz,n,r)— 1220 1_qnfz |:n—Z—1:| 1—(]”*’9 |:TL—]€—].]
r—1 r—2

q q

The proof is therefore reduced to the verification that a(iy,n,r) = b(i,,n,r). To this
purpose, we first give a lemma showing that a(k,n,r) and b(k,n,r) do not depend on k.

Lemma 6.12 For all k,n,r > 1, one has

a(k,n,r) =a(l,n,r) and b(k,n,r)=>b(1,n,r). (135)

Proof — 1t is sufficient to show that
a(k+1,n,r)—a(k,n,r) =0 and b(k+1,n,7)—b(k,n,r)=0

for all £ > 1. Note first that a(k + 1,n,r) — a(k,n,r) is equal to

—(r—1)k 1 r—1 1 — gk
q i N q B q )
1—qgn {n—k—l] [n—kz—l} (1- nkl)[n—k—ﬂ
r—1 1, r—2 |, 1 r—2 |,
qf(rfl)k
= (@Dntr (@ra (L=¢ )+ (A =¢"" ) = (1-¢""))=0,
(Dn—t



as may easily be checked. On the other hand, one can compute b(k + 1,n,r) — b(k,n,r)
which is equal to

qnfk B qrfl qrfl

Ol e R e B L Bl

_ (Q)r—(zsqzz—k—r (qnfk (1 . qrfl) . qrfl (1 i qn7k> + qrfl (1 B qnfkfr+1>) -0 .

This ends the proof of the lemma. a

According to the lemma, it is now sufficient to check that
a(l,n,7) =b(1,n,r) .

But this reduces to

1 1 _ qn qr—l
o117 =21 . =11 [n—Q}
A=) [F20] e [P0 a-e [P0 asen [TT55]
itself equivalent to
1 B 1 — qrfl
n— 1} N n—27 "
- |12

{r —1 ‘ r—2 ‘

which is obviously true. O

Note 6.13 Using this theorem, one can get rather tricky g-identities from Newton’s for-
mulas. For instance, the relation

is easily seen to be equivalent to the identities

n—1
mai (0+("Y)) = N (L)1 (n — ) m g ) +mai (L)

q

(Q)E(I)—l (Q)n—Z(I) q

~
Il
o

for any composition I of n, where I; (resp. I7) denotes the composition of j associated to
the diagram formed by the first (resp. last) j cells of the ribbon diagram of I.

Note 6.14 Proposition 6.11 shows in particular that

ing (1= ¢") W () = B(4) (136)
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6.4 A one-parameter family of Lie idempotents

The inverse image under « of the noncommutative symmetric function ¢, (¢q) defined by

1 (_1)2([)71

SOH(Q) = - Z

" 1=n [E(nf)_—llh

is clearly a g-analog of Solomon’s idempotent el!l (the first Eulerian idempotent). The
properties of the corresponding element elll(g) of the descent algebra have been discussed
in [8]. We will show how to derive them from the results of the preceding section. Ac-
cording to Proposition 6.11,

. V4
i 0-("D) poa) (137)

1—q" A
S

- 1_q). (138)

©n(q)

It follows in particular from this relation that ¢, (¢) is a primitive element for A and hence
encodes a Lie quasi-idempotent according to Theorem 3.1. In fact, ¢, (q) is actually a Lie
idempotent as shown by the following proposition.

Proposition 6.15 For alln > 1,

A n
U, (—)x ¥, = v, . 1
(o)W = (10)
Proof — One has
A A d A
—:t Ast) = p[AN(——; —t —o(—t 1 At At 1
VT 05 (A ) = WA= © G olmit) = (L9 6(Aie) + v A1) @ 1)
d A
_ . A:
GOt s U
from which we get
A
v v, = v, . 14
(o) v =nS, (5w, (140)
To compute this internal product, observe that
1—q" — ,
LA spAt) =pn] Q o(Aigt) x Y 10.. . @1edAlelo...]
l—gq 0<i<N—1
N—-1 ] 1 _qN
ST @ =Y L,
n>0 =0 n>0 q
Taking the limit for N — oo, we obtain
A 1
n \Iln = 7\Iln )
S (o)< U=
and the required identity follows from (140). O
Observe now that (137) and (138) imply that
1 1
L0)==0, o, (1)=-a, . 141
u(0) =~ U (1) =~ (141)

The specialization of ¢, (q) at roots of unity is given by the following well-known lemma.
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Lemma 6.16 Let ¢ be a primitive n-th root of unity. For everyi € [0,n — 1], one has

" =yt (142)
¢
Proof — Let us give a proof using symmetric functions. It is a classical result (see
[21, 19]) that
1—q¢ ! i —
ACEE L 1)
1—gq o,
for i € [0,n — 1]. It follows that
AT =gl [ 1] 2y [
l—q t q g q

Taking now ¢ = (, we find

n—1 ) n—1 ) ) (i+1) n—1

1—|—$—|—+.’L‘n71: (x_C'L): xnflfz(_lyc 2 ]

i=1 i=0 g ¢

whence the result. O
Thus,
1

when ( is a primitive n-th root of unity. Hence we have proved

Proposition 6.17 The family v, (q) is a family of Lie idempotents interpolating between
Dynkin’s idempotent %\Ifn (obtained for ¢ = 0), Solomon’s Eulerian idempotent %(I)n (0b-
tained for ¢ = 1) and Klyachko’s idempotent k., (¢) (obtained for ¢ = ¢ a primitive n-th
root of unity).

Moreover, one can check that

1

lim () = — 0%
Jm en(q) = 0

It is now possible to construct from these ¢g-idempotents, g-analogs of the Garsia-Reute-
nauer idempotents, and in particular of the Eulerian idempotents.

Example 6.18 Setting for short Ey(q) = Ex(pn(q)), we have for n = 3

1
E(3)(C]) = 301+ q) [(1+¢q)Rs — qRo1 — Ria + (1 + q)Ry11]

601+ q) 314 q)Rs — (1 — q)Ro1 + (1 — q)R1 — 3(1 4 ¢) Ry

1
6 [R?) + Roy + Ry + R111]

o8



and for n =4

1

Euw(g) = m [34 — ¢*R31 — qRyy — Ry3
+¢*Ri12 + qR121 — (1+q+ q2)R1111}
1
E@nlg) = [401+ 20+ 2¢* + ¢*)Ra + (1 + 3¢ + 2¢*) Ry,

12(14+¢)(1+ g+ ¢*)

—3(1+ ¢+ ¢* + ¢*)Roa + 3+ 4¢ + ¢* — 2¢°) Rony
+(2 43¢+ ¢*)Riz — (1 +5¢ + 5¢* + ¢*) Ry

(=24 ¢ +4¢° + 3¢°) Rusa + 4(1 + ¢ + ¢ + ¢*) R

1
Eon(q) = 3 [34 — R31 + Ryp — Royy — Ry
+Ri91 — Ri2 + Run]
1

E(211) (q) = 12(1 + Q) [3(1 + Q)R4 + 2qR31 + (1 + Q)Rzg - 2R211
+2qR13 — (1 + Q)ngl — 2qR112 — 3(1 + Q)RHH}
1 1

E(1111)(Q) = gt = — Z Ry .
4] 24 =
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7 Symmetric functions of the alphabet %A

In the noncommutative case, there are two natural manners to define symmetric functions
of the alphabet ((1 —¢)/(1 — ¢))A. Indeed such a notation can mean either

1_q§<(1—t))A or ((1—75)&1_(]

( YA .

It appears that these two definitions are interesting. We devote this section to the study
of the first case, the second case being studied in the next section.

7.1 Complete functions
Definition 7.1 The generating series of the complete symmetric functions of the alphabet

|117_qt| A is given by

-t
1—q!

= Y Sl 1_t A)z" = ﬁ (MA; —¢'tz)o(A;q' x)) . (144)

i>0 1 - Q| i>0

o

Proposition 7.2 Forn > 1, one has

_ 11 _ 01 12 __ t1+102 Gp—1 __ l1 e Fle—1 i
i tA)_Z(_l)e(I)(t ") (t2—g"t2) . (t =g )(E=1) o

= q| = (I—g1) (1 —grt2) ... (1—gnt-tr)
(145)
Proof — By definition,
11—t 1—t¢
_— 7A 1—t)A.
R (1—1)
It follows that
Al g0y = o ot Ay o((1 - ) 4c)
o jx) = ; —1)4;
1—gq] 1 —¢|
from which we deduce the relation
1—t n 11—t
S, (——A) = q'S; A)S, (1 —=t)A) ,
(=g A= X a8 Sl -04)
which is clearly equivalent to
n |1 —t = i |1 —t
1) Su( A) = Y g S A) S, (1 1)4) (146)
11— Q| i=0 1- Q|

Using now Proposition 5.30, we deduce from this last equality that

=5 5y msd=

i=0 |J|=n—i 1—gq|

11—

(1—q™) Sp A) ST(A). (147)

60



Reasoning now by induction from (147), we get that the coefficient ar of ST in Sn(ff_qt' A)

with [ = (i1,...,1,) is equal to

11—t tr—1
ar = (—1)’”—11 S b(iy, ... i) = (—1)’“1 o by, ..., i)
where we set
r—1 (tzl _qzl) L (tir,1 _qi1+‘..+ik,1) (tlk _ 1)

b(in, .- -y ir) = Z qi1+"'+ik piks1tetiz—1

k=0 (1—gin) ... (1= gint-tir) ’

this sum being equal to 1 for » = 1. The conclusion will result from the following lemma.

Lemma 7.3 Let (i1,...,1i.) be an arbitrary composition. Then,

(til _qh) (tiz _qilﬂ'z) o (ti”"*l _qi1+...+ir,1)

b(il’ Tt ,Z}) = (1 _ qi1) (1 _ qi1+i2) . (1 — qil"l‘---“l‘irfl) ’

(148)
this product being equal to 1 for r = 1.

Proof — One can check that
(til _qil) o (tir—l _qi1+...+ir—1) (tir _ 1)
(1—q) ... (1 =gt '
By induction on r, it is therefore sufficient to verify that one has
(til _qi1) o (ti'rfl _qi1+---+i7‘71> (til _qi1) o (tirfl _qi1+---+i7‘71) (tir _ 1)
(1—qn) ... (1 =gttt (I—gn) ... (L —qrt-tr)
(th _qil) L (tir _qi1+...+ir>
(1—gn) ... (1—gnut-tir) "

b(it, ... ipp1) = b(iy, ..., 0, ) 7 4+ gt

tir _|_ q11++l'r

O

One can also give the expression of Sn(‘llf_qt‘ A) on the ribbon Schur functions. To this

purpose, we need some definitions. Let I be a composition. One can write in a unique
way
I=H,>Hy> ... > H,

where every H; = (1*y) is a hook composition. The hook decomposition of I is then the
sequence HD(I) = (Hy, Ha, ..., H,). The hook composition HC(I) associated with [ is
the composition

obtained by taking the lengths of the hooks involved in the hook decomposition of I. Let
for instance I = (3,1,1,4,2).
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Then its hook decomposition and composition are respectively equal to
HD(I) = (2,1°3,1'2) and HC(I) = (2,6,3) .

We also associate with every composition I a polynomial H P;(t,q) that we call the hook
polynomial of 1. This polynomial is constructed in the following way :

— draw the ribbon diagram ©; of [;

— reading ©; from left to right, write a cross in the first box of O and in the first two
boxes of each hook (beginning with the second one) of the hook decomposition of
I

— reading again O; from left to right, number all boxes of ©; from 0 to |I| — 1, without
writing the corresponding number in a crossed box.

We obtain in this way a sequence (i1, 4s, . . . , i,,) of positive integers in [1, | /| —1] numbering
all non-crossed boxes of ©;. The hook polynomial H P;(t, q) is by definition the product
of the factors
g —t or 1—¢q%t

according to whether the integer ¢; lies in the column part or in the row part of a hook
involved in the hook decomposition of I (the box located at the intersection of the row
and the column of a hook is here considered as belonging to its column part). To give
an example, let us consider again the composition I = (3,1,4,2). The above procedure
leads to

10

and the associated hook polynomial is

HPyp(t,q)=(1—qt) (" =) (=) (1 =" ) (1 —¢"t) (1 — ¢"°¢) .
We can now introduce the noncommutative symmetric function K, (¢, q).
Definition 7.4 For every n > 0, we define K, (t,q) by setting

S @l (HOW) (1 gy HEW) (g — y(HCUN-V P (g q) Ry(A) . (149)
[I|=n

Note 7.5 Observe that one has the specializations

K,(t,1) =1 =" > Ri(A)=(1-1t)"(S)", Ku(l,q)=0. (151)
|T]=n

We can now give the decomposition of Sn(% A) on ribbon functions.
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Theorem 7.6 For everyn > 1, one has

where (¢), = (1—¢q) (1 —¢*) ... (1 —¢").
Proof — Using formula (146) and Proposition 5.2, we get
11—t o -t nit L
(1-4q") Sn(?lzl )=(1—1) go q Si(?q’ A) ( kgo (=t)" Rurppii) - (153)

Using this relation, we shall prove the theorem by induction on n. Let I be a composition
of n and let

HD(I)= (Hy,...,H._1,1%y)
be its hook decomposition. Let us set m = n —z — y. Relation (153) and the product
formula for ribbon functions show that the coefficient a; of R; in S, ( t‘ A) is given by

1t

where b; is equal to

T maj (HC(Ipy+k)) . Z(HC’(Im+k)) o é(HC(Im+k))—1
q (1-t) (q—t)

HPIm+k (tv q) qm+k (_t)x_k

k=0 (Dt
y—1 maj (HC(Im+z+k)) 1 —1 E(HC(Iererk)) —t Z(HC(IWH»erk))*l
q q m+z
+ Z ( ) ( ) HPIererk (t,Q) q + +k7
=1 (Q)m+m+k

I}, denoting the composition whose ribbon diagram consists in the first & boxes of the
diagram of I. We shall distinguish two cases. Suppose first that r = 1, i.e. that I = 1% y.
In this case, by = b(x,y) where

1-t
(<q) i HPl””,k(t q) qurk :
x4+

The evaluation of this expression will be given by the following two lemmas.

b(x,y) = T4 Z

y—1
e HPlk(t Q¢ (=) + >
k=1

Lemma 7.7 For every x > 0, one has

z = (1= o k-1 k(_ m—k:(q_t)"'(qx_t)
—t)* 4+ ;;1 @ qg—1) ... (q t)q" (—t) . ) (154)

Proof — Let a(x) denote the left-hand side of relation (154). We have

(q—1) ... (qx_t>q$+1‘

Then, the lemma follows by induction on z since

z+1 _ t)

(q_t> (qx_t) z+1 o z+1\ (q_t) (q
(LC + 1) (Q)x—i-l (<_t) (1 —q ) + (1 t) q ) - (Q)x+1
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Lemma 7.8 For every x >0 andy > 1,

. T L—tg™™) .. (1 —tg=tv!
_ q“)...(l—tq”“ 1)q+k:( ) ( )

m+k: (q )z+y—1

= (155)
Proof — Denote by a(x,y) the left-hand side of (155). We have
(1-1)

(Q)z-i-y

a(x,y+1) =a(x,y) + (1-— tq”l) (1= tq”y_l) Y.

The lemma follows by induction on y since

(1—tg™) ... (1—tg™ )  (1—1t)
@y T @y
(1—tg™™) ... (1 —tg=v )

- e (L4 (1) =

(1—tg™™) ... (1 —tg" v gty

(1—tqg™h) ... (1 —tqg™)
(q>x+y '

O

It follows now from Lemmas 7.7 and 7.8 applied to the defining relation of b(z, y) with
our general induction hypothesis that

(q—1t) ... (¢* =) (1 —tg®) ... (1 —tg®t¥ 1) _ HP- ,(t,q)
(Q)m+y—1 <Q)x+y—1

b(z,y) =

from which we immediately get

(1—1t)HPi=y(t,q)
(q>z+y

arzy =

as required. This ends therefore the proof in the case r = 1.

We now consider the case r > 1. In this situation, one has > 1 and

¢" (=t)*  (L—tgM) g™ (=)
(@)m i (@)m+1

br=¢""" (L —t)"" (q—t)" P H(t,q) (

)

“ HP t? mtk —t z—k U HP, t, m-+z+k
+qM (1 - t)L (q - t>L_1 ( Z Im+k( q) q ( ) + Z I’m+z+k( q) q

k=2 (Dt k=1 (Dmtatk )

where we set M =maj(HC(I)), L =(¢(HC(I)) and H(t,q) = HPy,,. A simple computa-
tion allows then to rewrite this last expression as

br=g¢" (1=t (g—0)"" ( H@’(Z)):;f)z . O D Hp,, g g (~t
I (1—1)

HPIm+z+k (t’ q) qm+m+k ) .

+Z(

To finish these calculations, we need two more lemmas.

Q)m+a:+k
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Lemma 7.9 For every x > 1, one has

t rx—1 xX
<Q)m+1 k=2 m+k
qm+2 _ t) o <qm+x _ t)
- (@)m+ ' (156)
Proof — Let a(x) denote the left-hand side of (156). We have
1) = —t (1 - t) m+2 " m+z ¢ m+x+1
ala+1) = afe) (~1) + 7t (g7 1) L (7 <) g
The lemma follows now by induction on x since one has
g —t) (g -t 1—t) . - S
W20 @y W20 gun gy (g gy e
(@)m+a (@)mtat1
(qm+2_t) (qm+x_t) m+x m+x
= T (=) (1 =g + g™ (1= 1))
(qm+2 _ t) L <qm+:v+1 _ t)
<Q)m+x+l 7
as required. O
Lemma 7.10 For every x > 1 and y > 1, one has
~1
yz: 1 — t) . tqm-i-ac-‘rl) o (1 . tqm—i-z-i-k—l) qm+z+k
(Q)m+x k=1 Q)m+x+k
B (1 _tqm+x+1) (1 —t(l _tqureryfl) (157)
(Q)m—i-z-i-y—l '
Proof — Let a(z,y) denote the left-hand side of (157). One has
_ (]‘ — t) 4 mtz+l 1 — m4z+y—1\ , mt+zty
alz,y +1) = a(z,y) + ~—— (1 —tq ). (I—tq )4 :
(Q)m+z+y
The lemma follows now by induction on y since
—tgmtethy (1t gmtetyl 1—t
(1 tq ) ( q ) + ( ) (1_tqm+x+1) (1_tqm+x+y71) qm+x+y
<Q)m+z+y71 (Q>m+x+y
_ (1 —tgmtetl)y . (1 —tgmtetvl) (1— gm+o+y 4 gmta+y (1 — ¢))
(@) m+aty
B (1 _ tqm+a:+1) o (1 _ tqm-i-x-‘ry)
(@) m+aty ’
as required. O
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It follows then from Lemmas 7.9 and 7.10 and from the expression of b; already
obtained that

by = qM (1—t)L_1 (q—t)L_l H(t7Q> (qm+2_t) (qm+x_t) (1_tqm+$+1) (1_tqn_1> .

(Q)nfl

Using now our general induction hypothesis, we deduce from this last expression that

ML=t (q—t)"" HP(t,q)

(@)n 7

as required. This ends therefore the proof of Theorem 7.6. O

ar =

Example 7.11 For n =2 and n = 3, we have

11—t (1 =t)(I—tq)Ra(A)+ (1 —t) (g —t) Ri1(A)
ST 4 = -0 ’
Lot (L=t)(1—tq)(1—tq®) Ry(A) +q(1— )2 (q— ) Ru(A)

So( g = T=0 - 1-¢)

L= =1)0- tq*) Rio(A) + (1 —1) (¢ —t) (¢* = t) Rin(A)
(I-q)(1-¢*)(1-¢% '

7.2 FEulerian idempotents associated to Dynkin’s projectors

As can be observed on Example 3.20, the Eulerian-like idempotents E*/(¥) associated
by the construction of Section 3.4 to the sequence (V,,) (which are also the specialization
q = 0 of the ¢-Eulerians E*l(q)) appear to possess an interesting generating function.
Its expression on the ribbon basis can be obtained by an appropriate specialization of
Theorem 7.6.

Theorem 7.12 Let x be an indeterminate. Then,
1—q"
[1—q

> o ) = lim 5,y (158)

Proof — By definition, one has

a(l_qx|A; 1) - ﬁ o ((1-q9)A; ¢")

I1—gq k>0

maj (I)

-y > ! S'((1 - ¢%)A)

r>0¢(I)=r (]_ — qh)(]_ — qi1+i2) e (1 _ qi1+"'+iT>

1—q¢*\’ gl () )
r>04(1)=r —dq [ll]q[ll + Z2]q s [ll + -+ Zr]q
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and for ¢ — 1, this expression tends to
I
3 0 v
T i1(i1 +dg) -+ (11 + -+ 4p)

)

as required. O

Taking now the limit for ¢ — 1 in Theorem 7.6, we arrive at the following description
of the generating function
E,(V;x) =Y " EM(W) .
k

Associate to a composition I its hook decomposition and the sequence HC(I) as in
subsection 7.1, and define a polynomial H;(z) as the product of the factors

T —1 or T+

according to whether the integer ¢; lies in the column or in the row part of a hook involved
in the hook decomposition of /. For instance,

Hiipo = (z+ 1)(x — 4)(x = 5)(z + 6)(x + 7)(z + 10) .
Thus, we obtain :

Corollary 7.13

1
E,(V;x) = o > gMHCD) (g — )HOUD=L (1) - R
" |I|=n

7.3 A t-analog of Klyachko’s idempotent

Another family of Lie idempotents can be obtained from Theorem 7.6. These results
obtained in collaboration with G. Duchamp, have been announced in [§].
Using the same argument as in Section 6.2, we obtain

M) =3 1] Kitae Kiita).

=0 q

It follows in the same way that K, (¢,() is a Lie quasi-idempotent when ( is a primitive
n-th root of unity. The normalization factor of K, (t,() is given by the following result.

Proposition 7.14 For everyn > 1, one has

Kn(t,q) * @ = () (1 = 1") D, . (159)

Proof — Let sy(t,q) be the series defined by
sv(tq) = (M=¢" ) o(¢" 1) A(=¢" ) (¢ %)) ... (A(=t) (1)) .
Then one has

sn(t,0) % @ = [N ) @ 0(g" ) @ ... @ \(—1) @ 0(1)) « A2 (D)
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N-1

r

(@)1 () () ) = (1= ) ()

using the primitivity of ®,, and the fact that A, x ®,, = w(P,,) =
limit for N — +00, we obtain

(q")") P,

—~ I

—1)"1 ®,,. Taking the

1—1t 1—-¢
o A)x D, = P, .
1—gq 1—qm
The result follows now from this equality and Proposition 7.6. O

As a consequence of the last proposition, we see that the element

1
n(1—1t")

is a Lie idempotent when ( is a primitive n-th root of unity. Note that this idempotent
reduces to Klyachko’s idempotent for ¢t = 0.

Fin(t, C) = Kn(t, C)
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8 Symmetric functions of the alphabet %A

8.1 Complete functions

The alphabet L t' A is defined by setting

1—t| . A L1
—— A=(1—-1)x =((1—-17)x

This leads to the following definition of complete functions of this alphabet.

JA .

Definition 8.1 The complete functions of the alphabet L= t‘ A are defined by the following
generating series :

1—

|

o(m——A):= > S H MA;—tg'z) [] o(4:d' ) . (160)
1- q n>0 |1 - q i>0 i>0
Proposition 8.2 For everyn > 1, one has
-1 i 0-("9) n—4(1) ()~
Sn(—— A) = — (t—1) H (tg" — 1) H (t—q") Ry, (161)
[1—gq T|=n (Dn i—1 i1

where we set (¢), = (1—¢q) ... (1 —q").

The proof, which proceeds by induction as in the preceding section, is left to the
reader.

An interesting consequence of Proposition 8.2 is the obtention of another t-analogue
of Klyachko’s idempotent. Using the same technique as in section 7.3, one can prove that
the element

K, (t,¢)
"t () = =222 162
R (162)
where we set
- z(z) —t) . en-
K(t,q)= > g™ H (tg" — 1) H (t—q" (163)

[|=n
is a Lie idempotent when ( is a primitive n-th root of unity. Clearly, this idempotent
reduce to Klyachko’s idempotent for ¢ = 0.

1=q"] 4
q

8.2 Symmetric functions of the alphabet * |1

The definition of complete functions of the alphabet %q suggests to define complete

functions of the alphabet =L~ A as follows, in order that =24 — A/(1 — q) for n — oo.
q q

Definition 8.3 The generating series of the complete symmetric functions of the alphabet
((1—¢")/(1—q))A is given by

0(11_ qq A;jt) Z Sh( T4 At =o(A;q" M) .. o(A;qt) o(Ast) . (164)
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We now restate our definition using basic operations on ordered alphabets.

Proposition 8.4

11‘_‘1an: (1- ") % lfq — (1= g") % 1iq)A: 1|1__q2| A (165)
Proof — For k > n, let us set
ar(t) = o(A; ") o (A g ) o (A5 )
It is easy to check that
)= Y ¢ ST Ay (166)

i>0 —dq

for every k > 0. On the other hand, we clearly have

A H or(t) = ... o9(t) o1(t) o0 (t) .

1—q k>0

Using relation (166) and the same method as in [12], one obtains

A g mai () T
) = | 7 gl A)
1— q Ilz::k (1 _ qnn) (1 _ qn(11+12)) . (1 _ qn(z1+...+zT)) 1 — q

It follows from this identity and from (106) that the transition matrix from the basis
ST(A ;) to the basis ST q A) is equal to the transition matrix from the basis S7(A)
to the basis ST((1 — ¢) A) The same property holds for the inverse transition matrices.
Hence relation (105) gives

1—q" n 1 (i A
Se(o—- A =0=¢") > (DI ] S ()
q |I|=k q
and the result follows from Proposition 5.30. O
As a corollary of the proof, we have
Corollary 8.5 For every k > 0,
I—q" n L) -1 n (k—ir) I A
Silm——A)=010-4¢") > (-1)"q [ir]gn S (=—) - (167)
L=q 1=k 1=a

8.2.1 Klyachko’s idempotent again

We can now give a new interpretation of Klyachko’s idempotent.

Proposition 8.6 Let ( be a primitive n-root of unity. Then,

K.(¢) = S, (1 — "] A)

1—¢q

(168)

q=¢
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Proof — For every composition I = (iy,1s,...,1,) of n, we can write

A K'(q)
1—q¢ (@i (@i - ()i,

Hence, when I is not equal to (n), we clearly have

SY(

A 1—q"

1—q¢") S (—— = K'(q =0,
=G T @ @n @ 9
since if this case all (¢);, are different from 0. On the other hand,
A Kn(q) 1
1—q")Sh(—— = =—K,(() .
(=) (1—q) e (1= =¢) ... Q=g |_. n ©

Applying now Corollary 8.5 we find

1—qg"
S.(=—L 4

1—¢q :Kn(g)

q=C

8.2.2 Other formulas
Let X,(n) be the alphabet {1,q, ... ¢"'} totally ordered by

n—1 n—2

q  >q > ... >qg>1.

By definition, one has 11’an A= X,(n)A. It follows that
q

1 —
l—gq \T|=k

It seems unlikely that a closed formula for M;(X,(n)) can be obtained. We shall however
present several recursion relations allowing its evaluation.

Proposition 8.7 For every composition I, one has

maj (1) P(n—@([)) if () <
M;(X4(n)) —{ ! ! @ i Uh<n : (169)
0 if ¢(I)>n
where Pj(m) (q) is a polynomial of N[q| recursively defined by
P{"(q) = [m+1]s  and P 2 ¢ P ) (170)

for every composition I = (iy,1s,...,1i,) and every nonnegative integer m € N.
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Proof — By definition,

M[(Xq(n)) = Z qn1i1+...+nw ’

n—1>n1>...>n,>0

from which it follows that M;(X,(n)) = 0 when ¢(I) > n. On the other hand, when
¢(I) < n, we can write
My(Xy(n)) = g™ P g)

where Pf(m)(q) denotes the polynomial of N[g| defined by

pl(m) (q) — Z qnl i1+ nr i ] (171)

m>ni>...2ny>0

Hence it follows from this definition that Pl-(lm)( ) = [m +1],:. We can also write

m

PI(m)(q) — Z qkir ( Z qnl [T P o (P I P ) 7
k=0 m>ny1>..>nr_1>k
k| k1] plm—Fk)
11 G _ m—
— Z q ||( Z qmz1+ 11 1)_ Z q HP(zl .... . 1)(Q)-
k=0 m—k>ni1>..>n,._1>0 k=0

Note 8.8 Using (171), one can obtain other recursive formulas for P}m)(q). For instance

= 7 m—k
Z qk ! P(Z1+12)23 ..... )(q) )

and also

PI( )(Q) = 1_—(1“ (P((il-i)-ig,ig ..... ir)(Q) —q"" P(SQ,?..,“)(Q)) .
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9 Lie quasi-idempotents as Lie polynomials

The Lie elements of the descent algebra are in particular elements of the multilinear
component Lny([n]) of the free Lie algebra over the alphabet [n] = {1,...,n}. In this
section, we give explicit expansions on a basis of multilinear alternants for some of these
elements.

9.1 Left derivative

The left derivative A7* is the linear morphism of Sym defined on the basis A’ by the
relations iz ; ]
1250e05lp 3 A
=1 Adyein T I 1 =
ATLA { A (172)
We note that A7! is characterized by the following three properties :
1) Ayt is an additive morphism of Sym,

2) A7! satisfies to the property
ATV(FG)= (AT F) G + (FI) AT G (173)

for every F, G € Sym, where (F|1) denotes the constant term of F'.
3)
1 iftn=1

0 if n#1 (174)

AT A=

One can describe the action of A;* on the usual bases of noncommutative symmetric
functions.

Proposition 9.1 Forn > 1 and for any composition I = (iy, ..., i),
1
ATV S, =8, ATV, =85,= > vl (175)
I|=n—1 mu(1)
. Ri 1s i if i1 1
1 — 11—1,22,...,pr 1
AR, { : il (176)

Proof — The expression of A;*- R; (and hence of A7'-S,) is an immediate consequence
of the fact that

B @(n—1)
= (7
In particular,
AV o(t) =tolt) . (177)
On the other hand, using Eq. (173), one obtains
AT (1) = AT (1) o) = (AT M-0)) 5 o(0) + (A(=1)[1) AT~ (1)
= (1) S o)+ AT S o(t) = (1) % ol + 5 (AT o(0)



Using now relation (177), we get

At (t) = (=) —o(t) + — (to(t) = o(t) .

9.2 Multilinear Lie polynomials

Let 7 be a Lie quasi-idempotent of Sym,,. Let 7’ denote its inverse image by « in ¥,,. By
hypothesis, 7’ is a Lie projector (up to a normalization) or a Lie nilpotent. This means
that the image [,(m) of the standard word 12 ... n by n’ is a standard Lie polynomial.
That is,

Lhim)=12...n-7" € Ln({1,2,...,n}), (178)
where L1 ({1,2,...,n}) denotes the multihomogeneous component of multidegree (1) of
the free Lie algebra over the alphabet {1,2,...,n}. Let us now give an explicit description

of the Lie element [, (7).

Recall first that Witt’s formulas imply that Li»({1,2,...,n}) is a free module of
dimension (n — 1)!. It follows from this property that the family

o] =1[..[[1,02)],0()].. J.a(n)], (179)
where o describes all permutations over {2,3,...,n}, is a basis of L1x({1,2,...,n}). In
particular, every element P of Li»({1,2,...,n}) may be decomposed in this basis and

.....

this last algebra is canonically isomorphic to the Z-algebra of &,,_1, we can define a natural
mapping 7 from Li»({1,2,...,n}) into Z|&,_1] as follows : for every Lie polynomial P of
Lin({1,2,...,n}) uniquely decomposed as

one sets

o(i)=0o(i)+1
for i € [1,n — 1]. We can now describe [, () for every Lie element 7 of Sym.,,.

Theorem 9.2 Let m be a Lie quasi-idempotent of Sym,,. Then, the element 7(l,(m))
belongs to ¥,_1. One can associate with it the element 1,(w) of Sym,,_, defined by

Then, in Sym
To(m) = A7 7 (180)



Proof — Let us first introduce some notations. For z € Z[&,,_1], we denote by i?'_,(x)
the element of Z[&,] corresponding to x in the identification

where Fiz(1) is the set of permutations fixing 1. For x € Z[&,], we denote by = N Fiz(1)
the element defined by
tNFiz(l)= > (z]o)o.

ceFix(1)

Let now 7 be a Lie quasi-idempotent of Sym,, and let

™= Z air Rir + Z air Ry

1>2 1

be its decomposition on the ribbon basis. According to Proposition 9.1,

-1
Al T = Z (]JZ'[RZ',L[ .

1>2

Let us now identify the elements of Sym with their inverse images under « in Z[&,]. Tt
is then easy to see that

’izfl(Alﬁl : 7T) = ( Z ;1 Ri[ )ﬂ FZ.%(l) .

i>2
Since one always has Ry; N Fliz(1) = 0, it follows from this last equality that
i" (AT m) = 7N Fiz(l) .
The theorem will follow from this last formula, and from the following lemma.
Lemma 9.3 Let w be a Lie element in Z[&,). Then,
m = (mN Fiz(1))6, , (181)

where 6,, denotes Dynkin’s idempotent.

Proof — 1t suffices to prove the lemma when 7 is a Lie element of the form 7 = [Py, Q]
where P, and () are alternants of lower degrees, P; being the alternant containing the
letter 1. The proof goes by induction on the degree d of P;. If d = 1, we have

In this case, the lemma reduces to
T=(1Q)b, ,

which follows from Dynkin’s criterion and from an identity of Baker (see formula (1.6.5)
p. 36 of [33]). Suppose now that P; is of degree d > 1. Then we have

TN Fiz(l)=(PLQ —QP)N Fiz(l) = (PN Fiz(1)) Q .
Using again Baker’s formula, Dynkin’s criterion and the induction hypothesis, we obtain

(m N Fiz(1))0n = (P 0 Fiz(1)) Q)0n = [(P N Fiz(1))b4, Q) = [P, Q] -
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Note 9.4 Using the notations of the proof of Proposition 9.2 and identifying again non-
commutative symmetric functions with their images by «, Proposition 9.2 can be equiv-
alently restated

— yn
T="0,1,_,

(AT'-m)

for any Lie quasi-idempotent 7 in X2,,.

Example 9.5 Let us consider the Lie quasi-idempotent 7 = [y, Wy]. Its inverse image
under « is

' =a(r)=2(213+312-132—-231) = —2][1,3],2] = —2[(32)] ,

so that 7(k(m)) = —2(21). From this, one gets
To(m) = =2 A, .
in agreement with formula (180). Indeed,
r— 2 g2l 9 pA12 4 9 A2
whence AT! -1 = —2A, .
As an immediate consequence of the last proposition, we can state :

Corollary 9.6 The restriction of the left derivative AT to L(V) is injective.

Note 9.7 Corollary 9.6 can also be directly obtained as follows. It suffices to show that
| = 0 is the only homogeneous Lie element of L(¥) such that A;*(l) = 0. Let then [ be a
non-zero Lie element of L(¥) such that A7'(I) = 0. This means that

l = Z Ci1 Az AI . (182)

i+ | I)=n,i>2

Let Iy be the maximal (for the lexicographic order) composition appearing in (182) and
let 49 = n — |Iy|. Tt is then easy to see that the element A; @ A;,_; AT will appear with a
non-zero coefficient in the expansion of A(l). But this is not possible since [ is primitive
for A. This contradiction shows that [ must be equal to 0.

9.3 Decompositions on other Lie bases

We showed in the previous subsection how to decompose a Lie quasi-idempotent 7 of X,
on Dynkin’s basis (0 0y,)scriz1)- It appeared that one has

T =14 (A['7) 6, .

n—1

In other words, the encoding used for the decomposition of m € ¥, on Dynkin’s basis lies
in the descent algebra >.,,_; and can be described in terms of noncommutative symmetric
functions of Sym,, ;. This is in fact a general property.

Proposition 9.8 Let f,, be a Lie idempotent in 3, such that the family (o f,)secrizq) is
a basis of L1n(1,2,...,n). Let m be an arbitrary Lie quasi-idempotent of X,,. Then, there
exists an element s(m, f,) of ¥,_1 such that

™= Z.Z_l(s(ﬂ-y fn)) fn
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Proof — The decomposition of f,, on Dynkin’s basis is given by

Jn= Z.Z—l(Al_lfN) On .

On the other hand,
On = iy (T (fn)) fn

where T'(f,) is some element of K[&, ;]. The last two formulas imply that A7'f, is
necessarily invertible (for the internal product) and that 7'(f,,) is its inverse. Hence T'(f,)
belongs to X, 1. It follows that

T =in (A7) O =iy (A7) * T(f) fu -

Note 9.9 The above proof reduces the computation of s(7, f,,) to the inversion of A7 f,,
for the internal product.

Klyachko’s idempotent k,,(C) of order n is a Lie idempotent of ¥,, for which the family
(0 Kn((Q))ocriz) is a basis of Li»(1,2,...,n) that we will call Klyachko’s basis (see [33]).
One can therefore use the above techniques to compute the decomposition of an arbitrary
Lie quasi-idempotent of ¥, on this basis. To this purpose, we essentially need to know the
decomposition of Dynkin’s idempotent on Klyachko’s basis which is given by the following
proposition.

Proposition 9.10 Let be a primitive n-th root of unity. Then,

On = in_1(Sn-1((1 = @) A)"[g=¢-1) Kn(C) - (183)
Proof — Going back to the definition of x,({), one can write
-1 1 maj (I)
A1 ’%n(C) = - Z C R’ilfl,h ,,,,, ir
[I|=n,i1>2
the above sum being taken over all compositions I = (iy, ..., i,) of n with first part greater
or equal to 2. Since we clearly have maj (i; — 1,4s,...,4,) = maj (i1, ...,i.) + 7 — 1 when
11 > 2, we get
1 .
Al—l lin<<) _ = Z Cmaj (D)+U(I)-1 R; .
n [Il=n—1

Observe now that one always has
maj (I) +maj(l)=(n—-1){I)-1)=1-£) [n]

for every composition I of n — 1. It follows that one can rewrite the last identity as

" =n—1 (@)n—1 T|=n—1

— 1 —maj (I 1 maj
AR =5 X ¢ “”Rz—(— > ““RI)

g=¢~1
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This means that

AT R(O) = Sua (12 e
Hence,
n A
fin(C) = Zn—l(Snfl(l—_q) lg=¢-1) O ,
and inverting this last equality gives the desired relation. O

Using the last two propositions, one can now give the explicit decomposition of any
Lie quasi-idempotent 7 of 3, on Klyachko’s basis:

7= iy (A7) % St (1= 4) A gmcs) £n(0) - (184)
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