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Acyclic complexes related to
noncommutative symmetric functions

F. Bergeron * - D. Krob '
July 16, 1996

1 Introduction

The algebra of noncommutative symmetric functions Sym, introduced in [4], is the free as-
sociative algebra (over some field of characteristic zero) generated by an infinite sequence
(Sn)n>1 of noncommuting indeterminates (corresponding to the complete symmetric func-
tions), endowed with some extra structure imitated from the usual algebra of commutative
symmetric functions.

Noncommutative symmetric functions have already been used in different contexts.
They provided for instance a simple and unified approach to several topics such as non-
commutative continued fractions, Padé approximants and various generalizations of the
characteristic polynomial of noncommutative matrices arising in the study of enveloping
algebras and their quantum analogues (¢f. [4] and [11]). Moreover they gave a new point of
view towards the classical connections between the free Lie algebra and Solomon’s descent
algebra (see [3], [6] and [12] for more details). Note also that noncommutative analogues
of some aspects of the representation theory of the symmetric group (also related with
free Lie algebras) were obtained (cf. [8]).

More recently, quantum interpretations of noncommutative symmetric functions and
quasi-symmetric functions were even obtained. Indeed it appears that the algebra of
noncommutative symmetric functions (resp. of quasi-symmetric functions) is isomorphic
to the Grothendieck ring of finitely generated projective (resp. finitely generated) modules
over 0-Hecke algebras. Working with the quantum dual point of view, noncommutative
ribbon Schur functions and quasi-ribbon functions can be in particular considered as
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cocharacters of irreducible and projective comodules over the crystal limit of Dipper and
Donkin’s version [1] of the quantum linear group (¢f. [7] for more details).

In this paper, we present a new aspect of noncommutative symmetric functions. We
show how to endow Sym with a natural structure of cochain complex which strongly
relies on the combinatorics of ribbons. It is interesting to observe that our construction is
purely noncommutative: it is not possible to define differentials on ordinary commutative
symmetric functions by taking the commutative images of the differentials constructed
in this paper. We must however put the stress on the fact that we do not have at this
moment any intrinsic interpretation of our complex. According to all the contexts were
noncommutative symmetric functions play a role, this complex should certainly have some
natural interpretation in the context of Lie algebras or of quantum linear groups. We let
as an open problem to the reader to find such an interpretation.

The paper is organized as follows. In Section 2, we briefly present noncommutative
symmetric functions (the reader is referred to [4], [6], [2] or [7] for more details on this
subject). Section 3 is devoted to the construction of the cochain and chain complexes
that are studied in the paper. In Section 4, we give explicit expressions for the images of
the corresponding differentials using different classical bases of Sym. Finally Section 5 is
devoted to the proof of our main result, i.e. the acyclicity of the complexes considered.

2 Noncommutative symmetric functions

The algebra of noncommutative symmetric functions is the free associative algebra Sym =
Q< 51, 5,,...> generated by an infinite sequence of noncommutative indeterminates S,
called complete functions. For convenience, we set So = 1. Let ¢t be another variable
commuting with all the S;. Introducing the generating series

+co
o(t):= > Spth
k=0

one defines other noncommutative symmetric functions by the following relations :

M) =o(=0)

%a(t) = o(t)b(t), o(t) = exp(6(t))

where A(t), ¥(t) and ¢(t) are the generating series given by

A1) = io At
k=0
= k-1 &9 k
P(l)i= > Wt ()= Y SR
k=1 k=1

The noncommutative symmetric functions Ay are called elementary functions. On the
other hand, ¥, and ®, are respectively called power sums of the first and second kind.



The algebra Sym is graded by the weight function w defined by w(Sk) = k. Its homo-
geneous component of weight n is denoted Sym,,. If (F,,) is a sequence of noncommutative
symmetric functions with F,, € Sym,, for every n > 1, then we set

Fl=F, F, .. F

for every composition I = (i1, 12, ...,1,). The families (5?), (Af), (¥!) and (®%) all form
homogeneous bases of Sym.

The set of all compositions of a given integer n is equipped with the reverse refinement
order, denoted <. For instance, the compositions .J of 4 such that J < (1,2, 1) are exactly
(1,2,1), (3,1), (1,3) and (4). The noncommutative ribbon Schur functions (R;) can then
be defined by one of the two equivalent relations

oI _ Z Ry, R;= Z (_1)6(1)—€(J) g7 ’

J<I J=<I

where (1) denotes the length of the composition I, i.e. the number of its parts. One can
easily show that the family (R;) is a homogeneous basis of Sym.

The commutative image of a noncommutative symmetric function F' is the (commuta-
tive) symmetric function f obtained by applying to F' the algebra morphism which maps
Sy, onto h,, using here the notation of Macdonald [9]. The commutative image of A, is
then e,. On the other hand, ¥,, and ®,, are both mapped to p,. Finally R; is sent to an
ordinary ribbon Schur function, which is usually denoted by r;.

There is also a strong connection between noncommutative symmetric functions and
the descent algebra of the symmetric group. This is the subalgebra of Q[&,], the group
algebra of &,, defined as follows. Let us first recall that an integer ¢ € [1,n — 1] is said to
be a descent of a permutation o € &, iff o(¢) > o(i41). The descent set of a permutation
o € &, is the subset of [1,n — 1] that consists of all descents of . If I = (¢1,...,%,) is a
composition of n, we associate with it the subset A({) = {dy,...,d,—1 } of [1,n] defined
by dy, = t1+. . .41 for every k. We set D; to be the sum in Q[&,] of all permutations with
descent set A([). Solomon [13] has shown that the D; form a linear basis of a subalgebra
of Q[&,] which is called the descent algebra of &, and denoted by ,,. An isomorphism

of graded vector spaces
+ oo +oo
a:E:@Zn%Sym:@Symn
n=0 n=0

is obtained by setting
a([h)iZAR[

for every composition I. The direct sum ¥ can be endowed with an algebra structure
by setting xy = 0 for every x € ¥, and y € ¥, whenever p # ¢q. The internal product,
denoted *, on Sym is defined by requiring that a be an anti-isomorphism, i.e. by setting

FxG=ala™(G)a"'(F)),
for every noncommutative symmetric functions F' and G.
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The graded dual of Sym can also be identified to the algebra QSym of quasi-
symmetric functions introduced by Gessel [5]. Let X be an infinite totally ordered
commutative alphabet. Let us then recall that a formal series f € Q[X] is said to
be quasi-symmetric iff one has

(flyt vg - wd) = (fler 22 - &)
for every sequences y; < yz < ... < yr and z; < z3 < ... < z; of elements of X and for
every exponents t1,12,...,1 € N. Here, (f|y) stands for the coefficient of y in f. The

algebra QSym inherits a grading from Q[X]. A natural homogeneous basis of QSym is
then provided by the quasi-monomial functions (My) defined by

Mr= Y oi'yd ...y
Y1 <y2<...<yr
for every composition I = (¢y,2,...,%,). Another convenient basis is formed by the quasi-

ribbon functions (Fy) (also called “fundamental” quasi-symmetric functions by Gessel)

defined by
Fr=> M,.
J>1
The pairing (-,-) between QSym and Sym can equivalently be defined by one of the
following relations

(Mp,S”y = (F1,Ry) = 61,4

where I, .J are arbitrary compositions.

3 Constructions of differentials

3.1 A coboundary operator on Sym

We devote this section to the construction of a coboundary operator on Sym. To this
purpose, we first need to introduce some notation concerning ribbons and compositions.
Let I be a composition of n and let r(/) be the ribbon diagram associated with /. For
every integer ¢ € [1,n], suppressing the i-th box in (/) (the boxes of r(I) are numbered
from left to right and top to bottom by all integers between 1 and n) breaks it into
two ribbon diagrams r(7,¢)” and r(/,¢)", in this order. We denote I~ (i) and I*(7) the
compositions of i—1 and n—i whose ribbon diagrams are respectively r(7,7)” and r(I,7)*.

Example 3.1 For the composition [ = (2,1,3,1), the corresponding ribbon diagram is
(we indicated here the numbering of every box of r(7))

112
3
1]5 6
7
Then, e.g., I7(3) = (2), I(3) = (3,1) and I~(4) = (2, 1), T+(4) = (2,1). 0
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Let us also recall two natural operations on compositions. If I = (¢1,...,¢,) and J =
(J1,...,Js) are respectively compositions of n and m, one defines two new compositions

I -J and I < J by setting
I'J:(il,...,ir,jl,...,js) and ]<1J:(il,...,ir_l,'l.T—|—j1,j2,...,j5).

In other words, I -.J and [ < J are the compositions corresponding to the two different
ways of concatenating the ribbon diagram of J at the end of the ribbon diagram of 1.
The product of two noncommutative ribbon Schur functions can easily be described using
these two operations. Indeed, one has

RiRy=Rrj+ Rray

for any compositions I and J (cf. [4]).
We can now define an operator 6, : Sym, — Sym, _, by setting
n—1 )
bu(Br) =2 Rpeqy + 22 (=17 Ri-y Bregy + (=1)"7 2R~ -

1=2

This leads to a linear operator 6 on Sym defined by
+oo
§=6p 6, .
n=0
The following proposition shows that 6 endows Sym with a structure of cochain complex.
Proposition 3.2 The family R = (Sym,,,6,),>0 is a cochain complex.

Proof — We have to check that 6 = 0. To provide a simple proof of this result, we shall
now introduce a graphic notation. We use the notation 1 to denote a generic
ribbon diagram encoding a noncommutative ribbon Schur function. We also denote by

the sum of the two ways of gluing the second ribbon diagram at the end of the first one.
Thus this notation encodes the product of two nontrivial ribbon Schur functions. Observe
that when one of the ribbon diagrams is empty, both ways of gluing one diagram at the
end of the other give the same result. Hence we have

0ol | = | le)=2 1.

The reader will easily see that the operation e (extended to formal linear combinations of
ribbon diagrams) is associative. Before going back to our proof, let us introduce the last

piece of notation. If r(/) = C____1 is a ribbon diagram, then

Y —



will stand for r(7,7)” e r(I,7)*. We can now rewrite the definition of é as

n

()= S (1) e 1. (1)
=1
Therefore
. 1—1 . . n . .
S(C el )= Y (1Y ' Jel_Jel 1 + > (—1)fC_Jel_Jal
7=1 7=1+1

N —
n ) 1—1 ) n
:Z(_1)2—1(Z(—1)1—1| e Je[1 + > (-1 JelJel |)
=1 7=1 7j=1+1
= > (=)™ CJel_Jel — Y (=)W [ JelJel1=0,
1<j<i<n 1<i<j<n
as desired. O

3.2 First properties

The following proposition gives a compatibility of 6 with the multiplication of noncom-
mutative ribbon Schur functions.

Proposition 3.3 For all compositions I and J, one has
6(RrRy) = 6(Ry) Ry + (—1)D R 6(Ry) . (2)
Proof — The formula can easily be proved using the graphical formalism introduced in

the proof of Proposition 3.2. Using (1), we obtain for every compositions I and .J :

S(C1 e )

(1) | § HD)+1(I)

= L ()T e L+ > (DT | e Jel
= i=l(1)+1
i1 . J ; 1) | i
(B i e e (R i)
=1 P
- . T
=4l ) e | |+ (-1 O e s(C—),
as announced. -



We shall now give some basic symmetry properties of 6. Let us first introduce some
notation concerning compositions. If I = (iy,...,%,) is a composition, I denotes the
mirror image of I, i.e. the composition (i,,...,7;). We also denote by 1™ the composition
whose ribbon diagram is the conjugate diagram of the diagram of /. The composition
I =(2,1,3,1) of Example 3.1 is for instance self conjugate, i.e. one has

" =1=(21,31),
whereas I~ = (2,1,2) when I = (1,3,1). The following result is easy to check.

Proposition 3.4 For every composition I, one has

§(Ri~)=6(Rp)~  and  §(R7) = (—1)'D18(Ry) . (3)

3.3 A decomposition of ¢
Let us now introduce two new operators 6 and 6. from Sym,, into Sym,_; by setting
SH(R) = Y (=) Rr-yrry and 6 (Rr) = X0 (=17 Ri-yer+ (i) +

for every composition I of n. These two operators are associated in an obvious way with
the two ways of gluing a ribbon diagram at the end of another. Defining 67 and 6~ as
the direct sum of the operators 6t and 67, we clearly have

§=6T4+6 . (4)

Moreover it is easy to see (¢f. proof of Proposition 3.2) that 6% and §~ are also differentials.
We can now summarize our results in the following proposition.

Proposition 3.5 6t and 6~ are two differentials whose sum is §.

This shows that the cochain complex R can be decomposed into two cochain com-
plexes, denoted R* and R™, naturally associated with the two differentials 6T and 6.

Note 3.6 Using relation (4) and the fact that §, 67 and é~ are differentials, one can
immediately deduce that 6t 06~ + 6~ 06t = 0. In fact, a stronger relationship holds
between 6% and 6~. The reader can indeed easily check that one has

6to0d =606 =0.

3.4 Dual boundary operators

One can transfer by duality every cochain complex defined on Sym into a chain complex
on QSym. We can thus associate to every operator 6, a dual operator d, such that the
following diagram is commutative (here the * arrows correspond to the natural duality
between Sym and QSym (c¢f. Section 2)) :



SyTnn—l SyTnn
* *
QSym,,_, QSym,,

O

This defines a differential 0 (the direct sum of all operators d,) on the commutative
algebra of quasi-symmetric functions. This differential is characterized by

(O(F1)|Ry) = (F1]6(R.)) (5)

for every compositions [ and J. We can of course use the same technique to define two
others differentials 97 and 0~ (the dual operators of 6% and ¢7) whose sum gives 0.

4 Differentials in classical bases

In this section we give explicit expressions for the matrices of the differential 6 with
respect to classical bases of Sym. Let us introduce some more notation. If F' = (F})
(resp. G = (Gy)) is a basis of Sym,, (resp. Sym,,_,), we denote by D,(F,G) the
271 % 2"=2 matrix defined by

§(Fr)= > (Du(F,G)1sGy .

JFn—1

We also associate with every n x m matrix M, the n x m matrix M defined by

M;; = My_it1 m—js1 -

It is easy to see that M is obtained from M by a symmetry with respect to its center.
Finally, when M is a n x m matrix with an even number n = 2k of rows, we denote by
MO (vesp. by M@) the k x m submatrix of M formed by the first (resp. last) k rows of
M.

4.1 Differentials of ribbon Schur functions

The matrices D,(R, R) give explicit expressions for the functions 6(R;) in the ribbon
basis of Sym. They can be recursively constructed as follows.

Proposition 4.1 For every n > 3, one has

_] n—3
A, =
]2n—3
D(R.R)=| —
2n—3 —_—
A
_IQH—S




where Iyn—s denotes the identity matriz of order 2"2, and A, is a 2% x 273 matriz
defined by the following recursive rules

_] n—>5
An_2 2 ]277,—4
0 1 ]277,—5
3 -1 2 Ogn—s
= = = — 2] n—4
A ( 1 ) , Ag 0 1 and A, s B4 2
1 _2 02n—4 Bn
]2n—4
for every n > 5, where B, denotes the 277> x 2"~* matriz defined by
—_— —] n—>5
__lgn—l :
_1 02n—5
B4 = ( 9 ) and Bn = _12n_5 —B7(Il_1
—IQn—B A7(12_2
for every n > 5 (the null matriz of order 2F is always denoted above by 0y ).
Proof — A thorough analysis of the definition of ¢ easily gives this result. a

Note 4.2 As an immediate corollary of the last result, the reader may check that all the
entries of the matrix D, (R, R) belong to

o {—2,—-1,0,1,2} when n = 2k is even;
o {—2.—-1,0,1,2,3} when n =2k + 1 is odd.

Moreover, the value 3 is only involved in the expansions

2k—1

6(Rakt1) = 3 Rax + Z (—1)iRi,2k—i—1 ;
=1
2k—2 '
5(R12k+1) = 3R12k + Z (—1)2_1 R1i72712k—2—i .
=0
Example 4.3 For n = 2,3,4,5, the matrices D, (R, R) are :
3 21 12 111
4 0 1 -1 0
2 11 31 -1 2 0 -1
1 3 3 -1 22 0 -1 1
2 0 21 1 1 211 1 -2 0 1
11 0/’ 12 1 1 ’ 13 1 0 -2 1 ’
111 -1 3 121 0 1 -1
112 -1 0 2 -1

1111 0 -1 1 0



4 31 22 211 13 121 112 1111

b) 3 -1 1 0 -1 O 0 O
41 1 1r o 1 o0 -1 0 0
32 o 1 2 0 0 0 -1 0
311 -1 2 0 2 0 0 0 -1
23 o o 2 -1 1 0 0 0
221 o o 1 o0 o0 1 0 O
212 1 0 -1 1 0 0 1 0
2111 o 1 -1 1 0 0 0 1
14 10 o0 0 1 -1 1 0
131 o 1 o0 o0 1 -1 0 1
122 o o 1 o0 o 1 0 O
1211 o o o 1 -1 2 0 0
113 -1 0 0 0 2 0 2 -1
1121 6o -1 0 0 0 2 1 0
1112 o o -1 0 1 0 1 1
11111 6o o o0 -1 0 1 -1 3

d

Let us now denote by DY(R, R) (resp. D;(R,R)) the matrix of the differential 6*
(resp. 67), restricted to Sym,,, in the ribbon basis. Observe first that

D.(R,R) = D}(R,R) + D7 (R, R)

for n > 1. The matrices D}, (R, R) and D} (R, R) can be computed from D, (R, R) using

the following result.

Proposition 4.4 For everyn > 1, one has

D¥(R,R) = D> (R, R) .

Proof — A simple analysis of the nature of the central symmetry involved in our for-
mula shows that our proposition follows from the fact that (1 -J)~ = J~ <« [~ for every
compositions I and J. O

4.2 Differentials of complete functions

The é-images of complete functions are given by the matrices D, (S,S). These can be
recursively constructed using the following proposition in conjunction with the first several
matrices D, (5, 5) given in Example 4.7.
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Proposition 4.5 For every n > 5, the matriz D,(S,5) is equal to

Dn_2(57 S)(l) ]2n—4
02n—4x2n—5 | —Dn_3(S7 S) 4: ]271—4 o ]2'n—3
02n—3><2n—4 ‘ Dn_Q(S, S) OQn—S
4 Iyn-2 —D,_1(S, 5)(1)
0271—3 02n—3 x2n—4 Dn_2(57 S)
Proof — Using Proposition 4.1, one can easily show that
2n—2 ) o
(S(Sgn) — Z (_1)2—|—1 SZn—l—z,z ;

=1

2n—1 ) o
6(Szn41) = 4 San + Z (—1) §#vr

=1

for every n. An adapted version of Proposition 3.3, together with a thorough analysis,
gives the required result. O

Corollary 4.6 FEvery entry of D,(S,5) belongs to { —4,—1,0,1,4 }.

Example 4.7 For n = 2,3,4,5, the matrices D, (5,5) are :

21 12 111

4 1 =1 0

2 11 31 -4 4 0 -1

1 3 4 —1 22 00 0 0

2 [0 21 4 0 211 00 0 0
imyo/> 12 14 0 13 4 0 —4 1 ’

1t \o 4 121 0 4 —4 0

112 00 0 0

1111 00 0 0

11



4 31 22 211 13 121 112 1111
> 4 0 0 0
41
32
311
23
221
212
2111
14
131
122
1211
113
1121
1112
11111

|
[
—_

|
[
o

O OO OO OO OO OO

O OO O OO R OO OO oo

O OO OO RO OO+ OO

O OO O R OO O OO

O OO O OO R OO OO oo
Ll

O RO OO0 oo

5 Cocycles and coboundaries

This section is devoted to the proof of the acyclicity of the different complexes constructed
above. We also give explicit bases for the cochain (or coboundary) modules of these
complexes. For every n > 1, let us define recursively the subset I(n) of the set of all
compositions of n as follows

{1} ifn=1,
0 ifn =2,

](n)—{
{(1,...,%) (.1 =2 and (¢2,...,2,) € I(n—=2))or (11 >3)} ifn>3.

It can be easily checked that [(n) consists of all compositions of n that are greater than
or equal to (in the sense of the lexicographic order) 2¥ 1 when n = 2k 41 and to 2*=2 31
when n = 2k. Let us also denote by ¢(n) the number of compositions in I(n). By
construction, i(n) satisfies to the recurrence relations

i(1)=1,4(2)=0 and i(n)=2""+4i(n—2) for n>3. (6)
It follows that 21 4 g L1yt
] oyn— _I_ (_1\n—

i(n) = 3 (7)

for every n > 1. One can also give the generating series of the sequence i(n) :

= - t(l—1)
nZ::l i(n)t" = EDEOR (8)

We are now in a position to prove our main result.
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Proposition 5.1 The cochain complex R = (Sym,,, 6,,),>0 is acyclic.

Proof — We first prove by induction on n that the family (6(R;))rer(n) is linearly inde-
pendent. This is clear for n = 1 and n = 2. Let us suppose now that n > 3. Observe
that one has

Ry Ry =Ry g+ Royjy 1

for every composition J = (j1)-J" of n—2. Since 2+3; > 3, it follows from this identity and
from the definition of I(n) that the independence of the family (6(Rr))rer(n) is equivalent
to the independence of the family consisting of all 6( R;), with J = (j1,...,J,) and 53 > 3,
and all 6(Rz Ry), with J € I(n — 2). Proposition 4.1 implies that

0(Ry)=—Rij-2.45,...5r T+ Z cy Ry

H<(1,j1=2,42,--,0r)

for every composition J = (j1,...,7,) with j1 > 3. On the other hand, using Propositions
3.3 and 4.1, one can write

5(R2 RJ) =R, 6(RJ) = :i:RQJ’—I + Z cr Ry,

L=<(2,H)

for every composition J € [(n — 2). It now suffices to use the independence of the family
(6(Ry))ser(n—2) and a simple triangularity argument to deduce the independence of the
family (6(Rr))1er(n) from the two last above relations. It follows that

dim Imé,, > |I(n)| = i(n)

for every n > 0. On the other hand,

dim Ker §, = dim Sym,, — dim Imé, <2"' —i(n) =i(n+ 1),
for every n > 1. But, since §* = 0, one always has Im 6,, C Ker é,,_;. Hence

dim Imé,, < dim Keré,—1 < i(n) .
Thus dim Imé,, = i(n), and
dim Keré,_; = dim Sym,,_, — dim Imé,_; = 2% —i(n — 1) = i(n) .
This shows that Keré,_; and Imé, have the same dimensions, implying
Imé, = Keré,_1 ,

for every n > 1 as desired. O

The results obtained in the proof of Proposition 5.1 have the following immediate
consequence.

Corollary 5.2 For every n > 1, the family (6(Rp))rern) 95 a basis of the cochain (or
coboundary) module Im 6,, = Ker 6,,_1, which has dimension i(n).

13



Corollary 5.3 For every n > 1, the family (6(S?))1e1(n) is a basis of the cochain (or
coboundary) module Im é,, = Ker 6,,_;.

Proof — According to Corollary 5.2, it is sufficient to check linear independence of the
family (6(51))I€I(n). This follows from Proposition 4.5. O

Corollary 5.4 The dual chain complezx R* = (QSym,, 0,)n>0 is acyclic.

Note 5.5 One can also dualize Corollaries 5.2 and 5.3 to obtain explicit bases for the
chain (or boundary) modules associated with R*.

Using techniques similar to those of the proof of Proposition 5.1 together with Propo-
sition 4.4, it is possible to obtain the following result.

Proposition 5.6 The cochain complexes RT = (Sym,, 6, ),>0 and R~ = (Sym,,, 6, )n>0

n» o n n?on
are acyclic.

Corresponding versions of Corollaries 5.2 and 5.3 are also valid for the complexes R™*

and R™.

References

[1] DipPER R., DONKIN S., Quantum GL,, Proc. London Math. Soc., 63, (3), (1991),
161-211.

[2] DucHaMP G., KLYACHKO A., KrROB D., THIBON J.-Y., Noncommutative symmet-
ric functions Il : Deformations of Cauchy and convolution algebras, LITP Technical
Report 96, Paris, 1996.

[3] DucHamp G., KrROB D., LECLERC B., THIBON J.-Y., Déformations de projecteurs
de Lie, C.R. Acad. Sci. Paris, 319, (1994), 909-914.

[4] GELFAND I.M., KroB D., Lascoux A., LECLERC B., RETAKH V.S., THIBON
J.-Y., Noncommutative symmetric functions, Adv. in Math., 112, (2), (1995), 218-
348.

[5] GEsSEL L., Multipartite P-partitions and inner product of skew Schur functions, Con-
temporary Mathematics, 34, (1984), 289-301.

[6] KroB D., LECLERC B., THIBON J.-Y., Noncommutative symmetric functions Il :
Transformations of alphabets, LITP Technical Report 95-07, Paris, 1995.

[7] KroB D., THIBON J.-Y., Noncommutative symmetric functions IV : Quantum li-
near groups and Hecke algebras at ¢ = 0, LITP Technical Report 96, Paris, 1996.

14



[8] LEcLERC B., SCHARF T., THIBON J.-Y., Noncommutative cyclic characters of
symmetric groups, Preprint, 1995.

[9] MACDONALD 1.G., Symmetric functions and Hall polynomials, Clarendon Press,
Oxford, 1995.

10] MALVENUTO C., REUTENAUER C., Duality between quasi-symmetric functions and
) ) ) q y
the Solomon descent algebra, To appear in J. Algebra.

[11] MoLEV A.I., Noncommutative symmetric functions and Laplace operators for clas-
sical Lie algebras, Preprint, 1994.

[12] REUTENAUER C., Free Lie algebras, Oxford University Press, 1993.

[13] SoLoMON L., A Mackey formula in the group ring of a Cozeter group, J. Algebra,
41, (1976), 255-268.

15



