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A MAXWELL-BLOCH MODEL WITH DISCRETE SYMMETRIES FOR WAVE
PROPAGATION IN NONLINEAR CRYSTALS: AN APPLICATION TO KDP
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Abstract. This article presents the derivation of a semi-classical model of electromagnetic-wave prop-
agation in a non centro-symmetric crystal. It consists of Maxwell’s equations for the wave field coupled
with a version of Bloch’s equations which takes fully into account the discrete symmetry group of
the crystal. The model is specialized in the case of a KDP crystal for which information about the
dipolar moments at the Bloch level can be recovered from the macroscopic dispersion properties of the
material.
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Introduction

The development of laser able to produce ultra-short pulses requires the elaboration of new models, adequate
for describing non linear dispersion as well as polarization effects in the wave-crystal interaction. Indeed, for
powerful laser sources, classical models like systems of nonlinear Schrödinger equations [3, 17] are no longer
valid.

For such pulses, the hypothesis of monochromatic waves is no longer relevant. This requires a time-domain
description rather than a spectral one as used in classical nonlinear optics [2, 3, 10, 14]. Therefore, we shall
consider Maxwell equations in the time domain and shall model the interaction of the electromagnetic field with
the material medium by means of the Bloch equations.

Several models have been proposed for the polarization term which describes the response of the nonlinear
material to the wave-field. Classically one writes the polarization as a development in powers of the electric
field, the coefficients of this expansion are called the nonlinear susceptibilities. Experimental measures of the
nonlinear susceptibilities as functions of the frequency of the incoming wave are scarce imprecise and of little use
for a time-domain description. Analytical expressions of the nonlinear susceptibilities as functions of the dipolar
matrices are given in [8]. We shall use this approach in the course of our analysis. Other theories can be found
e.g. in [16], where the optical susceptibilities are related with covalent bonds in the crystal, or, in [24], where
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1 MIP, UMR 5640 (CNRS-UPS-INSA), Université Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex 4, France.
e-mail: besse@mip.ups-tlse.fr, degond@mip.ups-tlse.fr, saut@mip.ups-tlse.fr
2 LMC, UMR 5523 (CNRS-UJF-INPG), B.P. 53, 38041 Grenoble Cedex 9, France. e-mail: Brigitte.Bidegaray@imag.fr
3 CEA/CESTA, B.P. 2, 33114 Le Barp, France. e-mail: Antoine.BOURGEADE@cea.fr

c© EDP Sciences, SMAI 2004



322 C. BESSE ET AL.

the optical susceptibilities are related with the temperature. An example of the use of nonlinear susceptibilities
in the time-domain can be found in [7]. In this approach, the Fourier transform of the polarization allows to
write ordinary differential equations on the first orders of the polarization. These equations have to be solved
for each time step. The quadratic susceptibility is taken independent of the frequency of the incoming wave.

Approaches based on susceptibilities can be classified into the so-called macroscopic models, because these
coefficients describe the average response of the medium over large scales and a large assembly of atoms, and in
particular, over distances larger than the wave-length. At variance, microscopic models describe the response
of the medium on sub-wave-length scales. The Bloch model belongs to such microscopic models. The Bloch
equation describes the quantum-mechanical response of the matter to the wave-field. This model accounts
for the microscopic physics in a fairly accurate way, provided our knowledge of the elementary wave-matter
interaction (namely the dipolar moment matrix) is known. We shall see that this point represents the true
difficulty of our approach. The Bloch equation model was throughfully studied in the case when the dipolar
moment vectors are parallel to the electric field (which is a model for isotropic media e.g. a gas) for two level
atoms [26] or more [4]. We extend these approaches to an anisotropic nonlinear crystal with a discrete group of
symmetry. In particular, with this model, we can investigate the interplay between anisotropy and nonlinearity.

In the Bloch model, the crystal is described locally by a density matrix whose diagonal elements represent the
population and the off-diagonal elements, the quantum coherences of a set of atomic states. The density matrix
evolves according to both the atomic and wave-Hamiltonians. While matter is treated quantum-mechanically,
the wave-field is treated classically through Maxwell’s equations, giving rise to the often-used terminology
“semiclassical” model. The wave-Hamiltonian involves the matrix of dipolar moments, which describes how
matter reacts to the wave-field at the microscopic level.

In the case of a crystal with symmetry, energy levels can be degenerate and the eigenstates span a linear
representation of the symmetry group which must be decomposed into irreducible representations [1,6,22]. If N
energy levels are considered each being dn-degenerate, the density matrix must be a square matrix of dimension
(
∑N

n=1 dn)2 which is large. This is a first difficulty when dealing with crystals.
A discrete symmetry group often implies anisotropy. Because of anisotropy, each dipolar moment connecting

two states j and k is a 3-dimensional vector. However owing to symmetries, many entries of the dipolar matrices
may be zero. The determination of the non-zero entries of the dipolar matrix and their values is the second
difficulty of the problem.

These problems are far too complex to be solved in full generality, and we are going to restrict our analysis to
one example, that of the KDP crystal. This crystal is of fundamental use in most high power laser experiments
[12]. However, beyond this example, we believe our approach can be adapted to a large class of materials.

The symmetry group of the KDP crystal is known (the 42m crystallography group) as well as some of its
macroscopic properties: its first order susceptibility has been measured and analytically fitted by Zernicke [25];
it has a tensorial form, and in its principal axis basis, its entries exhibit several resonances as functions of the
wave frequency. Moreover the order of magnitude of the non-zero entries of its second order susceptibility is
known [9, 11, 13, 15, 23].

The first and second order susceptibilities can be related to the dipolar moment matrix through the method
described in [8]. We shall use this relationship and, from the properties outlined above, try to extract some
information about the dipolar moment matrix. This approach however requires a model for the structure of the
KDP quantum states, which is not available.

Our approach will be to postulate the most simple quantum-state structure able to reproduce the symmetry
and anisotropy properties of KDP together with the available information on the first and second order suscep-
tibilities. This model has 5 states. The lower energy state is 3-fold degenerate. The density matrix has therefore
10 independent complex entries and 5 real ones (owing to its hermitianity). The present paper describes how
this simple model can be derived through to the procedures outlined here.

We end this section by outlining advantages and drawbacks of the present approach. In this model, nonlinear
effects are not restricted to linear and quadratic ones as in the case of models based on optical susceptibilities.
We shall also see that the nonlinearity introduced by the quantum expression of the polarization is bounded,
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at variance with optical susceptibility models. This feature results in a possible saturation of the nonlinearity
which in the case of powerful laser sources may be important. However, our model involves heavy numerical
computations. Thus it will be used either for short propagation distance or as a validation tool of simpler
macroscopic models. For instance, it could be used to find dispersion relations for nonlinear Maxwell models.

The organization of this paper is as follows: Section 1 quickly exposes the physical context and the Maxwell-
Bloch model.

As a first step in the determination of the dipolar moment matrix, we search in Section 2 a relation between
some experimental evidences and the microscopic constants we need. Then, from this relation, we derive a set
of conditions on the quantum structure of the crystal.

In Section 3, since this set of conditions is not sufficient to determine completely the unknowns, we study
deeply the symmetries of the crystal and state their influence on the information we need. We can then develop
a hierarchy of models.

In Section 4, we restrict ourselves to the study of the fundamental model, which is shown to be sufficient to
solve our initial problem.

In Section 5, we give the full dipolar matrix moment computed in the case of the fundamental model.
In Section 6, we perform a numerical experiment with the fundamental model.

1. Physical context

1.1. Maxwell equations

We consider plane waves. The incoming wave is represented by the pair (E,B), where E is the electric field
and B the magnetic field. The fields E and B obey the Maxwell equations:




∂tB = −rot E,

∂tE =
1
µ0

ε−1rot B− ε−1∂tP,

div B = 0,
div D = 0.

(1)

The interaction with the crystal is modeled by the polarization P, which is obtained through the Bloch
equations.

1.2. Bloch equations

We use a quantum model to represent the crystal. A quantum system is represented by a wave-function ψ.
The evolution of ψ is driven by the Schrödinger equation:

i�∂tψ = Hψ,

where the Hamiltonian H is classically decomposed in H = H0 + V , H0 being the free Hamiltonian and V the
potential resulting from the action of the electromagnetic field.

First, we introduce some notations. We make the assumption that the free Hamiltonian H0 has N distinct
eigenvalues: E1 = �ω1, . . . , EN = �ωN . For convenience, we write ωnm = ωn − ωm.

We shall denote by dn the multiplicity of the eigenvalue En. For each level n, we choose a basis of eigenstates
(ψ(n,1), . . . , ψ(n,dn)). For each pair of eigenstates (ψ(l,r), ψ(m,s)), we can compute µ(l,r)(m,s) ≡ 〈ψ(l,r), rψ(m,s)〉,
where 〈, 〉 is the canonical inner product and r is the position operator. The matrix µ is called the dipolar
matrix. The dipolar matrix µ is a N ×N matrix whose coefficients are vectors in C3, thus we use a superscript
to denote each coordinate of its elements.
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In the dipolar approximation, V is given by

V = −µ.E. (2)

Now we introduce a statistical description of the system because a large number of atoms interacts with the
wave. We introduce the density matrix ρ described in [21] for instance. We just recall that the diagonal elements
of the density matrix represent the population levels of the corresponding eigenspace of the free Hamiltonian,
while the off-diagonal terms represent the coherences between these levels.

It is straightforward (e.g. see [8]) to show that the density matrix ρ obeys the Bloch equations:

∂tρjk = −i(ωj − ωk)ρjk − i

�
[V, ρ]jk (Bloch) (3)

= −iωjkρjk +
i

�
[µ.E, ρ]jk,

for all 1 ≤ j, k ≤ N , where we recall [A,B] = AB −BA.
The two sets of equations (1) and (3) are related by the polarization P which is given by

P = N tr(µρ), (4)

where N is the density of molecules per unit volume.
Hence equations (1) and (3) form a closed system.

2. Experimental results

As we have seen, in order to use the Maxwell-Bloch model, we need to know several quantities such as the
dipolar matrix and the energy eigenvalues of the free Hamiltonian. So far, to our knowledge, only the linear
susceptibilities of the KDP are accurately measured [25].

2.1. Relation between the microscopic and macroscopic models

In a first step, we find a relation between the linear susceptibility and these quantities.
We recall that the diagonal element ρnn of the density matrix represents the population in the state associated

with the eigenvalue En. The constants ρ(0)
nn represent these populations at equilibrium.

The relation between the linear susceptibility χ(1) and the dipolar matrix µ is given in [8]. We extend it to
the case where the levels may be degenerate. We obtain it by equating two expressions of the polarization P.
We describe the proof in detail in Appendix A.

Hence, we get the following expression:

χ
(1)
k� (ωp) =

N
�

∑
mn

ρ
(0)
mm − ρ

(0)
nn

ωnm − ωp

∑
1≤r≤dm
1≤s≤dn

µk
(m,r)(n,s)µ

�
(n,s)(m,r), (5)

where k and � denote the coordinates of the tensor χ(1).
We have applied the fact that the equilibrium values of the populations of the levels associated to the same

eigenvalue are the same.
As χ(1) can be measured experimentally, we use equation (5) to determine the dipolar matrix µ.
From now, we shall make the assumption that only the first three eigenvalues of the free Hamiltonian produce

noticeable effects. We recall that the existence of three different levels is a necessary condition for having non
linear effects. Therefore the sum in equation (5) is restricted to the first three levels. However, the multiplicity
of these energy eigenvalues is still to be determined.
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Remark 2.1. It should also be noted that the coefficients of the dipolar matrix involving the same eigenvalue
disappear automatically in equation (5) because of the term (ρ(0)

mm − ρ
(0)
nn). It implies that the experimental

results will not be sufficient to determine all coefficients of the dipolar matrix. We will see how to solve this
problem later on.

2.2. Zernicke’s approach

In this section we recall experimental results from [25]. Hopefully, it will give us more information about the
dipolar matrix µ.

In [25], Zernicke measures the electric permittivity of the KDP for several wavelengths of the incoming wave.
Then, he uses these results to find an expression for χ(1) as a function of the incoming wave wavelength that
fits reasonably the experimental data.

Because of the symmetries of the KDP, the linear susceptibility χ(1) must have the following form:

χ(1) =


χ

(1)
⊥ 0 0
0 χ

(1)
⊥ 0

0 0 χ
(1)
‖


 ,

when the tensor is written in the axis of the crystal, ⊥ represents the two directions along the x and y axis of
the crystal which are identical by symmetry and ‖ represents the direction z which is the optical axis of the
crystal.

Then Zernicke derives a form for χ(1)
⊥ and χ(1)

‖ that fits experimental results:



χ

(1)
⊥ (ω) =

A

1 − ω2

ω2
12

+
B

1 − ω2

ω2
13

,

χ
(1)
‖ (ω) =

C

1 − ω2

ω2
12

+
D

1 − ω2

ω2
23

,
(6)

where A, B, C, D, ω12, ω13, ω23 are fitted to the experimental curves and ω represents the frequency of the
incoming wave.

Remark 2.2. In fact, Zernicke does not ensure that ω13 = ω12 + ω23 as it should. We have used a method
similar to the one described in [25] to find values of A, B, C, D, ω12, ω13, ω23 satisfying this physical condition.

Hence, we try to find conditions on the dipolar matrix µ so that the linear susceptibility χ(1) obtained from
µ by equation (5) has the form given by equation (6).

2.3. Conditions such that the dipolar matrix µ has a Zernicke form

We equate equations (5) and (6), then the following proposition is easily obtained by identification.

Proposition 2.3. In order to satisfy (6), the dipolar matrix has to verify the following conditions:

• several terms vanish:




µ1
(3,q)(2,p) = 0, ∀1 ≤ p ≤ d2, 1 ≤ q ≤ d3,

µ2
(3,q)(2,p) = 0, ∀1 ≤ p ≤ d2, 1 ≤ q ≤ d3,

µ3
(3,q)(1,p) = 0, ∀1 ≤ p ≤ d1, 1 ≤ q ≤ d3,

(7)
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• some elements are fixed:




∑
1≤p≤d1
1≤q≤d2

|µ1
(2,q)(1,p)|2 =

∑
1≤p≤d1
1≤q≤d2

|µ2
(2,q)(1,p)|2 =

�ω21A

2N (ρ(0)
11 − ρ

(0)
22 )

,

∑
1≤p≤d1
1≤q≤d3

|µ1
(3,q)(1,p)|2 =

∑
1≤p≤d1
1≤q≤d3

|µ2
(3,q)(1,p)|2 =

�ω31B

2N (ρ(0)
11 − ρ

(0)
33 )

,
(8)




∑
1≤p≤d1
1≤q≤d2

|µ3
(2,q)(1,p)|2 =

�ω21C

2N (ρ(0)
11 − ρ

(0)
22 )

,

∑
1≤p≤d2
1≤q≤d3

|µ3
(3,q)(2,p)|2 =

�ω32D

2N (ρ(0)
22 − ρ

(0)
33 )

·
(9)

• Finally we must have

∑
1≤p≤dm

1≤q≤dn

µk
(n,q)(m,p)µ

l
(m,p)(n,q) = 0, ∀k, l,m, n. (10)

Equation (7) can be visualized through a graph as in Figure 1. The first two levels are the only ones related in
all directions (which means the corresponding terms of the dipolar matrix are not vanishing in any direction).
The circles represent the three distinct energy levels or eigenspaces. The directions x and y, which are the same
by symmetry, are represented by ⊥, the direction z by ‖.

��������3

��

���
��

��
��

�

��������2

‖
����������

����
��

��
��

��������1
⊥,‖

����������

⊥

��

Figure 1. Directions of connections between energy levels.

The two equations (8) and (9) relate several elements of the dipolar matrix µ to the constants given in [25].
Equation (10) does not have as easy an interpretation as the two other points. It comes from the fact that

the off-diagonal terms of the linear susceptibility are all vanishing.
It can be easily shown that equation (10) cannot be satisfied if every eigenvalue is of multiplicity one, thus

we have an immediate corollary.

Corollary 2.4. At least one of the energy eigenvalues is degenerate.

Remark 2.5. According to [21], this result is not surprising, as symmetry often implies degeneracy.

So far, we have not enough information to determine the dipolar matrix and write a complete model. Thus,
we will use the symmetries, which we did not consider until now.
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3. Model derivation

As we have seen, though our model gets more and more precise, it is still far from being complete. We
know that at least one of the three eigenvalue is degenerate and the directions of connections between levels are
determined.

In this section, we describe the symmetries of the KDP more precisely and study all their implications on
the dipolar matrix. The idea is to study the influence of the symmetries on the form of the dipolar matrix and
see if it implies that some more coefficients are vanishing. We introduce the theory of linear representations, as
it is usual in the study of symmetries in quantum mechanics.

3.1. KDP symmetries

The group of symmetry of the KDP is well known, and is described in [1] for instance. This group is classically
referred as 42m (or D2d) which we abbreviate by G now. This group has 8 elements and is generated by two
symmetries with respect to two orthogonal axes and a third symmetry with respect to one of the mediator
planes. The group G does not contain the inversion r �→ −r (otherwise the crystal would be centrosymmetric
and the quadratic nonlinearities would vanish). The full description of the elements of G is given in [1, 6].

Next, we give an analytical expression of the elements of the group, according to Table 1.

Table 1. Analytical expression of the group 42m.

Id : (X,Y, Z) �→ (X,Y, Z)
ρX : (X,Y, Z) �→ (X,−Y,−Z)
ρY : (X,Y, Z) �→ (−X,Y,−Z)
ρZ : (X,Y, Z) �→ (−X,−Y, Z)

σ = σX+Y : (X,Y, Z) �→ (Y,X,Z)
σ̃ = σX−Y : (X,Y, Z) �→ (−Y,−X,Z)
ρXσ = ρY σ̃ : (X,Y, Z) �→ (Y,−X,−Z)
ρX σ̃ = ρY σ : (X,Y, Z) �→ (−Y,X,−Z)

We are interested in the dipolar matrix, which involves inner products between eigenfunctions of the free
Hamiltonian. We can easily transport the action of the group G to the space of wave functions. Let ψ be any
wave function and g an element of the group G. Then g acts on ψ by the following equation:

g.ψ(t, r) = ψ(t, g−1(r)),

where t represents time and r is the position vector in R3.
Hence, the group G acts on the space of wave functions. Furthermore, if g is a symmetry of the crystal, it

commutes with its free Hamiltonian [21]. So the eigenspaces of the free Hamiltonian are stable by the operations
of the group G. Then we can study separately the action of G on each eigenspace.

The next logical step is to decompose each eigenspace into irreducible linear representations, that is to find
a decomposition of this space into a direct sum of the largest, non trivial, subspaces stable by the action of G.

As the group G has eight elements, the theory (see page 31 of [22] for instance) states that G has five non
isomorphic irreducible representations. Indeed, let us denote by di the degree of the ith irreducible representation
which composes G, we know from [22] that ∑

i

d2
i = #G, (11)
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as we have at least the identity, it is straightforward to see that G has five non isomorphic irreducible repre-
sentations. These representations are composed of four representations of order one and one of order two, the
order being the dimension of the associated subspace.

The irreducible representations are noted I, II, III, IV, V. As the representation V is of degree 2, we denote
by (V1,V2) one of its basis.

We describe the irreducible representations in Table 2.

Table 2. Irreducible representations of the KDP. Each column shows the result of the action
of the symmetries on a basis of the representation.

Sym. / Rep. I II III IV V
(1) (det) (z∗) (z∗det)

I 1 1 1 1
(

1 0
0 1

)

ρX 1 1 −1 −1
(

1 0
0 −1

)

ρY 1 1 −1 −1
(−1 0

0 1

)

ρZ 1 1 1 1
(−1 0

0 −1

)

σX+Y = σ 1 −1 1 −1
(

0 1
1 0

)

σX−Y = σ̃ 1 −1 1 −1
(

0 −1
−1 0

)

ρXσ = ρY σ̃ 1 −1 −1 1
(

0 −1
1 0

)

ρX σ̃ = ρY σ 1 −1 −1 1
(

0 1
−1 0

)

Thus, as each eigenspace is stable by G, it can be decomposed in a direct sum of irreducible representations.
So, in the next section, we will study the form of the dipolar matrix in the case when the eigenspaces are reduced
to one irreducible representation.

3.2. Dipolar coefficients between irreducible representations

As we have seen, each eigenspace can be decomposed in a direct sum of irreducible representations. So we
are interested in calculating dipolar coefficients of the form 〈φ, rψ〉 where ψ and φ are basis vectors of two
irreducible representations and eigenfunctions of the free Hamiltonian. We must evaluate these inner products,
that is integrals of the type

∫
φ∗rψ. First, we introduce a projector on the unitary representation.

Definition 3.1. We call Π the projector on the identity representation, given by

Π ≡ 1
#G

∑
g∈G

g,

where #G is the number of elements in G.
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Table 3. Dipolar coefficients of the KDP.

I II III IV V1 V2

I 0 0 α∗
III,I ez 0 α∗

V,I ex α∗
V,I ey

II 0 0 0 α∗
IV,II ez α∗

V,II ex α∗
V,II ey

III αIII,I ez 0 0 0 α∗
V,III ey α

∗
V,III ex

IV 0 αIV,II ez 0 0 α∗
V,IV ey α

∗
V,IV ex

V1 αV,I ex αV,II ex αV,III ey αV,IV ey 0 αV,V ez

V2 αV,I ey αV,II ey αV,III ex αV,IV ex αV,V ez 0

We denote by µI,II the class of dipolar elements computed with one wave function in the irreducible repre-
sentation I and the other in the irreducible representation II.

As it shown in [6] or [1], a function which vanishes under the action of Π must have a vanishing integral
(note that this is a sufficient but not a necessary condition to have a vanishing integral). The computation of
all elements of the dipolar matrix rises in Table 3, where ex, ey, ez are the vectors corresponding to the three
directions x, y, z and the coefficients α.,. are complex numbers.

More precisely, we have the following proposition.

Proposition 3.2. The dipolar elements between irreducible representations have the form described in Table 3.
Furthermore, we have αV,V ∈ R.

Proof. To prove this proposition, let φ and ψ be two eigenfunctions belonging to two irreducible representations.
Then we compute Π(φ∗rψ), where we recall that r is the position operator. If Π(φ∗rψ) is zero, we are sure that
the corresponding element of the dipolar matrix is vanishing. This computation does not depend of the two
functions we choose in each representation.

As an example, we compute µV,V.
Let (φV1 , φV2) be a basis for the irreducible representation noted V of order 2.
The function φ∗V1

rφV1 is odd, so Π(φ∗V1
rφV1) = 0 (Π is the projector on the representation I that is the

unitary representation). Then from [1], we get µV1,V1
= 0. We also prove that µV2,V2

= 0 in the same way.
We shall now compute µV1,V2

.

Π(φ∗V1
rφV2 ) =

1
#G

∑
g∈G

(φ∗V1
rφV2) ◦ g−1

=
1

#G

∑
g∈G

(g.φV1)
∗ g.φV2

t(x∗ ◦ g−1, y∗ ◦ g−1, z∗ ◦ g−1), (12)

where x∗, y∗, z∗ are the projections on each coordinate (x∗ : (x1, x2, x3) �→ x1, . . . ).
From Table 2, we know how to calculate the terms g.φV1 , g.φV2 with g ∈ G by reading the last column of

the table. For instance, ρY .φV1 = −φV1 and ρXσ.φV2 = −φV1 .
The analytical expressions of the elements of G are given in Table 1, and we know the terms x∗ ◦ g−1,. . .
We replace each term in equation (12) and find

Π(φ∗V1
rφV2) =

1
8


 0

0
4zφ∗V1

φV2 + 4zφ∗V2
φV1


 .
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‖ ‖

⊥⊥ ⊥ ⊥

I IIIII IV

V

‖

Figure 2. Directions of connections between irreducible representations.

However, we have 4zφ∗V1
φV2 + 4zφ∗V2

φV1 = 8Re(zφ∗V1
φV2), so finally

Π(φ∗V1
rφV2 ) =


 0

0
Re(zφ∗V1

φV2)


 ∈ R

3,

and Re(zφ∗V1
φV2) is not necessarily vanishing.

Using the same method for all representations, we get the proposition. �

Now we try to translate this proposition into physical conditions. We can visualize the directions of connec-
tions between irreducible representations by the graph depicted in Figure 2. Each circle represents an irreducible
representation. An arrow means that the corresponding element of the dipolar matrix µ may be non vanishing.
Again, it could vanish for some other reason, because we have derived sufficient but not necessary conditions
for an element to vanish.

3.3. Development of fundamental model

As it was previously stated, we know that most of the elements of the dipolar matrix are vanishing.
We construct models by taking a decomposition in irreducible representations of each of its three eigenspaces.

It follows immediately from Figure 2 that the number of models is not bounded. Our purpose is to find the
fundamental model, that is a model with the least number of states i.e. the sum of multiplicities of the three
eigenvalues has to be the smallest possible. Since we know that at least one eigenvalue is degenerate, the
smallest model has at least four states.

We can prove the following proposition (see Appendix C for details).

Proposition 3.3. The fundamental model has 5 states: its first level is three-fold degenerate.

We can give an example of such a model. See Figure 3 for its decomposition in irreducible representations. We
shall call it the fundamental model. Each level represents an eigenspace. Each square represents an irreducible
representation as listed in Table 2. We have divided the representation V in two squares as it is of degree 2.
Note that for aesthetic reasons, we have not drawn all the connections.
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Figure 3. Fundamental model.

4. Model analysis

In this section, we study the fundamental model we have defined in the previous section.
We recall that we want to solve the Maxwell-Bloch set of equations for the crystal. Apart from the dipolar

matrix µ, we have all the information we need. The density matrix ρ is given by the Bloch equations (3). Then
we can compute the polarization term P which is a function of ρ as shown in (4). Finally the polarization is
substituted into the Maxwell equations (1) giving us the electromagnetic field (E,B).

The conditions implied by (7) give us the form of the dipolar matrix in the case of the fundamental model.
This can be summarized in Table 4, where stars (*) and (?) denote non vanishing coefficients. We recall that
the dipolar matrix µ is Hermitian.

Table 4. Form of the dipolar matrix µ (fundamental model).

Level First Second Third
1 = I 2 = V1 3 = V2 III I

1 0


 ?

0
0





 0

?
0





 0

0
∗


 0

First 2


 ?

0
0


 0


 0

0
?





 0

∗
0





 ∗

0
0




3


 0

?
0





 0

0
?


 0


 ∗

0
0





 0

∗
0




Second


 0

0
∗





 0

∗
0





 ∗

0
0


 0


 0

0
∗




Third 0


 ∗

0
0





 0

∗
0





 0

0
∗


 0
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Then we can easily prove the next proposition.

Proposition 4.1. The fundamental model satisfies all the conditions implied by Zernicke’s approach (namely
equations (7)–(10)). Furthermore, the elements of the dipolar matrix connecting two distinct eigenspaces are
fixed in modulus.

Proof. Table 4 implies that system (7) is satisfied by our model. Furthermore, each sum involved in equations (8)
and (9) has only one non-vanishing term (from Table 4). For example, we have

∑
1≤p≤d1
1≤q≤d2

|µ1
(2,q)(1,p)|2 = |µ1

2(1,2)|2,
since among the dipolar moments involved in this sum, µ2(1,2) is the only one with a non-vanishing coordinate
in the first variable. Hence |µ1

2(1,2)| is fixed in modulus by the right member of equation (8). Then we proceed
with the other sums in (8) and (9) and we deduce the modulus of all the non-vanishing elements of the dipolar
moment matrix connecting two distinct eigenspaces. �

However, the phases of all the coefficients and the connections inside the first level (marked by “?” in Table 4)
are still to be determined.

Concerning the phases, with a convenient choice of the eigenvectors of the free Hamiltonian, we can show
the following result.

Proposition 4.2. All but one coefficients of the dipolar matrix µ can be assumed real.

Proof. Let (φ1, φ2, φ3, φ4, φ5) be a basis of the free Hamiltonian, ordered as in Figure 3 i.e. φ1 and φ5 are two
bases of the irreducible representation I, φ2 and φ3 span the irreducible representation of order 2 and φ4 is a
basis of III.

We have seen that the elements of the dipolar matrix µ do not have more than one non-vanishing coordinate.
We chose to freeze the wave-function φ5, we shall adjust the phases of the other wave-function in order to

have the maximum number of elements of the dipolar matrix µ real.
We chose the phase of φ4 to have µ23 = 〈φ4, rφ5〉 ∈ R

3 (this vector has only one non-vanishing coordinate).
Then we compute the phase of φ1 so as to µ2,(1,1) = 〈φ4, rφ1〉 ∈ R3.

We take the phase of φ2 in order to have µ2,(1,2) = 〈φ4, rφ2〉 ∈ R3. However, from Proposition 3.2, we get
µ2

2(1,2) = µ1
2(1,3), and, from Table 4, we have µ2(1,3) ∈ R

3.
Finally, we chose the phase of φ3 to have µ(1,1)(1,3) = 〈φ1, rφ3〉 ∈ R3. As µ2

(1,1)(1,3) = µ1
(1,1)(1,2), we also get

µ(1,1)(1,2) ∈ R3. We still have to determine µ3,(1,2), µ3(1,3), µ(1,1)(1,2), µ(1,1)(1,3) et µ(1,2)(1,3).
Owing to the symmetries of the KDP, we know that µ1

3(1,2) = µ2
3(1,3), µ

1
(1,1)(1,2) = µ2

(1,1)(1,3) and µ3
(1,2)(1,3) ∈ R,

the other coordinates of these vectors are vanishing. �

Furthermore, we know that, by symmetry, we have µ1
I,V1

= µ2
I,V2

. Hence, to determine completely the dipolar
matrix, we still have to determine two real numbers and one phase, that is three real numbers. For that purpose,
we use an expression of the quadratic susceptibility obtained by continuing the method exposed in Appendix A.

Thanks to the form of the dipolar matrix (Tab. 4), it can be shown that with the fundamental model, the
quadratic susceptibility χ(2) has the right symmetries (as in [8]), that is only six terms of this third-order tensor
are not vanishing, moreover these terms can be defined by three distinct reals.
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Proposition 4.3. In the case of the fundamental model, the quadratic susceptibility, whose expression (see
Appendix B) is

χ
(2)
ijk(ωp + ωq;ωq, ωp) = −N

�2

×
∑
mn�




ρ
(0)
mm − ρ

(0)
��

(ωnm − (ωp + ωq))(ω�m − ωp)

∑
1≤r≤dl
1≤s≤dm
1≤t≤dn

µi
(m,s)(n,t)µ

j
(n,t)(�,r)µ

k
(�,r)(m,s)

− ρ
(0)
�� − ρ

(0)
nn

(ωnm − (ωp + ωq))(ωn� − ωp)

∑
1≤r≤dl
1≤s≤dm
1≤t≤dn

µi
(m,s)(n,t)µ

j
(�,r)(m,s)µ

k
(n,t)(�,r)




(13)

has the following physical symmetries: 

χ

(2)
123 = χ

(2)
213,

χ
(2)
132 = χ

(2)
231,

χ
(2)
312 = χ

(2)
321.

(14)

Proof. The theory (as shown in page 44 of [8]) states that the non-vanishing terms of the quadratic susceptibility
are given in (14). We define

Sijk(�,m, n) ≡ (ρ(0)
mm − ρ

(0)
�� )

∑
1≤r≤d�
1≤s≤dm
1≤t≤dn

µi
(m,s)(n,t)µ

j
(n,t)(�,r)µ

k
(�,r)(m,s). (15)

It can be shown that thanks to the form of the dipolar matrix (Tab. 4), most of the terms of the sum are
vanishing, this is summarized in the following lemma.

Lemma 4.4. For the fundamental model, the function S has the following properties.
• If l = m, Sijk(�,m, n) = 0, ∀i, j, k.
• If the energies of two eigenstates among the three states �,m, n are identical and non degenerate then
Sijk(�,m, n) = 0.

• If m, n ∈ {2, 3}, S1jk(�,m, n) = S2jk(�,m, n) = 0, ∀�, j, k. If �, n ∈ {2, 3}, Si1k(�,m, n) =
Si2k(�,m, n) = 0, ∀m, i, k. If �, m ∈ {2, 3}, Sij1(�,m, n) = Sij2(�,m, n) = 0, ∀m, i, j.

• If i = k, Sijk(1,m, 1) = 0, ∀m ∈ {2, 3}. If i = j, Sijk(1, 1, n) = 0, ∀n ∈ {2, 3}. If j = k, Sijk(�, 1, 1) =
0, ∀� ∈ {2, 3}.

Thanks to this lemma, when estimating the function S, we can cancel many triples of the form (�,m, n) as listed
in the above lemma without further computation. For instance, we compute χ(2)

123 for the fundamental model.
We have to compute S123(�,m, n) for 1 ≤ �,m, n ≤ 3, which gives 27 terms. Lemma 4.4 removes 18 terms and
there remains to compute the terms corresponding to the triples

(1, 2, 1), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1) and (3, 2, 1). (16)

The first triple gives
S123(1, 2, 1) = (ρ(0)

22 − ρ
(0)
11 )µ1

2(1,3)µ
2
(1,3)(1,1)µ

3
(1,1)2

which is not necessarily zero. In this expression we have used Table 4 to simplify (15) and to cancel all the
terms of the sum but one.
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We proceed with the five other terms of the list (16) using the properties of the dipolar matrix expressed
according to Table 4 and Proposition 3.2. Finally we can simplify the complete expression of the quadratic
susceptibility (13) in the case of the fundamental model.

For every component of the tensor of quadratic susceptibilities χ(2), which has 27 entries, we have to compute
the sum (13). The sum itself has 27 terms. This is a simple but tedious calculation that can not be reproduced
here. Details can be found in [19].

With this computation, it is possible to show that the coefficients (14) are the only non-vanishing coefficients
of the quadratic susceptibility χ(2) in the case of the fundamental model. Furthermore, the relations (14) are
also verified by this model. �

We still need three real numbers to determine completely the dipolar matrix µ. We fit the missing parameters
with the few experimental results, we have found so far (alternatively we could use [18], which relates the linear
and quadratic susceptibilities of the KDP) for the quadratic susceptibility given by equation (13). Indeed
equation (13) is linear with respect to the unknowns we would like to compute (the elements of the dipolar
matrix µ corresponding to connections between states of the first energy level, which is three-fold degenerate).
We can use the same kind of method, we used for the linear susceptibility χ(1), that is we fix the remaining
unknowns in the expression of the quadratic susceptibility to fit experimental results. Moreover, this ensures
that the two first orders of the susceptibility given by the fundamental model match experimental results.

Finally, the dipolar matrix µ is fully determined.

5. The complete dipolar moment matrix

Applying the previously exposed methods, we get the whole dipolar moment matrix. We recall that the
dipolar moment matrix is real except for one of its component in our model. We use the notations introduced
in Figure 3. The dipolar moment matrix has the form

µ =




0


 a

0
0





 0
a
0





 0

0
b


 0


 a

0
0


 0


 0

0
c





 0
d
0





 e

0
0





 0
a
0





 0

0
c


 0


 d

0
0





 0
e
0





 0

0
b





 0
d
0





 d

0
0


 0


 0

0
f




0


 e

0
0





 0
e
0





 0

0
f


 0




,

where the real numbers b, c, d, e, f and the complex number a have to be determined.
A first set of elements (“*” in Fig. 4, namely b, d, e and f ) is given by the linear susceptibility.
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The following values were computed

b = 2.82561053429502× 10−29Cm,
d = 5.79683987484668× 10−29Cm,
e = 4.67702893481492× 10−29Cm,
f = 4.62614943821704× 10−29Cm.

The missing elements (“?” in Fig. 4, a and c) are computed to fit the quadratic susceptibility. According to
Proposition 4.2, there is one phase to determine for the coefficient a. We choose to take a as a real number and
adjust its sign to fit experimental data:{

a = −0.215955642× 10−27Cm,
c = 0.106065610× 10−27Cm.

Now that the dipolar matrix µ is determined, we can solve the equations


∂tρjk = −iωjkρjk + i
�
[µ.E, ρ]jk, for all 1 ≤ j, k ≤ 5

P = N tr(µρ),

∂tB = −rot E,

∂tE = 1
µ0

ε−1rot B− ε−1∂tP.

Hence the Maxwell-Bloch set of equations is closed.
For instance, given the electric field E, we can solve the Bloch equations (3). Then we can compute the

polarization through equation (4) and finally inject the computed polarization into the Maxwell equations (1).

6. A numerical experiment

We have fully determined the dipolar moment matrix. We can proceed with numerical computations. The
plane wave propagates in the axes (x,y, z), where z is its direction of propagation. We consider that the
wave-field depends only on one space variable along the propagation axis z.

The discretization of the model is described in [20]. It extends the Maxwell-Bloch discretization in isotropic
media ([5] for instance). The Maxwell system is solved by a FDTD method using the Yee scheme. For the
Bloch equations, we use a Strang splitting method, the free-Hamiltonian and wave-Hamiltonian part are solved
separately. The time derivative of the polarization term involved in the Bloch equations is computed through
the Bloch equations. Thus we obtain a scheme of order 2 in space and time.

We use the values of the dipolar moment matrix, we have found in the previous section. The crystal is rotated
and cut so as to its optical axis angle with the direction of propagation of the wave is the angle satisfying the
phase matching condition and that the incidence of the wave is normal.

The laser source is a Gaussian pulse with a width of 10−14 s and an amplitude of 108 V m−1. The wavelength
is 1.06 µm. The wave is polarized along the y-axis. The crystal is surrounded with a linear material. In practice
the medium parameters are chosen so as to minimize reflexion of the wave at the interfaces with the KDP. The
width of the crystal is set to 20 µm.

In this run, we should observe second harmonic generation. As our model is not restricted to the linear and
quadratic susceptibilities, we also expect to see some effects of higher nonlinearities.

First, we show the evolution over time of the second coordinate of the electric field E in Figure 5. At time 0
the E-field is chosen parallel to this direction. We see that the amplitude of the field is decreasing as the wave
enters the crystal. We will see in Figure 7, how it translates in terms of the frequencies.
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Figure 4. Geometry of the experiment.
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Figure 5. Evolution of the component Ey of the electric field E.

Next we show the evolution of Ex. At the initial time, there is no field along this coordinate as the wave is
polarized along y. But as the wave is going through the crystal, the amplitude of this component is increasing,
as seen in Figure 6, where the electric field Ex is drawn at different times. If the phase matching condition is not
satisfied, the second harmonic intensity must not increase. This is what is actually observed in our numerical
simulations (see [20] for more detail). We have also plotted the theorical amplitude over space of the second
harmonic as described in [8] (starting page 78). This theorical amplitude is computed by solving two nonlinear
Schrödinger equations for the first two harmonics.

Now, we consider the Fourier transform of the wave field. In the y-coordinate (as shown in Fig. 7), the
amplitude of the Fourier transform corresponding to the frequency of the incoming wave is decreasing as the
wave travels through the crystal. The unit of frequency corresponds to the frequency of the incoming wave.
Moreover some third harmonic generation is observed. (Note that second harmonic generation can only be
observed on the x-component, see below.)
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Figure 6. Evolution of the component Ex of the electric field E.
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Figure 7. Evolution of the Fourier transform of the component Ey of the electric field E.
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In Figure 8, we have plotted the Fourier transform of Ex for different instants of time. The unit of frequency
is the frequency of the incoming wave. The intensity of the second harmonic is actually increasing. Furthermore,
we can observe a weak fourth harmonic generation in Figure 8.
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Figure 8. Evolution of the Fourier transform of the component Ex of the electric field E.

So far, the numerical results are those expected from the physics and are similar to the results obtained by
macroscopic models as in [7] for the first two nonlinear effects. We are then reasonably confident in the validity
of our model. But, in our case, we can observe the important effects of the higher nonlinearities as in Figure 7,
where we have a cubic effect. This would not have been observable with macroscopic models such as [2,3,10,14]
as they are restricted only to linear and quadratic susceptibilities. [7] renders the third and fourth nonlinearities,
but does not take into account the possible saturation of the nonlinearity for instance. We could use our model
to improve the accuracy of the dispersion relations used in these models.

7. Conclusion

In this paper, we have presented a model for wave-matter interaction in the case of ultrashort laser pulses.
It uses the coupled Maxwell-Bloch equations. This model, already studied in detail for isotropic materials, has
been seldom used in the case of anisotropic crystals, for which the symmetry group of the crystal has to be
taken into account. Additionally, the model requires the knowledge of the dipolar transition matrix, which is
not accessible to direct experiments.

To solve this difficulty, we have used the relationships between the susceptibilities, which are easily accessible
experimental data [25] and the dipolar matrix, for which we postulate the fundamental form compatible with
the symmetries of the crystal. In the present paper we specialized our analysis to the KDP crystal, but the
method can be used in full generality.

With this approach, we were able to determine entirely the dipolar matrix of this model of KDP and finally we
used this information to perform a numerical simulation. The results were found in good qualitative agreement
with those obtained by standard models.
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We believe that these methods can be extended with profit to a large class of materials.
Thanks to the present Maxwell-Bloch model, it is possible to investigate microscopic phenomena involved in

wave-matter interaction and to compare this macroscopic description to more standard macroscopic descriptions
(e.g. using quadratic nonlinearities). We also believe that our model can be used to validate and improve the
macroscopic models. Of course, microscopic model simulations are much more computationally expensive than
macroscopic ones and both can be used in a complementary way to achieve an accurate description of the
physical phenomena.

Appendix A. Linear susceptibility

The following derivation of a relation between linear susceptibilities and the dipolar matrix is classical and
can be found in [8]. For the reader’s convenience, we describe it in this appendix.

We recall the Bloch equations

∂tρnm = −iωnmρnm − i

�
[V, ρ]nm − γ(ρnm − ρe

nm), (17)

where γ > 0 is a relaxation coefficient, we take ρe
nm = 0 if n = m.

We shall make the dipolar approximation, meaning that the potential V is given by

V = −µ.E.

We suppose that the interaction between the light and the medium is weak compared to the free Hamiltonian.
We replace V by εV in the former equation. Then we develop ρ = ρ(0) + ερ(1) + ε2ρ(2) + . . . and we identify
equal powers of ε, which leads to the following equations:

∂tρ
(k)
nm = −iωnmρ

(k)
nm − i

�

[
V, ρ(k−1)

]
nm

− γρ(k)
nm, k ≥ 1.

For the first order, we take ρ(0)
nm = δnmρ

e
nm.

For k ≥ 1, we define σ(k)
nm by

ρ(k)
nm(t) = σ(k)

nm(t)e−(γ+iωnm)t,

thus
∂tσ

(k)
nm = −e(iωnm+γ)t i

�

[
V, ρ(k−1)

]
nm
.

Then we substitute the value of ρ(0) in the previous expression for k = 1

[V, ρ(0)]nm =
∑

�

[Vn�ρ
(0)
�m − ρ

(0)
n� V�m]

= −
∑

�

[µn�ρ
(0)
�m − ρ

(0)
n� µ�m].E

= −(ρ(0)
mm − ρ(0)

nn)µnm.E. (18)

Hence σ(1) is given by

∂tσ
(1)
nm =

i

�
e(iωnm+γ)t(ρ(0)

mm − ρ(0)
nn)µnm.E.

Furthermore, we make the assumption that when t = −∞, the higher order terms of the density matrix vanish:
ρ(k)(t = −∞) = 0, k ≥ 1. Therefore

lim
t→−∞σ(1)

nm(t) = lim
t→−∞ ρ(1)

nm(t)e(γ+iωnm)t = 0. (19)
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We then have

σ(1)
nm(t) =

i

�
(ρ(0)

mm − ρ(0)
nn)

∫ t

−∞
e(iωnm+γ)sµnm.E(s)ds. (20)

We develop E in Fourier modes
E(t) =

∑
p

E(ωp)e−iωpt,

and replace E in (20):

σ(1)
nm(t) =

i

�
(ρ(0)

mm − ρ(0)
nn)

∫ t

−∞
e(iωnm+γ)sµnm.

∑
p

E(ωp)e−iωpsds

=
i

�
(ρ(0)

mm − ρ(0)
nn)µnm.

∑
p

E(ωp)
∫ t

−∞
e(i(ωnm−ωp)+γ)sds

=
i

�
(ρ(0)

mm − ρ(0)
nn)µnm.

∑
p

E(ωp)
[

e(γ+i(ωnm−ωp))s

γ + i(ωnm − ωp)

]t

−∞

=
i

�
(ρ(0)

mm − ρ(0)
nn)µnm.

∑
p

E(ωp)
[

e(γ+i(ωnm−ωp))t

γ + i(ωnm − ωp)

]
·

Since σ(1)
nm(t) = ρ

(1)
nm(t)e(γ+iωnm)t, we have

ρ(1)
nm(t) =

i

�
(ρ(0)

mm − ρ(0)
nn)µnm.

∑
p

E(ωp)
[

e−iωpt

γ + i(ωnm − ωp)

]
· (21)

The linear polarization P(1) is given by P(1) = N tr(µρ(1)):

P(1)(t) = N tr(µρ(1))

= N
∑
mn

ρ(1)
nmµmn

= N
∑
mn

i

�
(ρ(0)

mm − ρ(0)
nn)µnm.

∑
p

E(ωp)
[

e−iωpt

γ + i(ωnm − ωp)

]
µmn

=
iN
�

∑
mn

(ρ(0)
mm − ρ(0)

nn)
∑

p

µmnµnm.E(ωp)
γ + i(ωnm − ωp)

e−iωpt. (22)

The previous equation gives the Fourier modes of P(1), which we shall denote by P(1)(ωp). By definition, we
have P(1)(ωp) = χ(1)(ωp) ⊗ E(ωp). In scalar terms, this reads

P(1)
k (ωp) =

∑
�

χ
(1)
k� (ωp)E�(ωp).

By identification, we have

χ(1)(ωp) =
iN
�

∑
mn

(ρ(0)
mm − ρ(0)

nn)
µmnµnm.

γ + i(ωnm − ωp)
,

which yields the following proposition.
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Proposition A.1. The quantum expression of the linear susceptibility is

χ
(1)
kl (ωp) =

iN
�

∑
mn

(ρ(0)
mm − ρ(0)

nn)
µk

mnµ
l
nm

γ + i(ωnm − ωp)
· (23)

We can write this expression in the case when energy eigenvalues are degenerate. We recall that dj is the
multiplicity of the energy eigenvalue j.

Proposition A.2. In the degenerate case, a short expression of the linear susceptibility is:

χ
(1)
kl (ωp) =

iN
�

∑
mn

ρ
(0)
mm − ρ

(0)
nn

γ + i(ωnm − ωp)

∑
1≤r≤dm
1≤s≤dn

µk
(m,r)(n,s)µ

l
(n,s)(m,r). (24)

We have applied the fact that the equilibrium values of the populations of the levels associated to the same
eigenvalue are the same.

Appendix B. Quadratic susceptibility

In order to obtain an expression for the quadratic susceptibility, we use an analogous method to the one used
for the linear susceptibility. The expansion of the density matrix ρ in powers of ε is pushed one step further [8].

For the second order term of the development of the density matrix ρ, we get

ρ(2)
nm(t) = − i

�
e−(γnm+iωnm)t

∫ t

−∞
e(γnm+iωnm)s[V, ρ(1)]nm(s)ds,

where

[V, ρ(1)]nm = −
∑

�

(µn�ρ
(1)
�m − ρ

(1)
n� µ�m).E.

Then, after an integration of the previous equation, we identify the two expressions of the quadratic polarization:

P(2) = N tr(µρ(2)) = N
∑
mn

ρ(2)
nmµmn,

which yields:

Proposition B.1. The quantum expression of the quadratic susceptibility is

χ
(2)
ijk(ωp + ωq;ωq, ωp) =

N
�2

×
∑
mn�

{
(ρ(0)

mm − ρ
(0)
�� )

µi
mnµ

j
n�µ

k
�m

(γnm + i(ωnm − (ωp + ωq)))(γ�m + i(ω�m − ωp))

−(ρ(0)
�� − ρ(0)

nn)
µi

mnµ
j
�mµ

k
n�

(γnm + i(ωnm − (ωp + ωq)))(γn� + i(ωn� − ωp))

}
·

As in the linear case, we can write this expression in the case of degenerate energy eigenvalues.
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Proposition B.2. In the degenerate case, a short expression for the quadratic susceptibility (written without
relaxations) is

χ
(2)
ijk(ωp + ωq;ωq, ωp) =

N
�2

×
∑
mn�

{
ρ
(0)
�� − ρ

(0)
mm

(ωnm − ωp − ωq)(ω�m − ωp)

∑
1≤r≤d�
1≤s≤dm
1≤t≤dn

µi
(m,s)(n,t)µ

j
(n,t)(�,r)µ

k
(�,r)(m,s)

+
ρ
(0)
�� − ρ

(0)
nn

(ωnm − ωp − ωq)(ωn� − ωp)

∑
1≤r≤d�
1≤s≤dm
1≤t≤dn

µi
(m,s)(n,t)µ

j
(�,r)(m,s)µ

k
(n,t)(�,r)

}
·

Appendix C. Model development (Proof of Prop. 3)

We recall that our purpose is to find the fundamental model, that is a model with the least number of states,
that satisfies conditions implied by experimental results (Zernicke’s approach) and symmetries of the crystal.
For that matter, we develop a hierarchy of models with increasing complexity.

Before starting our development, we state a first lemma, which proves to be useful in our proof.

Lemma C.1. If the first level does not contain the irreducible representation of order 2, V, this representation
is necessarily contained in the second and the third level.

Proof. Indeed, the representation V is necessarily in one of the three levels, since it is the only representation
which can introduce the direction ⊥ between levels (see Figs. 1 and 2).

Then the proof uses essentially Figures 1 and 2 describing the connections between energy levels and irre-
ducible representations. �

Since a term of a dipolar matrix µ may be vanishing for other reasons than symmetry, we begin with a
definition.

Definition C.2. We say we add constraints on the dipolar matrix µ if we assume a priori that some of its
elements are vanishing whereas this it not implied by the symmetries of the crystal.

However, as we have not found other reasons for a term of the dipolar matrix µ to vanish, than those implied
by the symmetries of the crystal, we shall prefer not to add constraints to our models if possible. Fortunately,
we will see that we can find satisfying models without constraints, moreover adding constraints does not give
simpler models.

We recall that the degeneracy of the first eigenvalue is noted d1.
First we study the case such that the lowest energy level is non degenerate. We get the following proposition.

Proposition C.3. Without adding constraints, the lowest energy level is necessarily degenerate. With con-
straints, the less complex model such that the lowest energy level is non-degenerate has at least six states.

Proof. To prove this proposition, we study all the possibilities for the first level. We decompose the first
eigenspace corresponding to the lowest energy into irreducible representations. We consider that the lowest
eigenvalue is not degenerate. The decomposition of the first energy level, then, necessarily contains one and only
one irreducible representation of order 1. The connections between eigenspaces represented by the coefficients
of the dipolar moment matrix µ, have to satisfy Figure 1.

To start, we suppose the first level is restricted to the irreducible representation called I. Then the second
level must contain representations III and V, because the first two levels are connected in all directions according
to Figure 1 and the representation I is only connected in the direction ‖ with III and in ⊥ with V as shown in
Figure 2. Hence the second level decomposition into irreducible representations must contain representations
called III and V.
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As the first level does not contain the representation V, we know from Lemma C.1 that the representation V
is contained in the decomposition of levels two and three. Then because of the two representations V in these
decompositions, the last two levels are automatically connected in the direction ‖ (see Fig. 2). But, as III and
V are connected in ⊥ (Fig. 2), we have just introduced an unneeded direction of connection between the last
two energy levels. We can only remove it with constraints.

We use the same method to study the case when the lowest eigenspace can be decomposed into the irreducible
representation named III. Again, in this case, we have to add constraints to remove an unneeded direction of
connection between two eigenspaces. Finally we remark that levels II and IV are connected symmetrically to
representations I and III, with the irreducible representation V and are not connected to representations I and
II. Hence the results obtained for representations I and III can be applied to representations II and IV. Without
constraints, the lowest energy level is necessarily degenerate. �

Hence to find a satisfying model, we need to complexify the first eigenspace. We consider the case of a doubly
degenerate level. For a second order degeneracy of the first level, we have the result:

Proposition C.4. If the first level is doubly degenerate, there is no model satisfying conditions (7)–(10) without
adding constraints. With constraints, a satisfying model has at least seven states.

As we prefer not to add constraints, the following proposition is immediate:

Corollary C.5. For a model without constraints, the lowest eigenvalue is three-fold degenerate.

Hence, we still need to proceed with the complexification of the first level. For the third order degeneracy of
the lowest level, we have a first proposition:

Proposition C.6. There is no model without constraints, satisfying conditions (7)–(10), if the first level does
not contain the representation V. With constraints, such a model has at least seven states.

The sketch of the proof is the same as in the two previous cases.
As we have shown previously, if the decomposition into irreducible representations of the eigenspace corre-

sponding to the lowest eigenvalue contains the representation V of order 2, there exists 5 state models satisfying
the conditions implied by Zernicke without constraints. As an example we have the model described by Figure 3.
This proves Proposition 3.

Remark C.7. Since we are interested in the simplest model (in term of number of states), we do not study the
cases when the first eigenvalue is degenerate at least four times. In this case, a model satisfying the conditions
implied by Zernicke has at least 6 states.
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