
A trainable feature extractor for handwritten

digit recognition

Fabien Lauer a,∗ , Ching Y. Suen b and Gérard Bloch a

aUniversité Henri Poincaré – Nancy 1 (UHP), Centre de Recherche en
Automatique de Nancy (CRAN UMR CNRS 7039), CRAN–ESSTIN, Rue Jean

Lamour, 54519 Vandœuvre Cedex, France
bConcordia University, Center for Pattern Recognition and Machine Intelligence

(CENPARMI), 1455 de Maisonneuve Blvd West, Suite EV003.403, Montréal, QC,
Canada, H3G 1M8

Abstract

This article focusses on the problems of feature extraction and the recognition of
handwritten digits. A trainable feature extractor based on the LeNet5 convolutional
neural network architecture is introduced to solve the first problem in a black box
scheme without prior knowledge on the data. The classification task is performed by
Support Vector Machines to enhance the generalization ability of LeNet5. In order
to increase the recognition rate, new training samples are generated by affine trans-
formations and elastic distortions. Experiments are performed on the well known
MNIST database to validate the method and the results show that the system can
outperfom both SVMs and LeNet5 while providing performances comparable to the
best performance on this database. Moreover, an analysis of the errors is conducted
to discuss possible means of enhancement and their limitations.

Key words: character recognition, support vector machines, convolutional neural
networks, feature extraction, elastic distortion

1 Introduction

Handwriting recognition has always been a challenging task in pattern recog-
nition. Many systems and classification algorithms have been proposed in the

∗ Corresponding author.
Email addresses: fabien.lauer@esstin.uhp-nancy.fr (Fabien Lauer),

suen@cenparmi.concordia.ca (Ching Y. Suen),
gerard.bloch@esstin.uhp-nancy.fr (Gérard Bloch).

Preprint submitted to Elsevier Science 2 February 2006

past years. Techniques ranging from statistical methods such as PCA and
Fisher discriminant analysis [1] to machine learning like neural networks [2]
or support vector machines [3] have been applied to solve this problem.

But since handwriting depends much on the writer and because we do not
always write the same character in exactly the same way, building a general
recognition system that would recognize any character with good reliability
in every application is not possible. Typically, the recognition systems are
tailored to specific applications to achieve better performances. In particular,
unconstrained handwritten digit recognition has been applied to recognize
amounts written on checks for banks or zip codes on envelopes for postal ser-
vices (the USPS database). In these two cases, good results were obtained. An
unconstrained handwritten digit recognition system can be divided into sev-
eral stages: preprocessing (filtering, segmentation, normalization, thinning. . .),
feature extraction (and selection), classification and verification. This paper
focuses on feature extraction and classification.

Since many classifiers cannot process efficiently the raw images or data, fea-
ture extraction is a preprocessing step that aims at reducing the dimension of
the data while extracting relevant information. The performance of a classifier
can rely as much on the quality of the features as on the classifier itself. A
good set of features should represent characteristics that are particular for one
class and be as invariant as possible to changes within this class. Commonly
used features in character recognition are: zoning feature, structural feature,
directional features, crossing points and contours. A feature set made to feed
a classifier can be a mixture of such features. Besides, to reduce the size of
the feature set, feature subset selection can be applied on the extracted fea-
tures (see for instance [4] for an overview of the methods). In handwriting
recognition, features are created from knowledge of the data. But in some
other applications, one may not have this knowledge that can be used to de-
velop feature extractors. Another approach to this problem is to consider the
feature extractor as a black box model trained to give relevant features as
outputs with no prior knowledge on the data. In this scheme, this paper intro-
duces a trainable feature extractor based on the LeNet5 convolutional network
architecture.

Amongst all the classifiers that have been applied on character recognition,
neural networks became very popular in the 80’s as demonstrated by the per-
formances obtained by LeCun’s LeNet family of neural networks [5][2]. These
are convolutional neural networks that are sensitive to the topological prop-
erties of the input (here, the image) whereas simple fully connected networks
are not. Another major event in the area was the introduction of Support
Vectors Machines (SVM) [3]. The SVMs are based on the Structural Risk
Minimization (SRM) principle which minimizes a bound on the generalization
risk whereas neural networks aim at minimizing the empirical risk. In the case

2

of handwritten recognition, SVMs gave very good results [6].

Besides, it has been proved [2] that augmenting the size of the training set
helps learning machines to become invariant to certain transformations such
as translations. The new samples added to the training set are generated by
applying these transformations on the original samples. Then the classifier
learns to recognize them as members of the original class. This paper explores
the use of the affine transformation and the elastic distortion introduced in [7]
to increase the recognition rate in the case of digit recognition.

In the following sections, the article focuses on handwritten digit recognition
which is a 10-class problem. The outline of the paper is as follows. Sections
2 and 3 describe two popular classifiers: the convolutional neural network
(LeNet5 in particular) and the Support Vector Machine. Then Section 4 ex-
poses the affine and elastic distortions for the expansion of the training set.
Section 5 presents a trainable feature extractor based on the LeNet5 archi-
tecture and a recognition system that uses SVMs together with this proposed
method. Finally, Section 6 exposes the results of the numerical experiments
and an analysis of the errors that lead to the conclusion in Section 7.

2 Convolutional neural network

A convolutional neural network is a feed-forwark network that can extract
topological properties from an image. It extracts features from the raw image in
its first layers and classify the pattern with its last layers. The system is trained
like a standard neural network by back propagation. The first layers are usually
an alternation of convolutional layers and subsampling layers. A convolutional
layer is used to extract elementary visual features from local receptive fields. It
is organised in planes, also called feature maps, of simple units called neurons.
Each unit has 25 inputs connected to a 5 × 5 area in the input image (or in
the previous layer), which is the local receptive field. A trainable weight is
assigned to each connection as for common neural networks, but all units of
one feature map share the same weights. This characteristic is justified by the
fact that an elementary feature detector useful on one part of the image is
likely to be useful on the entire image. Moreover, the weight sharing technique
allows to reduce the number of trainable parameters. For instance, LeNet5
has only 60000 trainable parameters out of 345 308 connections. In order to
extract different types of local features, a convolutional layer is composed of
several feature maps. Because of the local receptive field dimensions, these
feature maps have the size of their input minus 4 in both directions (2 pixels
loss at each border).

Since the exact location of an extracted feature is irrelevant, a reduction of the

3

�����
6 × 28 × 28

�����
	���������� �����

��� �����
�����������

� �!�� � "$#�%�& �
'!���

6 × 14 × 14
��(��

16 × 10 × 10
'����

16 × 5 × 5

32 × 32

Fig. 1. The architecture of LeNet5. ’C’ stands for a convolutional layer, ’S’ for a
subsampling layer and ’F’ for a fully connected layer.

spatial resolution of the feature maps is performed through the subsampling
layers. Such a layer comprises as many feature maps as the previous convo-
lutional layer but with half the number of rows and columns. Each unit j is
connected to a 2× 2 receptive field, computes the average of its four inputs yi

(outputs from the corresponding feature map of the previous layer), multiplies
it by a trainable weight wj and adds a trainable bias bj to obtain the activity
level vj:

vj = wj

∑

4

i=1
yi

4
+ bj (1)

The weight sharing technique is also applied in the subsampling layers, so that
for each feature map, the number of trainable parameters is two (the shared
weight and the bias). The description of a particular convolutional neural
network known as LeNet5 [2] follows.

LeNet5 takes a raw image of 32×32 pixels as input. It is composed of 7 layers:
three convolutional layers (C1, C3 and C5), two subsampling layers (S2 and
S4), one fully connected layer (F6) and the output layer. The convolutional
and subsampling layers are interlaced as shown in Fig. 1. The first layer is a
convolutional layer (C1) composed of 6 feature maps of 28 × 28 units. The
following subsampling layer (S2) reduces by 2 the resolution, while the next
convolutional layer (C3) extends the number of feature maps to 16. Here the
choice is made not to connect every feature map of S2 to every feature map of
C3. Each unit of C3 is connected to several receptive fields at identical loca-
tions in a subset of feature maps of S2. These combinations are arbitrary but
also reduce the number of free parameters of the network and forces different
feature maps to extract different features as they get different inputs. The
subsampling layer S4 acts as S2 and reduces the size of the feature maps to
5 × 5. The last convolutional layer C5 differs from C3 as follows. Each one of
its 120 feature maps is connected to a receptive field on all feature maps of
S4. And since the feature maps of S4 are of size 5 × 5, the size of the feature
maps of C5 is 1 × 1. Thus C5 is equivalent to a fully connected layer. It is
still labeled as a convolutional layer because if the input image was larger, the
dimension of the feature maps would be larger. The fully connected layer (F6)
contains 84 units connected to the 120 units of C5.

All the units of the layers up to F6 have a sigmoidal activation function ϕ of

4

the type:

yj = ϕ(vj) = A tanh(Svj) (2)

where vj is the activity level of the unit. A and S are two constant parameters
for the sigmoid function (see [2] for the setting of A and S). Finally, the output
layer is an Euclidean RBF layer of 10 units (for the 10 classes) whose outputs
yj are computed by:

yj =
84
∑

i=1

(yi − wij)
2 j = 0, . . . , 9 (3)

where yi is the output of the ith unit of the layer F6. For each RBF neuron, yj

is a penalty term measuring the fitness of its inputs yi to its parameters wij.
These parameters are fixed and initialized to −1 or +1 to represent stylised
images of the characters drawn on a 7 × 12 bitmap that are targets for the
previous layer (hence the size 84 for the layer F6). Then the minimum output
gives the class of the input pattern.

3 Support Vector Machines

Support vector machines (SVMs) were introduced in [3] as learning machines
with capacity control for regression and binary classification problems. In the
case of classification, a SVM constructs an optimal separating hyperplane in a
high-dimensional feature space. The computation of this hyperplane relies on
the maximization of the margin.

3.1 Optimal separating hyperplane

The optimal separating hyperplane is a margin classifier whose output is given
by:

f(x) = sign
(

xT w + b
)

(4)

with the input pattern x and where the bias b and the vector of weights w
are trained by maximizing the margin 1/‖w‖ under the constraint that the N
training patterns are well classified and outside the margin:

min
1

2
‖w‖2

subject to yi(x
T
i w + b) ≥ 1, i = 1, . . . , N

5

with yi ∈ {−1, 1} representing the label of the training pattern xi.
The solution corresponds to the saddle point of the primal Lagrangian:

LP =
1

2
‖w‖2 −

N
∑

i=1

αi[(yi(x
T
i w + b) − 1] (5)

where the αi are the Lagrange multipliers.
This problem leads to the maximization of the dual Lagrangian with respect
to αi:

max LD =
N
∑

i=1

αi −
1

2

N
∑

i,j

αiαjyiyj(x
T
i xj)

subject to αi ≥ 0, i = 1, . . . , N
∑N

i=1
αiyi = 0

(6)

The resulting separating rule is:

f(x) = sign

∑

support vectors

yiαi(x
T
i x) + b

 (7)

where the xi are the support vectors (SVs) with non-zero corresponding La-
grange multipliers αi. The SVs are the training patterns that lie on the margin
boundaries. An advantage of this algorithm is its sparsity since only a small
subset of the training examples are used to compute the output of the classifier.

3.2 Soft margin SVM

The soft margin separating hyperplane is used to deal with non-separable data.
A set of slack variables ξi is introduced to allow errors (or points inside the
margin) during the training. A hyperparameter C is used to tune the trade-off
between the amount of accepted errors and the maximization of the margin:

min
1

2
‖w‖2 + C

N
∑

i=1

ξi

subject to yi(x
T
i w + b) ≥ 1 − ξi i = 1, . . . , N

This new formulation leads to the same dual problem but with box constraints

on the Lagrange multipliers:

0 ≤ αi ≤ C i = 1 . . . N (8)

The tuning of the hyperparameter C is a delicate task. A common method
is to perform a grid search, i.e. to test many values of C and estimate for

6

each the generalization error (usually by cross-validation or on an independent
validation set). But this procedure is very time consuming. Some authors
proposed other methods including evolutionary tuning [8] or gradient-based
approaches [9][10] for tuning of SVM hyperparameters.

3.3 Nonlinear mapping and the kernel function

As it can be seen in (6) and (7), the input vectors are only involved through
their inner product. Thus, to map the data in a feature space, one does not need
to consider the feature space in explicit form. One only has to calculate the
inner products of the vectors in the feature space via the kernel function K(·, ·).
This is the kernel trick that allows the construction of a decision function that
is nonlinear in the input space but equivalent to a linear decision function in
the feature space:

f(x) = sign

∑

support vectors

yiαiK(xi, x) + b

 (9)

where K(xi, x) stands for the kernel function. Typical kernel functions are:

• RBF kernel: K(xi, x) = exp
(

−‖x−xi‖
2

2σ2

)

• Sigmoid kernel: K(xi, x) = tanh
(

γ(xT xi) + c
)

• Polynomial kernel: K(xi, x) = (γxT xi + c)d

3.4 Multi-class SVM

There are two common methods to solve a multi-class problem with binary
classifiers such as SVMs: one-against-all (or one-vs-rest) and one-against-one.
In the one-against-all scheme, a classifier is built for each class and assigned to
the separation of this class from the others. For the one-against-one method,
a classifier is built for every pair of classes to separate the classes two by two.
Another approach to the recognition of n different digits is to use a single
n-class SVM instead of n binary SVM subclassifiers with the one-against-all
method, thus solving a single constrained optimization problem. Multi-class
SVMs have been studied by different authors [11], [12] and [13]. But this
method is not very popular in digit recognition applications yet and did not
yield better performances than other classifiers. In [14], a multi-class SVM
was compared to a group of binary SVMs on the USPS datasets. The multi-
class SVM gave lower accuracy rates than the common methods. However,
multi-class SVMs gave promising results and outperformed other combinatory
methods in the prediction of protein secondary structures [15].

7

4 Expanding the training set

If the number of training samples is small and if the distribution to be learned
has some transformation-invariance properties, generating additional data us-
ing transformations may improve the recognition performances [7]. In [2],
results on the MNIST database were improved by applying affine transfor-
mations on the data and thus multiplying the size of the training set by
ten. Thus one can create new training samples by using prior knowledge on
transformation-invariance properties in order to improve the learning of a ma-
chine.

4.1 Affine transformation

Simple distortions such as translations, rotations, scaling and skewing can
be generated by applying affine displacement fields to images. For each pixel
(x, y), a new target location is computed with respect to the displacement
field ∆x(x, y) and ∆y(x, y) at this position. For instance if ∆x(x, y) = αx and
∆y(x, y) = αy, the image is scaled by α. In case α is a non-integer value, then
bilinear interpolation is performed.

The general form of affine transformation is:

x

y

 = A

x

y

 + B +

x

y

 (10)

where the 2× 2-matrix A and the column-vector B are the parameters of the
transformation. For instance, for scaling:

A =

α 0

0 α

 , B =

0

0

 (11)

In this paper, translations of one pixel in the 8 directions are used to generate
new samples and multiply the size of the training set by 9. For these transfor-
mations, A = 0 and B takes 8 different values, in the 4 main directions:

1

0

 ,

0

1

 ,

−1

0

 ,

0

−1

 (12)

8

and in the 4 diagonals:

1

1

 ,

−1

1

 ,

−1

−1

 ,

1

−1

 (13)

4.2 Bilinear interpolation

Bilinear interpolation is used to evaluate the value of a transformed pixel whose
coordinates are not integers. After a displacement, a pixel is surrounded by a
square of pixels. The new pixel value is computed from the values of the pixels
(pi, i = 1, . . . , 4) at the corners (bottom left, bottom right, top left and top
right) of the original image as follows.

Let (x, y) be the original coordinates of pixel p, (u, v) the new ones, pix

and piy the coordinates of the corner pi. First, two interpolations are made
horizontally, with respect to the relative new coordinates inside the square
(ur = u − p1x

, vr = v − p3y
):

piXbottom = p1 + ur(p2 − p1)

piXtop = p3 + ur(p4 − p3)
(14)

Finally the vertical interpolation is performed on the previous results:

p = piXbottom + vr(piXtop − piXbottom) (15)

4.3 Elastic distortion

Elastic distortion is an image transformation introduced by [7] to imitate the
variations of the handwriting to create new data and increase the perfor-
mances.

The generation of the elastic distortion is as follows. First, random displace-
ment fields are created from a uniform distribution between −1 and +1. They
are then convolved with a Gaussian of standard deviation σ. After normal-
ization and multiplication by a scaling factor α that controls the intensity
of the deformation, they are applied on the image. σ stands for the elastic
coefficient. A small σ means more elastic distortion. For a large σ, the de-
formation approaches affine, and if σ is very large, then the displacements
become translations.

In the proposed method, the elastic distortions are applied on every sample

9

Fig. 2. Samples generated by elastic distortion from the orginal pattern shown on
the left.

of the training set to generate 9 new samples for each one, thus multiplying
the size of the training set by 10. Figure 2 shows some samples generated by
elastic distortion.

5 Feature extraction

In handwriting recognition, features and feature extractors are created from
some knowledge of the data. A feature extractor processes the raw data (the
gray-scaled image in this case) to generate a feature vector. This vector has a
smaller dimension than the orginal data while holding the maximum amount
of useful information given by the data. As an example, a feature extractor
might build a feature vector whose component i is the number of crossing
points in the ith line of the image. This feature extractor is constructed from
prior knowledge on the application, because we know that the crossing points
possess pertinent information for differentiating digits.

5.1 Trainable feature extractor

Another approach to this problem is to consider the feature extractor as a
black box model trained to give relevant features as outputs with no prior
knowledge on the data. As explained in the Section 2, LeNet5 extracts the
features in its first layers. The weights of these layers are trained so that its
output layers can minimize the classification error. The idea is to replace the
last two layers by a single linear output layer. For a 10-class problem, this layer
has 10 units, each one performing a linear combination of the previous layer
outputs and giving a confidence measure for a class. Thus the 120 outputs
of the last convolutional layer are trained to be linearly separable and can
be used as features for any other classifier once the network has been trained.
The resulting system is a trainable feature extractor (TFE) that can quickly be
applied to a particular image recognition application without prior knowledge
on the features. Figure 3 shows its architecture in the case of digit recognition
with 10 classes.

10

� ���������
	���	����� ��	���	�� �

�����
6 × 28 × 28� �������� ���� �	 �

!�"��
6 × 14 × 14

�$#��
16 × 10 × 10

!�%��
16 × 5 × 5

32 × 32

�&"�')(&�*����+	�,

-/.�0�-21 354

-76+8�1 3�1 354

�&'9(��� � :;��������	��<�	��
����
�����,

�$=����&"�'

Fig. 3. The architecture of the trainable feature extractor (TFE). The outputs of
the layer C5 are either directed to the 10 outputs for the training phase or used as
features for the testing phase.

5.2 The digit recognition system based on the TFE

The proposed system is composed of the trainable feature extractor (TFE) of
Fig. 3 connected to a multitude of binary SVMs for the testing phase. It is thus
labeled TFE-SVM in the following experiments. The multi-class approach for
the SVMs is either the one-vs-one method that needs 44 binary classifiers to
separate every couples of classes or the one-vs-rest method that involves 10
classifiers, each one assigned to the separation of one class from the others.
In the following experiments, both methods are applied and the Tables show
only the best of the two results.

The idea of using the extracted features of a convolutional network can be
found in [16]. The last layers of a LeNet4 network were replaced by a K-NN
classifier to work on the extracted features. But this method did not improve
the results compared to a plain LeNet4 network.

6 Experiments

This section presents the results obtained by the proposed methods on the
MNIST database [17]. This database is a widely known benchmark that con-
tains a training set of 60000 images and a test set of 10000 images. The images
are gray-level bitmaps normalized and centered in a 28× 28 pixels frame. The
efficiency of the trainable feature extractor is first verified together with the
use of SVMs instead of standard LeNet5 outputs. The gain in recognition rate
provided by the expansion of the training set is then evaluated and a compar-
ison between the elastic distortion and affine transformations is performed.

11

Table 1
Training error rates of SVMs used with trained features and various kernels. poly5
stands for a polynomial kernel of degree 5.

kernel training set
size

training error (%)

linear 15000 0.02

poly5 15000 0

linear 30000 0.30

poly5 30000 0

linear 60000 0.19

poly5 60000 0.90

rbf 60000 0.51

6.1 Trainable feature extractor and SVMs

First, the relevance of the trained features is verified. Table 1 presents the error
rates on training sets of different sizes for SVMs that use the trained features
with various kernels. It shows that the features provided by the trainable
feature extractor are relevant to the task and almost linearly separable.

The gain in generalization obtained by replacing the outputs of the convolu-
tional neural network by SVMs, as in the TFE-SVM scheme, is then estimated
by a comparison between a full network (LeNet5 with a simple output layer)
with its own outputs and the same network with SVM outputs. The SVM
hyperparameters (C and σ) are tuned by cross validation (5-fold) on a small
subset of the training set (15000 samples). The results presented in Table 2
show that the SVMs perform better than the network outputs on the test set
even though the features are not trained for the SVMs but for these outputs.
This set of experiments validates the proposed recognition system labeled
TFE-SVM based on the idea of connecting SVMs to a convolutional neural
network after the training phase.

6.2 Expanded training set

A comparison between the affine transformations and the elastic distortions
for the expansion of the training set is conducted. The affine transformations
create 8 new samples for each sample of the training set by translations of one
pixel in the 8 directions. The parameters for the elastic distortion are σ = 14
and α = 1, the size of the training set being multiplied by 10. Table 3 exposes
the recognition rate on the test set of LeNet5 trained either on translated or

12

Table 2
Comparison of the recognition rate on the test set between a full neural network
(NN) and SVM classifiers using the outputs of the last convolutional layer of the
same network as input features.

Classifier training set size test rec. rate

NN 15000 98.45

SVM poly5 15000 98.57

NN 30000 98.63

SVM poly5 30000 98.86

NN 60000 98.70

SVM linear 60000 98.94

SVM poly5 60000 98.96

SVM rbf 60000 99.17

elasticly distorted samples. This Table proves that generating new samples for

Table 3
Comparison between the elastic distortions and the affine transformations (transla-
tions) for the expansion of the training set. The lines none correspond to the original
training set before the generation of new samples.

distortion training set size test rec. rate

none 15000 98.45

elastic 150000 98.99

affine 135000 98.95

none 30000 98.63

elastic 300000 99.22

affine 270000 99.15

none 60000 98.70

elastic 600000 99.28

affine 540000 99.32

the training set based on some knowledge on transformation-invariance prop-
erties can increase the recognition rate. In all these experiments, a gain of at
least 0.5% to the performances is obtained for both transformations. Actually,
the choice to be made between the elastic distortion and the affine transfor-
mations is not clear. The elastic distortion appears to perform better on small
subsets of the training set, while the translations offer the best performance
on the whole dataset. Nonetheless, care must be taken not to generate too
many samples. Tests showed that multiplying the size of the training set by

13

20 with elastic distortions lead to lower results.

6.3 TFE-SVM and distortions

Now, the proposed system (TFE-SVM) is used in combination with the affine
transformation and the elastic distortion for the training set expansion. The
same tranformations as in the previous section are applied. The SVMs have
RBF kernels and the hyperparameters are set to the same values as in the
previous experiments.

Table 4 shows published results of different methods on the MNIST database
together with the best results of this work. Firstly, the upper part of the Table
shows that the proposed method outperforms both LeNet5 and SVMs without
the use of new samples to expand the training set. Moreover, when the affine
transformations are applied, a recognition rate of 99.46% (error rate of 0.54%)
is obtained which is very close to the best performance of 99.60% achieved on
the MNIST database to this day. In [7], this performance was obtained with a
convolutional neural network (with a different architecture than LeNet5) used
together with the elastic distortion.

6.4 Analysis of the errors

This section focusses the errors on the test set of the TFE-SVM trained on the
training set extended by affine transforamtions. The 54 misclassified patterns
out of the 10000 test samples are shown in Fig. 4.

The confusion matrix (Table 5) allows to see the frequency and the types of
the errors (which digit is mistaken for which). It shows that the most difficult
digits to classify are ’4’,’6’ and ’8’, and that most frequent confusing pairs are
’4-6’,’5-3’ and ’9-4’. Besides, many of the indexes of errors are the same as
those of LeNet5 given in [20]. In this latter study, about 2/3 of the errors were
categorized as easily recognized by humans without any ambiguity. Looking
at the patterns in Fig. 4, 32 samples out of 54 (59%) could be considered
as recognizable by humans without any ambiguity. The remaining samples
are either too distorted, broken or ambiguous. So the system can still be
enhanced to increase the performance but only up to a certain limit which
would be 0.22% error rate, so a recognition rate of 99.78%. If we remove these
22 bad samples from the test set and compute the error rate of the system on
recognizable samples only, then the TFE-SVM achieves an error rate of only
0.32%.

From the 32 remaining errors, 12 are due to the preprocessing (scanning, nor-

14

Table 4
Published results of other methods on the MNIST database. The distortion column
indicates the type of distortion used to expand the training set.

Classifier distortion reference test error (%)

SVM [18] 1.4

LeNet5 [2] 0.95

TFE-SVM this paper 0.83

VSVM affine [18] 0.8

LeNet5 affine [2] 0.8

LeNet5 elastic this paper 0.72

boosted-LeNet4 affine [2] 0.7

LeNet5 affine this paper 0.68

VSVM2 affine [18] 0.68

K-NN [19] 0.63

VSVM2+deskewing affine [18] 0.56

TFE-SVM elastic this paper 0.56

TFE-SVM affine this paper 0.54

convolutional NN elastic [7] 0.4

malization, orientation. . .) of the creation of the database. These samples are
very distorted or rotated but are still recognizable by humans. Some of these
samples also have broken or overlapping strokes because of the thickness of
the pen or cursive writing. Other errors come from patterns of strange proto-
types, that are written in atypical style, such as the ’4’s found in Fig. 4. Thus
8 samples can be considered as misclassified because of the lack of samples of
the same prototype in the training set. Though they are perfectly clear, the
classifier has not learned to recognize them. This problem could be tackled by
generating more samples of these prototypes to extend the training set. In this
scheme the training set should be first classified in terms of prototypes within
the classes. Another classifier is thus required to extract the patterns of rare
prototypes (see for instance [21] for a study of the digit prototypes and their
classification).

7 Conclusion

This paper presented two of the best classifiers commonly used in handwriting
recognition: the LeNet5 convolutional neural network and the Support Vec-

15

Fig. 4. The 54 patterns of the test set misclassified by the TFE-SVM trained on the
training set extended by affine transformations. The labels appear above the image
(target->output) and the sample index below.

tor Machine (SVM). The problem of feature extraction has been tackled in a
black box approach and a trainable feature extractor based on LeNet5 architec-
ture has been introduced. The proposed method (TFE-SVM) has been tested
on a well known benchmark for handwritten digit recognition, the MNIST
database. The TFE-SVM outperformed both LeNet5 and SVMs trained on the
original training set. Used together with the elastic distortion or affine trans-
formations for the expansion of the training set, the proposed method achieved
performances comparable to the best published results on this database. This
shows the efficiency of generating new samples, and that simple translations
can be as good as elastic distortions for this purpose. Moreover, the train-
able feature extractor allowed to obtain these results without prior knowledge
on the construction of features for handwritten character recognition. This

16

Table 5
Confusion matrix on the test set for the TFE-SVM with affine transformations for
the training set expansion.

target 0 1 2 3 4 5 6 7 8 9

output

0 1 1 1

1 2 2

2 1 1 1 3 2

3 4 1

4 1 4

5 1 3 2 1

6 1 1 5 1 1

7 3 1 1

8 1 1 1 1

9 2 1 1

Total 2 3 5 2 8 5 8 6 9 6

is the main advantage of the method that can be quickly applied to image
recognition applications for which little is known on relevant features.

An analysis of the errors allowed to conclude that the performance could not
be increased above a certain limit, because of bad samples in the test set not
recognizable without ambiguity by humans. Nonetheless some error patterns
are very clear and are still misrecognized because of their structure and the
lack of samples of the same prototype in the training set. Regarding these
errors, the generation of more samples of rare prototypes could lead to further
improvement.

Future studies might consider using the architecture of the convolutional net-
work presented in [7], that gave the best result on the MNIST database, for
the TFE instead of LeNet5. Together with the use of the cross-entropy cri-
terion for the training of the network this architecture might provide better
features for the SVM classifiers.

References

[1] R. O. Duda, P. E. Hart, D. G. Stork, Pattern Classification, 2nd Edition, Wiley,
New York, 2000.

17

[2] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied
to document recognition, Proc. of the IEEE 86 (11) (1998) 2278–2324.

[3] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New
York, 1995.

[4] I. Guyon, A. Elisseeff, An introduction to variable and feature selection, Journal
of Machine Learning Research 3 (2003) 1157–1182.

[5] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
L. D. Jackel, Handwritten digit recognition with a back-propagation network,
in: D. Touretzky (Ed.), Advances in Neural Information Processing Systems,
Vol. 2, M. Kaufman, Denver, CO, 1990, pp. 396–404.

[6] C. J. C. Burges, B. Schölkopf, Improving the accuracy and speed of support
vector machines, in: M. Mozer, M. Jordan, T. Petsche (Eds.), Advances in
Neural Information Processing Systems, Vol. 9, The MIT Press, 1997, pp. 375–
381.

[7] P. Y. Simard, D. Steinkraus, J. C. Platt, Best practices for convolutional neural
networks applied to visual document analysis, in: Proc. of the 7th Int. Conf.
on Document Analysis and Recognition, Vol. 2, Edinburgh, Scotland, 2003, pp.
958–962.

[8] F. Friedrichs, C. Igel, Evolutionary tuning of multiple SVM parameters, in:
M. Verleysen (Ed.), Proc. of the 12th Europ. Symp. on Artificial Neural
Networks (ESANN), Bruges, Belgium, 2004, pp. 519–524.

[9] O. Chapelle, V. N. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple
parameters for support vector machines, Machine Learning 46 (1-3) (2002) 131–
159.

[10] N. E. Ayat, M. Cheriet, C. Y. Suen, Optimizing the SVM kernels using
an empirical error minimization scheme, in: S. Lee, A. Verri (Eds.), Pattern
Recognition with Support Vector Machines. Lecture Notes in Computer Science,
Vol. 2388, 2002, pp. 354–369.

[11] J. Weston, C. Watkins, Multiclass support vector machines, Tech. Rep. CSD-
TR-98-04, Royal Holloway, University of London (1998).

[12] K. Crammer, Y. Singer, On the algorithmic implementation of multiclass kernel-
based vector machines, Journal of Machine Learning Research 2 (2001) 265–292.

[13] Y. Guermeur, A. Elisseeff, H. Paugam-Moisy, A new multi-class SVM based
on a uniform convergence result, in: Proc. of the Int. Joint Conf. on Neural
Networks, Vol. 4, 2000, pp. 183–188.

[14] E. J. Bredensteiner, K. P. Bennett, Multicategory classification by support
vector machines, Computational Optimization and Applications 12 (1999) 53–
79.

[15] Y. Guermeur, Combining discriminant models with new multi-class support
vector machines, Pattern Analysis and Applications 5 (2) (2002) 168–179.

18

[16] Y. LeCun, L. D. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker,
I. Guyon, U. A. Muller, E. Sackinger, P. Simard, V. Vapnik, Learning algorithms
for classification: A comparison on handwritten digit recognition, in: J. H.
Oh, C. Kwon, S. Cho (Eds.), Neural Networks: The Statistical Mechanics
Perspective, World Scientific, 1995, pp. 261–276.

[17] Y. LeCun, The MNIST database of handwritten digits,
http://yann.lecun.com/exdb/mnist/index.html.

[18] D. Decoste, B. Schölkopf, Training invariant support vector machines, Machine
Learning 46 (2002) 161–190.

[19] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using
shape contexts, IEEE Trans. on Pattern Analysis and Machine Intelligence 24
(2002) 509–522.

[20] C. Y. Suen, J. Tan, Analysis of errors of handwritten digits made by a multitude
of classifiers, Pattern Recognition Letters 26 (2005) 369–379.

[21] J. M. Tan, Automatic verification of the outputs of multiple classifiers for
unconstrained handwritten numerals, Master’s thesis, Concordia University,
Montréal, QC, Canada (2004).

19

