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Computation of median orders:  
complexity results 

 

Olivier Hudry* 

 

Abstract 

Given a set of individual preferences defined on a same finite set of candidates, 
we consider the problem of aggregating them into a collective preference 
minimizing the number of disagreements with respect to the given set and verifying 
some structural properties like transitivity. We study the complexity of this 
problem when the individual preferences as well as the collective one must verify 
different properties, and we show that the aggregation problem is NP-hard for 
different types of collective preferences, even when the individual preferences are 
linear orders. 

  

Key words: Complexity, partially ordered relations, median relations, aggregation 
of preferences. 

 
 

1 Introduction 
The problem that we deal with in this paper can be stated as follows: given a set 

(called a profile) Π = (R1, R2, …, Rm) of m binary relations Ri (1 ≤ i ≤ m) defined on the 
same finite set X, find a binary relation R* defined on X verifying certain properties like 
transitivity and summarizing Π as accurately as possible. This problem occurs in 
different fields, for instance in the social sciences, in electrical engineering, in 
agronomy or in mathematics (see for example L. Hubert (1976), J.-P. Barthélemy et alii 
(1981, 1986, 1988, 1989, 1995), M. Jünger (1985), G. Reinelt (1985), A. Guénoche et 
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alii (1994)). For example, in voting theory, X can be considered as a set of candidates, 
Π as a profile of individual preferences expressed by voters and R* as the collective 
preference that we look for. Though the problem occurs in different fields, as said 
above, we shall keep this illustration from voting theory in the following. 

The aim of this paper is to study the complexity of finding R* (for the theory of 
complexity, see for instance M.R. Garey and D.S. Johnson (1979) or J.-P. Barthélemy et 
alii (1996)). We consider different types of ordered relations for the individual 
preferences of Π as well as for R* and we show that for most cases, the computation of 
R* is an NP-hard problem. This problem has been already studied in some special cases, 
namely for the aggregation of a profile of linear orders into a linear order by J.B. Orlin 
(1988) and by J.J. Bartholdi III, C.A. Tovey and M.A. Trick (1989), and for the 
aggregation of a profile of binary relations into a linear order, a partial order, a complete 
preorder or a preorder (see below for the definitions of these structures) by 
Y. Wakabashi (1986 and 1998). The results displayed in this paper generalize the 
previous ones by extending them to other cases. They slightly strengthen and sometimes 
generalize the ones presented in O. Hudry (1989).  

In the following, the relations to aggregate are assumed to represent preferences, and 
thus will not be symmetric. Anyway, the aggregation of symmetric relations has also 
been studied: M. Krivanek and J. Moravek (1986) showed that the approximation of a 
symmetric relation by an equivalence relation (a reflexive, symmetric, and transitive 
relation) is NP-hard. This case corresponds with the aggregation of a profile reduced to 
only one symmetric relation while R* is assumed to be an equivalence relation. From 
this, we may derive that the aggregation of several symmetric relations or of 
equivalence relations into one equivalence relation is also NP-hard (see  
J.-P. Barthélemy and B. Leclerc (1995)). On contrary, the aggregation of symmetric 
relations or of equivalence relations into a symmetric relations is trivially polynomial. 

The paper is organized as follows. Section 2 recalls the definitions of the ordered 
relations that we take into account. In Section 3, we show how the aggregation problems 
can be formulated in graph theoretical terms. Then we prove our complexity results 
upon these aggregation problems in Section 4. The conclusions take place in Section 5 
and summarize the main results got in Section 4. 

2 The ordered relations 
Given a finite set X, a binary relation R defined on X is a subset of 

X × X = ( x, y): x ∈ X and y ∈ X{ }. We note n the number of elements of X and we 
suppose that n is great enough (typically, at least equal to 4). We note xRy  instead of 
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(x, y) ∈ R and xR y  instead of (x, y) ∉ R. The following properties that a binary relation 
R can satisfy are basic: 

• reflexive: ∀ x ∈ X, xRx; 

• irreflexive: ∀ x ∈ X, xR x ; 

• antisymmetric: ∀ (x, y) ∈ X2, (xRy and x≠y) ⇒ yR x ; 

• asymmetric: ∀ (x, y) ∈ X2, xRy ⇒ yR x ; 

• transitive: ∀ (x, y, z) ∈ X3,  (xRy and yRz) ⇒ xRz; 

• complete: ∀ (x, y) ∈ X2 with x≠y, xRy or (inclusively) yRx. 

From a binary relation R, we may define an asymmetric relation Ra (called the 
asymmetric part of R) by: xRay ⇔ (xRy and yR x ).  

By combining the above properties, we may define different types of binary relations 
(see for instance J.-P. Barthélemy and B. Monjardet (1981) or P.C. Fishburn (1985)). As 
a binary relation R defined on X is the same as the oriented graph G = (X, R) (i.e. (x, y) 
is an arc of G if and only if we have xRy), we illustrate these types with graph theoretic 
examples: 

• a partial order is an asymmetric and transitive binary relation; O will denote the set 
of the partial orders defined on X; 

a

b c

d e

f

 
Figure 1. A partial order. 

 

• a linear order is a complete partial order; L will denote the set of the linear orders 
defined on X; 

 
Figure 2. A linear order. The partial order of Figure 1 is not a linear order, for 

instance because the vertices a and d are not compared. 
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• a tournament is a complete and asymmetric binary relation; T will denote the set of 
the tournaments defined on X; notice that a transitive tournament is a linear order and 
conversely; 

 
Figure 3. A tournament. 

 

• a preorder is a reflexive and transitive binary relation; P will denote the set of the 
preorders defined on X; 

 
Figure 4. A preorder. 

 

• a complete preorder is a reflexive, transitive and complete binary relation; C will 
denote the set of the complete preorders defined on X; 

 
Figure 5. A complete  preorder. 
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• a weak order is the asymmetric part of a complete preorder; W will denote the set 
of the weak orders defined on X; 

 
Figure 6. A weak order (namely, the asymmetric part of the complete preorder of 

Figure 5). 

 

• an interval order is a partial order R satisfying: ∀ (x, y, z, t) ∈ X4,  
(xRy and zRt) ⇒ {xRt or (inclusively) zRy}; I will denote the set of interval orders 
defined on X (the name interval order comes from the fact that we may represent such 
an order by intervals spread on the real axis and associated with each element x of X: 
then xRy means that the interval associated with x is completely on the left of the one 
associated with y, while yRx  and yR x  mean that the intervals associated with x and y 
overlap; the above condition means that if x is on the left of y and z on the left of t, then 
the intervals associated with x and t on one hand and the ones associated with z and y on 
the other hand cannot overlap simultaneously). 

a

b

c

d
e

o

 
Figure 7. An interval order .The partial order of Figure 1 is not an interval order for 

instance because of the vertices b, c, d, e: bRc and dRe but we have not bRe nor dRc. 
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• a semiorder is an interval order R satisfying: ∀ (x, y, z, t) ∈ X4,  
(xRy and yRz) ⇒ {xRt or (inclusive) tRz}; S will denote the set of interval orders defined 
on X (with respect to the representation as intervals, an interval orders is a semiorder if 
we may associate intervals with the same length to all the elements of X). 

 
Figure 8. A semiorder .The interval order of Figure 7 is not a semiorder for instance 

because of the vertices b, c, d, e: cRe and eRd but we have not cRb nor bRd. 

 

• a quasi-order is a reflexive and complete relation of which the asymmetric part is a 
semiorder; Q will denote the set of the quasi-orders defined on X; 

o

o

o
o

o

 
Figure 9. A quasi-order. Its asymmetric part  is the semiorder of Figure 8. 

 

• an acyclic relation is a relation R without directed cycle (circuit), i.e. verifying: 
∀ 1 ≤ k ≤ n, (xiRxi+1 for 1 ≤ i ≤ k – 1) ⇒ xk Rx1 ; A will denote the set of acyclic 
relations defined on X. 
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Figure 9. An acyclic relation. Its transitive closure is the partial order of Figure 1. 

 

Checking that a given relation (or a given graph) fulfils the requirements of these 
structures can be done in polynomial time with respect to n. From this remark, it will 
follow that the problems considered below all belong to NP. 

It is possible to get other structures by adding or by removing reflexivity or 
irreflexivity from the above definition (and by changing asymmetry by antisymmetry 
when necessary). In fact, the distinction between reflexive and irreflexive relations is 
not relevant for our study, as we shall see below: the complexity results will remain the 
same. Thus, in the following, we do not take reflexivity or irreflexivity into account (for 
instance, we will consider that a linear order is also a preorder). 

These types include the most studied and used partially ordered relations. We will 
also consider generic binary relations, without any particular property. The set of the 
binary relations will be noted R. We may notice several inclusions between these sets, 
especially the following one: ∀ Z ∈ {A, C, I, L, O, P, Q, R, S, T, W}, L ⊆ Z; in other 
words, a linear order can be considered as a special case of any one of the other types. 

3 Formulations of the aggregation problem 
In order to get an optimization problem to deal with, it is necessary to explicit what 

we mean when we say that R* must summarize Π “as accurately as possible”. To do so, 
we consider the symmetric difference distance δ: given two binary relations R and S 
defined on the same set X, we have  

δ (R, S) = x, y( ) ∈ X2 : xRy and xS y[ ] or xR y and xSy[ ]{ } 

This quantity δ (R, S)  measures the number of disagreements between R and S. 
Though some authors consider sometimes another distance, δ is used widely and is 
appropriate for many applications. J.-P. Barthélemy (1979) shows that δ satisfies a 
number of naturally desirable properties and J.-P. Barthélemy and B. Monjardet (1981) 
recall that δ (R, S)  is the Hamming distance between the characteristic vectors of R and 
S and point out the links between δ and the L1 metric or the square of the Euclidean 
distance between these vectors (see also K.P. Bogart (1973 and 1975) and B. Monjardet 
(1979 and 1990)). 
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Then, for a profile Π = (R1, R2, …, Rm) of m relations, we can define the remoteness 
∆(Π, R) (J.-P. Barthélemy and B. Monjardet (1981)) between a relation R and the 
profile Π by: 

∆ (Π, R) = δ R, Ri( )
i=1

m
∑ . 

The remoteness ∆(Π, R) measures the total number of disagreements between Π 
and R. 

Our aggregation problem can be seen now as a combinatorial problem: given a 
profile Π, determine a binary relation R* minimizing ∆ over one of the sets A, C, I, L, O, 
P, Q, R, S, T, W. Such a relation R* will be called a median relation of Π  
(J.-P. Barthélemy and B. Monjardet (1981)). According to the number m of relations of 
the profile and to the properties assumed for the relations belonging to Π or required 
from the median relation, we get many combinatorial problems. They are too numerous 
to state them explicitly; so we note them as follows: 

 

Problems Pf(Y, Z). For Y belonging to {A, C, I, L, O, P, Q, R, S, T, W} and Z 
belonging also to {A, C, I, L, O, P, Q, R, S, T, W}, for a function f defined from the set N 
of integers to N, Pf(Y, Z) denotes the following problem: given a finite set X of n 
elements, given a profile Π of m = f(n) binary relations all belonging to Y, find a relation 
R* belonging to Z with: ∆(Π, R*) 

 
= Min

R∈Z
∆ (Π, R) . 

 

An interesting case is the one for which f is a constant m, i.e. the particular case for 
which the number m of relations is fixed outside the instance. We will denote this 
problem by Pm(Y, Z). For instance, P2(R, L) will denote the aggregation of 2 binary 
relations into a linear order. We will see that the parity of m will play a role in the 
following results. Anyway, it will be easy to see from the following computations that, 
if Pf(Y, Z) is NP-hard for some function f and some sets Y and Z, then Pf+2(Y, Z) will 
also be NP-hard: it will be sufficient to add any linear order and its reverse order to the 
considered profile to get this result (since the linear orders are special cases of any one 
of the other types). 

 

We do not explicit the statements of the decision problems associated with the 
problems Pf(Y, Z), because they are obvious. Similarly, it is obvious to show that these 
decision problems belong to NP. Thus, we deal with the NP-hardness of Pf(Y, Z), but 
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we could deal with the NP-completeness of the decision problems associated with 
Pf(Y, Z). 

To study the complexity of Pf(Y, Z), we develop the expression of ∆. For this, 
consider the characteristic vectors r i = rxy

i( )(x , y )∈X2
 of the relations Ri (1 ≤ i ≤ m) 

defined by r  if xRiy and rxy
i = 1 xy

i = 0 otherwise, and similarly the characteristic vector 

r=  of any binary relation R. Then, it is easy to get a linear expression of 

∆(Π, R): 

rxy( )(x ,y )∈X2

δ R, Ri( ) = rxy − rxy
i

(x , y )∈X2
∑ = rxy − rxy

i
2

(x , y )∈X2
∑ = rxy 1 − 2rxy

i( )+ rxy
i[ ]

( x ,y )∈X 2
∑   

hence ∆ Π , R( ) = rxy − rxy
i

( x ,y )∈X 2
∑

i =1

m

∑  

and, after simplifications: ∆ Π , R( ) = C − mxy . rxy
(x , y )∈X2

∑  

with C  and m . = rxy
i

( x ,y )∈X 2
∑

i =1

m

∑ xy = 2rxy
i − 1( )

i =1

m

∑ = 2 rxy
i

i =1

m

∑ − m

Notice that the quantities mxy can be non-positive or non-negative, and that they all 
have the same parity (the one of m). Notice also that, from this expression of ∆(Π, R), it 
is easy to get a 0-1 linear programming formulation of the problems Pf(Y, Z) by adding 
the 0-1 linear constraints associated with each type of median relation (but it will not be 
the way that we are going to follow in the sequel). For example, the transitivity of R can 
be written: ∀ , ( x, y, z) ∈ X3 rxy + ryz − rxz ≤ 1 (see for instance Y. Wakabayashi (1986) 
or O. Hudry (1989) for details). Such a 0-1 linear programming formulation was applied 
as soon as 1960 (A.W. Tucker (1960); see also D.H. Younger (1963), J.S. de Cani 
(1969), D. Arditti (1984), and more generally J.-P. Barthélemy and B. Monjardet (1981) 
for references). 

Before going further, the following lemma shows that reflexivity or irreflexivity of 
the median relation do not change the complexity of the problems Pf(Y, Z). 

 

Lemma 1. For any set Z of median relations, let Zr (resp. Zi) be the set of median 
relations got from the elements of Z by adding the reflexivity (resp. irreflexivity) 
property. Then, for any set Y and any function f, Pf(Y, Z), Pf(Y, Zr), and Pf(Y, Zi) have 
the same complexity. 
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Proof. To show this result, consider any profile Π of m (= f(n)) relations belonging to 
Y and any relation Z belonging to Z. Let Zr (resp. Zi) be the reflexive  (resp. irreflexive) 
relation got from Z by adding the reflexivity (resp. irreflexivity) property. Then it is 
easy to state the following relations: 

∆ Π ,Zr( )= ∆ Π, Z( )+ mxx
x:(x,x)∉Z

∑  and ∆ Π ,Zi( ) = ∆ Π,Z( )− mxx
x:(x, x)∈Z

∑ . 

Hence the result, since the computation of mxx
x:(x,x )∉Z

∑  and of  can trivially 

be done in polynomial time w.r.t. the size of the considered instance. ❑  

mxx
x:(x,x )∈Z

∑

 

 Because of Lemma 1, we shall not pay attention from now on to reflexivity or 
irreflexivity: all the complexity results remain the same if we add or remove reflexivity 
or irreflexivity. 

 

In the following, we will not consider the previous 0-1 linear programming 
formulation to study the complexity of the problems Pf(Y, Z), but a graph theoretic 
representation. Indeed, we may associate a complete, symmetric, weighted, oriented 
graph G = (X, U) to any profile Π: the vertex set of G is X and G owns all the arcs (i.e. 
oriented edges) that a simple graph can own; in other words, we have: 

 (remember that reflexivity does not matter now on). In 
the following, we will write U
U = X × X − (x,x) for x ∈X{ }

X  to denote the set X × X − (x, x) for x ∈X{ } and the 
graph associated with Π is thus G = (X,UX ) . The arcs (x, y) of G (with x ∈X , y ∈X  
and x ≠ y) are weighted by m . Then minimizing xy ∆ Π ,Z( ) for Z belonging to one of the 
sets A, C, I, L, O, P, Q, R, S, T, W is exactly the same as extracting a partial graph 
H = ( X, Z ) from G in order to maximize mxy

Z(x,y)∈
∑  while the kept arcs describe the 

structure that Z must respect (H must belong to A, C, I, L, O, P, Q, R, S, T, W, where 
these sets are seen as sets of graphs).  

 

Then the question arises: which weighted graphs G = (X,UX )  can be associated to a 
profile Π ? By combining results by P. Erdös, L. Moser (1964) and by B. Debord (1987) 
(see also D. McGarvey (1953) and R. Stearns (1959)), we get such characterisations, 
which depend on the nature of the relations of Π. For the statements of the following 
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theorems, let M denote the highest absolute value of the weights of G: 
M = Max

(x,y)∈UX
mxy . 

xy

mxy

 (x, y) ∈UX

mxy

c.n. M
log n

 (x, y) ∈UX

 

Theorem 2. The graph G = (X,UX )  weighted by the (non-positive or non-negative) 
integers m represents a profile Π of m binary relations if the following conditions are 
fulfilled: 

1. all the weights m have the same parity; xy

2. m has the same parity as the weights m ; xy

3. m ≥ M. 

 

Theorem 3. The graph G = (X,UX )  weighted by the (non-positive or non-negative) 
integers represents a profile Π of m tournaments if the following conditions are 
fulfilled: 

1. all the weights m have the same parity; xy

2. m has the same parity as the weights m ; xy

3. m ≥ M; 

4. ∀ ,  mxy = −myx . 

 

Theorem 4. The graph G = (X,UX )  weighted by the (non-positive or non-negative) 
integers represents a profile Π of m linear orders if the following conditions are 
fulfilled: 

1. all the weights m have the same parity; xy

2. m has the same parity as the weights m ; xy

3. m ≥  where c is a constant; 

4. ∀ ,  mxy = −myx . 

 

Notice that, for Theorems 2 and 3, M is the lowest possible value of m. For 
Theorem 4, it is sometimes possible to find a profile of m linear orders associated with 
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G with m less than 
c.n. M
log n

. Anyway, in all these cases, there exists a profile Π with 

m = M binary relations, or m = M tournaments, or m = 
c.n. M
log n

 

 
 
 

 

 
 
  or m = 

c.n. M
log n

 

 
 
 

 

 
 
  + 1 

(depending on the parity of 
c.n. M
log n

 

 
 
 

 

 
 
  and of the weights of G) linear orders. Moreover, 

if we assume that M is upper-bounded by a polynomial in n (as it will be the case 
further), then the construction of Π can be done in polynomial time with respect to the 
size of G. Indeed, as any binary relation R defined on X can be described by O(n2) bits, 
it is possible to code Π = (R1, R2, …, RM) with O M.n2( ) bits, while the size of G is at 
least n2 (at least 1 bit for the weight of each arc of G); hence the result. Notice also that, 
if M is upper-bounded by a constant, it is possible to fix the number m of relations of Π 
in Theorems 2 and 3; in this case, we may associate to G an instance of the problems 
Pm(R, Z) (Theorem 2) or the problems Pm(T, Z) (Theorem 3) for an appropriate set Z.  

From this polynomial link between the problems Pf(Y, Z) and their graph theoretic 
representations, it appears that we may study the complexity of the problems Pf(Y, Z) 
with the help of weighted graphs. It is what we do below. More precisely, we are going 
to study the following decision problems, stated as graph theoretic problems: 

 

Problems Q0(Y, Z) with Y ∈ {L, R, T} and Z ∈ {A, C, I, L, O, P, Q, S, W} 

Instance: a graph G = (X,UX )  weighted by (non-positive or non-negative) even 
integers m  and which represents a profile of relations belonging to Y; an integer K; xy

Question: does there exist a partial graph (X, U) of G belonging to Z with 
 ? mxy

(x,y)∈U
∑ ≥ K

 

Problems Q1(Y, Z) with Y ∈ {L, R, T} and Z ∈ {A, C, I, L, O, P, Q, S, W} 

Instance: a graph G = (X,UX )  weighted by (non-positive or non-negative) odd 
integers m  and which represents a profile of relations belonging to Y; an integer K; xy

Question: does there exist a partial graph (X, U) of G belonging to Z with 
 ? mxy

(x,y)∈U
∑ ≥ K
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4 The complexity results 

As for the problems Pf(Y, Z), the problems Q0(Y, Z) and Q1(Y, Z) obviously belong 
to NP for Y ∈ {L, R, T} and Z ∈ {A, C, I, L, O, P, Q, S, W}. To show that they are  
NP-complete, we use the well-known Feedback Arcset Problem (see M.R. Garey, 
D.S. Johnson (1979)): 

 

Instance: a directed, asymmetric graph H = (X, W); an integer h; 

Question: does there exist W′  W with ⊂ ′ W ≤ h  and such that W′ contains at least 
one arc of each circuit (directed cycle) of H ? 

 

R. Karp (1972) showed that this problem is NP-complete. We may also state it as 
follows: 

 

Problem FAS 

Instance: a directed, asymmetric graph H = (X, W); an integer h; 

Question: does there exist W′  W with ⊂ ′ W ≤ h  and such that removing the 
elements of W′ from H leaves a graph (X, W – W′) without any circuit (such a set W′ is 
called a feedback arc set of H of cardinality at most h) ? 

 

In the following, we use this latter formulation. We use also the following (obvious) 
lemma: 

 

Lemma 5.  

a. Any partial graph of a graph without circuit is itself without circuit. 

b. Any graph without circuit can be completed into a linear order by adding 
appropriate arcs. 

 

We now pay attention to the complexity of Q0(R, Z) and Q1(R, Z) (i.e. when the 
graph represents a profile of any binary relations) for Z ∈ {A, I, L, O, S, W} (i.e. when 
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we look for an acyclic relation, an interval order, a linear order, a partial order, a 
semiorder  or a weak order).  

 

Theorem 6. The problems Q0(R, Z) are NP-complete for Z ∈ {A, I, L, O, S, W}. 

 

Proof. We polynomially transform any instance H = (X, W) and h of FAS into an 
instance G and K of Q0(R, Z). For this, we set the vertex set of G as being X; hence the 
set of arcs of G: UX . We define the weights mxy of the arcs (x, y) of G and K as follows: 

* if (x, y) ∈ W,  = 2 mxy

∗ if (x, y) ∉ W,  = 0. mxy

Then we set K = 2 W − h( ). 

This transformation is obviously polynomial. Let us show that it keeps the answer 
« yes » or « no ». 

Indeed, assume that there exists a subset W′ of W with ′ W ≤ h  and such that 
removing the elements of W′ from H leaves a graph (X, W – W′) without any circuit. If 
we consider it as a partial graph of G, its weight is 2 W − ′ W ( ), which is greater than or 
equal to 2 W − h( ) = K. If Z = A, we are done. Otherwise, thanks to Lemma 5 b, it is 
possible to complete (X, W – W′) into a linear order by adding extra arcs. As all the 
weights are non-negative, we get a linear order (X, L), that we may consider as a partial 
order if Z = O, or as an interval order if Z = I, or as a semiorder if Z = S, or as a weak 
order if Z = W, with  ≥ K. mxy

(x,y)∈L
∑

Conversely, assume that the instance (G, K) of Q0(R, Z) admits the answer « yes »: 
there exists a partial graph (X, U) of G = (X,UX )  which is without circuit if Z = A, or a 
linear order if Z = L, or a partial order if Z = O, or an interval order if Z = I, or a 
semiorder if Z = S, or a weak order if Z = W, with mxy

(x,y)∈U
∑  ≥ K. In every case, (X, U) 

is without circuit. By definition of G, we have mxy
y)∈UX(x,
∑  = 2 W . Let W′ be the subset 

of W defined by W′ = W − W ∩U . Then we have  ′ W = W − W ∩ U . Since the 
elements of U which do not belong to W have a weight equal to 0, and since the other 

arcs have a weight equal to 2, we have then ′ W = W −
1
2

mxy
(x,y)∈U

∑  ≤ W −
1
2

K  = h. 
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Moreover, the graph (X, W – W′) is equal to (X, W ∩ U ), which is without circuit by 
Lemma 5 a and because the graph (X, U) is without circuit. 

In conclusion, the answer is kept by the transformation, and hence the problems  

Q0(R, Z) are NP-complete for Z ∈ {A, I, L, O, S, W}. ❑  

 

Corollary 7. For any even integer m ≥ 2, the problems Pm(R, Z) are NP-hard for 
Z ∈ {A, I, L, O, S, W}. 

 

Proof. It follows from the fact that, in the proof of Theorem 6, it is possible to upper 
bound the weights of the graph by 2. ❑  

 

Theorem 8. The problem Q1(R, L) is NP-complete. 

 

Proof. We apply the same transformation as for Theorem 6 (and thus we keep the 
same notations), but with the following weights: 

* if (x, y) ∈ W,  = 1 and mmxy yx = −1 

* if (x, y) ∉ W and (y, x) ∉ W, m  = 1 and m  = 1 xy yx

(notice that the weights m  are well-defined, because H is assumed to be 
asymmetric),  

xy

and with K = 
n(n −1)

2
− 2h . 

This transformation is obviously polynomial. Let us show that it keeps the answer 
« yes » or « no ». The proof is quite similar as the one of Theorem 6.  

Indeed, consider a minimum-sized subset W′ of W such that removing the elements 
of W′ from H gives a graph (X, W – W′) without any circuit, and assume that we have 

′ W ≤ h . If we consider (X, W – W′) as a partial graph of G, its weight is W − ′ W , 
which is greater than or equal to W − h . Thanks to Lemma 5 b, it is possible to 
complete (X, W – W′) into a linear order (X, L) by adding extra arcs. As we are looking 
for a linear order, it is necessary to add the arcs (x, y) such that (y, x) belongs to W′ 
(because of the completeness of a linear order); there are ′ W  such arcs, and their 
weights are equal to –1. Because of the asymmetry of a linear order, the other extra arcs 
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(x, y) cannot belong to W′ and are such that (y, x) neither belong to W′; there are 
n(n −1)

2
− W  such arcs, and their weights are equal to 1. Thus we get:  

mxy
(x,y)∈L

∑  = mxy
(x,y)∈W − ′ W 

∑  + mxy
(x,y)∈L

( y,x )∈ ′ W 

∑  + mxy
( x,y)∈L−(W − ′ W )

( y, x )∉ ′ W 

∑  

 = W − ′ W  – ′ W  + 
n(n −1)

2
− W   

 = 
n(n −1)

2
− 2 W ′ . 

From ′ W ≤ h , we get  ≥ mxy
(x,y)∈L

∑ n(n −1)
2

− 2h  = K: the answer admitted by the 

instance (G, K) of Q1(R, L) is also « yes ». 

 Conversely, assume that the instance (G, K) of Q1(R, L) admits the answer 
« yes »: there exists a partial graph (X, L) of G = (X,UX )  which represents a linear 
order, with  ≥ K. Notice that (X, L) is without circuit. Let W′ be the subset of 

W defined by W′ = W . If an arc (x, y) belongs to W′ (and thus to W), it does not 
belong to L; then (y, x) belongs to L (completeness of L) but not to W (asymmetry of H), 
and so its weight is equal to –1. Conversely, let (x, y) be an arc of L with a weight equal 
to –1; then it does not belong to W but is such that (y, x) does belong to W and not to L: 
(y, x) belongs to W′. So, the number of arcs of L with a weight equal to –1 is equal to 

mxy
(x,y)∈L

∑

− W ∩ L

′ W . The other elements of L (there are 
n(n −1)

2
− ′W   such arcs) have a weight equal 

to 1. Hence the relation: mxy
(x,y)∈L

∑  = 
n(n −1)

2
− 2 ′ W . From the inequality 

 ≥ K = mxy
(x,y)∈L

∑ n(n −
2

1)
− 2h , we draw ′ W  ≤ h. Moreover, the graph (X, W – W′) is 

equal to (X, W ∩ L ), which is without circuit by Lemma 5 a and because the graph 
(X, L) is without circuit. 

In conclusion, the answer is kept by the transformation, and hence the problem 
Q1(R, L) is NP-complete. ❑  

 

Corollary 9. For any odd integer m ≥ 1, the problems Pm(R, L) are NP-hard. 
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Proof. It follows from the fact that, in the proof of Theorem 8, it is possible to upper 
bound the weights of the graph by 1. ❑  

 

Theorem 10. Q1(R, A) is NP-complete. 

 

Proof. The proof is similar to the one of Theorem 8, and we do not detail it here. The 
construction is the following, with the same notations as above: 

* if (x, y) ∈ W, m  = 1 and m  = –1 xy yx

* if (x, y) ∉ W m  = 1 xy

* K = n (n − 1)
2

− h . 

With respect to the proof of Theorem 8, instead of considering the linear order called 
(X, L) above, we consider the same set of arcs L without the arcs with a weight equal to 
–1. Details are left to the reader. ❑  

 

Corollary 11. For any odd integer m ≥ 1, the problems Pm(R, A) are NP-hard. 

 

Proof. It follows from the fact that, in the proof of Theorem 10, it is possible to 
upper bound the weights of the graph by 1. ❑  

 

Theorem 12. The problems Q1(R, Z) are NP-complete for Z ∈ {I, O, S, W}. 

 

Proof. We apply the same transformation as for Theorem 8 (and thus we keep the 
same notations), but with the following weights: 

* if (x, y) ∈ W,  = 3 mxy

* if (x, y) ∉ W m  = 1 and m  = 1 xy yx

and with K = 
n(n −1)

2
+ 2 W − 2h . 

This transformation is obviously polynomial. Let us show that it keeps the answer 
« yes » or « no ». The proof is quite similar as those of Theorems 6 and 8. 
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Indeed, assume that there exists a subset W′ of W with ′ W ≤ h  and such that 
removing the elements of W′ from H leaves a graph (X, W – W′) without any circuit. If 
we consider it as a partial graph of G, its weight is 3 W − ′ W ( ). Thanks to Lemma 5 b, 
it is possible to complete (X, W – W′) into a linear order (X, L) by adding 
n(n −1)

2
− W − ′W  ( ) extra arcs. As the weights are all greater than or equal to 1, we get 

a linear order (X, L), that we may consider as a partial order if Z = O, or as an interval 
order if Z = I, or as a semiorder if Z = S, or as a weak order if Z = W, with:  

mxy
(x,y)∈L

∑  ≥ 3 W − ′W  ( ) + 
n(n −1)

2
− W − ′W  ( ) = 

n(n −1)
2

 + 2 W  – 2 ′ W  ≥ K, 

which shows that the answer of the instance (G, K) of Q1(R, Z) is « yes ». 

Conversely, assume that the instance (G, K) of Q1(R, Z) admits the answer « yes »: 
there exists a partial graph (X, U) of G = (X,UX )

m
(x,y)∈L

 which represents an element of Z, 
with  ≥ K. Notice that (X, U) is without circuit. It is then possible, by Lemma 5 

b, to complete U into a linear order L by adding extra arcs. As all the weights are 
positive, we get a linear order (X, L) with 

mxy
(x,y)∈U

∑

xy∑  ≥ K. Let W′ be the subset of W 

defined by W′ = W . The graph (X, W – W′) is equal to (X, W ), which is 
without circuit by Lemma 5 a. Let us now compute 

− W ∩ L ∩ L
mxy

y)∈L(x,
∑ :  

mxy
(x,y)∈L

∑  = mxy
(x,y)∈L∩W

∑  + mxy
(x,y)∈L−W

∑  

 = 3 L ∩ W  + L − W   

 = 2 L ∩ W  + L   

 = 2 W − ′ W  + 
n n( −1)

2
 

 = 2 W − 2 ′ W  + 
n n( −1)

2
. 

Hence, from  ≥ K = mxy
(x,y)∈L

∑ n(n −1)
2

+ 2 W − 2h , we get ′ W  ≤ h. The set W′ shows 

that the instance (H, h) of FAS admits the answer « yes ». 

In conclusion, the answer is kept by the transformation, and hence the problems 
Q1(R, Z) is NP-complete for Z ∈ {I, O, S, W}. ❑  
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Corollary 13. For any odd integer m ≥ 3 and for Z ∈ {I, O, S, W}, the problems 
Pm(R, Z) are NP-hard. 

 

Proof. It follows from the fact that, in the proof of Theorem 12, it is possible to 
upper bound the weights of the graph by 3. ❑  

 

Remarks.  

In fact, the above proof can more generally be applied to any set Z with L ⊆Z A, 
what is the case for the above sets.  

⊆

We may notice that the weights of the graph G of Theorem 12 are chosen to be 
positive, so that an optimal solution is in fact a linear order. The « price » of this trick is 
that we need some weights to be greater than 1. Because of this, the complexities of the 
problems P1(R, Z) for Z ∈ {I, O, S, W} remain open. 

 

We now consider a profile Π of linear orders, i.e. the problems Q0(L, Z) and 
Q1(L, Z) for Z ∈ {A, C, I, L, O, P, Q, R, S, T, or W}. The study of the complexity is more 
difficult because the graphs associated with Π are more constrained. Another 
consequence is that we cannot fix the number m of relations of Π any longer (because of 
the reconstruction of Π from the graph; see above) though it will be possible to upper 
bound m by a polynomial of n. To study the complexities of Q0(L, Z) and Q1(L, Z), we 
use the NP-completeness of two more constrained versions of FAS, that we call BFAS 
and BFAS′ because they deal with bipartite graphs. 

 

Problem BFAS 

Instance: a directed, asymmetric, and bipartite graph H = (Y ∪ Z , ) where  
Y = {yi: 1 ≤ i ≤ 

W1 ∪ W2
Y } and Z = {zi: 1 ≤ i ≤ Z  = Y } give the two classes of H and with 

W1 = {(zi, yi) for 1 ≤ i ≤ Y } and W2 ⊆  {(yi, zj) for 1 ≤ i ≤ Y  and 1 ≤ j ≤ Y }; an integer 
h; 

Question: does there exist W′  with ⊂ W1 ∪ W2 ′ W ≤ h  and such that removing the 
elements of W′ from H leaves a graph (Y ∪ Z , (W ) – W′) without any circuit ? 1 ∪ W2
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Problem BFAS′ 

Instance: the same as for BFAS; 

Question: does there exist W′  with ⊂ W1 ′ W ≤ h  and such that removing the 
elements of W′ from H leaves a graph (Y ∪ Z , (W ) – W′) without any circuit ? 1 ∪ W2

 

Figure 10 shows how such a graph looks like. So the only difference between BFAS 
and BFAS′ is that, in BFAS′ and with respect to the drawing of Figure 10, W′ is only 
made of horizontal arcs. 

Y Z

y1
z1

y i z i

y n

z n

 
Figure 10: an instance of BFAS. 

 

Theorem 14. BFAS and BFAS′ are NP-complete. 

 

Proof. It is easy to show that BFAS and BFAS′ belong to NP (details are left to the 
reader). To prove that they are NP-complete, we transform the following problem, 
called Vertex Cover, into BFAS or BFAS′: 
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Problem Vertex Cover (VC) 

Instance: an undirected graph G = (X, U); an integer g; 

Question: does there exist X′  X with ⊂ ′ X ≤ g  and verifying the following property: 
∀  x,  y{ }∈U , x ∈ ′ X  or y ∈ ′ X  (X′ is then a vertex cover of G of cardinality at most g) ? 

 

It is known that VC is NP-complete (see R. Karp [1972]). Let (G, g) be any instance 
of VC. We define an instance (H, h) of BFAS or of BFAS′ as follows: 

* for any vertex xi  ∈ X (1 ≤ i ≤ X  = n), we create two vertices of H:  and  
(1 ≤ i ≤ n) and we set Y = { , 1 ≤ i ≤ n} and Z = { , 1 ≤ i ≤ n}; 

yi zi
yi zi

* for any edge { xi , x j} of H, we create two arcs of H: (yi, zj) and (yj, zi); W2 will 
denote the set of these arcs: W2 = {(yi, zj), (yj, zi), for i and j such that { xi , x j} belongs 
to U}; 

* we complete H by adding all the arcs of the form (zi, yi) for 1 ≤ i ≤ n; they 
constitute the set W1: W1 = {(zi, yi) for 1 ≤ i ≤ n}; 

* we set g = h. 

Then we claim that G admits a vertex cover of cardinality at most g if and only if H 
admits a feedback arc set included into W1 of cardinality at most h.  

Indeed, assume that there exists a vertex cover X′ of G with ′ X ≤ g . Then let W′ be 
defined by: W′ = {(zi, yi) for xi  ∈ X′}. We clearly have ′ W = ′ X ≤ g = h . Moreover, 
assume that there exists a circuit in the graph (Y ∪ Z , (W ) – W′). Then this 
circuit necessarily goes through an arc (zi, yi) for some i such that 

1 ∪ W2
xi  does not belong to 

X′ and then goes through an arc (yi, zj) for an appropriate j (1 ≤ j ≤ n); the only way to 
go on the circuit is to follow the arc (zj, yj) (it is the only arc with zj as its tail),which 
involves that xj does not belong to X′. But, as the arc (yi, zj) exists in H, {xi, xj} must be 
an edge of G, and this edge is not covered by X′, a contradiction. 

Conversely, assume that (H, h) admits a subset W′ of W  which is a feedback 
arc set of cardinality at most h. Then there exists a subset 

1 ∪ W2
′ ′ W  of W1 which is a 

feedback arc set of H of cardinality at most h (for BFAS′, W′ is necessarily such a set; 
so the following is useful only for BFAS). Indeed, for any arc (yi, zj) of W′ ∩  W2, 
remove (yi, zj) from W′ and replace it in ′ ′ W  by the arc (zi, yi). We get thus a subset of 
W1 with at most h elements. To see that ′ ′ W  is a feedback arc set of H, it is enough to 
notice that any circuit of H going through (yi, zj) goes also through (zi, yi), since (zi, yi) 
is the only arc with yi as its head. So define X′ as the set of vertices of G associated with 
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the elements of ′ ′ W : X′ = { xi  for (zi, yi) ∈ ′ ′ W }. Then obviously: ′ X ≤ g . Moreover, 
assume that X′ is not a VC of G. It means that there exists an edge { xi , x j} of G with 
xi  ∉ X′  and xj ∉ X′ . So, similarly, we have in H: (zi, yi) ∉ ′ ′ W  and (zj, yj) ∉ ′ ′ W . But 
in these conditions, the arcs (zi, yi), (yi, zj), (zj, yj), and (yj, zi) (these four arcs do exist in 
H) define a circuit in the graph (Y ∪ Z , W  – 1 ∪ W2 ′ ′ W ), and ′ ′ W  is not a feedback arc 
set, a contradiction. 

W ∪ W2

∪ Z

∪ W
W2

W2 −

∪ W2
∪ W2

′ 1 ∪ W2 − 2 ′

1 ∪ W2

So the proposed transformation keeps the answer. As it is trivially polynomial with 
respect to the size of the transformed instance (G, g), BFAS and BFAS′ are NP-
complete. ❑  

 

Now we study the complexity of the problem Q0(L, L), and then the one of Q1(L, L): 

 

Theorem 15. Q0(L, L) is NP-complete. 

 

Proof. As noticed above, Q0(L, L) belongs to NP. We transform BFAS into 
Q0(L, L). Let (H = (Y ∪ Z , ), h) be any instance of BFAS, with the same 
notations as above. Let (G, K) be the instance of Q0(L, L) defined by: 

1

- the vertex set of G is X = Y ; 

- the arc set of G is UX; 

- for any arc (x, y) of G, the weight mxy of (x, y) is equal to: 2 if (x, y) ∈ W , –2 
if (y, x) ∈ W , 0 otherwise; 

1 2
1 ∪

- K = 2 W1 ∪ 4h . 

Notice that G is well defined since H is asymmetric. Moreover, the transformation is 
clearly polynomial with respect to the size of the instance (H, h) of BFAS. 

Now, assume that the instance (H, h) of BFAS admits the answer « yes »: there exists 
W′ ⊂  W  with 1 ∪ W2 ′ W  ≤ h and such that the graph (X, (W ) – W′) is without any 
circuit. If we consider (X, (W ) – W′) as a partial graph of G, its weight is 
2

1

1
W1 ∪ W2( −)  W , i.e. 2 W  W . Then, by Lemma 5 b, we may complete 

(X, (W ) – W′) into a linear order (X, L) by adding appropriate arcs. Among these 
extra arcs, there are at most 

1 ∪ W2
′ W  arcs (x, y) such that (y, x) belongs to W , i.e. at 

most ′ W  arcs with a weight equal to –2. More precisely, the weights of the arcs of L 
belonging to W  are equal to 2, and there are at least 1 ∪ W2 W1 ∪ W2( ) − ′W   such arcs; 
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the weights of the arcs (x, y) of L such that (y, x) belongs to W  are equal to –2, 
and there are at most 

1 ∪ W2
′ W  such arcs; the other arcs of L have a weight equal to 0. Hence: 

∪ W2 ′ W1

1 ∪ W2)

′ W1

mxy
(x,y)∈L

∑  ≥ 2 W1 − 2 ′ W  – 2 ′ W  = 2 W1 ∪ W2 − 4  W  ≥ 2 ∪ W2 − 4h  = K. 

So (G, K) admits also the answer « yes ». 

Conversely, assume that (G, K) admits the answer « yes »: there exists L ⊂ UX  with 
 ≥ K and such that (X, L) is a linear order. Thus consider the set 

W′ = (W ) – ( )∩ L. As (X, L) is a linear order, (X, L) is without any 
circuit. Thus, by Lemma 5 a, (W )

mxy
(x,y)∈L

∑

1 ∪ W2 W1 ∪ W2
1 ∪ W2 ∩ L = (W ) – W′ is also without any 

circuit. Let (x, y) be an element of W′ (and thus of W ); then the arc (y, x) belongs 
to L (because L is complete and (x, y) does not belong to L) and its weight is –2. So, 
suppose that we have 

1 ∪ W2
1 ∪ W2

′ W  > h. Then there are at most W( − W ′  arcs which 
belong to W  and to L. So we get: 1 ∪ W2

mxy
(x,y)∈L

∑  ≤ 2 W1 ∪ W2( ) − ′ W  – 2 ′ W  = 2 W1 ∪ W2 − 4  W  < 2 ∪ W2 − 4h  = K, 

a contradiction. It means that W′ satisfies all the conditions and the answer admitted 
by (X, L) is « yes ». 

All these considerations show that Q0(L, L) is NP-complete. ❑  

 

Corollary 16. For f = Ω(n/logn), with f taking even values, Pf(L, L) is NP-hard and, 
for any even integer m ≥ 2, Pm(T, L) is NP-hard. 

 

Theorem 17. Q1(L, L) is NP-complete. 

 

Proof. It is the same proof as for Q0(L, L), but with the weights 1, n, and –n instead 
of 0, 2, and –2 respectively, and with K = n W1 ∪ W2 − 2n.h  instead of 2 W1 ∪ W2 − 4h . 
Details are left to the reader. ❑  

 

Corollary 18. For f = Ω(n2/logn), with f taking odd values, Pf(L, L) is NP-hard and, 
for f = Ω(n) with f taking odd values, Pf(T, L) is NP-hard. 
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Remark. An interesting case is the problem P1(T, L), set by P. Slater (1961) (also 
known under other names; see for instance I. Charon et alii (1997) or O. Hudry et alii 
(2005) for references), i.e. the approximation of a tournament by a linear order. 
Unfortunately, the proof of Corollary 18 does not allow to know the complexity of 
Slater’s problem, which remains an open problem. 

 

Proofs similar to the previous ones (and not given here) lead to the following results: 

 

Theorem 19. Q0(L, A), Q1(L, A), Q0(L, O), and Q1(L, O) are NP-complete. For 
f = Ω(n/logn), with f taking even values, Pf(L, A) and Pf(L, O) are NP-hard. For any 
even integer m ≥ 2, Pm(T, A) and Pm(T, O) are NP-hard. For f = Ω(n2/logn), with f taking 
odd values, Pf(L, A) and Pf(L, O) are NP-hard. For f = Ω(n) with f taking odd values, 
Pf(T, A) and Pf(T, A) are NP-hard. 

 

Now we study the complexity of the problems Q0(L, Z) for Z ∈ {C, I, S}. 

 

Theorem 20. For Z ∈ {C, I, S}, Q0(L, Z) is NP-complete. 

 

Proof. Let Z belong to {C, I, S}. As for the other problems above, Q0(L, Z) 
obviously belongs to NP. We transform BFAS′ into Q0(L, Z). Let 
(H = (Y ∪ Z , W ), h) be any instance of BFAS′, with the same notations as above. 
Let (G, K) be the instance of Q0(L, Z) defined by: 

1 ∪ W2

- the vertex set of G is X = Y ∪ Z ; 

- the arc set of G is UX; 

- for any arc (x, y) of G, the weight mxy of (x, y) is equal to: 2 if (x, y) ∈ , –2 if 
(y, x) ∈ W , 4n – 2 if (x, y) ∈ , –(4n – 2) if (y, x) ∈ W , 0 otherwise;  

W1
1 W2 2

- K = ( )4n − 2 W2 + 2n − 4h . 

Notice that G is well defined since H is asymmetric. Moreover, the transformation is 
clearly polynomial with respect to the size of the instance (H, h) of BFAS′. 

Now, assume that the instance (H, h) of BFAS′ admits the answer « yes »: there 
exists W′ ⊂  W  with 1 ′ W  ≤ h and such that the graph (X, (W ) – W′) is without 
any circuit. We prove that the instance (G, K) admits also the answer « yes » as in 

1 ∪ W2
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Theorem 15. If we consider (X, (W ) – W′) as a partial graph of G, its weight is 1 ∪ W2
2 W1 − ′ W + (4n + 2)W2 . By Lemma 5 b, we may complete (X, ( ) – W′) into a 
linear order (X, L) (that we shall consider as an interval order if Z is I, or as a semiorder 
if Z is S, or as a complete preorder if Z is C) by adding appropriate arcs. Among these 
extra arcs, there are at most 

W1 ∪ W2

′ W  arcs (x, y) such that (y, x) belongs to W , i.e. at most 1
′ W  arcs with a weight equal to –2, while the other extra arcs all belong to 

UX − W1 ∪ W2( ) and have a weight equal to 0. More precisely, the weights of the arcs 
of L belonging to W  are equal to 2; there are at least 1 W1 − ′ W  such arcs. The weights 
of the W2  arcs of L belonging to W  are equal to 4n – 2. The weights of the arcs (x, y) 
of L such that (y, x) belongs to W  are equal to –2; there are at most 

2
1 ′ W  such arcs. The 

other arcs of L have a weight equal to 0. Hence, since W1 = n  and W′ ⊂  W : 1

xy
(

′ + (4n − 2) )W2 −

′ W mxy
L

n
)∈

∑

m
y)∈I
∑

W2

(x,

1

mxy
I

4n − 1)

mxy
I

4n − 2n − 4h

2
z y

m
x,y)∈L
∑  ≥ 2 W1 − W W2 − 2 ′ W  = 2n + 4n − 2( 4 ′ W  

and so, since  ≤ h:   ≥ 2
(x,y

+ 4n − 2( )W2 − 4h  = K. 

So (G, K) admits also the answer « yes ». 

 

Conversely, assume that (G, K) admits the answer « yes ». We consider two main 
subcases: Z ∈ {I, S} or Z = C. 

 

• 1rst subcase: Z ∈ {I, S} 

Since a semiorder is an interval order, there exists I ⊂ UX  with  ≥ K and 

such that (X, I) is an interval order. We want to show that then the instance (H, h) of 
BFAS′ also admits the answer « yes ». Notice that if h is greater than n, the answer of 
(H, h) is trivially « yes »; so, assume that we have h ≤ n – 1. Let us show that I contains 
all the arcs of W . Assume the contrary. The arcs of I with a non-negative weight would 
be at most the n elements of W  (with a weight equal to 2) and at most 

xy

2
 – 1 arcs of 

 (with a weight equal to 4n – 2). So we would get: 
 ≤ 2

W2

(x,y
∑

)∈
n + 2( ) W2 −( . On the other hand, we are supposed to have: 

 ≥ K = 
(x,y
∑

)∈
2( )W2 + , from which we draw 4h ≥ 4n – 2, which is 

incompatible with h ≤ n – 1. Hence: W ⊂ I  and, because of the antisymmetry of I, 
there is no arc in I of the form ( , ) with i ≠ j. We prove now that we may construct a i j
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linear order L with  ≥ K from I. For this, set J = I – {(x, y) ∈ I with mmxy
(x,y)∈L

∑ xy = 0 }, 

and gather the vertices of X into the following three sets: 

zk

zk

zk

2 ⊆ I
i y
2 i yi zj

yj

X2
X2

2
zjj

* X1 = { yk  ∈ Y,  ∈ Z such that ( zk , yk ) ∈ J} 

* X2  = { yk  ∈ Y,  ∈ Z such that ( yk , zk ) ∉ J and ( zk , yk ) ∉ J} 

* X3 = { yk  ∈ Y,  ∈ Z such that ( yk , zk ) ∈ J}. 

The situation is illustrated by Figure 11. We are going to show that the dashed arcs of 
Figure 11 do not exist in fact. Notice that, as a subset of I which contains no circuit, J 
contains no circuit. 

The dashed arcs with their two extremities inside X1 cannot exist, otherwise there 
would exist a circuit in J. Now consider an arc ( , ) with ∈ Y,  ∈ Z (thus i ≠ j) 
and with an extremity inside 

yj zi yj zi
X1 and the other inside X2 . As one extremity belongs to 

X1, the arc ( , ) or the arc ( , ) exists in I, and thus in J since its weight is not 
equal to 0. Also, by construction of G, ( , ) is an arc of G, and thus of I (W

zi yi zj yj
yi zj ). 

Assume that ( , ) belongs to I (and thus to J); then  and  belong to zi y yi zi X1, while  
and  belong to 

j
zj X . In this case, as I is transitive, the arcs ( , ), ( , ), ( , ) 

involve the existence of the arc ( , ), a contradiction with the belonging of  and 
 to 

yj zi zi y
yj zj

zj X2 . Similarly, the dashed arcs with their two extremities inside X2  cannot exist in 
I. Indeed, assume that such a pair of arcs ( , ) and ( , ) exist with  ∈ Yyj zi yi zj yi ∩ , 

 ∈ Y∩yj X2 ,  ∈ Z∩zi , and  ∈ Zzj ∩ X2  (i ≠ j) exist (notice that if one of these two 
arcs exists, the other one must exist too). As , , , and  belong to yi yj zi zj X , the arcs 
( , ) and ( , ) do not belong to I. But then the arcs ( , ) and ( , ) do not 
respect the definition of an interval order. So the look of J is as the one shown by Figure 
11 without the dashed arcs. 

yi zi yj z yj zi yi
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X3

X2

X1

Y Z

 
Figure 11. The graph induced by J for Q0(L, Z) when Z is equal to I or S. 
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Now, set J′ = J∪ {(z, y) ∈  for y ∈ W1 X2  and z ∈ X2 } (with respect to Figure 11, we 
add all the horizontal arcs from right to left with their two extremities in X2 ). As the 
vertices of X2  are linked only with vertices of X3

⊆

, it is easy to see that J′ is still without 
any circuit. As the weights of these arcs are positive, we get:  

 ≥  =  ≥ K. As J′ is without circuit, by Lemma 5 b, we may 

extend J′ into a linear order L. As we had W

mxy
(x,y)∈ ′ J 

∑ mxy
∈J(x,y)

∑ mxy
∈I(x,y)

∑

2 I  and as, for any index k with 1 ≤ k ≤ n, 
 and  are already linked by an arc belonging to J′, all the arcs that we add in order to 

define L from J′ have a weight equal to 0. Hence 
yi zi

m
y)∈L

xy
x,(
∑  = mxy

(x,y)∈ ′ J 
∑  ≥ K. The end of 

the proof is exactly the same as in Theorem 15, and we do not duplicate it here: from L 
we define a subset W′ which shows that the instance (H, h) of BFAS′ admits the answer 
« yes », which completes the proof for the subcase Z ∈ {I, S}. 

 

• 2nd subcase: Z = C 

As for the previous case, we are going to prove that, if the answer admitted by the 
instance (G, K) is « yes », then we can build a linear order which gives this answer 
« yes ». Then the conclusion will be the same as above. 

So, assume that there exists a subset C of UX  such that (X, C) is a complete preorder 
with  ≥ K. As above, this inequality involves that C contains all the elements 

of  and no arc (x, y) such that (y, x) would belong to W  (details are left to the 
reader). Let D be the set made of the arcs of C with a non-zero weight: D = C –
 {(x, y) ∈ C with m }. Moreover, gather the vertices of X into the following three 
sets:

mxy
(x,y)∈C

∑

2W 2

xy = 0
 

* X1 = { yk  ∈ Y, zk  ∈ Z such that ( zk , yk ) ∈ D and ( yk , zk ) ∉ D} 

* X2  = { yk  ∈ Y, zk  ∈ Z such that ( yk , zk ) ∈ D and ( zk , yk ) ∉ D} 

* X3 = { yk  ∈ Y, zk  ∈ Z such that ( yk , zk ) ∈ D and ( zk , yk ) ∈ D}. 

 The look of the graph induced by D is given by Figure 12. We are going to show that 
the dashed arcs of Figure 12 do not exist in fact.  
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X3

X2

X1

Y Z

 
Figure 12. The graph induced by D for Q0(L, C). 

 

Indeed, let ( , ) be such an arc with  ∈ Z and  ∈ Y. Then its weight is not 
equal to 0, and it is the same for ( , ), which thus belongs to D. If we assume that the 

yj zi zi yj
yi zj
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four vertices , , , and  belong to yi yj zi zj Z1 ∪ Z3
zj yi

mxy
(x,y)∈ ′ D 

, then the arcs ( , ) and ( , ) 
belong to D and, by transitivity, the arcs ( , ) and ( , ) also belong to D, what is 
impossible (see above). So, the look of the graph induced by D is the one depicted by 
Figure 12 without the dashed arcs. 

zi yi zj yj
zi yj

∑

yi zi X3 X3
3

yi

m
∈D(x,y

i
yi

y zi 3
yi X z 3

(

2
yi zi
m

(x,y)∈ ′D 
∑

1 ∪ W2

The next step consists in showing that we may extract a set D′ of arcs from D such 
that D′ is without circuit while its weight  is still greater than or equal to K. 

For this, let D′ be defined by D′ = D – {( , ) for  ∈ yi ,  ∈ zi } (in other words, 
with respect to Figure 12, we remove the – almost – horizontal arcs inside X  and 
oriented from left to right). As the removed arcs have a negative weight, we get: 

 ≥  ≥ K. Moreover, D′ is without circuit. Indeed, consider any circuit 

in D, which is transitive. Such a circuit must contain an arc of the form ( , ) with 
 ∈ Y and  ∈ Z (since it is the only way to go from Z to Y in the graph induced by 

D). Because of the transitivity of D applied to the considered circuit, ( , ) must also 
be an arc of D, and so  and  must belong to 

mxy
(x,y)∈ ′ D 

∑

yi

xy
)

∑

z
zi

zi
i X . So the removal from D of the arcs 

( , ) with  ∈ yi zi 3,  ∈ i X  leaves a graph (induced by D′) without any circuit. 

We may now conclude. As D′ is without any circuit and by Lemma 5 b, we may 
complete it into a linear order L by adding appropriate arcs. As D′ already contains W  
and, for 1 ≤ i ≤ n, exactly one of the two arcs ( , ) or ( , ), the extra arcs have a 
weight equal to 0. So, we get: 

zi yi
mxy

x,y)∈L
∑  ≥ xy

 
 ≥ K. Then it is sufficient to apply 

the same argument as in Theorem 15 to show the existence of a subset W′ of W  
which gives the answer « yes » to the instance (H, h) of BFAS′, which completes the 
proof for the subcase Z = C. ❑  

 

Corollary 21. For Z ∈ {C, I, S} and for f = Ω(n2/logn), with f taking even values, 
Pf(L, Z) is NP-hard. For Z ∈ {C, I, S} and for f = Ω(n) with f taking even values, 
Pf(T, Z) is NP-hard. 

 

Remark. If we transpose the proof of Theorem 20 in terms of preferences, we build 
a profile of linear orders such that there exists an optimal interval order, or an optimal 
semiorder, or a complete order which is in fact a linear order. An interesting question 
would be to know whether it is always the case, for any profile of linear orders. 
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Proofs similar to the previous ones (and not given here) lead to the following results: 

 

Theorem 22. For Z ∈ {C, I, S}, the problems Q1(L, Z) are NP-complete. For 
Z ∈ {C, I, S} and for f = Ω(n3/logn), with f taking odd values, Pf(L, Z) is NP-hard. For 
Z ∈ {C, I, S} and for f = Ω(n2), with f taking odd values,  Pf(T, Z) is NP-hard. 

 

To study the complexity of the problems Pf(Y, Q) and Pf(Y, W), we first prove a 
lemma. In order to state it, we recall a previous notation. For any set Z of binary 
relations defined by some properties, we define Za as the set of preferences which are 
the asymmetric part of a preference belonging to Z. In particular, we have Ca = W, 
Qa = S, and Pa = O. 

 

Lemma 23. For Y ∈ {L, T} and for any set Z and any function f, Pf(Y, Z) and 
Pf(Y, Za) have the same complexity. 

 

Proof. The result comes from the fact that we have ∆(Π, Z) = ∆(Π, Za), for any 
profile Π of linear orders or of tournaments and any element Z of Z.  ❑  

 

Corollary 24.  

• For f = Ω(n/logn), with f taking even values, Pf(L, P) is NP-hard. For 
f = Ω(n2/logn), with f taking even values, Pf(L, Q) and Pf(L, W) are NP-hard.  

• For f = Ω(n2/logn), with f taking odd values, Pf(L, P) is NP-hard. For 
f = Ω(n3/logn), with f taking odd values, Pf(L, Q) and Pf(L, W) are NP-hard.  

• For m ≥ 2 with m even, Pf(T, P) is NP-hard. For f = Ω(n) with f taking even 
values, Pf(T, Q) and Pf(T, W) are NP-hard.  

• For f = Ω(n) with f taking odd values, Pf(T, P) is NP-hard. For f = Ω(n2) with f 
taking odd values, Pf(T, Q) and Pf(T, W) are NP-hard.  

• For any even m ≥ 2, the problems Pm(R, P) and Pm(R, Q) are NP-hard.  

• For f = Ω(n) with f taking odd values, Pf(R, P) is NP-hard. For any odd m ≥ 3, 
Pm(R, Q) is NP-hard.  
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Proof. For Y = L or Y = T, these results come as a consequence of Theorem 19, 
Corollary 21 and Theorem 22 and from the application of Lemma 23 to Z = O, Z = Q 
and to Z = C. For Y = R , this comes from Lemma 23, Corollary 7 and Corollary 13 for 
Z = Q or Z = C, or from the complexity of Pf(T, P) for Z = Q (by considering T as 
included into R). ❑  

 

The last result of this section deals with any set Y containing L. 

 

Theorem 25. For f = Ω(n/logn), with f taking even values, for any set Y with L ⊆  Y, 
for Z ∈ { A, L, O, P}, Pf(Y, Z) is NP-hard. For f = Ω(n2/logn), with f taking odd values, 
for any set Y with L  Y, for any set Z ∈ { A, L, O, P}, Pf(Y, Z) is NP-hard. For 
f = Ω(n2/logn), with f taking even values, for any set Y with L  Y, for any set 
Z ∈ {C, I, Q, S, W}, Pf(Y, Z) is NP-hard. For f = Ω(n3/logn), with f taking odd values, 
for any set Y with L ⊆  Y, for any set Z ∈ {C, I, Q, S, W}, Pf(Y, Z) is NP-hard.  

⊆
⊆

 

Proof. The previous results give the statement of Theorem 25 for Y = L. For L  Y, 
it is sufficient to consider any instance of the NP-hard problem Pf(L, Z) as an instance 
of Pf(Y, Z). This transformation (the identity !) is obviously polynomial and keeps the 
answer. Hence the result. ❑  

⊂

 

In particular, we may apply Theorem 25 when Y is any one of the sets A, C, I, L, O, P, 
Q, R, S, T, or W, but also to « mixed » profiles belonging to any union of two or more 
sets A, C, I, L, O, P, Q, R, S, T, or W, for instance to profiles which may contain 
tournaments, preorders, and interval orders simultaneously... 

5 Conclusion 
The previous section was devoted to NP-hard problems. There are also some 

problems Pf(Y, Z) which are polynomial. It is trivially the case for Pf(Y, R) and for 
Pf(Y, T), for any set Y and any function f. Indeed, if we consider the associated problems 
Q0(Y, R), Q1(Y, R), Q0(Y, T), or Q1(Y, T), it is easy to see that an optimal solution 
consists in keeping all the arcs of G with a positive weight for Z = R, or in keeping, for 
each pair of arcs (x, x′) and (x′, x), the arc with the greatest weight for Z = T. Another 
interesting polynomial case is the one of unimodular orders; in this case, the aggregation 
of unimodular orders into a unimodular order is polynomial (see D. Black (1948)). 
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Anyway, it seems that properties like the lack of circuits or transitivity usually lead 
to NP-hard problems. The previous complexity results illustrate this trend. We may 
summarize them by the tables of Figure 13 (m even) and Figure 14 (m odd). In these 
tables, « NPH » means that the considered problem Pf(Y, Z) is NP-hard. In such a case, 
we indicate the range of a lower bound of the number m of relations inside the profile 
which ensures that Pf(Y, Z) is NP-hard; for instance, m = Ω(n) with m odd for Pf(T, L) 
means that Pf(T, L) is NP-hard if the range of the odd number m of tournaments of the 
profile is at least n. As a general result, remember that the NP-hardness of Pf(Y, Z) 
involves the one of Pf+2(Y, Z). To my knowledge, when not trivial, the complexity for 
lower values of m is not known. The letter « P » means that Pf(Y, Z) is (trivially) 
polynomial. Remember also that all the results displayed in the tables of Figures 13 and 
14 remain the same if we add the reflexivity or the irreflexivity to the considered types 
of relations. 

From this table, it appears that some cases are still unsolved, when m is low. One 
such interesting case is the problem stated by P. Slater (1961), i.e. P1(T, L) for which Π 
is reduced to one tournament while the median relation must be a linear order. In spite 
of repeated efforts, its complexity remains open... 

 

 Median relation (Z) Π ∈ R m   (Y = R) Π ∈ T m   (Y = T) Π ∈ Y m with L ⊆ Y 

binary relation (R) P P P 

tournament (T) P P P 

acyclic relation (A) NPH, m ≥ 2 NPH, m ≥ 2  NPH, m = Ω  n / log n( )

complete preorder (C) NPH, m = Ω n( )  NPH, m = Ω n( )  NPH, m = Ω n2 / logn( )  

interval order (I) NPH, m ≥ 2 NPH, m =   Ω n( )  NPH, m = Ω n2 / logn( )   
linear order (L) NPH, m ≥ 2 NPH, m ≥ 2 NPH, m = Ω  n / log n( )

partial order (O) NPH, m ≥ 2 NPH, m ≥ 2 NPH, m = Ω  n / log n( )

preorder (P) NPH, m ≥ 2 NPH, m ≥ 2 NPH, m = Ω  n / log n( )

quasi-order (Q) NPH, m ≥ 2 NPH, m =   Ω n( )    NPH, m = Ω n2 / logn( ) 

semiorders (S) NPH, m ≥ 2 NPH, m =   Ω n( )     NPH, m = Ω n2 / logn( ) 

weak order (W) NPH, m ≥ 2 NPH, m =   Ω n( )    NPH, m = Ω n2 / logn( ) 

Figure 13. The complexity results for m even. 
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Median relation (Z) Π ∈ R m   (Y = R) Π ∈ T m   (Y = T) Π ∈ Y m with L ⊆ Y 

binary relation (R) P P P 

tournament (T) P P P 

acyclic relation (A) NPH, m ≥ 1 NPH, m = Ω n( ) NPH, m = Ω n2 / logn( ) 

complete preorder (C) NPH, m = Ω n2( ) NPH, m = Ω n2( ) NPH, m = Ω n3 / logn( )   

interval order (I) NPH, m ≥ 3 NPH, m = Ω n2( ) NPH, m = Ω  n3 / logn( )
linear order (L) NPH, m ≥ 1 NPH, m = Ω n( )  NPH, m = Ω n2 / logn( ) 

partial order (O) NPH, m ≥ 3 NPH, m = Ω n( )  NPH, m = Ω n2 / logn( ) 

preorder (P) NPH, m = Ω n( )  NPH, m = Ω n( )  NPH, m = Ω n2 / logn( ) 

quasi-order (Q) NPH, m ≥ 3 NPH, m = Ω n2( )     NPH, m = Ω  n3 / logn( )

semiorders (S) NPH, m ≥ 3 NPH, m = Ω n2( )     NPH, m = Ω  n3 / logn( )

  weak order (W) NPH, m ≥ 3 NPH, m = Ω n2( )     NPH, m = Ω  n3 / logn( )

Figure 14. The complexity results for m odd. 
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