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Abstract:

This paper describes a way to combine the method of fictitious sources and the scattering

matrix method. The resulting method holds concurrently the advantages of these two

rigorous methods. It is able to solve efficiently electromagnetic problems where the

structure is made of a jacket containing an arbitrary set of scatterers. The method is

described in a two-dimensional case, but the basic ideas could be easily extended to three-

dimensional cases.
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1. Introduction

The scattering matrix method (SMM) 1 applies to the scattering of a finite set of parallel

cylinders of arbitrary cross-sections and arbitrary electromagnetic constants placed in a single

homogeneous medium. It is based on the expansion of the fields in terms of Fourier-Bessel series

around each cylinder. Using the scattering matrices of each cylinder and the translation

properties of Fourier-Bessel functions, the method leads to the inversion of a linear set of

equations. The method is rigorous and very efficient. It can deal for instance with photonic

crystals (with or without defects) made of several hundreds of cylinders on a standard personal

computer.

On the other hand, the SMM is not able to deal with some interesting configurations,

specially when the set of cylinders is surrounded by a jacket. In the case of a jacket with circular

cross-section, it is possible to extend the SMM by expanding the field around the jacket using

again Fourier-Bessel series.2 This idea has also been implemented for the study of

microstructured optical fibers.3

In this paper, we extend the method to the case of a jacket with arbitrary cross-section.

For that purpose, we combine the SMM with the method of Fictitious Sources (MFS).

The MFS method 4 is able to solve the problem of scattering from arbitrary scatterers. In

this method, the space is divided in different regions where the field is represented as the field

radiated by a set of fictitious sources with unknown intensities. These intensities are obtained by

matching the fields at the boundaries of the regions using a least squares technique.

The basic idea of the method proposed in this paper is to use the SMM in order to build a

set of functions that correctly represent the field inside the jacket. These functions are then used

to solve a fictitious sources problem on the boundary of the jacket.
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With this combined use of the SMM and MFS methods, we hold concurrently the

advantages of these two rigorous methods, and can address efficiently new classes of problems,

such as a finite dielectric body drilled by galleries, that can be for instance a macroporous silicon

crystal.

The problem under study and our notations are described in section 2. In sections 3 and 4,

we recall the basis of the MFS and the SMM. Section 5 describes the combined use of these two

methods, and section 6 provides some numerical illustrations of the resulting method.

2. Setting of the problem

Through the whole paper, we use an orthogonal coordinate system with unit vectors ˆ ˆ ˆ, ,x y z . We

consider time-harmonic problems, and the fields are represented by complex quantities using a

time dependence in exp( )i t− ω . We denote by 0ε  and 0μ  the permittivity and the permeability of

vacuum, and by 1/ 2
0 0 0 02 / ( )k = π λ = ω ε μ  the wave number. For simplicity, we assume that all

the media have the permeability 0μ , but the principle of the method would remain unchanged if

it were not the case. We consider a two-dimensional problem, assuming that the entire structure

is invariant along the z axis (Fig. 1). The cylindrical scatterer is limited by its external boundary

C0. The exterior of 0C  is the domain eΩ , filled with a medium with optical index en  ( en  may

be complex, and we note 0e ek k n= ). The interior of 0C  is the domain iΩ . It is filled with a

medium with optical index in  (grayed region in Fig. 1; in  may be complex, and we put

0i ik k n= ), but also contains cylindrical rods with boundaries Cj  (j = 1, 2, 3,…), filled with

arbitrary media.
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The structure is illuminated by an incident field coming from the exterior (this

assumption is made for clarity, but the method can also deal with an excitation from inside 0C

with very little modification). This incident field is also assumed to be z-independent. For

instance, it can be a plane wave, or the field emitted by one (or several) line source(s) placed

outside 0C . It is well known that in that case the problem can be reduced to two independent

problems: the s polarization case where the electric field is parallel to the z axis, and the p

polarization case where the magnetic field is parallel to the z axis. Each of these cases leads to a

scalar problem where the unknown u is the z component of either E or H: zu E=  (in s

polarization) or zu H=  (in p polarization). We denote by incu  the incident field, and by scatu  the

scattered field, in such a way that the total field is:

0

0

in (outside )

in (inside )

C

C

inc scat
e

int
i

u u u

u u

⎧ = + Ω⎪
⎨

= Ω⎪⎩
 . (1)

3. The Method of Fictitious Sources (MFS)

The MFS is a versatile and reliable method able to deal with many scattering problems. It relies

upon a simple idea: the electromagnetic field in the various domains of the diffracting structure

is expressed as a combination of fields radiated by adequate electromagnetic sources. These

sources have no physical existence, and this is why we have called them "fictitious" sources.

They are located in homogeneous regions, and not on the interfaces. In other words, one can

consider that they generate electromagnetic fields that faithfully map the actual field, thus they

form a convenient basis for this field. From a numerical point of view, proper bases are those

capable of representing the solution with the fewest number of functions. Obviously, the quality
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of the bases is closely linked with the nature of the sources and their location. The freedom in the

choice of the sources provides a great adaptability to various complex problems.

The MFS has been developed in our Laboratory in the last decade, both from theoretical

and numerical points of view.4-8 Almost at the same time and independently, some other groups

have worked on the same basic ideas,9-14 but their approaches are slightly different from ours. In

fact, one of the first attempt at using this method is probably due to Kupradze.15 The method has

been developed and applied to a large collection of problems, and a good review can be found in

Ref. 16. It is not our goal to depict here all the details of the MFS, and it will be sufficient for our

purpose to give an outline of the general principle.

Let us consider the same situation as in Figure 1, but without the inclusions: the interior

region iΩ  is thus filled with an homogeneous material with optical index in  (Fig. 2). Let us

imagine a set of N fictitious sources ,e nS  (n = 1,2,…,N) located at N points ,e nr  in iΩ , and

supposed to radiate in free space filled with a medium with the index en . Let us denote by

, ( )e nF r  the field radiated by the source ,e nS . By construction, the fields , ( )e nF r  satisfy the

Maxwell's equations in eΩ , and a radiation condition at infinity. A linear combination

, ,
( )e nn e n

c F∑ r  can thus be regarded as an approximation ( )scatu r  of the diffracted field

( )scatu r  in eΩ , where ,e nc  can be understood as the complex amplitude of the source ,e nS . So

we obtain an approximation for the field in eΩ :

, ,
1

( ) ( ) , in
Ndef

scat
e n e n e

n
u c F

=
= Ω∑r r , (2)

and thus:
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, ,
1

( ) ( ) ( ) , in
N

inc
e n e n e

n
u u c F

=
≈ + Ω∑r r r , (3)

In the same way, we imagine another set of fictitious sources ,i nS  (n = 1,2,…,N) located

at N points ,i nr  in eΩ , and supposed to radiate in free space filled with a medium with the index

in . Let us denote by , ( )i nF r  the field radiated by the source ,i nS . The functions , ( )i nF r  verify

the Maxwell's equations in iΩ , and can be used to get an approximate expansion ( )intu r of the

total field ( )intu r  in iΩ :

, ,
1

( ) ( ) , in
Ndef

int
i n i n i

n
u c F

=
= Ω∑r r , (4)

where ,i nc  can be understood as the complex amplitude of the source ,i nS .

Note that the nature of the sources can be chosen arbitrarily. In our case, we choose

infinitely thin line sources parallel to the z axis: , ,( ) 4 ( )e n e nS i= δ −r r r  and

, ,( ) 4 ( )i n i nS i= δ −r r r . In that case, they radiate the fields:

( )(1)
, ,0( ) He n e e nF k= −r r r , (5)

( )(1)
, ,0( ) Hi n i i nF k= −r r r . (6)

The determination of the coefficients ,e nc  and ,i nc  is obtained by matching the boundary

conditions on the cylinder surface 0C . For a given function ( )ϕ r , let us denote by ( )Dϕ r  the

value of its normal derivative on 0C . The exact solution verifies
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0

0

( ) ( ) ( ) 0 on

( ) ( ) ( ) 0 on

C

C

inc scat int

inc scat int

u u u

Du Du p Du

⎧ + − =⎪
⎨

+ − =⎪⎩

r r r

r r r
 , (7)

where p is a polarization dependent constant equal to

2

1 in polarization case

( / ) in polarization casee i

p s

p n n p

=⎧⎪
⎨

=⎪⎩
 . (8)

The coefficients ,e nc  and ,i nc  that give the better approximation for the fields (2) and (4)

are those that match the boundary conditions in the best way. They are obtained by minimizing

the two expressions derived from (7) and defined on 0C :

, , , ,
1 1

, , , ,
1 1

( ) ( ) ( )

( ) ( ) ( )

N N
inc

e n e n i n i n
n n

N N
inc

e n e n i n i n
n n

u c F c F

Du c DF p c DF

= =

= =

⎧
+ −⎪

⎪
⎨
⎪ + −⎪
⎩

∑ ∑

∑ ∑

r r r

r r r
 . (9)

This can be done by several ways. The simplest one is to use a point matching method that

enforces the vanishing of these two expressions on sample points on 0C . By this way, we can get

a system of 2N equations for the 2N unknowns ,e nc  and ,i nc . From our numerical experiments, it

emerges that it is preferable to use an overdetermined system and to solve it in the least-squares

sense.17 By this way, and for a given computation time, we obtain a better approximation for

scatu  and intu .

Of course, the efficiency of the method depends on the location and the number N of the

fictitious sources. It can be shown that the precision of the method is related to the least-squares
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remainder obtained in the last step, which thus can be used to quantize the quality of the solution.

This feature is quite helpful in the numerical implementation.

The interested reader will find more details in Ref. 4. We have also developed some tricks

in order to place the sources automatically. The general idea used in these tricks is to increase the

number of sources where the radius of curvature of 0C  is lower. An example is given in Fig. 3.

The cross-section of the cylinder 0C  mimics a rounded F letter (first letter of Fresnel Institute),

and it is given by a parametric equation

5,5
( ) ( ) ( ) exp( 2 )n

n
z t x t i y t c in t

=−
= + = π∑ . (10)

The values of the coefficients nc  are given in the Fig. 3 caption. We use N = 200 sources in each

region eΩ  and iΩ , and 2N sample points on 0C . This cylinder of index 1.5in =  lies in vacuum

( 1en = ) and is illuminated with an incidence 45incθ = − °  by a plane wave with wavelength

0 2λ =  and unit amplitude. Figure 4 gives the intensity ( )D θ  scattered at infinity in the direction

θ . It is defined in the following way: due to the asymptotic behavior of the Hankel function, the

scattered field at infinity writes (with r = r ) :

exp( )( ) ( )scat eik ru g
r

≈ θr  , (11)

and the intensity scattered at infinity is

2( ) 2 ( )D gθ = π θ  . (12)

Finally, Fig. 5 shows the field map in the vicinity of the scatterer.
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4. The Scattering Matrix Method (SMM)

This method is able to solve the problem of the diffraction by an arbitrary set of parallel

cylinders placed in a homogeneous medium. A detailed description can be found in Ref. 1. Note

that the method is also called "multipole method" by other authors and has been used to study the

local density of states in photonic crystals,18 as well as microstructured optical fibers.3 We only

give below an outline of the basic ideas.

We consider a set of cN  parallel cylinders Cj , as shown in Fig. 6. In order to lay the

ground for the next section, we assume that the medium outside the cylinders has the index in

defined in section 2. The incident field incu  can be arbitrary (plane wave, line source,…).

For any cylinder Cj , we consider a circle Dj  with center jO , in such a way that the

cylinder is completely inside Dj  (Fig. 7). Due to the properties of the Helmholtz equation, the

total field ( )u P  at a point P on Dj  can be written as a "Fourier-Bessel" expansion. Denoting by

( )jr P  and ( )j Pθ  the polar co-ordinates in the local system ( , , )j j jO x y , we can write:

(1)
, ,

,
( ) ( ( )) ( ( )) exp( ( ))j m m i j j m m i j j

m
u P a J k r P b H k r P i m P

=−∞ +∞

⎡ ⎤= + θ⎣ ⎦∑  . (13)

The two terms in the preceding series (13) can be interpreted in the following way. The second

term satisfies a radiation condition and thus represents the field scattered by the cylinder Cj . For

each cylinder, this scattered field will be characterized by the matrix column jb  containing the

,j mb  elements. The first term represents the local incident field on the cylinder Cj , generated by
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the actual incident field incu  as well as by the fields scattered by all the other cylinders Ck  with

k j≠ .

Denoting by ja  the matrix column containing the ,j ma , and using translation properties

of Bessel functions (Graf's formula 19), it can be obtained 1 for any cylinder Cj  a linear

relationship:

j j j k k
k j≠

= + ∑ ,a Q T b  , (14)

where jQ  is a known column matrix which represents the actual incident field on the cylinder

Cj , and ,j kT  is a known square matrix (its elements simply contain exponentials and Hankel

functions).

For any cylinder Cj , another relation between jb  and ja  is provided by the scattering

matrix jS  of the cylinder. The diffracted field is linked to the local incident field by:

j j j=b S a  . (15)

Eliminating ja  from (14) and (15), then collecting the equations written for each

cylinder, leads to a linear system which gives the solution jb  :

1 1,2 1 1, 1 1 1

2 2,1 2 2, 2 2 2

,1 ,2

...
N

N

N N N N N N N

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥=
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

I S T S T b S Q
S T I S T b S Q

S T S T I b S Q

 , (16)

where I denotes the identity matrix. For brevity, this equation will be written as:
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1− =S B A  , (17)

and formally inverted as:

B = S A . (18)

Now let us point out some features of the method.

1. In Eq. (18), column A linearly depends on the actual incident field incu , and column B

contains the information on the field diffracted by the entire set of cylinders. In that sense, S is

the scattering matrix of the set of cylinders. From Eq.(16), it appears that 1−S  is simply built as

soon as the scattering matrices jS  of all cylinders are known. This feature is interesting from a

numerical point of view. It means that the individual scattering matrices jS  can be constructed

independently from the main code dealing with the set of cylinders. That is the reason why we

call this method Scattering Matrix Method (SMM). When the cylinders are circular, matrices jS

are very simple and reduce to diagonal matrices whose elements can be expressed in closed

form. When the cylinders are not circular, we use an external integral code in order to compute

the jS . Another important point is that, when all the cylinders in the set are identical, all the

matrices jS  are also identical (because they are defined in the local co-ordinate system centered

on each cylinder).

2. Solving system (16) gives the ,j mb  . From that knowledge, the total field u is given

outside the circles Dj  by:

(1)
,

1
( ) ( ) ( ( )) exp( ( ))

cN
inc

j m m i j j
j m

u P u P b H k r P i m P
+∞

= =−∞
= + θ∑ ∑  . (19)
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The consequence is that everywhere outside the circles Dj , the field u and also its derivatives

are known in closed form by (19) and its derivatives.

3. For numerical purpose, it is clear that the series in Eq. (13) has to be truncated. It can

be shown that, due to properties of the Helmholtz equation, the terms of the series are decreasing

extremely fast after a given threshold is reached. Assuming that we keep M terms in the series,

columns ja  and jb  reduce to M elements, matrices jS  have a rank M, and the linear system

(16) has a rank cN M× . In fact, the value of M is closely linked with the radius ρ of the

cylinders (or of Dj  for non circular cylinders) and the wavelength 2 /i ikλ = π . A convenient

value for M is given by the empirical rule 40 / iM ≈ ρ λ  (taking for M an odd integer). With such

value of M, the accuracy is better than 1%. As an example, for typical values used in photonic

crystals problems, we generally take 7M = . It means that for N = 100 cylinders, we solve a 700

by 700 system.

4. The incident field is arbitrary. It can be a plane wave, a Gaussian beam, or the field

emitted by one (or several) infinitely thin line source parallel to the z axis, acting as an antenna.

For the purpose of this paper, we are mainly interested by this last case, and incu  is then given by

expressions similar to Eq. (6). Note that the incident field only appears in the second member of

(16), and consequently dealing with several incident fields is numerically very efficient.

5. Last, we must point out one limitation of the method. The Fourier-Bessel expansion in

Eq. (13) is valid only if the circle Dj  lies in an homogeneous medium. It means that the circle

which contains one cylinder cannot intersect the boundary of another cylinder. In other words,

one can remind that the circles Dj  must have no intersection. Of course, it is always so when the

cylinders are circular. In fact, for non-circular cylinders, the problem is much more subtle, and
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the method should also work in some cases where the circles intersect. The problem is similar to

the problem of validity of the "Rayleigh hypothesis" in grating theory.20

5. Hybrid method using MFS and SMM

Let us come back to the original problem described in section 2. This problem can be solved by a

slight modification of the method of fictitious sources described in section 3.

Indeed, the scattered field can be still expressed as in Eq. (2), using the same fictitious

sources ,e nS  (line sources that radiate , ( )e nF r  fields expressed as Hankel functions exactly as in

Eq. (5) ).

But in that case, the , ( )i nF r  functions used to expand the field in iΩ  (inside 0C ) must be

changed. Let us consider the problem depicted in Fig. 8. The inclusions Cj  are immersed in a

medium with index in  (the boundary 0C  of the external scatterer is suppressed). We keep the

same line sources ,i nS  as in section 3. The new , ( )i nF r  function is the total field when the

structure of Fig. 8 is excited by the source ,i nS . By solving this problem as proposed in section 4,

, ( )i nF r  can be expressed by the expansion (19). In other words, , ( )i nF r  ( 1,2,...,n N= ) is a set of

solutions for the total field inside 0C , that are available in closed form, and that can be used to

expand the field in iΩ  following Eq. (4). Using (19), we can compute the value of , ( )i nF r  and

its normal derivative on 0C , and get the expressions (9) to be minimized. This minimization

gives the coefficients ,e nc  and ,i nc , and we finally get the expressions of the total field in closed

form everywhere using (3) in eΩ  and (4) in iΩ .
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6. Numerical examples

We begin by a comparison with the a result of Ref. 2. With the notations of section 2, 0C  is a

circle with radius 10 (arbitrary units), the outside medium is vacuum ( 1en = ), and 4in = . The

inclusions are circular cylinders filled with vacuum, with radius 0.8, and arranged with a

hexagonal symmetry, with the distance between the centers of the cylinders equal to 4. The

central cylinder is suppressed. The structure is illuminated with a plane wave in p polarization

case, coming from the top of the figure, with an amplitude normalized to unity. The wavelength

0 22λ =  is chosen in order to get a resonant localized mode inside the structure. Figure 9 shows

the modulus of the total field. It is quite similar to the Fig. 7 of Ref. 2, except inside the small

cylinders, where we are inclined to trust in our computation. Note that the method described in

Ref. 2 can only deal with an external boundary 0C  with a circular shape.

In a second example, we illustrate some possibilities of the method on a more complex

situation. As in section 3, the cross-section of the cylinder 0C  is a F letter, but now with sharp

edges. The reason of this choice is only to prove that the method also works pretty well in that

case, which is more difficult to solve than a cylinder with rounded boundaries. All the

coordinates of 0C  corners in the (x,y) plane have integer values that can be deduced from Fig.

10. The profile 0C  is described by a series identical to Eq.(10), but in this case we use a large

number of nc  coefficients ( 100,100n = − ) in order to get a quasi polygonal shape. For the

interested reader, some more details on the technical parameters relative to the computations are

available.21 This scatterer of index 1.5in =  lies in vacuum ( 1en = ). There are also four

inclusions inside 0C . The elliptical one has principal axes with half dimensions equal to 1 and
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0.5, its center is in (-1,4), its principal axes are rotated 45° apart from the (x,y) axes, and it is

made of infinitely conducting material. The rectangular one is placed in the region

1.5 0.5x− < < −  and 2 0y− < < , and is filled with vacuum. One of the circular inclusions has its

center in (2,-1), a radius of 0.5, and it is filled with vacuum. The second circular inclusion has its

center in (3,4), a radius of 0.5, and it is filled with a lossy material with optical index 0.5 2i+

(typical value for a metal in the optical range). This structure is illuminated with an incidence

45incθ = − °  by a plane wave with wavelength 0 2λ =  and p polarization. In that case, the number

of sources in each region eΩ  and iΩ  is taken to N = 500. The total zH  field map is shown in

Fig. 10. Note that the present version of our numerical code do not allow to compute the field

inside a circle which includes elliptical or rectangular bodies. It is the reason why dark areas

appear around these two inclusions.

Our last and more practical example illustrates the case of a dielectric slab periodically

drilled with 364 circular air holes. The sides of this finite slab are defined by 13.944x = ±  and

2.6996y = ±  (see Fig. 11). The permittivity of the slab is 2 12in = , the radius of the holes is

0.294, and they are placed with hexagonal symmetry. The distance between the centers of two

neighbour holes is equal to 0.68. These parameters are chosen in order to exhibit a negative

refraction in s polarization at the wavelength 0 2.02λ = . The structure lies in vacuum, and is

illuminated by a Gaussian beam coming from the top with an incidence 0 30θ = ° . The exact

definition of this incident field is:

( ) ( ) ( ), exp i i ( ) dincu x y A x y
+∞

−∞

= α α − β α α∫ , (20)
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with 2 2 2
0( ) kβ α = −α , and with a Gaussian amplitude:

( )
2 2

0( )exp
42

W WA
⎛ ⎞α −α

α = −⎜ ⎟⎜ ⎟π ⎝ ⎠
 . (21)

The mean incidence 0 30θ = °  of the beam is such that 0 0 0sinkα = θ . The parameter W

appearing in (21) is directly linked to the incident beam width, and is equal to W = 5. Figure 11

shows the resulting field map, and the negative refraction inside the crystal.

Conclusion

We have presented a method that combines the advantages of the MFS and the SMM for the

study of scatterers with arbitrary shape and containing arbitrary inclusions. Note that the MFS by

itself could also deal with such problems, since it is not limited to the diffraction by one

homogeneous body (the extension of the MFS to several bodies is straightforward). But in many

cases, the method presented here is more efficient, and particularly when the inclusions have

circular cross-sections, since in that case the SMM is particularly efficient.

It is also important to note that any method able to compute efficiently the field and its

derivatives inside 0C  in the presence of sources placed outside 0C  (problem summarized in Fig.

8) could be used in place of the SMM. In other words, the MFS could be combined with various

other methods using the basic ideas described in this paper.

Let us also stress on the fact that, since the method described in this paper is based on

quite intuitive foundations which remain true for three-dimensional problems, it can also be

easily extended to these class of problems. For instance, the method could be useful for the study

of problems dealing with a few numbers of buried objects.
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Our short-term goal is to apply the method to the study of slabs made with two-

dimensional photonic crystals, and in particular for the study of the negative refraction that can

be observed in such structures.
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Figure captions

Figure 1: Description of the problem.

Figure 2: The sources ,e nS  (represented by dots) radiate the fields , ( )e nF r  used to represent the

scattered field scatu  in eΩ , whereas the sources ,i nS  (represented by stars) radiate the

fields , ( )i nF r  used to represent the total field intu  in iΩ .

Figure 3: Cross-section of the cylinder and the two sets of sources. The profile is given by Eq.

(10) and the values 5 0.1134 0.1310=c i− − + , 4 0.0297 0.3238 c i− = − − ,

3 0.4117 0.0973c i− = − − , 2 0.1260 1.4149c i− = − + , 1 2.3936 2.4031c i− = − + ,

0 0.5714 0.5000c i= + , 1 1.5568 0.1876c i= + , 2 0.1212 0.0197c i= − − ,

3 0.8158 0.2155c i= − + , 4 0.2772 0.1039c i= + , 5 0.1532 0.0102c i= − −

Figure 4: Scattered intensity at infinity for both polarizations.

Figure 5: Modulus of the total field in p polarization.

Figure 6: A set of 3cN =  parallel cylinders in a medium with index in , in the case where the

incident field is created by a line source.

Figure 7: Circle Dj  surrounding the cylinder Cj  and local co-ordinate system.

Figure 8: Setting of the problem in order to get the functions , ( )i nF r .

Figure 9: Field modulus in the same conditions as in Ref. 2. The gray levels are chosen in order

to match as closely as possible to that of Ref. 2.

Figure 10: Modulus of the total field for a scatterer with four inclusions.

Figure 11: Modulus of the total field. Above the slab, the black line shows the locus of the

maximum of the Gaussian incident beam. Below the slab, it shows the locus of the
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maximum of the transmitted field. Above the slab, the structure of the field is due to the

interference between the incident and the reflected fields.
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Figure 1, A-9161
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Figure 2, A-9161
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Figure 6, A-9161
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Figure 7, A-9161
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Figure 8, A-9161
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