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Measurement of Phase Coherence during the Growth of an Elongated Condensate
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We study the growth of an elongated condensate from a non-equilibrium thermal cloud obtained
by shock-cooling. Quantitative measurements using momentum Bragg spectroscopy reveal the evo-
lution of the phase coherence length as the condensate grows to equilibrium. A broadening of the
momentum distribution compared to that expected at equilibrium is observed at early times. This
broadening is compatible with damped quadrupole oscillations.

PACS numbers: 03.75.Kk,03.75.Nt

The non-equilibrium path to Bose-Einstein condensa-
tion is a complex process, by which atoms accumulate
in the ground state of the system, and long-range phase
coherence develops, resulting in a strong suppression of
density fluctuations and a uniform phase. The kinet-
ics of condensate formation has long been a subject of
theoretical study, giving rise to various predictions (see
[1] for a review). Quantitative theories have been for-
mulated to model the condensate formation process in
a harmonic trapping potential [2, 3]. However, in these
models the growing condensate is always assumed to be
fully phase coherent. On the other hand, for a homoge-
neous system, Kagan et al. [4] proposed the appearance of
a quasi-condensate with strong phase fluctuations which
die out on a time scale that increases with the size of
the system. This homogeneous system description is also
relevant to condensate growth in hydrodynamic clouds,
where the trapping potential can be neglected [5]. Con-
densates in highly-elongated traps, which can often be
treated using the local density approximation, are ex-
pected to have properties close to the homogeneous case
[6]. In addition, the axially hydrodynamic regime is eas-
ily attainable in such traps [7].

Experimentally, the problem of condensate formation
has been approached by shock-cooling [8, 9, 10] in har-
monic traps: starting from a thermal cloud just above the
transition temperature, rapid removal of the most ener-
getic atoms from the trap results in an over-saturated
thermal cloud. Subsequent thermalization leads to the
growth of the condensate. Measurements of the growth
of the condensate fraction in nearly-isotropic traps [8, 9]
have obtained good quantitative agreement with theory
[9, 11], but these experiments did not give access to the
phase coherence of the growing condensate. Although
the two-step growth curve reported in Ref. [9], and
the growth of non-equilibrium, phase-fluctuating conden-
sates from hydrodynamic clouds in Ref. [10], support the
existence of a quasi-condensate during the initial stage of
condensate formation as proposed in Ref. [4], there exists
to our knowledge no quantitative experimental study of
the development of phase coherence.

In this Letter, we present an experimental study of

the evolution of phase coherence during the growth of a
condensate in a highly elongated trap, in the axially hy-
drodynamic regime. We use Bragg spectroscopy [12] to
measure the momentum distribution, which allows an ac-
curate determination of the coherence length [13]. During
the early stages of growth, we observe a broadening of the
momentum width which is damped over a few hundred
milliseconds. Our observations are compatible with the
scenario of Refs. [4, 5], where a non-equilibrium quasi-
condensate is created at the onset of condensation and
relaxes to equilibrium with shape oscillations.

In our experiment [14], we prepare a thermal cloud
of 87Rb atoms in the 5S1/2|F = 1, mF = −1〉 state in
an Ioffe-Pritchard trap with trap frequencies of ω⊥ =
2π× 655(4)Hz radially and ωz = 2π× 6.53(1)Hz axially.
The cloud is cooled by forced radio-frequency (rf) evap-
oration to an effective trap depth of εi = 6 µK, and the
rf knife is held for a time varying from 1 s to 12 s. This
ensures thermal equilibrium, and allows us to control the
atom number Ni in the range 3–9.5×105. The resulting
thermal cloud has a temperature Ti of about εi/10, just
above the transition temperature Tc, which varies from
400nK to 600nK depending on the atom number.

We next shock-cool the cloud by ramping the rf knife
rapidly down to a final trap depth εf = 1.5 µK in 25ms.
The relative truncation rate ε̇/εf = 120 s−1 is fast com-
pared to the axial trap frequency, but slow compared to
the radial trap frequency. In our elongated geometry this
shock-cooling therefore results in a cloud transversally at
equilibrium but axially out of equilibrium. The cloud
tends towards local thermal equilibrium with a tempera-
ture T < Tc, in a time ∼ 3 τcoll . 10 ms [15] where τcoll is
the collision rate at the centre of the trap Since the atom
cloud is in the hydrodynamic regime axially (ωzτcoll ≪ 1)
[16], global equilibrium is reached on a time scale longer
than the axial oscillation period.

In order to study the condensate growth, the cloud
is held in the trap for a further time t after the end of
the shock-cooling ramp, with the trap depth held con-
stant at εf . We then switch off the trap and image the
cloud after a 20ms time-of-flight in order to obtain the
total atom number N , temperature T and condensate
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FIG. 1: (a) Growth curves for various initial atom numbers:
Ni/10

5 = 9.5(10)•, 8.0(8)△, 3.8(4)◦ and 3.1(6)H. Each point
corresponds to an average over three experimental realiza-
tions. (b,c) Values of 1/Γ and td as a function of collision
time τcoll in the initial thermal cloud. The fits shown are
1/Γ = −46(19) + 160(14) τcoll and td = −60(6) + 70(4) τcoll.

fraction fc [7, 17]. By repeating the measurements at
different times t for the same initial conditions, we ob-
tain a growth curve for the condensate fraction, as shown
in Fig. 1(a) for various initial atom numbers Ni. At
t ≃ 20ms (depending on initial conditions), the atom
number has dropped by 40% and the temperature is al-
ready below Tc [18], yet the condensate does not appear
until a later time. Following the analysis of Ref. [9] we fit
the growth curves of Fig. 1(a) with a simple relaxation
equation fc(t) = H(t − td) fc(∞)

(

1 − e−Γ(t−td)
)

, with
H(x) the step function. We thereby quantify the delay
time td before the onset of condensation and the rate of
relaxation Γ towards equilibrium. We find that both td
and 1/Γ vary linearly with atomic collision time τcoll in
the initial thermal cloud, as shown in Fig. 1(b)–(c). The
delay time td varies from 20ms to 200ms before the first
appearance of a condensate, corresponding to td ∼ 20–
60 τcoll. The condensate fraction grows to equilibrium
with a time constant 1/Γ varying from 100ms to 650ms.
The shape of the measured growth curves and the orders
of magnitude of td and Γ are consistent with the results of
previous experiments with nearly-isotropic condensates
[8, 9], and with theoretical predictions [2] which do not
take phase fluctuations into account. Although we are
in a regime where phase fluctuations are always present
(see below), we do not observe the two-step growth curve
reported in Ref. [9].

We now turn to the experimental study of the phase
coherence. We measure the coherence length of the con-
densate via its momentum distribution, using 4-photon
Bragg Spectroscopy as described in Ref. [13]. At time
t after the end of the shock-cooling ramp, the magnetic
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FIG. 2: Condensate fraction fc and momentum width ∆p as
a function of t for an initial atom number Ni = 4.2(3) × 105.
Open circles and solid line represent the data and fit from
Fig. 1 for Ni = 3.8(3)×105. The dashed line is a guide to the
eye.

trap is switched off and after 2ms of free expansion a
2ms Bragg pulse is applied. The atoms are imaged af-
ter a further 16ms time-of-flight, which allows separation
of the diffracted atoms. The diffracted fraction is mea-
sured as a function of ν, the detuning between the Bragg
beams which determines the velocity-class diffracted,
to obtain the momentum spectrum of the condensate.
We fit a Lorentzian function to the measured spectra
and extract the half-width at half-maximum (HWHM)
∆ν = 2kL∆p/2πm, where m is the atomic mass, kL the
laser wave-vector and ∆p the HWHM of the momentum
distribution. Each spectrum requires around 50 conden-
sate diffraction measurements, so it takes several weeks
to obtain one set of data, such as shown in Fig. 2. For
each set, we maintain a constant value of Ni by adjust-
ing the hold time immediately before the shock-cooling
ramp. For each spectrum, further images (typically 5)
are taken without the Bragg pulses, from which the tem-
perature T , condensate atom number N0 = fcN , and
condensate half-length L are obtained.

The evolution of the momentum width ∆p for an ini-
tial atom number Ni = 4.2(3) × 105 is presented in
Fig. 2 (lower panel). The corresponding condensate frac-
tions are shown in the upper panel of Fig. 2 (filled cir-
cles). We observe that the momentum width ∆p de-
creases as the condensate fraction grows to equilibrium
indicating that, as expected, the coherence length grows
with time. We first focus on the value obtained for the
momentum width once the condensate reaches equilib-
rium (t & 1.5 s). As this experiment is performed in
an elongated trapping geometry, temperature-dependent
phase-fluctuations can be present even at equilibrium
[6, 13, 19, 20, 21]. For our parameters, the phase-
coherence length Lφ = 15~

2N0/16mkBLT [6] is smaller
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than the condensate half-length L by a factor in the range
4–10.As in [13], this entails a broadening of the momen-
tum width, which is given by [6, 22]:

∆pequ = ~

√

(

2.04

L

)2

+

(

0.65

Lφ

)2

. (1)

The first term accounts for the Heisenberg-limited mo-
mentum width, due to the finite size L of the condensate;
the second term for the presence of the thermal phase
fluctuations. The numerical factors account for integra-
tion over the 3D density profile. We also correct for the
finite “instrumental width” of the Bragg spectrometer,
by introducing as in [13] a Gaussian apparatus function
of half-width wG = 200 Hz. This results in a theoretical
measured momentum width:

∆pth =
∆pequ

2
+

√

(

2πm

2kL

)2

w2
G +

(

∆pequ

2

)2

. (2)

For t & 1.5 s, our measurements are in good agreement
with the predictions of Equ. 2, though with a systematic
excess which we will discuss below (see Fig. 3).

We now focus on earlier times, t . 1.5 s, when the
condensate fraction is still increasing. From Equ. 1, we
see that even if the condensate were at equilibrium at
each moment during the growth, we would expect the
momentum width to decrease with time, since both Lφ

and L increase with the condensate atom number. We
take this into account by comparing each measured mo-
mentum width ∆p with the value ∆pth calculated from
Equ. 2 using the parameters N0, L and T measured
for each Bragg spectrum. We plot the ratio ∆p/∆pth

in Fig. 3 for two different initial atom numbers: (a)
Ni = 4.2(3) × 105 and (b) Ni = 8.0(3) × 105. The er-
ror bars shown represent typical statistical errors. The
dashed line at ∆p/∆pth = 1 indicates the value expected
for a condensate always at equilibrium. Systematic un-
certainties of 15% on this equilibrium value, mainly due
to the atom number calibration (20%) and determination
of wG (10%), are represented by the gray band. Unam-
biguously, we observe that the ratio ∆p/∆pth always lies
above one (with values close to one at time as short as
100 ms), and decreases in time. This indicates an ex-
cess momentum spread with respect to a condensate at
equilibrium during the growth.

This observed excess momentum width with strong
measurement dispersion is compatible with the presence
of quadrupole shape oscillations of the condensate, sim-
ilar to those observed in Refs. [10, 13]. Indeed, for a
sufficiently high initial atom number (Ni & 9 × 105), we
directly observe quadrupole oscillations of the condensate
in the absorption images, as shown in Fig. 4 for Ni =
9.5×105. The fitted frequency ωQ = 1.56(3)ωz is consis-
tent with the theoretical value, 1.58 ωz [23]. The oscilla-
tion amplitude is 12 µm at t = 200 ms, and decays with a
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FIG. 3: Ratio of measured momentum width ∆p to theo-
retical momentum width ∆pth, calculated for a condensate
at equilibrium (Equ. 2) for: (a) Ni = 4.2(3) × 105 and (b)
Ni = 8.0(3)× 105 . (Data shown in (a) corresponds to Fig. 2.)
The condensate momentum width tends to the equilibrium
value (dashed line) at long times. Error bars represent sta-
tistical error and the gray band the systematic uncertainties.
The solid curves (right-hand scale) reproduce growth curve
fits from Fig. 1(a).

time constant of about 250ms. These oscillations of the
axial condensate length, L(t) = L(0)+ξ(t) cos[ωQ(t−td)],
where ξ(t) is the decaying amplitude, lead to an excess
axial momentum ∆posc = 0.54 mωQ ξ(t)

∣

∣ sin[ωQ(t− td)]
∣

∣.
During the acquisition of the Bragg spectra, small varia-
tions in the initial atom number and temperature occur,
which are expected to lead to fluctuations of td. This
dephases the oscillations between different measurements
and results in a measurement dispersion, as seen in Fig. 3,
rather than clear oscillations. The excess momentum
widths in Fig. 3 can be interpreted by assuming oscilla-
tions with amplitudes of 4 µm (Ni = 4.2×105) and 5.5 µm
(Ni = 8.0×105) [24], which decay with time constants of
about 700ms and 300ms respectively. These values are
consistent with those of Fig. 4, assuming an oscillation

1.5

1.0

0.5

as
pe

ct
 r

at
io

 L
/R

5004003002001000
t (ms)

FIG. 4: Quadrupole oscillations during condensate growth,
for Ni = 9.5 × 105, as observed in the aspect ratio of the
condensate after time-of-flight. The solid line is a fit to the
data.
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amplitude which increases with the atom number and a
decay time which decreases with the atom number.

This picture is compatible with the scenario of Kagan
et al. [4], in which, for a homogeneous system three dis-
tinct stages are identified during the growth of a conden-
sate. In the first stage, Boltzmann kinetic processes lead
to accumulation of atoms in the lowest energy levels: this
kinetic stage is determined by the collision time τcoll. Sec-
ondly, density fluctuations are suppressed during a fast
coherent stage, resulting in a quasi-condensate with non-
equilibrium, long-range phase fluctuations. This stage
generally occurs on a time scale much shorter than that
of the kinetic stage. During the final stage, phase-
fluctuations decay to produce the true phase-coherent
condensate, with a characteristic time scale τφ which in-
creases with the system size L: τφ ∝ L in the collision-
less regime and τφ ∝ L2 in the hydrodynamic regime. It
should be noted that our trapped system differs from a
homogeneous system, but Svistunov [5] points out that
this theory can be applied to trapped hydrodynamic
clouds, where the trapping potential can be neglected.
In this case, the resulting quasi-condensate will be out-
of-equilibrium, thereby exciting a breathing mode. Our
observations are consistent with this scenario assuming
that the measured slowly decaying momentum excess is
due to the breathing mode, while the phase fluctuations
decay in less than 100 ms and are not observed in the
current experiment [25].

In conclusion, we have observed the growth of a con-
densate in a very elongated trap and have shown that
the presence of phase fluctuations does not qualitatively
change the shape of the growth curve. In order to obtain
information on the development of phase coherence, we
have studied the evolution of the momentum width, and
compared it to the width expected for a quasi-condensate
at equilibrium with the same atom number and temper-
ature. We find a broadening of the momentum distri-
bution, compatible with quadrupole shape oscillations,
which decays on a time scale of the order of a few hundred
milliseconds. Because an explicit theory for our experi-
mental situation is lacking, the agreement between theory
and experiment can only be qualitative and an extension
of the model of Ref. [4] to trapped condensates, particu-
larly in this quasi-1D geometry [26], is required. In order
to observe the decay of higher-order excited modes, a
measurement of the phase coherence length at shorter
times is also needed. This seems exceedingly difficult
using Bragg spectroscopy, since at short times the con-
densate fraction is too small to obtain a clear Bragg spec-
trum. Other techniques might be used instead, such as
atom laser correlation measurements [27], combined with
single-atom detection [28, 29].
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