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We investigate the connections between the mean pathwise regularity of stochastic processes and their L r (P)-functional quantization rates as random variables taking values in some L p ([0, T ], dt)-spaces (0 < p ≤ r). Our main tool is the Haar basis. We then emphasize that the derived functional quantization rate may be optimal (e.g., for Brownian motion or symmetric stable processes) so that the rate is optimal as a universal upper bound. As a first application, we establish the O((log N ) -1/2 ) upper bound for general Itô processes which include multidimensional diffusions. Then, we focus on the specific family of Lévy processes for which we derive a general quantization rate based on the regular variation properties of its Lévy measure at 0. The case of compound Poisson processes, which appear as degenerate in the former approach, is studied specifically: we observe some rates which are between the finite-dimensional and infinite-dimensional "usual" rates.

1. Introduction. In this paper, we investigate the connection between the functional L r (P)-quantization rate for a process X = (X t ) t∈[0,T ] and the L r (P)-mean pathwise regularity of the mapping t → X t from [0, T ] → L r (P) in an abstract setting by means of a constructive approach (we mean that all the rates are established using some explicit sequences of quantizers).

First, let us briefly recall what functional quantization is and how it was introduced. Let (E, • ) denote a finite-dimensional (E = R or R d ) or infinite-dimensional (E = L p ([0, T ], dt), 1 ≤ p < ∞, C([0, T ]), . . . ) separable Banach space (or complete quasi-normed space like E = L p ([0, T ], dt), 0 < p < 1) and let α ⊂ E be a finite subset of size card(α) ≤ N , N ≥ 1. The Voronoi quantization of an E-valued random vector X : (Ω, A, P) → E with respect to the codebook α is simply the projection of X onto α following the nearest neighbor rule, that is Then, the L r -mean quantization error (0 < r < ∞) is defined by

X α = π α (X),
X -X α L r E (P) = E min a∈α X -a r 1/r .
This quantity is finite provided X ∈ L r E (P). The set α is called an N -codebook or N -quantizer. It can be shown that such random vectors X α are the best approximation of X among all α-valued random vectors. The minimal N th quantization error of X is then defined by T from now on), an E-valued random variable X is a (bimeasurable) stochastic process X = (X t ) t∈[0,T ] defined on the probability space (Ω, A, P) whose trajectories (X t (ω)) 0≤t≤T (almost) all belong to L p ([0, T ], dt). The L r -integrability assumption then reads

E T 0 |X t | p dt r/p < +∞.
It is still an open question whether L r -optimal N -quantizers for Gaussian random vectors always exist in an abstract Banach space setting (see [START_REF] Graf | Optimal quantizers for Radon random vectors in a Banach space[END_REF]). However, in many situations of interest for processes, including all the L p ([0, T ], dt)-spaces, 1 ≤ p < +∞, the existence of at least one such L roptimal codebook has been established (provided E X r < +∞). Note, however, that this is not the case for the space C([0, T ]) of continuous functions. For more details on the existence problem for optimal quantizers, we refer to [START_REF] Graf | Optimal quantizers for Radon random vectors in a Banach space[END_REF].

On the other hand, optimal L r -quantizers always exist when E = R d , d ≥ 1. In this finite-dimensional setting, this problem is known as optimal vector quantization and has been extensively investigated since the early 1950s with some applications to signal processing and transmission (see [START_REF] Gersho | Special issue on quantization[END_REF] or [START_REF] Gersho | Vector Quantization and Signal Compression[END_REF]).

In d-dimensions, the convergence rate of e N,r is given by the so-called Zador theorem, lim

N N 1/d e N,r (X, R d ) = Jr,d R d g d/(d+r) (ξ) dξ 1/r+1/d , (1.2)
where g denotes the density of the absolutely continuous part of the distribution P X of X and Jr,d ∈ (0, ∞) (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]).

Since the early 2000's, much attention has been paid to the infinitedimensional case. This is the so-called functional quantization problem for stochastic processes: the aim is to quantize some processes viewed as random vectors taking values in their path spaces, supposed to be L p ([0, T ], dt) spaces, 1 ≤ p < +∞. Many results have been obtained for several families of processes with special attention having been paid to Gaussian processes and (Brownian) diffusion processes by several authors. Thus, in the purely Hilbert space setting (r = 2, E = L 2 ([0, T ], dt)), the sharp rate of quantization of the Brownian motion (W t ) t∈[0,T ] is given (see (3.6) in [START_REF] Luschgy | Sharp asymptotics of the functional quantization problem for Gaussian processes[END_REF]) by e N,2 (W, L 2 ([0, T ], dt)) ∼ √ 2 T π(log N ) 1/2 . (1.3)

The existence of such a sharp rate for Brownian motion has been extended to L p ([0, T ], dt) spaces for 1 ≤ p ≤ ∞ (see [START_REF] Dereich | High resolution quantization and entropy coding for fractional Brownian motions[END_REF]). Similar sharp rates (with an explicit constant) hold for a wide class of Gaussian processes, including the fractional Brownian motions for which we have

e N,2 (W H , L 2 ([0, T ], dt)) ∼ c(H, T ) (log N ) H ,
where H denotes the Hurst parameter of the fractional Brownian motion W H , the Ornstein-Uhlenbeck process, the Brownian sheet, and so on, in the purely Hilbert space setting (see [START_REF] Luschgy | Sharp asymptotics of the functional quantization problem for Gaussian processes[END_REF]). The exact rate has also been established in [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF] (Section 3) for a wider class of Gaussian processes. In [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF][START_REF] Luschgy | Sharp asymptotics of the functional quantization problem for Gaussian processes[END_REF], these results are based on the (sharp or exact) asymptotic behavior of the eigenvalues of high order of the Karhunen-Loève expansion of the Gaussian process. As a byproduct, this approach provides very simple explicit sequences of rate-optimal asymptotic quantizers (provided that the Karhunen-Loève expansion of the process itself is accessible). Their numerical implementation has lead to some unexpectedly promising numerical applications in finance, especially for the pricing of path-dependent options like Asian options in several popular models of asset dynamics (Black-Scholes, stochastic volatility Heston and SABR models, etc.). For these aspects, we refer to [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF] or [START_REF] Wilbertz | Computational aspects of functional quantization for Gaussian measures and applications[END_REF]. We also mention applications of quantization to statistical clustering of data (see, e.g., [START_REF] Pötzelberger | Clustering and quantization by MSPpartitions[END_REF]) and some more recent developments concerning functional data investigated in [START_REF] Tarpey | Clustering functional data[END_REF] and [START_REF] Tarpey | Profiling placebo responders by self-consistent partitioning of functional data[END_REF].

For Gaussian processes, an important connection with the small ball probability problem has been made (see [START_REF] Dereich | On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces[END_REF][START_REF] Graf | Functional quantization and small ball probabilities for Gaussian processes[END_REF]). Some exact or sharp rates of convergence for different classes of Brownian diffusions have also recently been proven (see [START_REF] Dereich | The coding complexity of diffusion processes under L p ([0, 1])norm distortion[END_REF][START_REF] Luschgy | Functional quantization of a class of Brownian diffusions: A constructive approach[END_REF]) with a rate driven by (log N ) -1/2 .

The common feature shared by all these results is that there is a one-toone correspondence between the exponent a that controls the (L r (P), L p (dt))quantization rate of these processes in the log(N ) -a scale and their mean pathwise regularity, that is, the largest exponent a that satisfies

∀ s, t∈ [0, T ] X t -X s L r (P) ≤ C r |t -s| a . (1.4)
Although such a correspondence is not really surprising given the connection between quantization rate and small ball probabilities in the Gaussian setting, this naturally leads to an attempt to derive a general abstract result that connects these two features of a process. This is the aim of Section 2 of this paper, in which we show that the mean pathwise regularity always provides a universal upper bound for the (L r (P), L p (dt))-quantization rate (0<p≤r). We then retrieve the rate obtained by more specific approaches for all the processes mentioned above. We also extend to general Brownian diffusion processes and even general Itô processes the rate formerly obtained for specific classes of diffusions in [START_REF] Dereich | The coding complexity of diffusion processes under L p ([0, 1])norm distortion[END_REF][START_REF] Luschgy | Functional quantization of a class of Brownian diffusions: A constructive approach[END_REF]. We also obtain some first quantization rates for some classes of Lévy processes. The main technique is to expand a process on the simplest wavelet basis-the Haar basis (known to be unconditional when p > 1)-and to use a nonasymptotic version of the Zador theorem (a slight improvement of the Pierce lemma; see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF]).

At this point, the next question is to ask conversely whether this always provides the true quantization rate. In this na ïve form, the answer to this question is clearly "no" because equation (1.4) only takes into account the mean pathwise Hölder regularity of a process and one can trivially build (see [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF]) some processes with smoother mean regularity (like processes with C k , k ≥ 1, trajectories). We do not extend our approach in that direction, for the sake of simplicity, but there is no doubt that developing techniques similar to those used in Section 2, one can connect higher order mean pathwise regularity and quantization rate, as in the Hölder setting. This would require an appropriate wavelet basis. In fact, we point out in Section 4, devoted to general Lévy processes, that the answer may be negative-the quantization rate can be infinitely faster than the mean pathwise regularity-for different reasons in connection with the dimensionality of the process: a Poisson process is, in some sense, an almost finite-dimensional random vector which induces a very fast quantization rate which does not take place in the (log N ) -a scale, although the mean pathwise L r (P)-regularity of a Poisson process is Hölder [and depends on r; see, e.g., (3.7) and (3.8)]. Conversely, we emphasize, via on several classes of examples, that the upper bound derived from mean regularity provides the true rate of quantization. This follows from a comparison with the lower bound that can be derived from small deviation results (see, e.g., [START_REF] Graf | Functional quantization and small ball probabilities for Gaussian processes[END_REF] or the remark below Theorem 1 which elucidates the connection between functional quantization and small deviation theory). Thus, we prove that our approach yields the exact rate for a wide class of subordinated Lévy processes (including symmetric α-stable processes).

The main result of Section 4 is Theorem 2, which provides a functional quantization rate for a general Lévy process X having no Brownian component: this rate is controlled by the behavior of the Lévy measure ν around 0 (e.g., the index of X for a stable process). As an example for Lévy processes which have infinitely many small jumps, if the (infinite) Lévy measure ν (is locally absolutely continuous around 0 and) satisfies

∃ c > 0 1 {0<|x|≤c] ν(dx) ≤ C |x| θ+1 1 {0<|x|≤c] dx
for some θ ∈ (0, 2], then, for every p, r ∈ (0, θ] such that 0 < p ≤ r and

X 1 ∈ L r (P), e N,r (X, L p ([0, T ], dt)) = O((log N ) -1/θ ).
This makes a connection between quantization rate and the Blumenthal-Getoor index β of X when ν satisfies the above upper bound with θ = β. In fact, a more general result is established in Theorem 2: when the "0-tail function" ν : x → ν([-x, x] c ) has regular variation as x goes to 0, with index -θ, then θ = β (see [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF]) and we establish a close connection between the quantization rate of X and ν, θ. In many cases of interest, including αstable processes and other classes of subordinated Lévy processes, we show that this general upper bound provides the exact rate of quantization; it matches the lower bound estimates derived from the connection between quantization rate and small deviation estimates (see, e.g., [START_REF] Graf | Functional quantization and small ball probabilities for Gaussian processes[END_REF]). When the Lévy process does have a Brownian component, its exact quantization rate is (log N ) -1/2 , like Brownian motion [when 0 < p < r < 2, X 1 ∈ L r (P)].

When the Lévy measure is finite (then θ = 0), we also establish some quantization rates for the compound Poisson processes and show they are infinitely faster than the above ones. To this end, we design an explicit sequence of quantizers which can clearly be implemented for numerical purposes. In fact, the whole proof is constructive, provided the Lévy measure is "tractable" enough.

The paper is organized as follows. Section 2 is devoted to the abstract connection between mean regularity and quantization rate of processes. Section 3 is devoted to some initial applications to various families of processes. As far as we know, some of these rates are new. In several cases of interest, these rates are shown to be optimal. The main result is Theorem 1. Section 4 provides an upper bound for the quantization rate of general Lévy process in connection with the behavior of the Lévy measure around 0. The main results are Theorem 2 and Proposition 3. In Section 5.1, we provide the exact rate for a Lévy process having a Brownian component. Finally, in Section 5.2, we derive the exact quantization rate for subordinated Lévy processes.

Notation.

• L p T := L p ([0, T ], dt) and |f | L p T = ( T 0 |f (t)| p dt) 1/p . • Let (a n ) n≥0 and (b n ) n≥0 be two sequences of positive real numbers. a n ∼ b n means a n = b n + o(b n ) and a n ≈ b n means a n = O(b n ) and b n = O(a n ). • [x]
denotes the integral part of the real number x and x + = max(x, 0) its positive part. • log m (x) denotes the m-times iterated logarithm function.

• Y r := Y L r (P) for any random variable Y defined on a probability space (Ω, A, P). • Throughout the paper, the letter C (possibly with subscripts) will denote a positive real constant that may vary from line to line. • For a càdlàg continuous-time process X = (X t ) t≥0 , X t-will denote its left limit and ∆X t := X t -X t-its jump at time t.

2. Mean pathwise regularity and quantization error rate: an upper bound. In this section, we derive in full generality an upper bound for the (L r (P), L p T )quantization error e N,r (X, L p T ) based on the path regularity of the mapping t → X t from [0, T ] to L ρ (P). The main result of this section is Theorem 1 below. We will then illustrate via several examples that this rate may be optimal or not.

As a first step, we will reformulate the so-called Pierce lemma (see [START_REF] Graf | Foundations of Quantization for Probability Distributions[END_REF], page 82), which is the main step of the proof of Zador's Theorem for unbounded random variables. Note that the proof of its original formulation (see below) relies on random quantization.

Lemma 1 (Extended Pierce Lemma). Let r, δ > 0. There exists a real constant C r,δ such that, for every random variable X : (Ω, A) → (R, B(R)),

∀ N ≥ 1 e N,r (X, R) = inf card(α)≤N X -X α r ≤ C r,δ X r+δ N -1 .
Proof. It follows from the original Pierce lemma that there exists a universal real constant C 0 r,δ > 0 and an integer N r,δ ≥ 1 such that, for any random variable X : (Ω, A) → (R, B(R)),

∀ N ≥ N r,δ inf card(α)≤N E|X -X α | r ≤ C 0 r,δ (1 + E|X| r+δ ) N -r .
Using the scaling property of quantization, for every λ > 0,

X -X α r = 1 λ (λX) -λX λα r ,
where λα = {λa, a∈ α}, one derives from the Pierce lemma, by considering X/ X r+δ and setting λ := 1/ X r+δ , that

∀ N ≥ N r,δ inf card(α)≤N X -X α r ≤ (2C 0 r,δ ) 1/r X r+δ N -1 . Now, for every N ∈ {1, . . . , N r,δ -1}, setting α := {0} yields inf card(α)≤N X -X α r ≤ X r ≤ N r,δ X r+δ N -1 .
Combining the last two inequalities and setting C r,δ =max((2C 0 r,δ ) 1/r , N r,δ ) completes the proof.

Let (e n ) n≥0 denote the Haar basis, defined as the restrictions to [0, T ] of the following functions:

e 0 := T -1/2 1 [0,T ] , e 1 := T -1/2 (1 [0,T /2) -1 [T /2,T ] ), e 2 n +k := 2 n/2 e 1 (2 n • -kT ), n ≥ 0, k∈ {0, . . . , 2 n -1}.
With this normalization, it makes up an orthonormal basis of the Hilbert space (L 2 T , (•|•)), where (f |g) = T 0 f g(t) dt and a (monotone) Schauder basis of L p T , p∈ [1, +∞), that is, (f |e 0 )e 0 + n≥0 0≤k≤2 n -1 (f |e 2 n +k )e 2 n +k , converges to f in L p T for every f ∈ L p T (see [START_REF] Singer | Basis in Banach Spaces[END_REF]). Furthermore, it clearly satisfies, for every f ∈ L 1 T and every p > 0, ∀ n ≥ 0 (2.1)

T 0 2 n -1 k=0 (f |e 2 n +k )e 2 n +k (t) p dt = 2 n(p/2-1) T 1-p/2 2 n -1 k=0 |(f |e 2 n +k )| p .
The second key to establish a general connection between quantization rate and mean pathwise regularity is the following standard property of the Haar basis: for every

f ∈ L 1 T , (f |e 2 n +k ) H. LUSCHGY AND G. PAG ÈS = 2 n/2 T -1/2 (2k+1)T 2 -(n+1) kT 2 -n f (u) du - (k+1)T 2 -n (2k+1)T 2 -(n+1) f (u) du (2.2) = 2 n/2 T -1/2 T 2 -(n+1) 0 (f (kT 2 -n + u) -f ((2k + 1)T 2 -(n+1) + u)) du.
Let (X t ) t∈[0,T ] be a bimeasurable process defined on a probability space (Ω, A, P) with P-almost all paths lying in L 1

T such that X t ∈ L ρ (P) for every t∈ [0, T ] for some positive real exponent ρ > 0. When ρ∈ (0, 1), we assume that X has càdlàg paths (right-continuous, left-limited) to ensure the measurability of the supremum in assumption (2.3) below.

We make the following ϕ-Lipschitz assumption on the map t → X t from [0, T ] into L ρ (P): there is a nondecreasing function ϕ:R + → [0, +∞], continuous at 0 with ϕ(0)=0, such that

(L ϕ,ρ ) ≡                (i) ∀ s, t∈ [0, T ], E |X t -X s | ρ ≤ (ϕ(|t -s|)) ρ , if ρ ≥ 1, (ii) ∀ t ∈ [0, T ], ∀ h∈ (0, T ], E sup t≤s≤(t+h)∧T |X s -X t | ρ ≤ (ϕ(h)) ρ , if 0 < ρ < 1.
(

[One may assume, without loss of generality, that ϕ is always finite, but that (i) and (ii) are only true for |t -s| or h small enough, resp.] Note that this assumption implies that E(|X| ρ L ρ T ) < +∞ so that, in particular, P(dω)-a.s., t → X t (ω) lies in L ρ T (which, in turn, implies that the paths lie in

L 1 T if ρ ≥ 1).
We make a regularly varying assumption on ϕ at 0 with index b ≥ 0, that is, for every t > 0,

lim x→0 ϕ(tx) ϕ(x) = t b . (2.4)
In accordance with the literature (see [START_REF] Bingham | Regular Variation[END_REF]), this means that x → ϕ(1/x) is regularly varying at infinity with index -b (which is a more usual notion in that field). When b = 0, ϕ is said to be slowly varying at 0. Let r, p∈ (0, ρ). Our aim is to evaluate the L r (P)-quantization rate of the process X, viewed as an L p T -valued random variable induced by the "Haar product quantizations" of X defined by

X = ξ N 0 0 e 0 + n≥0 2 n -1 k=0 ξ N 2 n +k 2 n +k e 2 n +k , (2.5)
where ξ k := (X|e k )∈ L ρ (P), k ≥ 0, and where ξ N denotes an N -quantization (N ≥ 1) of the (real-valued) random variable ξ, that is, a quantization of ξ by a codebook α N having N elements. A quantization taking finitely many values, we set N 2 n +k = 1 and ξ N 2 n +k 2 n +k = 0 for large enough n (which may be a nonoptimal 1-quantizer for ξ N 2 n +k 2 n +k ). We will see that this local behavior of ϕ at 0 induces an upper bound for the functional quantization error rate of X (regardless of the values of r and p, except for constants).

Theorem 1. Let X = (X t ) t∈[0,T ] be a (bimeasurable) process defined on a probability space (Ω, A, P) such that X t ∈ L ρ (P) for an exponent ρ > 0. Assume that X satisfies (2.3) [the ϕ-Lipschitz assumption (L ϕ,ρ )] for this exponent ρ, where ϕ is regularly varying [in the sense of (2.4)] with index b ≥ 0 at 0 [then

|X| L ρ T ∈ L 1 (P)]. Then ∀ r, p ∈ (0, ρ) e N,r (X, L p T ) ≤ C r,p ϕ(1/ log N ), if b > 0, ψ(1/ log N ), if b = 0, with ψ(x) = ( x 0 (ϕ(ξ)) r∧1 dξ/ξ) 1/(r∧1)
, assuming, moreover, that

1 0 (ϕ(ξ)) r∧1 dξ/ξ < +∞ if b = 0. In particular, if ϕ(u) = cu b , b > 0, then e N,r (X, L p T ) = O((log N ) -b ). (2.6)
Proof. Using the two obvious inequalities

|f | L p T ≤ T 1/p-1/p ′ |f | L p ′ T , p ≤ p ′ , for every Borel function f : [0, T ] → R and Z r ≤ Z r ′ , r ≤ r ′ ,
for every random variable Z : Ω → R, we may assume, without loss of generality, that either

1 ≤ p = r < ρ or 0 < p = r < ρ ≤ 1.
Case 1 (1 ≤ p = r < ρ). Let N ≥ 1 be a fixed integer. We consider a Haar product quantization X of X with a (product) codebook having at most N elements, that is, such that N 0 × n,k N 2 n +k ≤ N . Its characteristics will be specified below. Then, using (2.1), that is,

|X -X| L r T ≤ T 1/r-1/2 |ξ 0 -ξ N 0 0 | + n≥0 2 n -1 k=0 (ξ 2 n +k -ξ N 2 n +k 2 n +k )e 2 n +k L r T = T 1/r-1/2 |ξ 0 -ξ N 0 0 | + T 1/r-1/2 n≥0 2 n(1/2-1/r) 2 n -1 k=0 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1/r so that, both • r and • 1 being norms, |X -X| L r T r ≤ T 1/r-1/2 |ξ 0 -ξ N 0 0 | r + T 1/r-1/2 n≥0 2 n(1/2-1/r) 2 n -1 k=0 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1/r r = T 1/r-1/2 ξ 0 -ξ N 0 0 r + T 1/r-1/2 n≥0 2 n(1/2-1/r) 2 n -1 k=0 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1/r 1 ≤ T 1/r-1/2 ξ 0 -ξ N 0 0 r (2.7) 
+ T 1/r-1/2 n≥0 2 n(1/2-1/r) 2 n max 0≤k≤2 n -1 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1 1/r = T 1/r-1/2 ξ 0 -ξ N 0 0 r + T 1/r-1/2 n≥0 2 n/2 max 0≤k≤2 n -1 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1/r 1 = T 1/r-1/2 ξ 0 -ξ N 0 0 r + T 1/r-1/2 n≥0 2 n/2 max 0≤k≤2 n -1 ξ 2 n +k -ξ N 2 n +k 2 n +k r .
Let δ := ρr. It follows from Lemma 1 (Pierce lemma) that, for every N ≥ 1 and every r.v. ξ ∈ L r (P),

inf card(α)≤N ξ -ξ α r ≤ C r,ρ ξ ρ N -1 . (2.8)
Now, using the monotony in p of the L p -norms with respect to the probability measure 2 n+1 1 [0,2 -(n+1) T ] (t) dt/T , Fubini's theorem, the (L r,ϕ )-Lipschitz continuity assumption (2.3)(i) and (2.2), we obtain

E |ξ 2 n +k | ρ = E |(X|e 2 n +k )| ρ ≤ 2 (n/2)ρ T -ρ/2 × E 2 -(n+1) T 0 |X (k/2 n )T +u -X (2k+1)/(2 n+1 )T +u | du ρ ≤ 2 (n/2)ρ 2 -(n+1)ρ T ρ/2 (2.9) × E 2 -(n+1) T 0 |X (k/2 n )T +u -X (2k+1)/(2 n+1 )T +u | ρ 2 n+1 du/T ≤ 2 -ρ 2 -(n/2)ρ+n+1 T ρ/2-1 × 2 -(n+1) T 0 E|X (k/2 n )T +u -X (2k+1)/(2 n+1 )T +u | ρ du ≤ 2 -(n/2)ρ+n+1-ρ T ρ/2-1 2 -(n+1) T 0 (ϕ(T /2 n+1 )) ρ du ≤ C X,T,r,ρ 2 -(n/2)ρ (ϕ(T /2 n+1 )) ρ .
At this stage, we assume a priori that the size sequence (N 2 n +k ) n≥0, k=0,...,2 n-1 of the marginal codebooks is nonincreasing as 2 n + k increases and satisfies

1 ≤ k≥0 N k ≤ N.
We assume that all the quantizations induced by these codebooks are L r -optimal up to n ≤ m, that is,

ξ 2 n +k -ξ 2 n +k r = inf card(α)≤N 2 n +k ξ 2 n +k -ξ α 2 n +k r
and that ξ 2 n +k = 0 otherwise. Then, combining (2.7), (2.9) and (2.8) (Pierce Lemma) yields

|X -X| L r T r ≤ C X,T,r,ρ 1 N 0 + n≥0 ϕ(T 2 -(n+1) ) N 2 n+1 ≤ C X,T,r,ρ 1 N 0 + 1 T n≥0 2 n+1 -1 k=0 Φ(2T /(2 n+1 + k)) N 2 n+1 +k = C X,T,r,ρ 1 N 0 + 1 T k≥2 Φ(2T /k) N k ,
where Φ(x) := xϕ(x), x∈ (0, +∞). This function Φ is regularly varying (at 0) with index b + 1. This implies, in particular, that there is a real constant c > 0 such that Φ(T /k) ≤ cΦ(1/(k + 1)) for every k ≥ 2. Hence, inserting, for convenience, the term Φ(1/2)/N 1 and modifying the real constant C X,T,r,ρ in an appropriate way finally yields

|X -X| L r T r ≤ C X,T,r,ρ k≥1 Φ(1/k) N k-1 . Now, set, for convenience, ν k = Φ(1/k), k ≥ 1.
Note that in the case b = 0, the integrability condition 1 0 ϕ(ξ)/ξ dξ < +∞ implies k ν k < +∞. Consequently, an upper bound for the quantization rate is given by the solution of the following optimal allocation problem:

e N,r (X, L r T ) ≤ C X,T,r,ρ min k≥1 ν k N k-1 , k≥0 N k ≤ N, N 0 ≥ • • • ≥ N k ≥ • • • ≥ 1 (2.10) = C X,T,r,ρ min m k=1 ν k N k-1 + k≥m+1 ν k , m ≥ 1, 0≤k≤m-1 N k ≤ N, N 0 ≥ • • • ≥ N m-1 ≥1 .
The rest of the proof follows the approach developed in [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF] [Section 4.1, especially Lemma 4.2, Theorem 4.6(i)-(iii) and its proof] and [START_REF] Luschgy | Sharp asymptotics of the functional quantization problem for Gaussian processes[END_REF]. However, one must be be aware that we have had to modify some notation.

Proposition 1. Assume ν k = Φ(1/k), k ≥ 1, where Φ(x) = xϕ(x), ϕ : (0, +∞) is a nondecreasing, regularly varying function at 0 with index b ≥ 0 with 1 0 ϕ(ξ) dξ ξ < +∞ when b = 0. Then: (i) lim k ν k /ν k+1 = 1; (ii) ( n k=1 ν k ) 1/n ∼ e b+1 ν n ; (iii) ∞ k=n+1 ν k + nν k ∼ cψ(1/n), where c = 1 + 1/b if b > 0; c = 1 if b = 0; ψ(x) = ϕ(x) if b > 0; ψ(x) := x 0 ϕ(ξ) dξ ξ if b = 0.
(See [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF] for a proof.)

Proof of Theorem 1 (Continued). Set m = m * (N ) = max m ≥ 1 : N 1/m ν m m j=1 ν j -1/m ≥ 1
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and

N k-1 = N k-1 (N ) := N 1/m ν k m j=1 ν j -1/m ≥ 1, k = 1, . . . , m. It follows from Proposition 1(ii) that m = m * (N ) ∼ log N b + 1 as N → ∞. Then m k=1 ν k N k-1 ≤ max k≥1 (1 + 1/N k-1 )mN -1/m m j=1 ν j 1/m ≤ 2mN -1/m m j=1 ν j 1/m ≤ 2mν m .
Consequently, this time using (iii) in Proposition 1,

m k=1 ν k N k-1 + k≥m+1 ν k ≤ 2 mν m + k≥m+1 ν k = O(ψ(1/ log N )) so that |X -X| L p T r = O(ψ(1/ log N )).
Case 2 (ρ ≤ 1). Here, we rely on the pseudo-triangular inequality

|f + g| r L r T ≤ |f | r L r T + |g| r L r T , which follows from the elementary inequality (u + v) r ≤ u r + v r : |X -X| r L r T ≤ T 1-r/2 |ξ 0 -ξ N 0 0 | r + n≥0 2 n -1 k=0 (ξ 2 n +k -ξ N 2 n +k 2 n +k )e 2 n +k r L r T = T 1-r/2 |ξ 0 -ξ N 0 0 | r + T 1-r/2 n≥0 2 n(r/2-1) 2 n -1 k=0 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r so that |X -X| L r T r r = |X -X| r L r T 1 ≤ T 1-r/2 |ξ 0 -ξ N 0 0 | r 1 + T 1-r/2 n≥0 2 n(r/2-1) 2 n -1 k=0 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1 ≤ T 1-r/2 ξ 0 -ξ N 0 0 r r + T 1-r/2 n≥0 2 n(r/2-1) 2 n max 0≤k≤2 n -1 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1 (2.11) = T 1-r/2 ξ 0 -ξ N 0 0 r r + T 1-r/2 n≥0 2 nr/2 max 0≤k≤2 n -1 |ξ 2 n +k -ξ N 2 n +k 2 n +k | r 1 = T 1-r/2 ξ 0 -ξ N 0 0 r r + T 1-r/2 n≥0 2 nr/2 max 0≤k≤2 n -1 ξ 2 n +k -ξ N 2 n +k 2 n +k r r .
This inequality replaces (2.7). We then note that

E|ξ 2 n +k | ρ ≤ 2 (n/2)ρ T -ρ/2 (2 -(n+1) T ϕ(T /2 n+1 )) ρ = C X,T,r,ρ 2 -(n/2)ρ (ϕ(T /2 n+1 )) ρ so that |X -X| L r T r r ≤ C X,T,r,ρ 1 N r 0 + n≥0 ϕ(T 2 -(n+1) ) r N r 2 n+1
.

We then set ϕ(u) = (ϕ(u)) r , N k = N r k and N := N r . We proceed for |X -X| L r T r r with these "tilded" parameters as for |X -X| L r T r in the case ρ > 1.

Remarks. Concerning the case p > r. When p ≥ ρ > r, the (L r (P), L p T )quantization problem remains consistent. However, there is a price to be paid for considering a p exponent greater than ρ. Thus, if ϕ in (L (ρ,ϕ) ) has regular variations with exponents b > 0 at 0 and if b + 1 p -1 r > 0, then the same approach yields the rate e N,r (X, L p T ) ≤ C X,r,δ,T,p ϕ(1/ log N )(log N ) 1/r-1/p . We do not know whether it is due to our approach or if it is the best possible universal rate.

Concerning lower bounds. In several situations, when the assumption (L ρ,ϕ ) is optimal in terms of mean regularity of a process, the upper bound for the functional quantization rate turns out to be the true rate. We have no general result in that direction so far since most lower bound results rely on a different approach, namely the small deviation theory. Thus, in [START_REF] Graf | Functional quantization and small ball probabilities for Gaussian processes[END_REF], a connection is established between (functional) quantization and small deviation for Gaussian processes. In particular, this approach provides a method to derive a lower bound for the (L r (P), L p T )-quantization rate from some upper bound for the small ball problem. A careful reading of the paper (see the proof of Theorem 1.2 in [START_REF] Graf | Functional quantization and small ball probabilities for Gaussian processes[END_REF]) shows that this small deviation lower bound holds for any unimodal (w.r.t. 0) nonzero process. To be precise, let p∈ (0, ∞) and assume that P X is L p T -unimodal in the following sense: there exists a real ε 0 > 0 such that

∀x∈ L p T , ∀ ε ∈ (0, ε 0 ] P(|X -x| L p T ≤ ε) ≤ P(|X| L p T ≤ ε).
(For centered Gaussian processes, this follows for p ≥ 1 from Anderson's inequality.) If

G(-log(P(|X| L p T ≤ ε))) = Ω(1/ε) as ε → 0 for some increasing unbounded function G : (0, ∞) → (0, ∞), then ∀r∈ (0, ∞), ∀c > 1 e N,r (X, L p T ) = Ω 1 G(log(cN ))
. (2.12)

Applications and examples.

In this section, we give some examples which illustrate that the upper bound derived from the mean pathwise regularity may be optimal or not.

Application to Itô processes and d-dimensional diffusion processes.

Let W denote an R d -valued standard Brownian motion defined on a probability space (Ω, A, P) and let (F W t ) t∈[0,T ] denote its natural filtration (completed with all the P-negligible sets). Let X be a 1-dimensional Itô process defined by

dX t = G t dt + H t • dW t , X 0 = x 0 ∈ R, where (G t ) t∈[0,T ] is a real-valued process and (H t ) t∈[0,T ] is an R d -valued process, both assumed (F W t ) t∈[0,T ] -progressively measurable. Assume that there exists a real number ρ ≥ 2 such that sup t∈[0,T ] E|G t | ρ + sup t∈[0,T ] E|H t | ρ < +∞, (3.1)
where | • | denotes any norm on R d . Then (see, e.g., [4]) the ϕ-Lipschitz

assumption (L ϕ,ρ )(i) [i.e., (2.3)(i)] is satisfied with ϕ(u) = cu 1/2 . It follows from Theorem 1 that ∀ r, p∈ (0, ρ) e N,r (X, L p T ) = O((log N ) -1/2 ).
Let X = (X 1 , . . . , X d ) be an R d -valued diffusion process defined by

dX t = b(t, X t ) dt + σ(t, X t ) dW t , X 0 = x 0 ∈ R d , where b : [0, T ] × R d → R d and σ : [0, T ] × R d → M(d × q, R) are Borel func- tions satisfying ∀ t ∈ [0, T ], ∀x ∈ R d |b(t, x)| + σ(t, x) ≤ C(1 + |x|)
and W is an R q -valued standard Brownian motion. 

f := 1≤i≤d f i u i : [0, T ] → R d , |f | L p R d ([0,T ],dt) ≤ d i=1 |f i | L p T |u i |. Now, we can quantize each Itô process (X i t ) t∈[0,T ] , i = 1, . . . , d, using an (L r , L p T )-optimal quantizer α (i) of size [ d √ N ]. It is clear that the resulting product quantizer d i=1 α (i) of size [ d √ N ] d ≤ N induces an (L r , L p R d ([0, T ], dt))- quantization error O((log N ) -1/2
) (see, e.g., [START_REF] Luschgy | Functional quantization of a class of Brownian diffusions: A constructive approach[END_REF]). Combining these obvious remarks finally yields

∀ r, p > 0 e N,r (X, L p R d ([0, T ], dt)) = O((log N ) -1/2
). In the "smooth" case H ≡ 0, the regularity assumption (L ϕ,ρ ) is satisfied with ϕ(u) = cu. We obtain the universal upper bound ∀ r, p∈ (0, ρ) e N,r (X, L p T ) = O((log N ) -1 ). Both rates are optimal as universal rates for p ≥ 1, as can be seen from

X = W and X = • 0 G s ds with G t = t 0 (t -s) β-1/2 dW s (β > 0 and d = 1
), respectively (see [START_REF] Graf | Functional quantization and small ball probabilities for Gaussian processes[END_REF]).

As far as quantization rates are concerned, this extends to general ddimensional diffusions a result obtained in [START_REF] Luschgy | Functional quantization of a class of Brownian diffusions: A constructive approach[END_REF] by stochastic calculus techniques for a more restricted class of Brownian diffusions (which includes 1-dimensional ones). This also extends (the upper bound part of the) the result obtained in [START_REF] Dereich | The coding complexity of diffusion processes under L p ([0, 1])norm distortion[END_REF] for another class of (essentially 1-dimensional) Brownian diffusions. For the class investigated in [START_REF] Luschgy | Functional quantization of a class of Brownian diffusions: A constructive approach[END_REF], it is shown that under an ellipticity assumption on σ, this rate is optimal in the case r, p ≥ 1. In [START_REF] Dereich | The coding complexity of diffusion processes under L p ([0, 1])norm distortion[END_REF], still with a (mild) ellipticity assumption, the rate is sharp for p ≥ 1. This leads us to conjecture that this rate is optimal for not too degenerate Brownian diffusions.

3.2. Application to fractional Brownian motion. The fractional Brownian motion W H with Hurst constant H ∈ (0, 1] is a Gaussian process satisfying, for every ρ > 0,

E|W H t -W H s | ρ = C H,p |t -s| ρH and (W H s ) 0≤s≤t L ∼ t H (W H s/t ) 0≤s≤t .
So, using Theorem 1, we obtain e N,r (W H , L p T ) = O((log N ) -H ) as an (L r (P),

| • | L p T
)-quantization rate for every r, p > 0. This rate is known to be optimal for p ≥ 1. In fact, a sharp rate is established (see [START_REF] Luschgy | Sharp asymptotics of the functional quantization problem for Gaussian processes[END_REF], when p = r = 2, or [START_REF] Dereich | High resolution quantization and entropy coding for fractional Brownian motions[END_REF]) [i.e., the computation of the exact value of lim N N (log N ) H e N,r (W H , L p T )].

3.3. Stationary processes. Let X be a centered weakly (square-integrable) stationary process. Then

E|X t -X s | 2 = E|X t-s -X 0 | 2 = 2 Var(X 0 )(1 -c(|t -s|)),
where c(t) denotes the correlation between X t and X 0 . Hence, if

c(u) = 1 -κu 2a + o(u 2a )
as u → 0, then the L r (P)-rate for L p T -quantization 0 < p, r < 2, will be O((log(N )) -a ). If, furthermore, X is a Gaussian process (like the Ornstein-Uhlenbeck process with a = 1/2), then this O((log N ) -a ) rate holds for any r, p > 0 since, for every ρ∈ N * ,

E|X t -X s | ρ = E|X t-s -X 0 | ρ = C ρ (Var(X 0 )(1 -c(|t -s|))) ρ/2 .
3.4. Self-similar processes with stationary increments. Let X = (X t ) t∈[0,T ] be an H-self-similar process with stationary increments [H ∈ (0, ∞)]. Assume X 1 ∈ L ρ (P) for some ρ ≥ 1. Then

E|X t -X s | ρ = C ρ |t -s| ρH for every s, t ∈ [0, T ]. Since X is stochastically continuous, it has a bimea- surable modification. Theorem 1 then gives ∀ r, p∈ (0, ρ) e N,r (X, L p T ) = O((log N ) -H ). If, furthermore, X is α-stable, α ∈ (1, 2), then X 1 ∈ L ρ (P) for every ρ ∈ [1, α) so that ∀ r, p∈ (0, α) e N,r (X, L p T ) = O((log N ) -H
). This class of examples comprises, for example, the linear H-fractional αmotions with α ∈ (1, 2), H ∈ (0, 1) and the log-fractional α-stable motions with α∈ [START_REF] Bertoin | Subordinators: Examples and applications[END_REF][START_REF] Bertoin | Lévy Processes[END_REF], where H = 1/α (see [START_REF] Embrechts | Self-Similar Processes[END_REF][START_REF] Samorodnitsky | Stable non-Gaussian Random Processes[END_REF]).

3.5. Lévy processes: a first approach. A (càdlàg) Lévy process X = (X t ) t∈R + -or Process with Stationary Independent Increments (PSII )-is characterized by its so-called local characteristics appearing in the Lévy-Khintchine formula (for an introduction to Lévy processes, we refer to [START_REF] Bertoin | Lévy Processes[END_REF][START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF][START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]). These characteristics depend on the way the "big" jumps are truncated. We will adopt, in the following, the convention that the truncation occurs at size 1. So that, for every t∈ R + , E(e iuXt ) = e -tψ (u) where ψ(u) = -iua

+ 1 2 σ 2 u 2 - R\{0} (e iux -1 -iux1 {|x|≤1} )ν(dx),
where a, σ ∈ R and ν is a nonnegative measure on R \ {0} such that ν(x |x| ρ ν(dx) < +∞.

We will extensively use the following Compensation Formula (see, e.g., [2] page 7):

E s≥0 F (s, X s-, ∆X s )1 {∆Xs =0} = E R + ds R\{0} F (s, X s-, ξ)ν(dξ), (3.2) 
where F : R + × R 2 → R + is a Borel function. As concerns assumption (2.3), note that the very definition of a Lévy process implies that

E|X t -X s | ρ = E|X t-s | ρ and E sup s∈[t,t+h] |X t -X s | ρ = E sup s∈[0,h] |X s | ρ ,
so we may focus on the distribution of X t and X * t := sup s∈[0,t] |X s |. Finally, note that it follows from the usual symmetry principle (see [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]) that for any Lévy process, P(

X * t > u + v) ≤ P(|X t | > u)/P(X * t ≤ v/2
) so that E|X t | r and E|X * t | r are simultaneously finite or infinite when r > 0. The following result is established in [START_REF] Millar | Path behaviour of processes with stationary independent increments[END_REF].

Lemma 2 (Millar's Lemma). Assume σ = 0. If there exists a real number ρ ∈ (0, 2] such that R\{0} |x| ρ ν(dx) < +∞, then there exist some real constants a ρ ∈ R and C ρ > 0 such that

∀ t≥ 0 E sup s∈[0,t] |X s -a ρ s| ρ ≤ C ρ t. (3.3) Furthermore, one may set a ρ = 0 if ρ ≥ 1.
Hence, it follows as a consequence of Theorem 1 that ∀ r, p∈ (0, ρ) e N,r (X, L p T ) = O((log N ) -1/ρ ). (3.4) This follows from the following straightforward remark:

if β ⊂ L p T is an N -quantizer and ξ ∈ L p T [here ξ(t) = a ρ t], then |X -X β | L p T r = |(X +ξ)-(X + ξ) ξ+β | L p T r with ξ +β = {ξ +f, f ∈ β}.
However, rate (3.4) may be suboptimal, as illustrated below with α-stable processes and Poisson processes. In Section 4, we establish two improvements of this rate under some natural hypotheses (see Theorem 2 for a broad class of Lévy processes with infinite Lévy measure and Proposition 3 for compound Poisson processes).

The α-stable processes. The (strictly) α-stable processes are families of Lévy processes indexed by α ∈ (0, 2) satisfying a self-similarity property, namely

∀ t∈ R + X t L ∼ t 1/α X 1 and sup 0≤s≤t |X s | L ∼ t 1/α sup 0≤s≤1 |X s |. Furthermore, sup r : E sup 0≤s≤1 |X s | r < +∞ = α and E|X 1 | α = +∞.
Consequently, it follows from Theorem 1, applied with ϕ(u) := u 1/α , that

∀ p, r∈ (0, α) e N,r (X, L p T ) = O 1 (log N ) 1/α . (3.5)
In the symmetric case, an α-stable process X being subordinated to a Brownian motion (X t = W At with A a one-sided α/2-stable process) has a unimodal distribution by the Anderson inequality (see Section 5.2 below, entirely devoted to subordinated Lévy processes). Substituting into (2.12) the small deviation estimates established in [START_REF] Linde | Evaluating the small deviation probabilities for subordinated Lévy processes[END_REF] shows the rate optimality of our upper bound for e N,r when p ≥ 1, that is,

∀ r∈ (0, α), ∀ p∈ [1, α) e N,r (X, L p T ) ≈ (log N ) -1/α . (3.6)
The Γ-processes. These are subordinators (nondecreasing Lévy processes) whose distribution P Xt at time t is a γ(α, t)-distribution,

P Xt (dx) = α t Γ(t) 1 (0,∞) (x)x t-1 e -αx dx.
So, easy computations show that for every ρ > 0,

E|X t | ρ = Γ(t + ρ) α ρ Γ(t + 1) t ∼ Γ(ρ) α ρ Γ(1) t as t → 0.
Consequently, it follows from Theorem 1 that

∀ p∈ (0, +∞), ∀ r ∈ (0, p] e N,r (X, L p T ) = O 1 (log(N )) 1/p-ε ∀ ε > 0.
Compound Poisson processes from the mean regularity viewpoint. One considers a compound Poisson process

X t = Kt k=1 U k ,
where K = (K t ) t∈[0,T ] denotes a standard Poisson process with intensity λ = 1 defined on a probability space (Ω, A, P) and (U k ) k≥1 an i.i.d. sequence of random variables defined on the same probability space, with U 1 ∈ L ρ (P) for some ρ > 0. Then, standard computations show that

E sup 0≤s≤t Ks k=1 U k ρ ≤ E Kt k=1 |U k | ρ = t U 1 ρ ρ if 0 < ρ ≤ 1, (3.7) E Kt k=1 U k ρ ≤ t U 1 ρ ρ × e -t k≥1 t k-1 k ρ k! if ρ > 1. (3.8)
Consequently, assumption (2.3) is fulfilled with ϕ(u) = cu b , where b = 1/ρ and c is a positive real constant. Theorem 2 then yields ∀ r, p∈ (0, ρ) e N,r (X, L p T ) = O((log N ) -1/ρ ). Note that when ρ ≤ 2, this is a special case of (3.3). These rates are very far from optimality, as will be seen further on (in Section 4, some faster rates are established by a completely different approach based on the almost finitedimensional feature of the paths of such elementary jump processes). This will emphasize the fact that the mean regularity of t → X t does not always control the quantization rate.

4. A quantization rate for general Lévy processes without Brownian component. The aim of this section is to provide a general result for Lévy processes without Brownian component, with special attention being paid to compound Poisson processes which appear as a critical case of the main theorem. Before stating the main results, we need some further notation related to Lévy processes. Set

θ := inf θ > 0 : {|x|≤1} |x| θ ν(dx) < +∞ ∈ [0, 2], (4.1)
r * := sup r > 0 :

{|x|>1} |x| r ν(dx) < +∞ ≤ +∞. (4.2)
The exponent θ is known as the Blumenthal-Getoor index of X [and is often denoted β(X) in the literature]. We define on (0, ∞) the tail function of the Lévy measure ν : u → ν(u) := ν([-u, u] c ). Finally, we set, for every θ > 0, ℓ(t) := tν(t 1/θ ) and, for every ρ > 0,

Λ ρ (t) := (ℓ(t)) 1/2 + (ℓ(t)) 1/ρ + (ℓ(t)) 2/ρ 1 θ∈(1,2]∪IV (1) ,
where IV (1) = ∅ if θ = 1 and ν(|x|) < +∞, and IV (1) = {1} if θ = 1 and ν(|x|) = +∞.

Theorem 2. Let X = (X t ) t∈[0,T ] be a Lévy process with Lévy measure ν and without Brownian component. Assume r * , θ > 0.

(a) Assume θ ∈ (0, 2] \ {1}. If {|x|≤1} |x| θ ν(dx) < +∞ (i.e., θ holds as a minimum) or if the Lévy measure satisfies Remarks. The conclusion in (a) remains valid for any θ ∈ (0, 2] satisfying {|x|≤1} |x| θ ν(dx) < +∞ or (4.3), not only for the Blumenthal-Getoor index. In particular, with θ =2 we obtain ∀ r, p∈ (0, 2 ∧ r * ) e N,r (X, L p T ) = O((log N ) -1/2 ). When θ ∈ {1, 2}, some rates can also be derived [even when ν is not symmetric and ν(|x|) = +∞]. Thus, in item (a), if θ = 1, we can show, by adapting the proof of case θ∈ (1, 2) in Proposition 2 below, that e N,r (X,

∃ c∈ (0, 1], ∃ C > 0 1 {0<|x|≤c} ν(dx) ≤ C |x| θ+1 1 {0<|x|≤c} dx, (4.3) then ∀ r, p∈ (0, θ ∧ r * ) e N,r (X, L p T ) = O((log N ) -1/θ ). (4.
L p T ) = O log log N log N .
In most natural settings, there is a dominating term in the definition of the function Λ ρ . Thus, in (4.5), we may set

Λ ρ (t) =        (ℓ(t)) 1/ρ 1 {θ∈(0,1]\IV (1)} + (ℓ(t)) 2/ρ 1 {θ∈(1,2]∪IV (1)} , when lim t→0 ℓ(t) = +∞, (ℓ(t)) 1/2 , when lim t→0 ℓ(t) = 0.
Note that this theorem provides no rate when θ = 0, which is the case of an important class of Lévy processes including compound Poisson processes. In fact, for these processes, the quantization rate is not ruled by the mean regularity of their paths, as emphasized in Section 4.1.

The proof of this theorem relies on Theorem 1, that is, on the mean pathwise regularity of X, hence the critical value θ for ρ cannot be overcome by such an approach since assumption (L ϕ,ρ ) for ρ > θ would imply that X has a pathwise continuous modification by the Kolmogorov criterion.

Examples. Note that for α-stable processes, r * = θ = α, ν satisfies (4.3) and lim u→0 ℓ(u) ∈ (0, ∞) so that both rates obtained from (4.4) and (4.5) coincide with that obtained in Section 3.5, that is, O((log N ) -1/α ). This rate is most likely optimal.

Let ν 1 a,θ (dx) := κ|x| -θ-1 (-log |x|) -a 1 (0,c] (|x|) dx, with 0 < c < 1, κ > 0, a > 0. If θ ∈ (0, 2), then ℓ(u) ∼ θ a-1 (-log u) -a as u → 0. If a Lévy process X has ν 1 a,θ as a (symmetric) Lévy measure, then r * = +∞ and ∀ r, p∈ (0, θ) e N,r (X, L p T ) = O((log N ) -1/θ (log log N ) -a/2 ). Such a rate improves the one provided by (4.4) Let ν 2 a,θ (dx) = κ|x| -θ-1 (-log |x|) a 1 (0,c] (|x|) dx, κ, a > 0, 0 < c < 1, θ ∈ (0, 2). Then ℓ(u) ∼ θ -a-1 (-log u) a as u → 0. Note that ν 2 a,θ does not satisfy (4.3). If a Lévy process X has ν 2 a,θ as a (symmetric) Lévy measure, then r * = +∞ and

∀ r, p ∈ (0, θ) e N,r (X, L p T ) =        O((log N ) -1/θ (log log N ) a/(θ-η) ), η ∈ (0, θ), if θ < 1, O((log N ) -1/θ (log log N ) 2a/(θ-η) ), η ∈ (0, θ), if θ ∈ [1, 2).
Hyperbolic Lévy motions have been applied to option pricing in finance (see [START_REF] Eberlein | Hyperbolic distributions in finance[END_REF]). These processes are Lévy processes whose distribution P X 1 at time 1 is a symmetric (centered) hyperbolic distribution

P X 1 = Ce -δ √ 1+(x/γ) 2 dx, γ, δ > 0.
Hyperbolic Lévy processes are martingales with no Brownian component, satisfying r * = +∞. Their symmetric Lévy measure has a Lebesgue density that behaves like Cx -2 as x → 0 [so that (4.3) is satisfied with θ = 1]. Hence, one obtains, for every r, p∈ (0, 1), e N,r (X, L p T ) = O((log N ) -1 ) and, for every r ≥ 1 and every p ∈ (0, r], e N,r (X,

L p T ) = O((log N ) -1/r+η ), η > 0.
The proof of this theorem is divided into several steps and is deferred to Section 4.3. The reason is that it relies on the decomposition of X as the sum of a "bounded" jump and a "big" jump Lévy process. These are treated successively in the following two sections.

4.1.

Lévy processes with bounded jumps. In this section, we consider a Lévy process X without Brownian component (σ = 0), with jumps bounded by a real constant c > 0. In terms of the Lévy measure ν of X, this means that

ν([-c, c] c ) = 0. (4.7)
Then, for every ρ > 0 and every t ≥ 0, X t ∈ L ρ (P), that is, r * = +∞. In Proposition 2 below, we establish Theorem 2 in that setting. Proof. The proof of this proposition is decomposed into several steps. We consider θ, as defined in Theorem 1. Note that, in the present setting, θ = inf{θ > 0 : |x| θ ν(dx) < +∞} and that |x| θ ν(dx) < +∞ for every θ > θ. The starting point is to separate the "small" and the "big" jumps of X in a nonhomogeneous way with respect to the function s → s 1/θ . We will successively inspect the cases θ ∈ (0, 1) (or when θ = 1 holds as a minimum) and θ∈ [START_REF] Bertoin | Subordinators: Examples and applications[END_REF][START_REF] Bertoin | Lévy Processes[END_REF].

Step 1 (Decomposition of X). When θ∈ (0, 1) or θ = 1 holds as a minimum, then

E 0<s≤T ∆X s ≤ E 0<s≤T |∆X s | = T |x|ν(dx) < +∞.
Consequently, X P-a.s. has finite variation and we can decompose X as

X t = ξ(t) + 0<s≤t ∆X s , (4.8)
where ξ(t) = at is a linear function.

Assume now that θ ∈ [START_REF] Bertoin | Subordinators: Examples and applications[END_REF][START_REF] Bertoin | Lévy Processes[END_REF]. We may decompose X as follows:

X t = ξ(t) + X (θ) t + M (θ) t with ξ(t) := t E(X 1 ), (4.9) X (θ) t := 0<s≤t ∆X s 1 {|∆Xs|>s 1/θ } - t 0 ds {s 1/θ <|x|≤c} xν(dx).
Note that X (θ) has finite variations on [0, T ] since

t 0 ds {s 1/θ <|x|≤c} |x|ν(dx) = {|x|≤c} |x|(|x| θ ∧ t)ν(dx) ≤ {|x|≤c} |x| 1+θ ν(dx) < +∞.
Both X (θ) and M (θ) are martingales with (nonhomogeneous) independent increments. Their increasing predictable "bracket" processes are given by

X (θ) t = t 0 ds {|x|>s 1/θ } x 2 ν(dx)
and

M (θ) t = t 0 ds {|x|≤s 1/θ }
x 2 ν(dx).

From now on, we may consider the (supremum process of the) Lévy process

X t := X t -ξ(t), (4.10)
where ξ is the linear function defined by (4.8) and (4.9), respectively. Since the linear function ξ lies in L p T , it does not affect the quantization rate, which is invariant by translation.

Step 2 [Increment estimates in L ρ (P)]. In this step, we evaluate sup 0≤s≤t | X s | in L ρ (P), ρ∈ (0, 2]. Throughout this step, the c comes from (4.7).

Lemma 3. (a) Assume that θ ∈ (0, 1) or that θ = 1 holds as a minimum. For every ρ∈ (0, 1] and t ∈ [0, T ],

E sup 0≤s≤t | X s | ρ ≤ C ρ t 0 {|x|≤s 1/θ } x 2 ν(dx) ρ/2 + t 0 ds {s 1/θ <|x|≤c} |x| ρ ν(dx) (4.11) + sup 0≤s≤t s 0 du {|x|≤u 1/θ } xν(dx) ρ . (b) Assume that θ ∈ [1, 2].
For every ρ∈ (0, 2] and every t∈ [0, T ],

E sup 0≤s≤t | X s | ρ ≤ C ρ t 0 ds {|x|≤s 1/θ } x 2 ν(dx) ρ/2 + t 0 ds {s 1/θ <|x|≤c} |x| ρ ν(dx) (4.12) + t 0 ds {s 1/θ <|x|≤c} |x| ρ/2 ν(dx) 2 + sup 0≤s≤t s 0 du {u 1/θ <|x|≤c} xν(dx) ρ .
Proof. (a) X is a pure jump process (with finite variations). Using ρ∈ (0, 1] and Doob's inequality, we obtain

E sup 0≤s≤t | X s | ρ ≤ E sup 0≤s≤t 0≤u≤s ∆X u 1 {|∆Xu|≤u 1/θ } ρ + E sup 0≤s≤t 0≤u≤s ∆X u 1 {|∆Xu|>u 1/θ } ρ ≤ E sup 0≤s≤t 0≤u≤s ∆X u 1 {|∆Xu|≤u 1/θ } 2 ρ/2 + E 0<s≤t |∆X s | ρ 1 {|∆Xs|>s 1/θ } ≤ C ρ E sup 0≤s≤t 0≤u≤s ∆X u 1 {|∆Xu|≤u 1/θ } - s 0 du {|x|≤u 1/θ } xν(dx) 2 ρ/2 + sup 0≤s≤t s 0 du {|x|≤u 1/θ } xν(dx) ρ + t 0 ds {s 1/θ <|x|≤c} |x| ρ ν(dx) ≤ C ρ t 0 ds {|x|≤s 1/θ } x 2 ν(dx) ρ/2 + sup 0≤s≤t s 0 du {|x|≤u 1/θ } xν(dx) ρ + t 0 ds {s 1/θ <|x|≤c} |x| ρ ν(dx) .
(b) It follows from Doob's inequality (and 0 < ρ/2 ≤ 1) that

E sup 0≤s≤t |M (θ) s | ρ ≤ E sup 0≤s≤t (M (θ) s ) 2 ρ/2 ≤ 4 t 0 ds {|x|≤s 1/θ } x 2 ν(dx) ρ/2
.

On the other hand, since ρ∈ (0, 2], we have

sup 0≤s≤t |X (θ) s | ρ ≤ C ρ 0<s≤t |∆X s | ρ/2 1 {|∆Xs|>s 1/θ } 2 + sup 0≤s≤t s 0 du {u 1/θ <|x|≤c} xν(dx) ρ ≤ C ρ 0<s≤t |∆X s | ρ/2 1 {|∆Xs|>s 1/θ } - t 0 ds {|x|>s 1/θ } |x| ρ/2 ν(dx) 2 + t 0 ds {|x|>s 1 θ } |x| ρ/2 ν(dx) 2 + sup 0<s≤t s 0 du {u 1/θ <|x|≤c} xν(dx) ρ .
Hence, again using Doob's inequality, 

E sup 0≤s≤t |X (θ) s | ρ
∀ ρ ∈ (0, θ), ∀ t ∈ [0, T ] E sup 0≤s≤t | X s | ρ ≤ C ρ t ρ/θ . (4.13) (b)
Assume that θ∈ (0, 2) \ {1} and that the function u → ν(u) has regular variation with index -b at 0. Then b = θ and, for every ρ∈ (0, θ), there exists Proof. (a) We need only to investigate all the integrals appearing in the right-hand side of inequalities (4.11) and (4.12) in Lemma 3. Let ρ∈ (0, θ)

T ρ ∈ (0, T ] such that ∀ t∈ [0, T ρ ] E sup 0≤s≤t | X s | ρ ≤ C ρ (t 1/θ Λ ρ (t)) ρ . (4.
and t∈ [0, c θ ∧ T ]. Then, if θ∈ (0, 2), t 0 ds {0<|x|≤s 1/θ } x 2 ν(dx) ≤ C t 0 ds {0<|x|≤s 1/θ } |x| 1-θ dx ≤ C t 0 s 2/θ-1 ds = Ct 2/θ ,
where the real constant C comes from (4.3). If θ = 2, then

t 0 ds {0<|x|≤s 1/θ } x 2 ν(dx) ≤ [-c,c] x 2 ν(dx)t = [-c,c] x 2 ν(dx)t 2/θ .
Then, for every t∈ [0, c θ ∧ T ],

t 0 ds {s 1/θ <|x|≤c} |x| ρ ν(dx) ≤ C t 0 ds {s 1/θ <|x|≤c} |x| ρ-θ-1 dx ≤ C/θ -ρ t 0 s ρ/θ-1 ds = Ct ρ/θ . When θ ∈ (0, 1), we have sup 0≤s≤t s 0 du {|x|≤u 1/θ } xν(dx) ≤ t 0 ds {|x|≤s 1/θ } |x|ν(dx) ≤ C t 0 s 1/θ-1 1 -θ ds = C 1 -θ t 1/θ .
When θ = 1 and |x|ν(dx) < +∞, this term is trivially upper bounded by t |x|ν(dx). It is 0 when ν is symmetric. Similarly, when θ ∈ (1, 2], for every t∈ [0, c θ ∧ T ], we have

sup 0≤s≤t s 0 du {u 1/θ <|x|≤c} xν(dx) ≤ t 0 ds {|x|>s 1/θ } |x|ν(dx) ≤ C t 0 s 1/θ-1 θ -1 ds = C θ -1 t 1/θ and t 0 ds {s 1/θ <|x|≤c} |x| ρ/2 ν(dx) ≤ C t 0 ds {s 1/θ <|x|≤c} |x| ρ/2-θ-1 dx ≤ C θ -ρ/2 t 0 s ρ/(2θ)-1 ds = Ct ρ/(2θ) .
It can be derived from (4.11) and (4.12) that there exists a positive real constant C ρ such that

∀ t ∈ [0, c θ ∧ T ] E sup 0≤s≤t | X s | ρ ≤ C ρ t ρ/θ .
This inequality holds for every t ∈ [0, T ] simply by adjusting the constant C ρ . (b) The fact that b = θ was first established in [START_REF] Blumenthal | Sample functions of stochastic processes with stationary independent increments[END_REF]. We provide below a short proof, leading to our main result, for the reader's convenience. It follows from Theorem 1.4.1 in [START_REF] Bingham | Regular Variation[END_REF] that ν(u) = u -b ℓ(u) where ℓ is a (nonnegative) slowly varying function. Consequently, one clearly has that, for every ρ > 0 and every u > 0,

u ρ-b ℓ(u) ≤ {|x|>u} |x| ρ ν(dx).
Now, the left-hand side of the above inequality goes to infinity as u → 0 provided ρ < b since ℓ has slow variations (see Proposition 1.3.6 in [START_REF] Bingham | Regular Variation[END_REF]). Consequently, ρ ≤ θ. Letting θ go to b implies that b ≤ θ.

We will make use of the following easy identity which follows from the very definition of ν: for every nonnegative Borel function f :

R + → R, R f (|x|)ν(dx) = - R + f (x) dν(x). (4.15) 
In particular, for every x∈ (0, c] and every a > 0,

{|u|≥x} |u| a ν(du) = - c x u a dν(u).
Assume that b < θ. It then follows from Theorem 1.6.4 in [START_REF] Bingham | Regular Variation[END_REF] that for every a∈ (b, θ),

c x u a dν(u) ∼ b b -a x a ν(x) = b b -a x a-b ℓ(x) → 0 as x → 0,
since ℓ is slowly varying. This contradicts |u| a ν(du) = +∞. Consequently, b = θ. Now, Theorem 1.6.5 in [START_REF] Bingham | Regular Variation[END_REF] implies that for any a > θ

{|u|≤x} |u| a ν(du) = - (0,x] u a dν(u) ∼ θ a -θ x a ν(x) as x → 0.
Since θ = 2, this yields

{|x|≤s 1/θ } x 2 ν(dx) ∼ θ 2 -θ s 2/θ ν(s 1/θ ) as s → 0,
which, in turn, implies that

t 0 ds {|x|≤s 1/θ } x 2 ν(dx) ∼ θ 2 -θ t 0 s 2/θ ν(s 1/θ ) ds as t → 0.
The function s → ν(s 1/θ ) has regular variation (at 0) with index -1, hence Theorem 1.6.1 in [START_REF] Bingham | Regular Variation[END_REF] implies that

t 0 ds {|x|≤s 1/θ } x 2 ν(dx) ∼ C θ t 2/θ+1 ν(t 1/θ ) as t → 0.
Finally,

t 0 ds {|x|≤s 1/θ } x 2 ν(dx) ρ/2 ∼ C ρ,θ (t 1/θ (ℓ(t)) 1/2 ) ρ as t → 0. (4.16)
When θ ∈ (0, 1) and ρ∈ (0, θ), the same approach leads to

sup 0<s≤t s 0 du {|x|≤u 1/θ } xν(dx) ≤ t 0 ds {|x|≤s 1/θ } |x|ν(dx) ∼ C θ t 1/θ ℓ(t)
as t → 0.

It then follows from Theorem 1.6.4 in [START_REF] Bingham | Regular Variation[END_REF] that, for every ρ∈ (0, θ),

{s 1/θ ≤|x|≤c} |x| ρ ν(dx) = - c s 1/θ x ρ dν(x) ∼ θ θ -ρ s ρ/θ ν(s 1/θ ) as s → 0 so that t 0 {s 1/θ ≤|x|≤c} |x| ρ ν(dx) ∼ θ/θ -ρ t 0 s ρ/θ ν(s 1/θ ) ds ∼ C ρ,θ (t 1/θ (ℓ(t)) 1/ρ ) ρ as t → 0.
Similarly (by formally setting ρ = 1 in the former equation) we can shown that if θ ∈ (1, 2], then

sup 0<s≤t s 0 du {u 1/θ ≤|x|≤c} xν(dx) ≤ t 0 ds {s 1/θ ≤|x|≤c} |x|ν(dx) (4.17) ∼ C θ t 1/θ ℓ(t) as t → 0.
Finally, we similarly shown, for the last term in (4.12), that when ρ∈ (0, θ),

t 0 {s 1/θ ≤|x|≤c} |x| ρ/2 ν(dx) 2 ∼ C ρ,θ (t 1/θ (ℓ(t)) 2/ρ ) ρ as t → 0.
Substituting these estimates into (4.11) and (4.12) and noting that, by Young's inequality,

ℓ(t) ≤ C ρ ((ℓ(t)) 1/2 + (ℓ(t)) 1/ρ 1 {ρ≤1} + (ℓ(t)) 2/ρ 1 {1<ρ≤2} ),
we finally obtain that X satisfies the assumption (L ϕ,ρ ) with the announced function ϕ ρ .

(c) When ν is symmetric (and θ ∈ (1, 2]), for every s∈ [0, T ],

s 0 du {u 1/θ ≤|x|≤c} xν(dx) = 0
so that the condition θ = 1 induced by (4.17) is no longer necessary. Similarly, when θ∈ (0, 1],

s 0 du {|x|≤u 1/θ } xν(dx) = 0.
Step 3 (Higher moments and completion of the proof). Claims (a), when θ holds as a minimum, and (c), when r < 2, straightforwardly follow from Millar's inequality (3.3) by applying Theorem 1 to the function ϕ(u) = u 1/θ with ρ = θ for claim (a) and ϕ(u) = u 1/ρ with ρ∈ (r, 2] for claim (c).

Claim (a), when assumption (4.3) is fulfilled, follows from Lemma 4(a) and Theorem 1 applied with the function ϕ(u) = u 1/θ . Finally, claim (b) follows from Lemma 4(b) and Theorem 1.

Claim (d) follows from Lemma 4(c) and Theorem 1. At this stage, it remains to prove claim (c) when r ≥ 2. This follows (when r > 2) from the extension of Millar's upper bound established in the lemma below.

Lemma 5 (Second extended Millar's lemma). Let (X t ) t∈[0,T ] be a Lévy process without Brownian part such that ν([-c, c] c ) = 0. For every ρ ≥ 2, there exists a real constant C ρ,T > 0 such that

∀ t ∈ [0, T ] E sup 0≤s≤t |X s | ρ ≤ C ρ,T t.
Proof. We again consider X t = X tt EX 1 , which is a martingale Lévy process. Let k ρ := max{l : 2 l < ρ}. For every k = 1, . . . , k ρ , we define the martingales

N (k) t := 0<s≤t |∆X s | 2 k -t |x| 2 k ν(dx).
The key technique of the proof is to apply the BDG inequality in cascade. It follows from the BDG inequality that

E sup 0≤s≤t | X s | ρ ≤ C ρ E 0<s≤t (∆X s ) 2 ρ/2 ≤ C ρ E(N (1) t ) ρ/2 + t x 2 ν(dx) ρ/2
. Now, for every k∈ {1, . . . , k ρ -1}, still using the BDG inequality yields

E(N (k) t ) ρ/2 k ≤ C ρ,k E 0<s≤t |∆X s | 2 k+1 ρ/2 k+1 ≤ C ρ,k E(N (k+1) t ) ρ/2 k+1 + t |x| 2 k+1 ν(dx) ρ/2 k+1
. Finally, we obtain

E sup 0≤s≤t | X s | ρ ≤ C ρ kρ k=1 t |x| 2 k ν(dx) ρ/2 k + E 0<s≤t |∆X s | 2 kρ +1 ρ/2 kρ+1 ≤ C ρ kρ k=1 t |x| 2 k ν(dx) ρ/2 k + E 0<s≤t |∆X s | ρ = C ρ kρ k=1 t |x| 2 k ν(dx) ρ/2 k + t |x| ρ ν(dx)
since ρ/2 kρ+1 ≤ 1. The conclusion follows from the fact that t ρ/2 k = o(t).

Compound Poisson process.

In this section, we consider a compound Poisson process (X t ) t defined by

X t := n≥1 U n 1 {Sn≤λT } , t ≥ 0,
where

S n = Z 1 + • • • + Z n , (Z n ) n≥1 is an i.i.d
. sequence of Exp(1)-distributed random variables, (U n ) n≥1 is an i.i.d. sequence of random variables, independent of (Z n ) n≥1 with U 1 ∈ L ρ , ρ > 0 and λ > 0 is the the jump intensity.

For convenience, we also introduce the underlying standard Poisson process (K t ) t≥0 defined by

K t := n≥1 1 {Sn≤λT } , t ≥ 0,
so that (with the convention that ∅ = 0)

X t = Kt k=1 U k . (4.18)
Proposition 3. Let X be a compound Poisson process. Then, for every p, r∈ (0, r * ), p ≤ r,

∀ ε > 0 (4.19) e N,r (X, L p T ) = O exp - 1 r(p + 1 + ε) log(N ) log 2 (N ) .
Furthermore, when X is a standard Poisson process, we can replace p + 1 + ε by p + ε in (4.19).

Remarks. Note that (4.19) implies that ∀ a > 0 e N,r (X, L p T ) = o((log N ) -a ). In fact, the rate obtained in the above proposition holds provided X has the form (4.18), where (Z n ) is as above and (U n ) is L r (P)-bounded for every r < r * , independent of (Z n ) n≥1 .

Proof of Proposition 3. We divide the proof into two steps, one devoted to the standard Poisson process, the other to the general case. We will assume that r * > 1 throughout the proof so that, as was already emphasized in the proof of Theorem 1, we may assume without loss of generality that r, p∈ (0, r * )∩[1, +∞). The case r * ≤ 1 is left to the reader, but can be treated by replacing the "triangular" Minkowski inequality by the pseudo-triangular

inequalities |f + g| p L p T ≤ |f | p L p T + |g| p L p T and U + V r r ≤ U r r + V r r .
Step 1 (Standard case). One quantizes the standard Poisson K in a very natural way by setting

K t := n≥1 1 { Sn≤λt} , t ≥ 0, with S n := S n αn ,
where α n = α ′ n ∪ {λT }, α ′ n is an L r ′ -optimal (N n -1)-quantization of S tr n := S n 1 {Sn≤λT } and r ′ = r p . Furthermore, we assume that the sequence (N n ) is nonincreasing and satisfies n N n ≤ N (so that N n = 1 for large enough n). Then, for every p ≥ 1, it follows from the (extended) Minkowski inequality that Also, note that when

|K -K| L p T ≤ n≥1 |1 {Sn≤λ•} -1 { Sn≤λ•} | L p T . Now, |1 {Sn≤λ•} -1 { Sn≤λ•} | p L p T = T 0 |1 {Sn≤λt} -1 { Sn≤λt} | p dt = 1 λ |S n ∧ (λT ) -S n ∧ (λT )| = 1 λ |S n ∧ (λT ) -S n |.
N n = 1, S n = λT so that |S n ∧ (λT )-S n | = (λT -S n ) + .
Consequently, for every r ≥ 1,

|K -K| L p T r ≤ n≥1 |1 {Sn≤λ•} -1 { Sn≤λ•} | L p T r ≤ 1 λ 1/p n≥1 S n ∧ (λT ) -S n 1/p r ′ ≤ 1 λ 1/p n,Nn≥2 S tr n -S tr n αn 1/p r ′ + n,Nn=1 (λT -S n ) + 1/p r ′ ≤ 1 λ 1/p n,Nn≥2 S tr n -S tr n α ′ n 1/p r ′ + n,Nn=1 (λT -S n ) + 1/p r ′ .
The extended Pierce lemma (Lemma 1) yields that, for every n ≥ 1 such that N n ≥ 2 and for every δ > 0,

S tr n -S tr n α ′ n r ′ ≤ S tr n r ′ +δ/p C r,p,δ |N n -1| -1 ≤ 2 S n 1 {Sn≤λT } (r+δ)/p C r,p,δ N -1 n .
Set µ := r ′ + δ/p = r+δ p so that µp = r + δ. We then have

|K -K| L p T r ≤ C p,r,δ 1 λ 1/p n,Nn≥2 S n 1 {Sn≤λT } 1/p µ 1 N 1/p n + n,Nn=1 (λT -S n ) + 1/p µ (4.20) ≤ C p,r,δ T 1/p n≥1 (P(S n ≤ λT )) 1/(µp) 1 N 1/p n .
Now, standard computations show that

P({S n ≤ λT }) = (λT ) n (n -1)! 1 0 u n-1 e -λT u du ≤ (λT ) n n! .
Hence, setting A = (λT ) 1/(µp) yields (P(S n ≤ λT )) 1/(µp) ≤ (λT ) n/(µp) (n!) 1/(µp) ≤

A n (n!) 1/(µp) .

For every x ≥ 0, let a(x) := A x Γ(x+1) 1/(µp) . This function reaches a unique maximum at some x 0 ≥ 0 and then decreases to 0 as x → ∞. We modify the function a by setting a 0 (x) := a(x) ∨ a(x 0 ) so that the function a 0 becomes nonincreasing and log-concave since Γ is log-convex. Now, let

a n := a 0 (n), n ≥ 1.
Finally, the quantization problem (4.20) for the standard Poisson K is "upper bounded" by the following optimal integral "bit allocation" problem:

min n≥1 a n N 1/p n , N n ≥ 1, n≥1 N n ≤ N . (4.21)
Then, let m ≥ 2x 0 + 1 be a temporarily fixed integer. We set, for N ≥ 1,

N n = a p n N 1/m ( 1≤k≤m a k ) p/m , 1 ≤ n ≤ m, N n = 1, n ≥ m + 1.
The sequence N n , 1 ≤ n ≤ m, is nonincreasing. This will ensure that

N n ≥ 1, 1 ≤ n ≤ m.
We wish to choose m as a function of N so that We will make use of the following classical inequality: for every t ≥ 1/12,

a m N 1/(pm) ≥
0 ≤ log(Γ(t + 1)) -log( √ 2π) -(t + 1/2) log t + t ≤ 1.
Then, after some easy computations, one shows that inequality (4.23) is satisfied provided

m -1 2 log A + 1 pm log N ≥ 1 µp m 2 log m - m 8 - 1 2 log m + 5 2 .
If one sets (this is probably optimal)

m = m(N ) := 2 µ log N log 2 N ,
then the above inequality is satisfied, as well as m(N ) ≥ 2x 0 + 1, for every large enough N , provided that we increase the value of A. With N n and m settled as above and using the fact that x [x] ≤ 2 for every x ≥ 1, we obtain

n≥1 a n N 1/p n ≤ 2 1/p mN -1/(pm) m k=1 a k 1/m + n≥m+1 a n .
On the one hand, N m ≥ 1 gives

N -1/(pm) m k=1 a k 1/m ≤ a m .
On the other hand, the log-concavity and monotony of the function a over [x 0 + 1, ∞) (and the fact that a ′ is nonzero) imply that

n≥m+1 a n ≤ a(x 0 + 1) a ′ (x 0 + 1) a m = o(ma m )
(this follows from a straightforward adaptation of the proof of Proposition 4.4 in [START_REF] Luschgy | Functional quantization of Gaussian processes[END_REF], to which we refer the reader for details). So we have

ma m = m A m (m!) 1/(µp) ≤ exp - 1 µp m log m + O(m) (4.24) ≤ C exp - 1 pµ µ log N log 2 N 1 + O log 3 N log 2 N .
Note that p √ µ = √ p • pµ = (r + δ)p. Finally, this yields, in particular, that for every ε > 0,

|K -K| L p T r = O exp - 1 √ rp + ε log N log 2 N .
Step 2 (Compound case). Starting from (4.18), it is natural to quantize (X t ) by setting

X t = Kt k=1 U k ,
where K is an N (1) -quantization of the standard Poisson process K, as described in Step 1, and, for every n

≥ 1, U n is an L r -optimal N (2) n -quantization of U n with 1 ≤ N (2) 1 × • • • × N (2) n • • • ≤ N (2) and N (1) N (2) ≤ N . Then, setting K U t := Kt k=1 U k and K U t := Kt k=1 U k , we obtain |K U -K U | L p T ≤ n≥1 | U k | |1 {Sn≤λT } -1 { Sn≤λT } | L p T so that |X -K U | L p T r ≤ 1 λ 1/p n≥1 U k r S n ∧ (λT ) -S n ∧ (λT ) 1/p r/p = sup n≥1 U n r λ 1/p n≥1 S n ∧ (λT ) -S n ∧ (λT ) 1/p r/p ,
where we have used the fact that the sequences (U n ) and (S n ) are independent, as are ( U n ) and (S n ). Using ) ) log 2 (N (1) ))). On the other hand, with obvious notation and using the fact that ( U n -U n ) and (S n ) are independent, we have

U n r ≤ U n -U n r + U 1 r = U 1 -U N (2) n 1 r + U 1 r shows that sup n≥1 U n r < +∞. Hence, it follows from Step 1 that, for every c < 1 √ pr , |X -K U | L p T r = O(exp (-c log(N ( 1 
|X -K U | L p T r = |K U -U | L p T r ≤ n≥1 U n -U n r |1 {Sn≤λ•} | L p T r = 1 λ 1/p n≥1 U n -U n r (λT -S n ) + 1/p r ′ ≤ 1 λ 1/p n≥1 U n -U n r (λT ) 1/p+n/r (n!) 1/r ≤ C n≥1 U n -U n r (λT ) n/r (n!) 1/r .
It now follows from the (extended) Pierce lemma that 2) ) log 2 (N (2) ) .

|K U -K U | L p T r ≤ C U 1 ,r n≥1 (λT ) n/r (n!) 1/r N (2) n = O exp - 1 √ r log(N ( 
The rate follows from the resolution of the optimal bit allocation problem (4.21) obtained by formally setting µp = r and p = 1. Then note that, on the one hand,

|X -X| L p T r ≤ |X -K U | L p T r + |K U -K U | L p T r
and on the other hand

K U t = n≥1 U N (2) n n 1 { S N (1) n n ≤λt} can take at most n≥1 N (1) n N (2) n ≤ N (1) × N (2) ≤ N values. Let c < 1 √ pr . Setting N (1) = [N rc 2 /(1+rc 2 ) ], N (2) = [N 1/(1+rc 2 ) ] yields a rate |X -X| L p T r = O exp - 1 1/c 2 + r log(N ) log 2 (N ) , that is, ∀ ε > 0 |X -X| L p T r = O exp - 1 r(p + 1 + ε) log(N ) log 2 (N ) .
4.3. Proof of Theorem 2. Any Lévy process X can be decomposed as the sum X = X (1) + X (2) of two (independent) Lévy processes, one having bounded jumps and the other being a compound Poisson process, according to the decomposition of its Lévy measure

ν(dx) = ν (1) (dx) + ν (2) (dx) (4.25)
with ν (1) (dx) := 1 {|x|≤1} ν(dx) and ν (2) (dx) := 1 {|x|>1} ν(dx).

Assume that r * > 1. It is then clear that, for every r, p∈ (0, r * ), e N,r (X,

L p T ) ≤ C r,p,T e [ √ N ] 2 ,r ′ (X, L r ′ T ) (4.26) ≤ C r,p,T (e [ √ N ],r ′ (X (1) , L r ′ T ) + e [ √ N ],r ′ (X (2) , L r ′ T )),
where r ′ =r ∨ p ∨ 1. It now follows from Proposition 3 that e N,r ′ (X (2) , L r ′ T )= o(e N,r ′ (X (1) , L r ′ T )) so that e N,r (X, 1) , L r ′ T ). Now, using the fact that ℓ has slow variations at 0, we can derive that e [ √ N ],r ′ (X (1) , L r ′ T ) = O(e N,r ′ (X (1) , L r ′ T )).

L p T ) ≤ C ′ r,p,T e [ √ N ],r ′ (X ( 
Proposition 2 completes the proof of Theorem 2. When r * ≤ 1, we use e N,r (X,

L p T ) r ≤ C ′ r,p,T e [ √ N ] 2 ,r ′ (X, L r ′ T ) ≤ C ′ r,p,T (e [ √ N ],r ′ (X (1) , L r ′ T ) r ′ + e [ √ N ],r ′ (X (2) , L r ′ T ) r ′ ),
with r ′ = r ∨ p < 1 (based on the pseudo-triangular inequality satisfied by L s -pseudo-norms when s < 1).

5.

Further results for Lévy processes.

5.

1. An exact rate for Lévy processes with a Brownian component. In that case, the quantization rate of the Brownian motion controls the global rate of convergence. Proposition 4. Let X be a Lévy process with a nonvanishing Brownian component. Let r * = r * (X), defined by (4.2). Then ∀ r, p ∈ (0, r * ∧ 2) e N,r (X, L p T ) = O((log N ) -1/2 ) and ∀ r, p ∈ (0, +∞) e N,r (X, L p T ) = Ω(e N,r (W, L p T )). In particular, ∀ r∈ (0, +∞), ∀ p∈ [1, +∞), e N,r (X, L p T ) = Ω((log N ) -1/2 ).

Proof. We can decompose X as X = cW + X (1) + X (2) , where X (i) , i = 1, 2, have ν (i) as Lévy measure, as defined in (4.25) in the above proof of Theorem 2. Then, if r * > 1 and r, p∈ (0, r * ∧ 2), we can easily check that, for every N ≥ 1,

e N,r ′ (X, L p T ) ≤ e [ 3 √ N ] 3 ,r ′ (X, L r ′ T ) ≤ e [ 3 √ N ],r ′ (c W, L r ′ T ) + e [ 3 √ N ],r ′ (X (1) , L r ′ T ) + e [ 3 √ N ],r ′ (X (2) , L r ′ T ),
where r ′ =r ∨ p ∨ 1. It follows from Proposition 3 (see the remark immediately below) that e N,r ′ (X (2) , L r ′ T )=o(e N,r ′ (W, L r ′ T )). Now, R\{0} x 2 ν (1) (dx) < +∞, hence, by Millar's lemma,

E sup s∈[0,t]
|X (1) s | 2 ≤ Ct.

We can then easily derive from (3.4) (or directly from Theorem 1) that e N,r ′ (X (1) , L r ′ T ) = O((log N ) -1/2 ). This yields the announced upper bound since e N,r ′ (W, L r ′ T ) = O((log N ) -1/2 ). If r * ≤ 1, we proceed as above, using the pseudo-triangular inequality for L s -pseudo-norms (with r ′ =r ∨ p < 1).

As concerns the lower bound, note that if Y and Z are L r T -valued independent random vectors, then for every r, p > 0,

(e N,r (Y + Z, L p T )) r = inf α⊂L p T , card(α)≤N E min a∈α |Y -z -a| r L p T P Z (dz) ≥ L p T inf α⊂L p T , card(α)≤N E min a∈α |Y -z -a| r L p T P Z (dz) = (e N,r (Y, L p T )) r so that e N,r (Y + Z, L p T ) ≥ max(e N,r (Y, L p T ), e N,r (Z, L p T )
). This holds true, by induction, for any finite sum of independent random variables. In particular, e N,r (X, L p T ) ≥ e N,r (cW, L p T ) = ce N,r (W, L p T ). This completes the proof. 5.2. Subordinated Lévy processes. We now consider subordination of the Brownian motion, that is, Lévy processes of the form

X t = W At , t ≥ 0,
where W denotes a standard Brownian motion and A a subordinator independent of W . A subordinator is a nondecreasing (hence nonnegative) Lévy process. What follows is borrowed from [START_REF] Bertoin | Subordinators: Examples and applications[END_REF]. Its Lévy-Khintchine characteristics (a, σ 2 , ν A ) satisfy σ 2 = 0, ν A ((-∞, 0)) = 0, 1 0 xν A (dx) < +∞ and γ := a -1 0 xν A (dx) ≥ 0 [so that θ(A) ≤ 1]. Consequently, a subordinator is of the form

A t = γt + s≤t ∆A s , t ≥ 0.
Its Laplace transform is given by E e -uAt = e -tΦ(u) with, for every u ≥ 0, Φ(u) = γu + (1e -(u 2 /2)x )ν A (dx) so that we can easily derive that

ν X (f ) = (0,∞) E(f ( √ x Z))ν A (dx)
[with Z ∼ N (0; 1)] and that X has a Brownian component if and only if γ > 0 (see also [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], page 198).

The small deviation of subordinator has been extensively investigated in [START_REF] Linde | Evaluating the small deviation probabilities for subordinated Lévy processes[END_REF]. It is there established that if lim inf u→+∞ These processes preserve a Gaussian feature which will be the key to estimate their quantization rate: they satisfy the Anderson inequality, as briefly recalled in the lemma below. It is clear that (W a(t) ) t∈[0,T ] is a centered (bimeasurable) Gaussian process and has sample paths in L p T a.s. Hence, (W a(t) ) t∈[0,T ] can be seen as an L p Tvalued centered Gaussian random vector and the assertion follows from the Anderson inequality.

We now make the connection between Blumenthal-Getoor indices of X and A (and between the finiteness of moments). Lemma 7. θ(X) = 2 θ(A) and r * (X) = 2 r * (A).

Proof. As a consequence of the expression for ν X , we check that for every θ ∈ (0, 2], where ℓ θ (u) > 0 when u>0 and lim u→0 ℓ θ (u)=C θ ∈ (0, +∞). Hence, the first equality follows. As concerns the second equality, r * (X) coincides with the (absolute) moments of X, so it is obvious that

E(|X t | r ) = E(|W At | r ) = E(A 2r t ). Consequently, E(|X t | r ) < +∞ iff E(A 2r
t ) < +∞ so that r * (X) = 2r * (A).

As concerns upper bounds, we cannot apply Theorem 2 since a subordinated Lévy process may have a Brownian component. Therefore, we must return Theorem 1. ≤ Ct ρ/2θ(A) , ρ ≤ 2(θ(A) ∧ r * (A)) = θ(X) ∧ r * (X) (by Lemma 4 applied to A). The result then follows from Theorem 1.

The following lower bounds follow from Lemma 6 and inequality (2.12) (see the remark immediately after Theorem 1). The main point to be noted is that the upper and lower bounds obtained match, providing an exact quantization rate for subordinated Lévy processes. for large enough u (with an appropriate real constant c ′ > 0). We conclude by combining (2.12) and (5.2) since X is strongly unimodal.

Examples. If A is a tempered α-stable process with Lévy measure, then

ν A (dx) = 2 α α Γ(1 -α)
x -(α+1) exp -1 2 δ 1/α 1 (0,∞) (x) dx, with α∈ (0, 1), δ > 0, γ = 0, so that θ(A) = α and r * (A) + ∞. We the obtain ∀ r∈ (0, 2α), ∀ p∈ [1, 2α) e N,r (X, L p T ) ≈ (log N ) -1/(2α) . Assume that θ(A) ∈ (0, 1) and that the function Φ is regularly varying at ∞ with index α∈ (0, 1) such that Φ(x) ∼ cx α (log(x)) c as x → ∞, for some real constant c > 0. Since α < 1, we have γ = 0. Then Γ(1α)ν(x) ∼ Φ(1/x) as x → 0

(see [START_REF] Bertoin | Subordinators: Examples and applications[END_REF]) so that ν is regularly varying at zero with index -α. By Theorem 2, θ(A) = α. Set Ψ(x) = x 1/(2θ(A)) (log x) -c/(2θ(A))

for large enough x > 0. Then Ψ • Φ(x) ∼ c √ x as x → ∞ so that Ψ • Φ(1/ε 2 ) ∼ cε -1 as ε → 0. Thus, ∀ r > 0, ∀ p∈ [1, +∞)

e N ,r (X, L p T ) = Ω((log N ) -1/(2θ(A)) (log log N ) -c/(2θ(A)) ). On the other hand, by Lemma 4 and remark below Theorem 1, in the case c > 0, E A ρ/2 t ≤ Ct ρ/(2θ(A)) (-log t) c , ρ/2 < θ(A) ∧ r * (A) so that ∀ r, p ∈ (0, θ(X) ∧ r * (X)), e N,r (X, L p T ) = O((log N ) -1/θ(X) (log log N ) c/ρ ), ρ < θ(X) ∧ r * (X).

In the case r * (X) ≥ θ(X), this matches the lower bound up to a O(log log N ) ε term, ε > 0.

where π α = a∈α a1

 a∈α Ca(α) , (C a (α)) a∈α being a Borel partition of E satisfying, for every a∈ α, C a (α) ⊂ u∈ E : ua ≤ min b∈α\{a} ub .

e

  N,r (X, E) := inf E min a∈α Xa r 1/r : α ⊂ E, card(α) ≤ N . (1.1) When E = L p ([0, T ], dt) (with its usual norm or quasi-norm denoted by | • | L p

  4) (b) Assume θ ∈ (0, 2) \ {1}. If the tail function of the Lévy measure ν has regular variation with index -b at 0, then b = θ and the function ℓ is slowly varying at 0. If, furthermore, the functions t → t 1/θ Λ ρ (t) are nondecreasing in a neighborhood of 0, then ∀ r, p∈ (0, θ ∧ r * ) e N,r (X, L p T ) = O((log N ) -1/θ Λ ρ ((logN ) -1 )) (4.5) ∀ ρ∈ (r ∨ p, θ). (c) Assume θ < r * . For every r∈ [θ, r * ) and every p ∈ (0, r], e N,r (X, L p T ) = O((log N ) -1/r+η ) ∀ η > 0. (4.6) (d) When θ = 1, if ν is symmetric or ν(|x|) < +∞, then the above rates (4.4) and (4.5) are still valid.

Proposition 2 .

 2 Let (X t ) t∈[0,T ] be a Lévy process satisfying (4.7) and θ > 0. Then claims (a), (b), (c) and (d) in Theorem 2 hold true with r * = ∞.

Lemma 4 (

 4 First extended Millar's lemma). (a) Assume that θ ∈ (0, 2] \ {1}. If the Lévy measure satisfies assumption (4.3) then

  14)(c) When θ = 1, the above upper bounds still hold, provided ν is symmetric or ν(|x|) < +∞.

Now,

  {S n > λT } ⊂ { S n = λT } since max α n = λT . On the other hand, S n = S tr n on {S n ≤ λT } so that |S n ∧(λT )-S n | = |S n ∧(λT )-S n |1 {Sn≤λT } = |S tr n -S tr n |1 {Sn≤λT } ≤ |S tr n -S tr n |.

.

  Using log-concavity, this is clearly satisfied provided that a m N 1/(pm) ≥ a 0 ((m + 1)/2) = a((m + 1)/2) (4.[START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF] [since (m + 1)/2 ≥ x 0 ]. Inequality (4.22) becomes, by taking logarithms, Γ(m + 1))log(Γ(1 + (m + 1)/2))).

+∞ 0 ( 1 -

 01 e -ux )ν A (dx) (5.1) = γu + u +∞ 0 e -ux ν A (x) dx, where ν A (x) = ν A ((x, +∞)) denotes the tail of the Lévy measure ν A and lim u→+∞ Φ(u) u = γ. Furthermore, for every t ≥ 0 and u ∈ R, E(e iuXt ) = E(e (-u 2 /2)At ) = exp -

Φ

  (u) log u > 0, then ∀ p∈ [1, +∞) log(P(|X| L p T ≤ ε)) ≈ Φ(ε -2 ) as ε → 0. (5.2)

Lemma 6 .

 6 A subordinated Lévy process is unimodal for every L p T -norm, for every p ∈ [1, +∞). The result still holds if one replaces W by, for example, any pathwise continuous centered Gaussian process (e.g., fractional Brownian motion, etc.).Proof. Using the fact that A and W are independent, it suffices to show that for every nondecreasing function a : [0, T ] → [0, α(T )], a(0) = 0, and every x∈ L p T ,P T 0 |W a(s)x(s)| p ds ≤ ε p ≤ P T 0 |W a(s) | p ds ≤ ε p , ε > 0.

  {|x|≤1} |x| θ ν X (dx) = u θ/2 {|y|≤1/ √ u} |y| θ e -y 2 /2 dy √ 2π = {u>0} u θ/2 ν A ℓ θ (u)(du),

Proposition 5 .

 5 (a) If γ > 0, then ∀ r, p ∈ (0, r * (X) ∧ 2)) e N,r (X, L p T ) = O((log N ) -1/2 ). (b) If θ(A) ∈ (0, 1), γ = 0 and ν A (dx)1 {0<x≤η} ≤ c1 {0<x≤η} dx x 1+θ(A)for some real constants c, η > 0, then ∀ r, p∈ (0, θ(X) ∧ r * (X))e N,r (X, L p T ) = O((log N ) -1/(θ(X)) ).Proof. (a) follows from Proposition 4 since X has a Brownian component.(b) Let ρ < 2 (θ(A)∧r * (A)). First, note that E(|X t | ρ ) = EA ρ/2 t

Proposition 6 . 2 0e 2 0e

 622 (a) If γ > 0, then ∀ r∈ (0, +∞), ∀ p∈ [1, +∞) e N,r (X, L p T ) = Ω((log N ) -1/2 ). (b) If γ = 0, θ(A) > 0 and 1 {0<x≤η} ν A (dx) ≥ c1 {0<x≤η} dx x 1+θ(A) for some real constants c, η > 0, then ∀ r∈ (0, +∞), ∀ p∈ [1, +∞) e N,r (X, L p T ) = Ω((log N ) 1/θ(X) ).Proof. (a) follows from Proposition 4 since X has a Brownian component.(b) It follows from the assumption made on ν A that ν A (x) ≥ c η x ξ -θ-1 dξ ≥ κx -θ for x ∈ (0, η/2]. Hence, it follows from (5.1) that Φ(u) ≥ cu η/-ux ν A (x) dx = cu θ uη/-y y -θ dy ≥ c ′ u θ

  The above assumption does not imply that such a diffusion process X exists. (The existence holds provided b and σ are Lipschitz in x uniformly with respect to t∈ [0, T ].) Then, every component X i is an Itô process [with G

t = b i (t, X t ) and H t := σ i• (t, X t )] for which assumption (3.1) is satisfied for every ρ > 0 (see, e.g.,

[4]

). On the other hand, if (u 1 , . . . , u d ) denotes the canonical basis of R d and | • | denotes any norm on R d , then for every p ≥ 1 and every
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