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Abstract

We investigate the connections between the mean pathwise regularity of stochastic pro-
cesses and their Lr(P)-functional quantization rate as random variables taking values in some
Lp([0, T ], dt)-spaces (0 < p ≤ r). Our main tool is the Haar basis. We then emphasize that the
derived functional quantization rate may be optimal (like for the Brownian motion) or not (like

for the Poisson process). As a first application we establish the O((logN)−
1

2 )-upper bound for
general Itô processes which include multi-dimensional diffusions. Then, we focus on the specific
family of Lévy processes for which we derive a general quantization rate based on the regular
variation properties of its Lévy measure at 0. The case of compound Poisson processes which
appears as degenerate in the former approach, is studied specifically: one observes some rates
which are in-between finite dimensional and infinite dimensional “usual” rates.
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1 Introduction

In this paper, we investigate the connection between the functional Lr(P)-quantization rate for
a process X = (Xt)t∈[0,T ] and the Lr(P)-mean pathwise regularity of the mapping t 7→ Xt from
[0, T ] → Lr(P) in an abstract setting with a constructive approach (we mean that all the rates are
established using some explicit sequences of quantizers).

First let us briefly recall what functional quantization is and how it was introduced. Let (E, ‖ . ‖)
denote a finite-dimensional (E = R or Rd) or infinite-dimensional (E = Lp([0, T ], dt), 1 ≤ p < ∞,
C([0, T ]),. . . ) separable Banach space (or complete quasi-normed space like E = Lp([0, T ], dt),
0 < p < 1) and let α ⊂ E be a finite subset of size card(α) ≤ N , N ≥ 1. The Voronoi quantization
of an E-valued random vector X : (Ω,A,P) → E with respect to the codebook α is simply the
projection of X onto α following the nearest neighbour rule i.e.

X̂α = πα(X)

where
πα =

∑

a∈α
1Ca(α),
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(Ca(α))a∈α Borel partition of E satisfying for every a∈ α

Ca(α) ⊂
{
u∈ E : ‖u− a‖ ≤ min

b∈α\{a}
‖u− b‖

}
.

Then, the Lr-mean quantization error (0 < r <∞) is defined by

‖X − X̂α‖Lr
E(P) =

(
Emin

a∈α
‖X − a‖r

) 1
r

.

This quantity is finite as soon as X∈ LrE(P). The set α is called N -codebook or N -quantizer. One
shows that such random vectors X̂α are the best approximation of X among all α-valued random
vectors. The minimal N th quantization error of X is then defined by

eN,r(X,E) := inf{(Emin
a∈α ‖X − a‖r)1/r : α ⊂ E, card(α) ≤ N}. (1.1)

When E = Lp([0, T ], dt) (with its usual norm or quasi-norm denoted | . |Lp
T

from now on), an E-

valued random variable X is but a (bi-measurable) stochastic process X = (Xt)t∈[0,T ] defined on
the probability space (Ω,A,P) whose trajectories (Xt(ω))0≤t≤T (almost) all belong to Lp([0, T ], dt).
The Lr-integrability assumption then reads

E



(∫ T

0
|Xt|pdt

) r
p


 < +∞.

It is still an open question whether Lr-optimal N -quantizers for Gaussian random vectors always
exist (see [13]) in an abstract Banach setting. However in many situations of interest for process,
including all the Lp([0, T ], dt)-spaces, 1 ≤ p < +∞, the existence of at least one such Lr-optimal
codebook has been established (provided E‖X‖r < +∞). Note however that this is not the case for
the space C([0, T ]) of continuous functions. For more details on the existence problem for optimal
quantizers we refer to [13].

On the other hand, optimal Lr-quantizers always exist when E = Rd, d ≥ 1. In this finite
dimensional setting this problem is known as optimal vector quantization and has been extensively
investigated since the early 1950’ with some applications to Signal processing and transmission
(see [9] or [10]). In d-dimension the convergence rate of eN,r is ruled by the so-called Zador
theorem

lim
N
N

1
d eN,r(X,R

d) = Jr,d

(∫

Rd
g

d
d+r (ξ)dξ

)1+ r
d

where g denotes the density of the absolutely continuous part of the distribution P
X

of X (see [11]).
Since the early 2000’s much attention has been paid to the infinite dimensional case. This is the

so-called functional quantization problem for stochastic processes: the aim is to quantize some pro-
cesses viewed as random vectors taking values in their path-spaces, supposed to be an Lp([0, T ], dt)
space, 1 ≤ p < +∞. Many results have been obtained for several families of processes with a
special attention paid to Gaussian processes and (Brownian) diffusion processes by several authors.
Thus, in the purely Hilbert setting (r = 2, E = L2([0, T ], dt)) the sharp rate of quantization of the
Brownian motion (Wt)t∈[0,T ] is given (see [15]) by

eN,2(W,L
2([0, T ], dt)) ∼

√
2T

π(logN)
1
2

(1.2)
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The existence of such a sharp rate for Brownian motion has been extended to Lp([0, T ], dt) spaces
for 1 ≤ p ≤ ∞ (see [6]). Similar sharp rates hold for a wide class of Gaussian processes including
the fractional Brownian motions with rate

eN,2(W
H , L2([0, T ], dt)) ∼ c(H,T )

(logN)H

where H denotes the Hurst parameter of the fractional Brownian motion WH , the Ornstein-
Uhlenbeck process, the Brownian sheet, etc, in the purely Hilbert setting (see [15]). The exact
rate has also been established in [14] for a wider class of Gaussian processes. In [14, 15], these
results are based on the (sharp or exact) asymptotic behaviour of the eigenvalues of high order of
the Karhunen-Loève expansion of the Gaussian process. As a by-product, this approach provides
very simple explicit sequences of rate optimal asymptotic quantizers (provided the Karhunen-Loève
expansion of the process itself is accessible). Their numerical implementation has lead to some unex-
pectedly promising numerical applications in Finance, especially for the pricing of path-dependent
options like Asian options in several popular models of asset dynamics (Black-Scholes, stochastic
volatility Heston and SABR models, etc). For these aspects we refer to [18] or [21].

Still for Gaussian processes an important connection with small ball probability problem has
been made (see [4, 12]). Some exact or sharp rates of convergence for different classes of Brownian

diffusions have also been proved recently (see [16], [5]) with a rate driven by (logN)−
1
2 .

The common feature shared by all these results is that there is a one-to-one correspondence
between the exponent a that rules the (Lr(P), Lp(dt))-quantization rate of these processes in the
log(N)−a scale and their mean pathwise regularity i.e. the lowest exponent a that satisfies

∀ s, t∈ [0, T ], ‖Xt −Xs‖Lr(P) ≤ Cr|t− s|a. (1.3)

Although such a correspondence is not really surprising given the connection between quantiza-
tion rate and small ball probabilities in the Gaussian setting, this leads naturally to try deriving a
general abstract result that connects these two features of a process. This is the aim of the Section 2
of this paper in which we show that the mean pathwise regularity always provide an upper-bound
for the (Lr(P), Lp(dt))-quantization rate (0 < p ≤ r). We retrieve then the rate obtained by more
specific approaches for all the processes mentioned above. We also extend, to general Brownian
diffusion processes and even general Itô processes the rate formerly obtained for specific classes of
diffusions in [5, 16]. We also obtain some first quantization rates for some classes of Lévy processes
like α-stable processes. The main tool is to expand a process on the simplest wavelet basis – the
Haar basis (known to be unconditional when p > 1) – and to use a non-parametric version of the
Zador theorem (coming out as a slight improvement of the Pierce Lemma, see [11])

At this point, the next question is to wonder conversely whether this always provide the true
quantization rate. In this naive form, the answer to this question is clearly no because equation (1.3)
only takes into account the mean-pathwise Hölder regularity of a process and one can trivially build
(see [14]) some processes which smoother mean-pathwise regularity (like processes with Ck, k ≥ 1
trajectories). We did not extend our approach in that direction for the sake of simplicity but
there is no doubt that developing similar techniques as those used in Section 2 one can connect
higher order mean pathwise regularity and quantization rate like in the Hölder setting. In fact we
point out in section 4 devoted to general Lévy processes that the answer maybe negative – the
quantization rate can be infinitely faster than the mean pathwise regularity – for different reasons
in connection with the dimensionality of process: a Poisson process is in some sense an almost finite
dimensional random vector which induces a very fast quantization rate which does not take place
in the (logN)−a scale although the mean-pathwise Lr(P)-regularity of a Poisson process is Hölder
(and depends on r, see e.g. (3.14) and (3.15)).
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The main result of Section 4 is Theorem 2 which provides a functional quantization rate for a
general Lévy process X: this rate is ruled by the behaviour of the Lévy measure ν around 0 (e.g.
the index of X for a stable process). As an example for Lévy processes which do have infinitely
many small jumps, if the (infinite) Lévy measure ν satisfies

∃ c > 0, 1{0<|x|≤c]ν(dx) ≤
C

|x|θ+1
1{0<|x|≤c]dx

for some θ∈ (0, 2], then, for every p, r∈ (0, θ] such that 0 < p ≤ r and X1∈ Lr(P)

eN,r(X,L
p([0, T ], dt)) = O((logN)

− 1
θ ).

This makes a connection between quantization rate and the Blumenthal-Getoor index β(X) :=

inf
{
θ > 0 :

∫
{|x|≤1} |x|θν(dx) < +∞

}
∈ [0, 2] of X when ν satisfies the above upper-bound with

θ = β(X). In fact, more generally when the “0-tail function” ν : x 7→ ν([−x, x]c) has regular
variation as x goes to 0, with index −θ, then θ = β(X) (see [3]) and we establish a close connection
between the quantization rate of X and ν and θ (provided θ∈ (0, 2)). When the Lévy measure is
finite (then θ = 0), we also establish some quantization rates for the compound Poisson processes
and show they are infinitely faster than the above ones. To this end, we design an explicit sequence
of quantizers which can clearly be implemented for numerical purposes. In fact the whole proof is
constructive provided the Lévy measure is “tractable” enough.

The paper is organized as follows: Section 2 is devoted to the abstract connection between mean-
pathwise regularity and quantization rate of processes, with some applications to various families
of processes. As far as we know, some of this rates are new. Its main result is Theorem 1. Section 4
provides an upper-bound for the quantization rate of general Lévy process in connection with the
behaviour of the Lévy measure around 0. The main results are Theorem 2 and Proposition 4.

Notations: • Lp
T

:= Lp([0, T ], dt) and |f |Lp
T

= (
∫ T
0 |f(t)|pdt)

1
p .

• Let (an)n≥0 and (bn)n≥0 be two sequences of positive real numbers. The symbol an ∼ bn means
an = bn + o(bn).

• [x] denotes the integral part of the real number x and x+ = max(x, 0) its positive part.

• logm(x) is for the m times iterated logarithm function.

• ‖Y Lr := ‖Y LLr(P ) for any random variable Y .

• Throughout the paper, the letter C (possibly with subscripts) will denote a positive real constant
that may vary form line to line.

2 Mean pathwise regularity and quantization error rate: an upper

bound

In this section, we derive in full generality an upper-bound for the (Lr(P), Lp
T
)-quantization error

eN,r(X,L
p
T
) based on the path regularity of the mapping t 7→ Xt from [0, T ] to Lρ(P). The main

result of this section is Theorem 1 below. Then we will illustrate on several examples that this rate
may be optimal or not.

One key of the proof is the following extension of Pierce Lemma (see [11], p. 82) which is
the main step of Zador’s Theorem for unbounded random variables. Its proof relies on random
quantization.
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Proposition 1 (Extended Pierce Lemma) Let r, δ > 0. There exists a real constant Cr,δ such that,
for every random variable X : (Ω,A) → (R,B(R)),

∀N ≥ 1, eN,r(X,R) = inf
card(α)≤N

‖X − X̂α‖r ≤ Cr,δ‖X‖
r+δ

N−1.

Proof: It follows from the original Pierce Lemma as stated that there exists a universal real
constant C0

r,δ > 0 and an integer Nr,δ ≥ 1 such that, for every random variable X : (Ω,A) →
(R,B(R)),

∀N ≥ Nr,δ, inf
card(α)≤N

E|X − X̂α|r ≤ C0
r,δ(1 + E|X|r+δ)N−r.

Using the scaling property of quantization: for every λ > 0,

‖X − X̂α‖r =
1

λ
‖(λX) − λ̂X

λα‖r

where λα = {λa, a ∈ α}, one derives from Pierce Lemma by considering X/‖X‖r+δ and setting
λ := 1/‖X‖

r+δ
that

∀N ≥ Nr,δ, inf
card(α)≤N

‖X − X̂α‖r ≤ (2C0
r,δ)

1
r ‖X‖

r+δ
N−1.

Now, for every N ∈ {1, . . . , Nr,δ − 1}, setting α := {0} yields

inf
card(α)≤N

‖X − X̂α‖r ≤ ‖X‖r ≤ Nr,δ‖X‖
r+δ

N−1.

Combining the last two inequalities and setting Cr,δ=max((2C0
r,δ)

1
r , Nr,δ) completes the proof. ♦

Let (en)n≥0 denote the Haar basis defined as the restrictions on [0, T ] of the following functions

e0 := T− 1
21[0,T ], e1 := T− 1

2 (1[0,T/2)−1[T/2,T ]), e2n+k := 2
n
2 e1(2

n.−kT ), n ≥ 0, k∈ {0, . . . , 2n−1}.

With this normalization, it makes up an orthonormal basis of the Hilbert space (L2
T
, (.|.)) where

(f |g) =
∫ T
0 fg(t) dt and a (monotone) Schauder basis of Lp

T
, p∈ [1,+∞) i.e.

(f |e0)e0 +
∑
n≥0

∑
0≤k≤2n−1(f |e2n+k)e2n+k converges to f in Lp

T
, for every f ∈ Lp

T
(see [20]). Fur-

thermore, it clearly satisfies for every f ∈ L1
T

and every p > 0,

∀n ≥ 0,

∫ T

0
|
2n−1∑

k=0

(f |e2n+k)e2n+k(t)|pdt = 2n(p
2
−1)T 1− p

2

2n−1∑

k=0

|(f |e2n+k)|p. (2.1)

The second key to establish a general connection between quantization rate and mean pathwise
regularity is the following standard properties of the Haar basis: for every f ∈ L1

T
,

(f |e2n+k) = 2
n
2 T− 1

2

(∫ (2k+1)T2−(n+1)

kT2−n
f(u)du−

∫ (k+1)T2−n

(2k+1)T2−(n+1)
f(u)du

)

= 2
n
2 T− 1

2

∫ T2−(n+1)

0

(
f(kT2−n + u) − f((2k + 1)T2−(n+1) + u)

)
du. (2.2)

Let (Xt)t∈[0,T ] be a bi-measurable process process defined on a probability space (Ω,A,P) with
P-almost all paths lying in L1

T
such that Xt ∈ Lρ(P) for every t ∈ [0, T ] for some positive real

exponent ρ > 0. When ρ ∈ (0, 1), we assume that X has càdlàg paths (right continuous, left
limited) to ensure the measurability of the supremum in Assumption (2.3) below.
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We make the following ϕ-Lipschitz assumption on the map t 7→ Xt from [0, T ] into Lρ(P): there
is a non-decreasing function ϕ :R+ → [0,+∞], continuous at 0 with ϕ(0)=0 such that

(Lϕ,ρ)≡





(i) ∀ s, t∈ [0, T ], E |Xt −Xs|ρ ≤ (ϕ(|t − s|))ρ if ρ ≥ 1,

(ii) ∀h∈ (0, T ], E(supt≤s≤(t+h)∧T |Xs −Xt|ρ) ≤ (ϕ(h))ρ if 0 < ρ < 1.
(2.3)

(One may assume without loss of generality that ϕ is always finite but that (i) and (ii) are only true
for |t− s| or h small enough respectively). Note that this assumption implies that E(|X|ρ

Lρ
T
) < +∞

so that, in particular, P(dω)-a.s., t 7→Xt(ω) lies in Lρ
T

(which in turn implies that the paths lie in
L1

T
if ρ ≥ 1).
We make a regularly varying assumption on ϕ at 0 with index b ≥ 0 i.e. for every t > 0

lim
x→0

ϕ(tx)

ϕ(x)
= tb. (2.4)

In accordance with the literature (see [1]) this means that x 7→ ϕ(1/x) is regularly varying at
infinity with index −b (which is a more usual notion in that field). When b = 0, ϕ is said regularly
varying at 0.

Let r, p∈ (0, ρ). Our aim is to evaluate the Lr(P)-quantization rate of the process X viewed as
an Lp

T
-valued random variable induced by the “Haar product quantizations” of X defined by

X̂ = ξ̂N0
0 e0 +

∑

n≥0

2n−1∑

k=0

ξ̂
N2n+k

2n+k e2n+k (2.5)

where ξk := (X|ek)∈ Lρ(P), k ≥ 0, and ξ̂N denotes an N -quantization (N ≥ 1) of the (real-valued)
random variable ξ i.e. a quantization of X by a codebook αN having N elements. A quantization

taking finitely many values, this implies that N2n+k = 1 and ξ̂
N2n+k

2n+k = 0 for large enough n (which

may be a non optimal 1-quantizer for ξ
N2n+k

2n+k ).
We will see that this local behaviour of ϕ at 0 induces an upper-bound for the functional

quantization error rate of X (regardless of the values of r and p except for constants).
Relying on the following two well-known inequalities:

|f |Lp
T
≤ T 1/p−1/p′ |f |

Lp′

T

, p ≤ p′

for every Borel functions f : [0, T ] → R and

‖Z‖r ≤ ‖Z‖r′ , r ≤ r′

for every random variables Z : Ω → R, one may assume without loss of generality that, either

1 ≤ p = r < ρ or 0 < p = r < ρ ≤ 1.

Theorem 1 Let be X = (Xt)t∈[0,T ] a bi-measurable process defined on a probability space (Ω,A,P)
such that Xt ∈ Lρ(P) for an exponent ρ > 0. Assume that X satisfies (2.3) (the ϕ-Lipschitz
assumption (Lϕ,ρ)) for this exponent ρ where ϕ is regularly varying (in the sense of (2.4)) with
index b ≥ 0 at 0 (then |X|Lρ

T
∈ L1(P)). Then

∀ r, p∈ (0, ρ), eN,r(X,L
p
T
) ≤ Cr,p

{
ϕ(1/ logN) if b > 0,

ψ(1/ logN) if b = 0,

with ψ(x) =
(∫ x

0 (ϕ(ξ))r∧1dξ/ξ
)1/(r∧1)

, assume moreover
∫ 1
0 (ϕ(ξ))r∧1dξ/ξ < +∞ if b = 0. In

particular if ϕ(u) = c ub, b > 0, then

eN,r(X,L
p
T
) = O((logN)−b). (2.6)
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Proof. Case 1 (1 ≤ p = r < ρ): Let N ≥ 1 be a fixed integer. One considers a Haar product
quantization X̂ of X with a (product) codebook having at most N elements i.e. such that N0 ×∏
n,kN2n+k ≤ N . Its characteristics will be be specified further on. Then, using (2.1)

|X − X̂|Lr
T

≤ T
1
r
− 1

2 |ξ0 − ξ̂N0
0 | +

∑

n≥0

∣∣∣∣∣
2n−1∑

k=0

(ξ2n+k − ξ̂
N2n+k

2n+k )e2n+k

∣∣∣∣∣
Lr

T

= T
1
r
− 1

2 |ξ0 − ξ̂N0
0 | + T

1
r
− 1

2

∑

n≥0

2n( 1
2
− 1

r
)

(
2n−1∑

k=0

|ξ2n+k − ξ̂
N2n+k

2n+k |r
) 1

r

so that, both ‖.‖r and ‖.‖1 being norms,

‖ |X − X̂|Lr
T
‖r ≤ T

1
r
− 1

2‖ |ξ0 − ξ̂N0
0 | ‖r + T

1
r
− 1

2

∑

n≥0

2n( 1
2
− 1

r
)

∥∥∥∥∥∥∥

(
2n−1∑

k=0

|ξ2n+k − ξ̂
N2n+k

2n+k |r
) 1

r

∥∥∥∥∥∥∥
r

= T
1
r
− 1

2‖ ξ0 − ξ̂N0
0 ‖r + T

1
r
− 1

2

∑

n≥0

2n( 1
2
− 1

r
)

∥∥∥∥∥
2n−1∑

k=0

|ξ2n+k − ξ̂
N2n+k

2n+k |r
∥∥∥∥∥

1
r

1

≤ T
1
r
− 1

2‖ ξ0 − ξ̂N0
0 ‖r + T

1
r
− 1

2

∑

n≥0

2n( 1
2
− 1

r
)
(

2n max
0≤k≤2n−1

∥∥∥|ξ2n+k − ξ̂
N2n+k

2n+k |r
∥∥∥

1

) 1
r

= T
1
r
− 1

2‖ ξ0 − ξ̂N0
0 ‖r + T

1
r
− 1

2

∑

n≥0

2
n
2 max

0≤k≤2n−1

∥∥∥|ξ2n+k − ξ̂
N2n+k

2n+k |r
∥∥∥

1
r

1

= T
1
r
− 1

2‖ ξ0 − ξ̂N0
0 ‖r + T

1
r
− 1

2

∑

n≥0

2
n
2 max

0≤k≤2n−1

∥∥∥ξ2n+k − ξ̂
N2n+k

2n+k

∥∥∥
r
. (2.7)

Let δ := ρ− r. It follows from Proposition 1 (Pierce Lemma) that, for every N ≥ 1, and every
r.v. ξ∈ Lr(P),

inf
card(α)≤N

‖ξ − ξ̂α‖r ≤ Cr,ρ‖ξ‖ρN−1.

Now, using the monotony of the Lp-norms with respect to the probability measure 2n+11[0,2−(n+1)T ](t)dt/T ,
Fubini’s Theorem, the (Lr,ϕ)-Lipschitz continuity assumption (2.3)(i) and (2.2), yields

E |ξ2n+k|ρ = E |(X|e2n+k)|ρ

≤ 2
n
2
ρ T−ρ/2

E

(∫ 2−(n+1)T

0
|X k

2n T+u −X 2k+1

2n+1 T+u|du
)ρ

≤ 2
n
2
ρ 2−(n+1)ρT ρ/2 E

(∫ 2−(n+1)T

0
|X k

2n T+u −X 2k+1

2n+1 T+u|
ρ 2n+1du/T

)

≤ 2−ρ2−
n
2
ρ+n+1T ρ/2−1

∫ 2−(n+1)T

0
E|X k

2n T+u −X 2k+1

2n+1 T+u|
ρ du

≤ 2−
n
2
ρ+n+1−ρT ρ/2−1

∫ 2−(n+1)T

0
(ϕ(T/2n+1))ρ du

≤ CX,T,r,ρ2
−n

2
ρ
(
ϕ(T/2n+1)

)ρ
. (2.8)

At this stage, we assume a priori that that the size sequence (N2n+k)n≥0, k=0,...,2n−1 of the
marginal codebooks is nonincreasing as 2n + k increases and satisfies

1 ≤
∏

k≥0

Nk ≤ N.
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We assume that all the quantizations induced by these codebooks are Lr-optimal up to n ≤ m i.e.

‖ξ2n+k − ξ̂2n+k‖r = inf
card(α)≤N2n+k

‖ξ2n+k − ξ̂α2n+k‖r

and that ξ̂2n+k = 0 otherwise. Then combining (2.7), (2.8) and Proposition 1 yields

‖ |X − X̂ |Lr
T
‖r ≤ CX,T,r,ρ


 1

N0
+
∑

n≥0

ϕ(T2−(n+1))

N2n+1




≤ CX,T,r,ρ


 1

N0
+

1

T

∑

n≥0

2n+1−1∑

k=0

Φ(2T/(2n+1 + k))

N2n+1+k




= CX,T,r,ρ


 1

N0
+

1

T

∑

k≥2

Φ(2T/k)

Nk




where Φ(x) := xϕ(x), x∈ (0,+∞). This function Φ is regularly varying (at 0) with index b + 1.
This implies in particular that there is a real constant c > 0 such that Φ(T/k) ≤ cΦ(1/(k+ 1)) for
every k ≥ 2. Hence, inserting for convenience the term Φ(1/2)/N1 and modifying the real constant
CX,T,r,ρ in an appropriate way finally yields

‖ |X − X̂|Lr
T
‖r ≤ CX,T,r,ρ

∑

k≥1

Φ(1/k)

Nk−1
.

Now set for convenience νk = Φ(1/k), k ≥ 1. Note that in case b = 0, the integrability condition∫ 1
0 ϕ(ξ)/ξdξ < +∞ implies

∑
k νk < +∞. Consequently an upper-bound for the quantization rate

is given by the solution of the following optimal allocation problem

eN,r(X,L
r
T
) ≤ CX,T,r,ρmin




∑

k≥1

νk
Nk−1

,
∏

k≥0

Nk ≤ N, N0 ≥ · · · ≥ Nk ≥ · · · ≥ 1





= CX,T,r,ρmin





m∑

k=1

νk
Nk−1

+
∑

k≥m+1

νk, m ≥ 1,
∏

0≤k≤m−1

Nk≤N, N0≥· · · ≥ Nm−1≥1



 . (2.9)

The rest of the proof follows the approach developed in [14] (Section 4.1, especially Lemma
4.2, Theorem 4.6 (i)-(iii) and its proof) and [15]. However, one must be be aware that we had to
modify some notations.

Proposition 2 (See [14] for a proof) Assume νk = Φ(1/k), k ≥ 1, where Φ(x) = xϕ(x), ϕ :
(0,+∞) is an increasing, regularly varying function at 0 with index b ≥ 0 (with

∫ 1
0 ϕ(ξ)dξξ < +∞

when b = 0). Then

(i) limk νk/νk+1 = 1,

(ii)

(
n∏

k=1

νk

) 1
n

∼ eb+1νn,

(iii)
∞∑

k=n+1

νk + n νk ∼ cψ(1/n) where c = 1 + 1/b if b > 0 and c = 1 if b = 0 and

ψ(x) = ϕ(x) if b > 0 and ψ(x) :=

∫ x

0
ϕ(ξ)

dξ

ξ
if b = 0.
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Set m = m∗(N) = max




m ≥ 1 : N

1
m νm




m∏

j=1

νj




−1/m

≥ 1




,

and Nk−1 = Nk−1(N) :=


N

1
m νk




m∏

j=1

νj




−1/m

 ≥ 1, k = 1, . . . ,m.

It follows from Proposition 2 (ii) that

m = m∗(N) ∼ logN

b+ 1
as N → ∞.

Then,
m∑

k=1

νk
Nk−1

≤ max
k≥1

(1 + 1/Nk−1)mN− 1
m




m∏

j=1

νj




1
m

≤ 2me−
log N

m




m∏

j=1

νj




1
m

≤ 2mνm.

Consequently using this time (iii) in Proposition 2

m∑

k=1

νk
Nk−1

+
∑

k≥m+1

νk ≤ C


mνm +

∑

k≥m+1

νk




= O(ψ(1/ logN))

so that
‖ |X − X̂|Lp

T
‖r = O(ψ(1/ logN)).

Case 2 (ρ ≤ 1). One relies this time on the pseudo-triangular inequality

|f + g|rLr
T
≤ |f |rLr

T
+ |g|rLr

T

which follows from the elementary inequality (u+ v)r ≤ ur + vr.

|X − X̂|rLr
T

≤ T 1− r
2 |ξ0 − ξ̂N0

0 |r +
∑

n≥0

∣∣∣∣∣
2n−1∑

k=0

(ξ2n+k − ξ̂
N2n+k

2n+k )e2n+k

∣∣∣∣∣

r

Lr
T

= T 1− r
2 |ξ0 − ξ̂N0

0 |r + T 1− r
2

∑

n≥0

2n( r
2
−1)

2n−1∑

k=0

|ξ2n+k − ξ̂
N2n+k

2n+k |r

so that,

‖ |X − X̂|Lr
T
‖r

r
= ‖ |X − X̂|rLr

T
‖1

≤ T 1− r
2 ‖ |ξ0 − ξ̂N0

0 |r ‖1 + T 1− r
2

∑

n≥0

2n( r
2
−1)

∥∥∥∥∥
2n−1∑

k=0

|ξ2n+k − ξ̂
N2n+k

2n+k |r
∥∥∥∥∥

1
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≤ T 1− r
2 ‖ ξ0 − ξ̂N0

0 ‖rr + T 1− r
2

∑

n≥0

2n( r
2
−1)2n max

0≤k≤2n−1

∥∥∥|ξ2n+k − ξ̂
N2n+k

2n+k |r
∥∥∥

1

= T 1− r
2 ‖ ξ0 − ξ̂N0

0 ‖rr + T 1− r
2

∑

n≥0

2
nr
2 max

0≤k≤2n−1

∥∥∥|ξ2n+k − ξ̂
N2n+k

2n+k |r
∥∥∥

1

= T 1− r
2 ‖ ξ0 − ξ̂N0

0 ‖rr + T 1− r
2

∑

n≥0

2
nr
2 max

0≤k≤2n−1

∥∥∥ξ2n+k − ξ̂
N2n+k

2n+k

∥∥∥
r

r
. (2.10)

This inequality replaces (2.7). Then, one notes that

E |ξ2n+k|ρ ≤ 2
n
2
ρ T−ρ/2

(
2−(n+1)Tϕ(T/2n+1)

)ρ

= CX,T,r,ρ2
−n

2
ρ
(
ϕ(T/2n+1)

)ρ

so that

‖ |X − X̂ |Lr
T
‖r

r
≤ CX,T,r,ρ


 1

N r
0

+
∑

n≥0

ϕ(T2−(n+1))r

N r
2n+1


 .

Then, set ϕ̃(u) = (ϕ(u))r, Ñk = N r
k and Ñ := N r. One proceeds for ‖ |X − X̂ |Lr

T
‖r

r
with these

“tilded” parameters like for ‖ |X − X̂ |Lr
T
‖r in the case ρ > 1. ♦

Remarks. When p ≥ ρ > r, the (Lr(P), Lp
T
)-quantization problem remains consistent. But there

is a price to be paid for considering a p exponent greater than ρ. Thus, if ϕ in (L(ρ,ϕ) has regular

variations with exponents b > 0 at 0 and if b+ 1
p − 1

r > 0, the same approach yields the rate

eN,r(X,L
p
T
) ≤ CX,r,δ,T,pϕ(1/ logN)(logN)

1
r
− 1

p .

We do not know whether it comes from our approach or if it is the best possible rate.

3 Applications and examples

In this section, we give some examples which illustrate that the upper-bound derived from the
mean pathwise regularity may be optimal or not.

3.1 Application to Itô processes and d-dimensional diffusion processes

• Let W denote an Rd-valued standard Brownian motion defined on a probability space (Ω,A,P)
and let (FW

t )t∈[0,T ] denote its natural filtration (completed with all the P-negligible sets). Let X
be a 1-dimensional Itô process defined by

dXt = Gt dt+Ht.dWt, X0 = x0∈ R

where (Gt)t∈[0,T ] is a real-valued process and (Ht)t∈[0,T ] is an Rd-valued process, both assumed

(FW
t )t∈[0,T ]-progressively measurable. Assume there exists a real number ρ ≥ 2 such that

sup
t∈[0,T ]

E|Gt|ρ + sup
t∈[0,T ]

E|Ht|ρ < +∞. (3.11)

where | . | denotes any norm on Rd. Then, it is classical background, see e.g. [2], that the ϕ-Lipschitz

Assumption (Lϕ,ρ)(i) (i.e. (2.3)(i)) is satisfied with ϕ(u) = c u
1
2 . It follows from Theorem 1

∀ r, p∈ (0, ρ), eN,r(X,L
p
T
) = O

(
(logN)−1/2

)
.
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• Let X = (X1, . . . ,Xd) be an Rd-valued diffusion process defined by

dXt = b(t,Xt) dt + σ(t,Xt) dWt, X0 = x0∈ R
d

where b : [0, T ] × Rd → Rd, σ : [0, T ] × Rd → M(d× q,R) are Borel functions satisfying

∀ t ∈ [0, T ], ∀x∈ R
d, |b(t, x)| + ‖σ(t, x)‖ ≤ C(1 + |x|)

and W is an Rq-valued standard Brownian motion(1). Then, every component Xi is an Itô process
(with Gt = bi(t,Xt) and Ht := σi.(t,Xt)) for which Assumption (3.11) is satisfied for every ρ > 0
(see e.g. [2]). On the other hand, if (u1, . . . , ud) denotes the canonical basis of Rd and | . | denotes
any norm on Rd, then for every p ≥ 1 and every f :=

∑
1≤i≤d f

iui : [0, T ] → Rd,

|f |Lp

Rd
([0,T ],dt) ≤

d∑

i=1

|f i|Lp
T
|ui|.

Now, one can quantize each Itô process (Xi
t)t∈[0,T ], i = 1, . . . , d using an (Lr, Lp

T
)-optimal quantizer

α(i) of size [ d
√
N ]. It is clear that the resulting product quantizer

∏d
i=1 α

(i) of size [ d
√
N ]d ≤ N

induces an (Lr, Lp
Rd([0, T ], dt))-quantization error O

(
(logN)−1/2

)
(see e.g. [16]). Combining these

obvious remarks finally yields

∀ r, p > 0, eN,r(X,L
p
Rd([0, T ], dt)) = O

(
(logN)−1/2

)
.

As far as quantization rate is concerned, this extends to general d-dimensional diffusions a first
result obtained in [16] by stochastic calculus techniques for a more restricted class of Brownian
diffusions (which included 1-dimensional ones). This also extends (the upper bound part of the)
the result obtained in [5] for another class of (possibly multi-dimensional) Brownian diffusions. For
the class investigated in [16] it is shown that under a mild ellipticity assumption on σ, this rate is
optimal. In [5], still with an ellipticity assumption, the rate is sharp. This leads us to conjecture
that this rate is optimal for non too degenerate Brownian diffusions.

3.2 Application to fractional Brownian motion

The Fractional Brownian MotionWH with Hurst constantH∈ (0, 1] is a Gaussian process satisfying
for every ρ > 0,

E |WH
t −WH

s |ρ = CH,p|t− s|ρH and (WH
s )0≤s≤t

L∼ tH(WH
s/t)0≤s≤t.

So, using Theorem 1, we obtain eN,r(W
H , Lp

T
) = O((logN)−H) as an (Lr(P), | . |Lp

T
)-quantization

rate for every r, p > 0. This rate is known to be optimal: a sharp rate is established (see [15] when
p = r = 2 or [6]).

3.3 Stationary processes

Let X be a centered weakly (square integrable) stationary process. Then

E|Xt −Xs|2 = E|Xt−s −X0|2 = 2Var(X0)(1 − c(|t− s|))
1The above assumption does not imply that such a diffusion process X exists. The existence holds as soon as b

and σ are Lipschitz in x uniformly with respect to t∈ [0, T ]

11



where c(t) denotes the correlation between Xt and X0. Hence if

c(u) = 1 − κu2a

then the Lr(P)-rate for Lp
T
-quantization, 0 < p, r < 2, will be O((log(N))−a). If furthermore, X is

a Gaussian process, then this O((log(N))−a) rate holds for any r, p > 0 since for every ρ∈ N∗,

E|Xt −Xs|ρ = E|Xt−s −X0|ρ = Cρ(Var(X0)(1 − c(|t− s|)))ρ/2.

3.4 Self-similar processes with stationary increments

Let X = (Xt)t∈[0,T ] be an H-self-similar process with stationary increments (H ∈ (0,∞)). Assume
X1∈ Lρ(P) for some ρ ≥ 1. Then

E|Xt −Xs|ρ = Cρ|t− s|ρH

for every s, t ∈ [0, T ]. Since X is stochastically continuous, it has a bi-measurable modification.
Then, Theorem 1 gives

∀ r, p∈ (0, ρ), eN,r(X,L
p
T
) = O((logN)−H).

If, furthermore, X is α-stable, α∈ (1, 2), then X1∈ Lρ(P) for every ρ∈ [1, α) so that

∀ r, p∈ (0, α), eN,r(X,L
p
T
) = O((logN)−H).

This class of examples comprises e.g. the linear H-fractional α-motions with α∈ (1, 2), H ∈ (0, 1)
and the log-fractional α-stable motions with α∈ (1, 2), where H = 1/α (see [19], [8]).

3.5 Lévy processes: a first approach

A (càdlàg) Lévy process – or Process with Stationary Independent Increments – is characterized by
its so-called local characteristics appearing in the Lévy-Khintchine formula. These characteristics
depend on the way the “big” jumps are truncated. We will adopt in the following the convention
that the truncation occurs at size 1. So that

E(eiuXt) = e−tψ(u) where ψ(u) = −iua+
1

2
σ2u2 −

∫

R\{0}
(eiux − 1 − iux1{|x|≤1})ν(dx)

where a, σ∈ R, ν is a non-negative measure on R \ {0} such that ν(x2 ∧ 1) < +∞. The measure ν
is called the Lévy measure of the process. One shows that a Lévy process is a compound Poisson

process if and only if ν is a finite measure and has finite variation if and only if

∫

{|x|≤1}
|x|ν(dx) <

+∞. Furthermore

Xt∈ Lρ(P) if and only if

∫

{|x|≥1}
|x|ρν(dx) < +∞.

As concerns Assumption (2.3) note that the very definition of a Lévy process implies that

E |Xt −Xs|ρ = E |Xt−s|ρ and E sup
s∈[t,t+h]

|Xt −Xs|ρ = E sup
s∈[0,h]

|Xs|ρ

so that we may focus on the distribution of Xt and X∗
t := sups∈[0,t] |Xs|. Finally, note that it

follows from the usual symmetry principle that for any Lévy process, P(X∗
t > u + v) ≤ P(|Xt| >

u)/P(X∗
t ≤ v/2) so that E|Xt|r and E|X∗

t |r are simultaneously finite or infinite when r > 0.
The following result is established in [17].
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Lemma 1 (Millar’s Lemma) If there is a real number ρ∈ (0, 2] such that

∫
|x|ρν(dx) < +∞, then

there exists some real constant aρ∈ R such that

∀ t∈ [0, 1], E

(
sup
s∈[0,t]

|Xs − aρs|ρ
)

≤ Cρ t (3.12)

for some real constant Cρ > 0. Furthermore, one may set aρ = 0 if ρ ≥ 1.

Hence, it follows as a consequence of Theorem 1 that

∀ r, p∈ (0, ρ), eN,r(X,L
p
T
) = O

(
(logN)

− 1
ρ

)
. (3.13)

This follows from the following straightforward remark: let β ⊂ Lp
T

be an N -quantizer and let
ξ∈ Lp

T
(here ξ(t) = aρt); then

‖|X − X̂β |Lp
T
‖r = ‖ |(X + ξ) − ̂(X + ξ)

ξ+β
|Lp

T
‖r with ξ + β = {ξ + f, f ∈ β}.

However rate (3.13) may be sub-optimal as illustrated below with α-stable processes and Poisson
processes. In Section 4 we establish two improvements of this rate under some natural hypothesis
(see Theorem 2 for a broad class of Lévy processes with an infinite Lévy measure an and Proposi-
tion 4 for compound Poisson processes).

• The α-stable processes The (strictly) α-stable processes are families of Lévy processes in-
dexed by α∈ (0, 2) satisfying a self-similarity property, namely

∀ t∈ R+, Xt
L∼ t1/αX1 and sup

0≤s≤t
|Xs| L∼ t1/α sup

0≤s≤1
|Xs|.

Furthermore,

sup{r : E( sup
0≤s≤1

|Xs|r) < +∞} = α and E |X1|α = +∞.

Consequently it follows from Theorem 1 applied with ϕ(u) := u
1
α that

∀ p, r∈ (0, α), eN,r(X,L
p
T
) = O

(
1

(logN)
1
α

)
.

Although we provide no proof for it in this paper, it seems clear that this rate is optimal.

• The Γ-processes These are Lévy processes whose distribution PXt at time t is a γ(α, t)-
distribution

PXt(dx) =
αt

Γ(t)
1(0,∞)(x)x

t−1e−αxdx.

So, easy computations show that for every ρ ≥ 1,

E|Xt|ρ =
Γ(t+ ρ)

αρΓ(t+ 1)
t ∼ Γ(ρ)

αρΓ(1)
t as t→ 0.

Consequently it follows from Theorem 1 that

∀ r∈ [1,+∞), ∀ p ∈ [0, r], eN,r(X,L
p
T
) = O

(
1

(log(N))
1
r
−ε

)
, ∀ ε > 0.
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• Compound Poisson processes from the pathwise regularity viewpoint One considers
a compound Poisson process

Xt =
Kt∑

k=1

Uk,

where K = (Kt)t∈[0,T ] denotes a standard Poisson process with intensity λ = 1 defined on a
probability space (Ω,A,P) and (Uk)k≥1 an i.i.d. sequence of random variables defined on the same
probability space, with U1∈ Lρ(P) for some ρ > 0. Then, standard computations show that,

E sup
0≤s≤t

∣∣∣∣∣
Ks∑

k=1

Uk

∣∣∣∣∣

ρ

≤ E

Kt∑

k=1

|Uk|ρ = t ‖U1‖ρρ if 0 < ρ ≤ 1, (3.14)

E

∣∣∣∣∣
Kt∑

k=1

Uk

∣∣∣∣∣

ρ

≤ t ‖U1‖ρρ ×

e−t

∑

k≥1

tk−1kρ

k!


 if ρ > 1, (3.15)

Consequently, Assumption (2.3) is fulfilled with ϕ(u) = c ub, b = 1/ρ, c positive real constant.
Theorem 2 then yields

∀ r, p∈ (0, ρ), eN,r(X,L
p
T
) = O((logN)−1/ρ).

Note that when ρ ≤ 2, this is a special case of (3.12). These rates are very far from optimality as
it will be seen further on (in Section 4 some faster rates are established by a completely different
approach based on the almost finite-dimensional feature of the paths of such elementary jump
processes). This will emphasize that the mean pathwise regularity of t 7→ Xt does not always rule
the quantization rate.

4 A quantization rate for general Lévy processes

One aim of this section is to prove the following theorem for Lévy processes having no Brownian
component. Before stating the theorem we need some further notations related to Lévy processes.
Set

θ := inf

{
θ > 0 :

∫

{|x|≤1}
|x|θν(dx) < +∞

}
∈ [0, 2], (4.16)

r∗ := sup

{
r > 0 :

∫

{|x|>1}
|x|rν(dx) < +∞

}
≤ +∞. (4.17)

The exponent θ is known as the Blumenthal-Getoor index of X (and is often denoted β(X) in
the literature). Then, one defines on (0,∞) the tail function of the Lévy measure ν : u 7→ ν(u) :=

ν([−u, u]c). Finally we set for every θ > 0, ℓ(t) := t ν(t
1
θ ) and for every ρ > 0

Λρ(t) := ℓ(t) +
√
ℓ(t) + (ℓ(t))

1
ρ + (ℓ(t))

2
ρ 1{1<θ<2}

if ν is not symmetric and

Λρ(t) :=
√
ℓ(t) + (ℓ(t))

1
ρ + (ℓ(t))

2
ρ 1{1<θ<2}

if ν is symmetric.
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Theorem 2 Let X = (Xt)t∈[0,T ] be a Lévy process with Lévy measure ν without Brownian compo-
nent. Assume r∗, θ > 0.

(a) Assume θ∈ (0, 2] \ {1}. If

∫

{|x|≤1}
|x|θν(dx) < +∞ (i.e. θ holds as a minimum) or if the Lévy

measure satisfies

∃ c∈ (0, 1], ∃C > 0, 1{0<|x|≤c}ν(dx) ≤
C

|x|θ+1
1{0<|x|≤c}dx (4.18)

then
∀ r, p∈ (0, θ ∧ r∗), eN,r(X,L

p
T
) = O((logN)

− 1
θ ). (4.19)

(b) Assume θ ∈ (0, 2) \ {1}. If the tail function of the Lévy measure ν has regular variation with
index −b at 0, then b = θ and the function ℓ is slowly varying at 0. If furthermore, the functions

t 7→ t
1
θ Λρ(t) are increasing in a neighbourhood of 0, then

∀ r, p∈ (0, θ ∧ r∗), eN,r(X,L
p
T
) = O

(
(logN)

− 1
θ Λρ((logN)−1)

)
, ρ∈ (r ∨ p, θ). (4.20)

(c) Assume θ < r∗. For every r∈ [θ, r∗) and every p ∈ (0, r],

eN,r(X,L
p
T
) = O((logN)−

1
r
+η), ∀η > 0. (4.21)

(d) If θ = 1 and ν is symmetric the above rates (4.19) and (4.20) are still valid.

Remarks. • In (a) we only used (4.18), not the definition of θ as the Blumenthal-Getoor index of
X.

• When θ∈ {1, 2}, some rates can also be derived (even when ν is not symmetric): thus in item (a),
if θ = 1, one can show by adapting the proof of case θ∈ (1, 2) in Proposition 3 below that

eN,r(X,L
p
T
) = O

(
log logN

logN

)
.

• In (4.20), there is always a dominating term in the definition of Λρ.

• Note that this theorem provides no rate when θ = 0 which is the case of an important class of
Lévy processes including compound Poisson processes. In fact for these processes the quantization
rate is not ruled by the mean regularity of their paths, as emphasized in Section 4.1.

• The proof of this theorem relies on Theorem 1, i.e. on the mean pathwise regularity of X, hence
the critical value θ for ρ cannot be overcome by such an approach since Assumption (Lϕ,ρ) for
ρ > θ would imply that X has a pathwise continuous modification by the celebrated Kolmogorov
criterion.

Examples. • Note that for α-stable processes, r∗ = θ = α, ν satisfies (4.18) and limu→0 ℓ(u) ∈
(0,∞) so that both rates obtained from (4.19) and (4.20) coincide with that obtained in Section 3.5,

i.e. O((logN)−
1
α ). This rate is most likely optimal.

• Let ν1
a,θ(dx) := κ |x|−θ−1(− log |x|)−a1(0,c](|x|)dx, with 0 < c < 1, κ > 0, a > 0 if θ∈ (0, 2), then

ℓ(u) ∼ θa−1(− log u)−a as u → 0. If a Lévy process X has ν1
a,θ as a Lévy measure, then r∗ = +∞

and

∀ r, p∈ (0, θ), eN,r(X,L
p
T
) = O

(
(logN)

− 1
θ (loglogN)−a

)
.

Such a rate improves the one provided by (4.19)

15



• Let ν2
a,θ(dx) = κ |x|−θ−1(− log |x|)a1(0,c](|x|)dx, κ, a > 0, 0 < c < 1, θ ∈ (0, 2). Then ℓ(u) ∼

θ−a−1(− log u)a as u→ 0. Note that ν2
a,θ does not satisfy (4.18). If a Lévy process X has ν2

a,θ as a
Lévy measure, then r∗ = +∞ and

∀ r, p∈ (0, θ), eN,r(X,L
p
T
) =





O

(
(logN)

− 1
θ (loglogN)

a
θ−η

)
, η∈ (0, θ) if θ < 1

O

(
(logN)

− 1
θ (loglogN)

2a
θ−η

)
, η∈ (0, θ) if θ∈ [1, 2).

• Hyperbolic Lévy motions have been applied to option pricing in Finance (see [7]). These processes
are Lévy processes whose distribution PX1 at time 1 is a symmetric (centered) hyperbolic ditribution

PX1 = Ce−δ
√

1+(x/γ)2dx, γ, δ > 0.

Hyperbolic Lévy processes are martingales with no Brownian component, satisfy r∗ = +∞. Their
symmetric Lévy measure has a Lebesgue density that behaves like C x−2 as x→ 0 (so that (4.18)
is satisfied with θ = 1). Hence one obtains for every r, p∈ (0, 1),

eN,r(X,L
p
T
) = O((logN)−1)

and, for every r ≥ 1 and every p ∈ (0, r], eN,r(X,L
p
T
) = O((logN)−

1
r
+η), η > 0.

The proof of this theorem is divided in several steps and is deferred to Section 4.3. The reason
is that it relies on the decomposition of X as the sum of a “bounded” jump and a “big” jump Lévy
processes which are treated successively in the two following sections..

4.1 Lévy processes with bounded jumps

We consider in this section a Lévy process X without Brownian component (σ = 0), with jumps
bounded by a real constant c > 0. This means in term of the Lévy measure ν of X that

ν([−c, c]c) = 0. (4.22)

Then for every ρ > 0 and every t ≥ 0, Xt ∈ Lρ(P) i.e. r∗ = +∞. In Proposition 3 below we
establish Theorem 2 in that setting.

Proposition 3 Let (Xt)t∈[0,T ] be a Lévy process satisfying (4.22) and θ > 0. Then claims (a)-(b)-
(c)-(d) in Theorem 2 hold true with r∗ = ∞.

Proof. The proof of this proposition is decomposed into several steps. We consider θ as defined
in Theorem 1. Note that in the present setting θ = inf{θ > 0 :

∫
|x|θν(dx) < +∞} and that∫

|x|θν(dx) < +∞ for every θ > θ. The starting idea is to part the “small” and the “big” jumps

of X in a non homogeneous way with respect to the function s 7→ s
1
θ . We will inspect successively

the cases θ∈ (0, 1) and θ∈ [1, 2].

Step 1 (Decompositions of X): When θ∈ (0, 1), then

E|
∑

0<s≤T
∆Xs| ≤ E

∑

0<s≤T
|∆Xs| = T

∫
|x|ν(dx) < +∞

consequently X P-a.s. has finite variation and one can decompose X as

Xt = ξ(t) +
∑

0<s≤t
∆Xs. (4.23)
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where ξ(t) = at is a linear function.
Assume now θ∈ [1, 2]. One may decompose X as follows

Xt = ξ(t) +X
(θ)
t +M

(θ)
t (4.24)

with ξ(t) := tE(X1),

X
(θ)
t :=

∑

0<s≤t
∆Xs1

{|∆Xs|>s
1
θ }

−
∫ t

0
ds

∫

{s
1
θ<|x|≤c}

x ν(dx).

Note that X(θ) has finite variations on [0, T ] since

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ν(dx) =

∫

{|x|≤c}
|x|(|x|θ ∧ t)ν(dx) ≤

∫

{|x|≤c}
|x|1+θν(dx) < +∞.

Both X(θ) and M (θ) are martingales with (non-homogeneous) independent increments. Their in-
creasing predictable “bracket” processes are given by

<X(θ)>t=

∫ t

0
ds

∫

{|x|>s
1
θ }
x2ν(dx) and <M (θ)>t=

∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx).

We may consider from now on the (supremum process of the) Lévy process X̃t := Xt − ξ(t)
where ξ is the the linear function defined by (4.23) and (4.23) respectively. Since the linear function
ξ lies in Lp

T
, it does not affect the quantization rate which is invariant by translation.

Step 2 (Increments estimates in Lρ(P)) : In this step we evaluate sup0≤s≤t |X̃s| in Lρ(P), ρ∈ (0, 2].
Throughout this step, letter c comes from (4.22).

Lemma 2 (a) Assume θ∈ (0, 1). For every ρ∈ (0, 1] and every t∈ [0, T ],

E

(
sup

0≤s≤t
|X̃s|ρ

)
≤ Cρ



(∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx)

) ρ
2

+

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρν(dx)

+ sup
0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{|x|≤u
1
θ }
x ν(dx)

∣∣∣∣∣

ρ)
. (4.25)

(b) Assume θ∈ [1, 2]. For every ρ∈ (0, 2] and every t∈ [0, T ],

E

(
sup

0≤s≤t
|X̃s|ρ

)
≤ Cρ



(∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx)

) ρ
2

+

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρν(dx)

+

(∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|
ρ
2 ν(dx)

)2
+ sup

0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{u
1
θ<|x|≤c}

x ν(dx)

∣∣∣∣∣

ρ

.(4.26)

Proof: (a) Using ρ∈ (0, 1] and Doob’s inequality yield

E sup
0≤s≤t

|X̃s|ρ ≤ E sup
0≤s≤t

|
∑

0≤u≤s
∆Xu1

{|∆Xu|≤u
1
θ }
|ρ + E sup

0≤s≤t
|
∑

0≤u≤s
∆Xu1

{|∆Xu|>u
1
θ }
|ρ

≤


E sup

0≤s≤t


 ∑

0≤u≤s
∆Xu1

{|∆Xu|≤u
1
θ }




2



ρ
2

+ E
∑

0<s≤t
|∆Xs|ρ1

{|∆Xs|>s
1
θ }
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≤ Cρ





E sup

0≤s≤t


 ∑

0≤u≤s
∆Xu1

{|∆Xu|≤u
1
θ }

−
∫ s

0
du

∫

{|x|≤u
1
θ }
x ν(dx)




2



ρ
2

+ sup
0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{|x|≤u
1
θ }
x ν(dx)

∣∣∣∣∣

ρ

+

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρ ν(dx)
)

≤ Cρ



(∫ t

0

∫

{|x|≤s
1
θ }
x2 ν(dx)

) ρ
2

+ sup
0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{|x|≤u
1
θ }
x ν(dx)

∣∣∣∣∣

ρ

+

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρ ν(dx)

 .

(b) It follows from Doob’s inequality (and 0 < ρ/2 ≤ 1)

E sup
0≤s≤t

|M (θ)
s |ρ ≤

[
E sup

0≤s≤t
(M (θ)

s )2
] ρ

2

≤
(

4

∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx)

) ρ
2

.

On the other hand, since ρ∈ (0, 2], on uses that

sup
0≤s≤t

|X(θ)
s |ρ ≤ Cρ





 ∑

0<s≤t
|∆Xs|

ρ
2 1

{|∆Xs|>s
1
θ }




2

+ sup
0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{u
1
θ<|x|≤c}

x ν(dx)

∣∣∣∣∣

ρ



≤ Cρ





 ∑

0<s≤t
|∆Xs|

ρ
2 1

{|∆Xs|>s
1
θ }

−
∫ t

0
ds

∫

{|x|>s
1
θ }

|x|
ρ
2 ν(dx)




2

+

(∫ t

0
ds

∫

{|x|>s
1
θ }

|x|
ρ
2 ν(dx)

)2

+ sup
0<s≤t

∣∣∣∣∣

∫ s

0
du

∫

{u
1
θ<|x|≤c}

x ν(dx)

∣∣∣∣∣

ρ)
.

Hence, using again Doob’s inequality

E sup
0≤s≤t

|X(θ)
s | ρ ≤ Cρ



∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρν(dx)+
(∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|
ρ
2 ν(dx)

)2

+ sup
0<s≤t

∣∣∣∣∣

∫ s

0
du

∫

{u
1
θ<|x|≤c}

x ν(dx)

∣∣∣∣∣

ρ

 . ♦

Lemma 3 (First extended Millar’s Lemma) (a) Assume θ ∈ (0, 2] \ {1}. If the Lévy measure
satisfies Assumption (4.18) then

∀ ρ∈ (0, θ), ∀ t∈ [0, T ], E sup
0≤s≤t

|X̃s|ρ ≤ Cρ t
ρ
θ . (4.27)

(b)Assume θ∈ (0, 2) \ {1} and that the function u 7→ ν(u) has regular variation with index −b at 0.
Then b = θ and, for every ρ∈ (0, θ), there exists Tρ∈ (0, T ] such that

∀ t∈ [0, Tρ], E sup
0≤s≤t

|X̃s|ρ ≤ Cρ(t
1
θ Λρ(t))

ρ. (4.28)

(c) The above upper-bounds still hold if θ = 1 provided ν is symmetric (with the appropriate Λρ).

Proof: (a) On just needs to investigate all the integrals appearing in the right hand side of
Inequalities (4.25) and (4.26) in Lemma 2. Let ρ∈ (0, θ) and let t∈ [0, c θ ∧ T ]. Then, if θ∈ (0, 2),

∫ t

0
ds

∫

{0<|x|≤s
1
θ }
x2ν(dx) ≤ C

∫ t

0
ds

∫

{0<|x|≤s
1
θ }

|x|1−θdx ≤ C

∫ t

0
s

2
θ
−1
ds = Ct

2
θ
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where the real constant C comes from (4.18). If θ = 2,

∫ t

0
ds

∫

{0<|x|≤s
1
θ }
x2ν(dx) ≤

∫
x2ν(dx) t =

∫
x2ν(dx) t

2
θ .

Then, still for for every t∈ [0, c θ ∧ T ],

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρν(dx) ≤ C

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|ρ−θ−1dx ≤ C

θ − ρ

∫ t

0
s

ρ
θ
−1
ds = Ct

ρ
θ .

When θ∈ (0, 1),

sup
0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{|x|≤u
1
θ }
x ν(dx)

∣∣∣∣∣ ≤
∫ t

0

∫

{|x|≤s
1
θ }

|x|ν(dx) ≤ C

∫ t

0

s
1
θ − 1

1 − θ
ds =

C

1 − θ
t

1
θ
.

Similarly when θ∈ (1, 2], still for for every t∈ [0, c θ ∧ T ],

sup
0≤s≤t

∣∣∣∣∣

∫ s

0
du

∫

{u
1
θ<|x|≤c}

x ν(dx)

∣∣∣∣∣ ≤
∫ t

0
ds

∫

{|x|>s
1
θ }

|x|ν(dx) ≤ C

∫ t

0

s
1
θ

θ − 1
ds =

C

θ − 1
t

1
θ

and

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|
ρ
2 ν(dx) ≤ C

∫ t

0
ds

∫

{s
1
θ<|x|≤c}

|x|
ρ
2
−θ−1dx ≤ C

θ − ρ
2

∫ t

0
s

ρ
2θ

−1
ds = Ct

ρ
2θ .

One derives from (4.25) and (4.26) that there exists a positive real constant Cρ such that

∀ t∈ [0, c θ ∧ T ], E sup
0≤s≤t

|X̃s|ρ ≤ Cρ t
ρ
θ .

The inequality holds for every t∈ [0, T ] by simply adjusting the constant Cρ.

(b) The fact that b = θ was first established in [3]. We provide below a short proof, on the way to our
main result, for the reader’s convenience. It follows from Theorem 1.4.1 in [1] that ν(u) = u−bℓ(u)
where ℓ is a (non-negative) slowly varying function. Consequently by the Markov inequality, one
has, for every ρ > 0 and every u > 0

uρ−bℓ(u) ≤
∫

{|x|>u}
|x|ρν(dx).

Now, the left hand side of the above inequality goes to ∞ as u → 0 as soon as ρ < b since ℓ has
slow variations (see Proposition 1.3.6 in [1]). Consequently ρ ≤ θ. Letting θ go to b implies that
b ≤ θ.

We will make use of the following easy equality which follows from the very definition of ν: for
every non-negative Borel function f : R+ → R,

∫

R

f(|x|)ν(dx) = −
∫

R+

f(x)dν(x). (4.29)

In particular, for every x∈ (0, c] and every a > 0,

∫

{|u|≥x}
|u|aν(du) = −

∫ c

x
uadν(u)
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Assume b < θ. Then, it follows from Theorem 1.6.4 in [1] that for every a∈ (b, θ),

∫ c

x
uadν(u) ∼ b

b− a
xa ν(x) =

b

b− a
xa−bℓ(x) → 0 as x→ 0,

since ℓ is slowly varying. This contradicts
∫
|u|aν(du) = +∞. Consequently b = θ.

Now, Theorem 1.6.5 in [1] implies that for any a > θ

∫

{|u|≤x}
|u|aν(du) = −

∫

(0,x]
uadν(u) ∼ θ

a− θ
xaν(x) as x→ 0.

Since θ 6= 2,this yields

∫

{|x|≤s
1
θ }
x2ν(dx) ∼ θ

2 − θ
s

2
θ ν(s

1
θ ) as s→ 0

which in turn implies that

∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx) ∼ θ

2 − θ

∫ t

0
s

2
θ ν(s

1
θ )ds as t→ 0.

The function s 7→ ν(s
1
θ ) has regular variation (at 0) with index −1, hence Theorem 1.6.1 in [1]

implies ∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx) ∼ Cθ t

2
θ
+1
ν(t

1
θ ) as t→ 0.

Finally, (∫ t

0
ds

∫

{|x|≤s
1
θ }
x2ν(dx)

) ρ
2

∼ Cρ,θ

(
t

1
θ (ℓ(t))

1
2

)ρ
as t→ 0. (4.30)

When θ∈ (0, 1) and ρ∈ (0, θ), the same approach leads to

sup
0<s≤t

∣∣∣∣∣

∫ s

0
du

∫

{|x|≤u
1
θ }
xν(dx)

∣∣∣∣∣ ≤
∫ t

0
ds

∫

{|x|≤s
1
θ }

|x|ν(dx) ∼ Cθ t
1
θ ℓ(t) as t→ 0.

Then, it follows from Theorem 1.6.4 in [1] that, for every ρ∈ (0, θ),

∫

{s
1
θ ≤|x|≤c}

|x|ρν(dx) = −
∫ c

s
1
θ
xρdν(x) ∼ θ

θ − ρ
s

ρ
θ ν(s

1
θ ) as s→ 0

so that
∫ t

0

∫

{s
1
θ ≤|x|≤c}

|x|ρν(dx) ∼ θ

θ − ρ

∫ t

0
s

ρ
θ ν(s

1
θ )ds ∼ Cρ,θ

(
t

1
θ (ℓ(t))

1
ρ

)ρ
as t→ 0.

Similarly (by formally setting ρ = 1 in the former Equation) one shows that if θ∈ (1, 2],

sup
0<s≤t

∣∣∣∣∣

∫ s

0
du

∫

{u
1
θ ≤|x|≤c}

x ν(dx)

∣∣∣∣∣ ≤
∫ t

0
ds

∫

{s
1
θ ≤|x|≤c}

|x|ν(dx) ∼ Cθ t
1
θ ℓ(t) as t→ 0. (4.31)

Finally, one shows similarly for the last term in (4.26) that when ρ∈ (0, θ),

(∫ t

0

∫

{s
1
θ ≤|x|≤c}

|x|
ρ
2 ν(dx)

)2

∼ Cρ,θ

(
t

1
θ (ℓ(t))

2
ρ

)ρ
as t→ 0.
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Plugging these estimates in (4.25) and (4.26) yields that X̃ satisfies Assumption (Lϕ,ρ) with
the announced function ϕρ .

(c) When ν is symmetric (and θ∈ (1, 2]), for every s∈ [0, T ],

∫ s

0
du

∫

{u
1
θ ≤|x|≤c}

xν(dx) = 0

so that the condition θ 6= 1 induced by (4.31) is no longer necessary. Similarly, when θ∈ (0, 1],

∫ s

0
du

∫

{|x|≤u
1
θ }
xν(dx). ♦

Step 3 (Higher moments and end of the proof): Claims (a) (when θ holds as a minimum) and (c),
when r < 2, straightforwardly follow from Millar’s Inequality (3.12) by applying Theorem 1 to the

function ϕ(u) = u
1
θ with ρ = θ for item (a) and ϕ(u) = u

1
ρ with ρ∈ (r, 2] for item (c).

Item (a) when Assumption (4.18) is fulfilled follows from Lemma 3(a) and Theorem 1 applied

with the function ϕ(u) = u
1
θ . Finally item (b) follows from Lemma 3(b) and Theorem 1.

Item (d) follows from Lemma 3(c) and Theorem 1. At this stage it remains to prove Item (c)
when r ≥ 2. This follows (when r > 2) from the extension of Millar’s upper-bound established in
the lemma below.

Lemma 4 (Second Extended Millar’s Lemma) Let (Xt)t∈[0,T ] be a Lévy process without Brownian
part such that ν([−c, c]c) = 0. For every ρ ≥ 2, there exists a real constant Cρ,T > 0 such that

∀ t∈ [0, T ], E( sup
0≤s≤t

|Xs|ρ) ≤ Cρ,T t.

Proof. One considers again X̃t = Xt − tEX1 which is a martingale Lévy process. Let kρ :=
max{l : 2l < ρ}. For every k = 1, . . . , kρ, one defines the martingales

M
(k)
t :=

∑

0<s≤t
|∆Xs|2

k − t

∫
|x|2k

ν(dx).

The key of the proof is to apply the B.D.G. Inequality in cascade. It follows from the B.D.G.
Inequality that

E sup
0≤s≤t

|X̃s|ρ ≤ CρE


 ∑

0<s≤t
(∆Xs)

2



ρ/2

≤ Cρ

(
E

(
N

(1)
t

)ρ/2
+

(
t

∫
x2ν(dx)

)ρ/2)
.

Now, for every k∈ {1, . . . , kρ − 1}, still using the B.D.G. Inequality yields

E

(
M

(k)
t

)ρ/2k

≤ Cρ,kE


 ∑

0<s≤t
|∆Xs|2

k+1



ρ/2k+1

≤ Cρ,k

(
E

(
N

(k+1)
t

)ρ/2k+1

+

(
t

∫
|x|2k+1

ν(dx)

)ρ/2k+1)
.
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Finally, one gets

E sup
0≤s≤t

|X̃s|ρ ≤ Cρ




kρ∑

k=1

(
t

∫
|x|2k

ν(dx)

)ρ/2k

+ E


 ∑

0<s≤t
|∆Xs|2

kρ+1



ρ/2kρ+1



≤ Cρ




kρ∑

k=1

(
t

∫
|x|2k

ν(dx)

)ρ/2k

+ E
∑

0<s≤t
|∆Xs|ρ




= Cρ




kρ∑

k=1

(
t

∫
|x|2k

ν(dx)

)ρ/2k

+ t

∫
|x|ρν(dx)


 .

since ρ/2kρ+1 ≤ 1. The conclusion follows from the fact that t2
k

= o(t). ♦

4.2 Compound Poisson process

In this section we consider a compound Poisson process (Xt)t defined by

Xt :=
∑

n≥1

Un1{Sn≤λT}, t ≥ 0.

where Sn = Z1 + · · · + Zn, (Zn)n≥1 is an i.i.d. sequence of Exp(1) distributed random variables,
(Un)n≥1 is an i.i.d. sequence of random variables, independent of (Zn)n≥1 with U1∈ Lρ, ρ > 0 and
λ > 0 is the the jump intensity. For convenience we also introduce the underlying standard Poisson
process (Kt)t≥0 defined by

Kt :=
∑

n≥1

1{Sn≤λT}, t ≥ 0.

so that (with the convention that
∑

∅ = 0)

Xt =
Kt∑

k=1

Uk. (4.32)

Proposition 4 Let X be a compound Poisson process. Then for every p, r∈ (0, r∗), p ≤ r,

∀ ε > 0, eN,r(X,L
p
T
) = O

(
exp

(
− 1√

r(p+ 1 + ε)

√
log(N) log2(N)

))
. (4.33)

Furthermore when X is a standard Poisson process, then, one can replace p+1+ε by p+ε in (4.33).

Remarks. • Note that (4.33) implies that

∀ a > 0, eN,r(X,L
p
T
) = o((logN)−a).

• In fact the rate obtained in the above proposition holds as soon as X has the form (4.32) where
(Zn) is as above and (Un) is Lr(P)-bounded for every r < r∗, independent of (Un)n≥1.

Proof. We divide the proof in two steps, one is devoted to the standard Poisson process, the second
one to the general case. We will assume that r∗ > 1 throughout the proof so that, so that as it
was already emphasized in the proof of Theorem 1 we may assume without loss of generality that
r, p∈ (0, r∗) ∩ [1,+∞). The case r∗ ≤ 1 is left to the reader but can be treated by replacing the
“triangular” Minkowski inequality by the pseudo-triangular inequalities |f + g|p

Lp
T
≤ |f |p

Lp
T

+ |g|p
Lp

T

and ‖U + V ‖r
r
≤ ‖U‖r

r
+ ‖V ‖r

r
.
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Step 1 (Standard case): One quantizes the standard Poisson K in a very natural way by setting

K̂t :=
∑

n≥1

1{Ŝn≤λt}, t ≥ 0,

with
Ŝn := Ŝn

αn
,

where αn = α′
n∪{λT}, α′

n is an Lr
′
-optimal (Nn−1)-quantization of Strn := Sn1{Sn≤λT} and r′ = r

p .
Furthermore, one assume that the sequence (Nn) is non-increasing and satisfies

∏
nNn ≤ N (so

that Nn = 1 for large enough n). Then, for every p ≥ 1, it follows from the (extended) Minkowski
inequality

|K − K̂|Lp
T
≤
∑

n≥1

|1{Sn≤λ.} − 1{Ŝn≤λ.}|Lp
T
.

Now

|1{Sn≤λ.} − 1{Ŝn≤λ.}|
p
Lp

T
=

∫ T

0
|1{Sn≤λt} − 1{Ŝn≤λt}|

pdt

=
1

λ
|Sn ∧ (λT ) − Ŝn ∧ (λT )| =

1

λ
|Sn ∧ (λT ) − Ŝn|.

Now {Sn > λT} ⊂ {Ŝn = λT} since maxαn = λT so that and Ŝn = λT on {Sn > λT}. On the
other hand Sn = Strn on {Sn ≤ λT} so that

|Sn ∧ (λT ) − Ŝn| = |Sn ∧ (λT ) − Ŝn|1{Sn≤λT} = |Strn − Ŝtrn |1{Sn≤λT} ≤ |Strn − Ŝtrn |.

Also note that when Nn = 1, Ŝn = λT so that |Sn ∧ (λT ) − Ŝn| = (λT − Sn)+. Consequently, for
every r ≥ 1,

‖ |K − K̂|Lp
T
‖r ≤

∑

n≥1

‖ |1{Sn≤λ.} − 1{Ŝn≤λ.}|Lp
T
‖r

≤ 1

λ
1
p

∑

n≥1

‖Sn ∧ (λT ) − Ŝn‖
1
p

r′

≤ 1

λ
1
p


 ∑

n,Nn≥2

‖Strn − Ŝtrn
αn‖

1
p

r′ +
∑

n,Nn=1

‖(λT − Sn)+‖
1
p

r′




≤ 1

λ
1
p


 ∑

n,Nn≥2

‖Strn − Ŝtrn
α′

n‖
1
p

r′ +
∑

n,Nn=1

‖(λT − Sn)+‖
1
p

r′


 .

The extended Pierce Lemma (Proposition 1) yields that, for every n ≥ 1 such that Nn ≥ 2, for
every δ > 0,

‖Strn − Ŝtrn
α′

n‖
r′

≤ ‖Strn ‖
r′+δ/p

Cr,p,δ |Nn − 1|−1

≤ 2‖Sn1{Sn≤λT}‖ r+δ
p
Cr,p,δN

−1
n .

Set µ := r′ + δ/p = r+δ
p so that µp = r + δ.

‖ |K − K̂|Lp
T
‖r ≤ Cp,r,δ

1

λ
1
p


 ∑

n,Nn≥2

‖Sn1{Sn≤λT}‖
1
p
µ

1

N
1
p
n

+
∑

n,Nn=1

‖(λT − Sn)+‖
1
p
µ




≤ Cp,r,δ T
1
p


∑

n≥1

(P(Sn ≤ λT ))
1

µp
1

N
1
p
n


 . (4.34)
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Now, standard computations show that

P({Sn ≤ λT}) =
(λT )n

(n− 1)!

∫ 1

0
un−1e−λTudu ≤ (λT )n

n!
.

Hence, setting A = (λT )
1

µp , yields

(P(Sn ≤ λT ))
1

µp ≤ (λT )
n
µp

(n!)
1

µp

≤ An

(n!)
1

µp

.

Set for every x ≥ 0, a(x) := Ax

Γ(x+1)
1

µp
. This function reaches a unique minimum at some x0 ≥ 0

and then decreases to 0 as x → ∞. We modify the function a by setting a0(x) := a(x) ∨ a(x0) so
that the function a0 becomes non-increasing and log-concave since Γ is log-convex. Now let

an := a0(n), n ≥ 1.

Finally, the quantization problem (4.34) for the standard Poisson K is “upper-bounded” by the
following optimal integral “bit allocation” problem

min




∑

n≥1

an

N
1/p
n

, Nn ≥ 1,
∏

n≥1

Nn ≤ N



 . (4.35)

Then let m ≥ 2x0 + 1 be a temporarily fixed integer. We set for N ≥ 1,

Nn =

[
apnN

1
m

(
∏

1≤k≤m ak)
p
m

]
, 1 ≤ n ≤ m, Nn = 1, n ≥ m+ 1.

The sequence Nn, 1 ≤ n ≤ m, is nonincreasing. This will ensure that

Nn ≥ 1, 1 ≤ n ≤ m.

We wish to choose m as a function of N so that

amN
1

pm ≥

 ∏

1≤k≤m
ak




1
m

.

Using log-concavity, this is clearly satisfies provided

amN
1

pm ≥ a0((m+ 1)/2) = a((m+ 1)/2) (4.36)

(since (m+ 1)/2 ≥ x0). Inequality (4.36) reads by taking log, to

m− 1

2
logA+

1

pm
logN ≥ 1

µp
(log(Γ(m+ 1)) − log(Γ(1 + (m+ 1)/2)) . (4.37)

We will make use of the following classical inequalities: for every t ≥ 1/12,

0 ≤ log(Γ(t+ 1)) − log(
√

2π) − (t+ 1/2) log t+ t ≤ 1

Then, after some tedious computations, one shows that Inequality (4.37) is satisfied as soon as

m− 1

2
logA+

1

pm
logN ≥ 1

µp

(
m

2
logm− m

8
− 1

2
logm+

5

2

)
.
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If one sets (this is probably optimal)

m = m(N) :=

⌈
2

√
µ

logN

log2N

⌉

then the above inequality is satisfied as well as m(N) ≥ 2x0 +1, for every large enough N , provided

that one increases the value of A. With Nn and m settled as above and using that
x

[x]
≤ 2 for

every x ≥ 1, one gets
∑

n≥1

an

N
1
p
n

≤ 2
1
pmN− 1

pm (
m∏

k=1

ak)
1/m +

∑

n≥m+1

an

On the one hand, Nm ≥ 1 reads

N
− 1

pm (
m∏

k=1

ak)
1/m ≤ am.

On the other hand the log-concavity, the monotony of the function a over [x0 +1,∞) (and the fact
that a′ is non zero) imply that

∑

n≥m+1

an ≤
∣∣∣∣
a(x0 + 1)

a′(x0 + 1)

∣∣∣∣ am = o(mam)

(this follows from a straightforward adaptation of the proof of Proposition 4.4 in [14] to which we
refer for details).

mam = m
Am

(m!)
1

µp

≤ exp

(
− 1

µp
m logm+O(m)

)

≤ C exp

(
− 1

pµ

√
µ logN log2N

(
1 +O

(
log3N

log2N

)))
(4.38)

Note that p
√
µ =

√
p.pµ =

√
(r + δ)p. Finally this yields in particular that for every ε > 0,

‖ |K − K̂|Lp
T
‖r = O

(
exp

(
− 1√

rp+ ε

√
logN log2N

))
.

Step 2 (Compound case): Starting from Equation (4.32), it is natural to quantize (Xt) by setting

X̂t =
K̂t∑

k=1

Ûk.

where K̂ is a N (1)-quantization of the standard Poisson process K as described in Step 1 and, for

every n ≥ 1, Ûn is an Lr-optimal N
(2)
n -quantization of Un with 1 ≤ N

(2)
1 × · · · × N

(2)
n · · · ≤ N (2)

and N (1)N (2) ≤ N . Then, setting K̂U
t :=

∑K̂t
k=1 Uk and KÛ

t :=
∑Kt
k=1 Ûk, one gets

|KÛ − K̂Û |Lp
T

≤
∑

n≥1

|Ûk| |1{Sn≤λT} − 1{Ŝn≤λT}|Lp
T

so that ‖|X − K̂U |Lp
T
‖r ≤ 1

λ
1
p

∑

n≥1

‖Ûk‖r‖Sn ∧ (λT ) − Ŝn ∧ (λT )‖
1
p
r
p

=
supn≥1 ‖Ûn‖r

λ
1
p

∑

n≥1

‖Sn ∧ (λT ) − Ŝn ∧ (λT )‖
1
p
r
p
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where we used that the sequences (Un) and (Sn) being independent, so are (Ûn) and (Sn). Using

‖Ûn‖r ≤ ‖Un − Ûn‖r + ‖U1‖r = ‖U1 − ÛN
(2)
n

1 ‖r + ‖U1‖r

shows that supn≥1 ‖Ûn‖r < +∞. Hence, it follows from Step 1 that, for every c < 1√
pr ,

‖ |X − K̂U |Lp
T
‖r = O

(
exp (−c

√
log(N (1)) log2(N

(1)))

)
.

On the other hand, with obvious notations, and using that (Ûn − Un) and (Sn) are independent

‖ |X −KÛ |Lp
T
‖r = ‖ |KU−Û |Lp

T
‖r

≤
∑

n≥1

‖Un − Ûn‖r‖|1{Sn≤λ.}|Lp
T
‖r

=
1

λ
1
p

∑

n≥1

‖Un − Ûn‖r‖(λT − Sn)+‖
1
p

r′

≤ 1

λ
1
p

∑

n≥1

‖Un − Ûn‖r

(λT )
1
p
+ n

r

(n!)
1
r

≤ C
∑

n≥1

‖Un − Ûn‖r

(λT )
n
r

(n!)
1
r

.

Now, it follows from the (extended) Pierce Lemma that

‖ |KU −KÛ |Lp
T
‖r ≤ CU1,r

∑

n≥1

(λT )
n
r

(n!)
1
rN

(2)
n

= O

(
exp

(
− 1√

r

√
log(N (2)) log2(N

(2))

))
.

The rate follows from the resolution of the optimal bit allocation problem (4.35) obtained by setting
formally µ p = r and p = 1. Then, note that, on the one hand

‖ |X − X̂ |Lp
T
‖r ≤ ‖ |X −KÛ |Lp

T
‖r + ‖ |KÛ − K̂Û |Lp

T
‖r .

and on the other hand
K̂Û
t =

∑

n≥1

ÛN
(2)
n

n 1
{ŜN

(1)
n

n ≤λt}

can take at most ∏

n≥1

N (1)
n N (2)

n ≤ N (1) ×N (2) ≤ N

values. Let c < 1√
pr . Setting N (1) = [N

rc2

1+rc2 ], N (2) = [N
1

1+rc2 ] yields a rate

‖ |X − X̂ |Lp
T
‖r = O

(
exp

(
− 1√

1/c2 + r

√
log(N) log2(N)

))

i.e.

∀ ε > 0, ‖ |X − X̂|Lp
T
‖r = O

(
exp

(
− 1√

r(p+ 1 + ε)

√
log(N) log2(N)

))
. ♦
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4.3 Proof of Theorem 2

Any Lévy process X can be decomposed as the sum X = X(1) +X(2) of two (independent) Lévy
processes, one having bounded jumps and one being a compound Poisson process – according to
the decomposition of its Lévy measure

ν(dx) = ν(1)(dx) + ν(2)(dx) with ν(1)(dx) := 1{|x|≤1}ν(dx) and ν(2)(dx) := 1{|x|>1}ν(dx).

Then, it is clear that, for every r, p∈ (0, r∗)

eN,r(X,L
p
T
) ≤ Cr′(e[

√
N ],r′(X

(1), Lr
′

T
) + e[

√
N ],r′(X

(2), Lr
′

T
))

where r′ = r ∨ p. Now, it follows from Proposition 4 that eN,r′(X
(2), Lr

′

T
) = o(eN,r′(X

(1), Lr
′

T
)) so

that
eN,r(X,L

p
T
) ≤ C ′

r′e[
√
N ],r′(X

(1), Lr
′

T
).

Now, using that ℓ has slow variations at 0, one derives that

e[
√
N ],r′(X

(1), Lr
′

T
) = O(eN,r′(X

(1), Lr
′

T
)).

Proposition 3 completes the proof of Theorem 2. ♦
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