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Differential approximation of MIN SAT,
MAX SAT and related problems

Bruno Escoffier∗, Vangelis Th. Paschos∗

Abstract

We present differential approximation results (both positive and negative) for
optimal satisfiability, optimal constraint satisfaction, and some of the most popular
restrictive versions of them. As an important corollary, we exhibit an interesting
structural difference between the landscapes of approximability classes in standard
and differential paradigms.
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1 Introduction and preliminaries

In this paper we deal with the approximation of some of the most famous and classical
problems in the domain of the polynomial time approximation theory, the MIN and MAX

SAT as well as the MIN and MAX DNF and some of their restricted versions, namely MAX

and MIN k and EkSAT and MAX and MIN k and EkDNF. We study their approximability
using the so-called differential approximation ratio which, informally, for an instance x
of a combinatorial optimization problem Π, measures the relative position of the value of
an approximated solution in the interval between the worst-value of x, i.e., the value of a
worst feasible solution of x, and optimal-value of x, i.e., the value of a best solution of x.

Given a set of clauses (i.e., disjunctions) C1, . . . , Cm on n variables x1, . . . , xn, MAX

SAT (resp., MIN SAT) consists of determining a truth assignment to the variables that
maximizes (minimizes) the number of clauses satisfied. On the other hand, given a set
of cubes (i.e., conjunctions) C1, . . . , Cm on n variables x1, . . . , xn, MAX DNF (resp., MIN
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Differential approximation of MIN SAT, MAX SAT and related problems

DNF) consists of determining a truth assignment to the variables that maximizes (min-
imizes) the number of conjunctions satisfied. For an integer k � 2, MAX kSAT, MAX

kDNF, MIN kSAT, MIN kDNF (resp., MAX EkSAT, MAX EkDNF, MIN EkSAT, MIN EkDNF)
are the versions of MAX SAT, MAX DNF, MIN SAT, MIN DNF where each clause or con-
junction has size at most (resp., exactly) k. Finally, let us quote two particular weighted
satisfiability versions, namely, MAX WSAT and MIN WSAT. In the former, given a set of
clauses C1, . . . , Cm on n variables x1, . . . , xn, with non-negative integer weights w(x) on
any variable x, we wish to compute a truth assignment to the variables that both satisfies
all the clauses and maximizes the sum of the weights of the variables set to 1. We consider
that the assignment setting all the variables to 0 (even if it does not satisfy all the clauses)
is feasible and represents the worst-value solution for the problem. The latter problem is
similar to the former one, up to the fact that we wish to minimize the sum of the weights
of the variables set to 1 and that feasible is now considered the assignment setting all the
variables to 1.

A problem Π in NPO is a quadruple (IΠ, SolΠ,mΠ, opt(Π)) where:

• IΠ is the set of instances (and can be recognized in polynomial time);

• given x ∈ IΠ, SolΠ(x) is the set of feasible solutions of x; the size of a feasible so-
lution of x is polynomial in the size |x| of the instance; moreover, one can determine
in polynomial time if a solution is feasible or not;

• given x ∈ IΠ and y ∈ SolΠ(x), mΠ(x, y) denotes the value of the solution y of the
instance x; mΠ is called the objective function, and is computable in polynomial
time; we suppose here that mΠ(x, y) ∈ N;

• opt(Π) ∈ {min, max}.

Given an instance x of an optimization problem Π and a feasible solution y ∈ SolΠ(x),
we denote by optΠ(x) the value of an optimal solution of x, and by ωΠ(x) the value
of a worst solution of x. The standard approximation ratio of y is defined as rΠ(x, y) =
mΠ(x, y)/ optΠ(x), while the differential approximation ratio of y is defined as δΠ(x, y) =
|mΠ(x, y) − ωΠ(x)|/| optΠ(x) − ωΠ(x)|.

For a function f of |x|, an algorithm is a standard f -approximation algorithm (resp.,
differential f -approximation algorithm) for a problem Π if, for any instance x of Π, it
returns a solution y such that r(x, y) � f(|x|), if opt(Π) = min, or r(x, y) � f(|x|), if
opt(Π) = max (resp., δ(x, y) � f(|x|)).

With respect to the best approximation ratios known for them, NPO problems can be
classified into approximability classes. The most notorious among them are the following:
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APX or DAPX: the class of problems for which there exists a polynomial algorithm
achieving standard or differential approximation ratio f(|x|) where function f is
constant (it does not depend on any parameter of the instance);

PTAS or DPTAS: the class of problems admitting a polynomial time approximation
schema; such a schema is a family of polynomial algorithms Aε, ε ∈]0, 1], any of
them guaranteeing approximation ratio 1 − ε (under the differential approximation
paradigm and under the standard one in the case where opt(Π) = max), or 1 + ε
(under the standard approximation paradigm in the case where opt(Π) = min);

FPTAS and DFPTAS: the class of problems admitting a fully polynomial time ap-
proximation schema; such a schema is a polynomial time approximation schema
(Aε)ε∈]0,1], where the complexity of any Aε is polynomial in both the size of the
instance and in 1/ε.

We now define a kind of reduction, called affine reduction and denoted by AF, which, as
we will see, is very natural in the differential approximation paradigm.

Definition 1. Let Π and Π′ be two NPO problems. Then, Π AF-reduces to Π′ (Π ≤AF Π′),
if there exist two functions f and g such that:

1. for any x ∈ IΠ, f(x) ∈ IΠ′ ;

2. for any y ∈ SolΠ′(x), g(x, y) ∈ SolΠ(x); moreover, SolΠ(x) = g(x, SolΠ′(f(x)));

3. for any x ∈ IΠ, there exist K ∈ R and k ∈ R
� (k > 0 if opt(Π) = opt(Π′), k < 0,

otherwise) such that, for any y ∈ SolΠ′(f(x)), mΠ′(f(x), y) = kmΠ(x, g(x, y)) +
K.

If Π ≤AF Π′ and Π′ ≤AF Π, then Π and Π′ are called affine equivalent. This equivalence
will be denoted by Π ≡AF Π′.

It is easy to see that differential approximation ratio is stable under affine reduction. For-
mally, if, for Π, Π′ ∈ NPO, R = (f, g) is an AF-reduction from Π to Π′, then for any
x ∈ IΠ and for any y ∈ SolΠ′(f(x)), δΠ(x, g(x, y)) = δΠ′(f(x), y). Indeed, by Condi-
tion 2 of Definition 1, worst and optimal solutions in x and f(x) coincide. Since the value
of any feasible solution of Π′ is an affine transformation of the same solution seen as a
solution of Π, the differential ratios for y and g(x, y) coincide also. Hence, the following
holds.

Proposition 1. If Π ≡AF Π′, then, for any constant r, any r-differential approximation
algorithm for one of them is an r-differential approximation algorithm for the other one.
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Optimization satisfiability problems as MIN SAT and MAX SAT are of great interest from
both theoretical and practical points of view. On the one hand, the satisfiability prob-
lem (SAT) is the first complete problem for NP and MAX SAT, MIN SAT have gener-
alizations or restrictions that are the first problems proved complete for numerous ap-
proximation classes under various approximability preserving reductions ([4, 19]). For
instance, MAX 3SAT is APX-complete under the AP-reduction and Max-SNP-complete
under the L-reduction ([17]), MAX WSAT and MIN WSAT are NPO-complete under the
AP-reduction ([8]), etc. In general, many optimal satisfiability problems have for the
polynomial approximation theory the same status as SAT for NP-completeness theory.
On the other hand, many problems in mathematical logic and in artificial intelligence can
be expressed in terms of versions of SAT; constraints satisfaction is one such version. Also
problems in database integrity constraints, query optimization, or in knowledge bases can
be seen as optimization satisfiability problems. Finally, some approaches to inductive
inference can be modeled as MAX SAT problems ([13, 14]). The interested reader can
be referred to [5] for a survey on standard approximability of optimization satisfiability
problems.

Let us note that differential approximability of the problems dealt here, has already
been studied in [6]. There, among other results, it was shown that MAX SAT and MIN

DNF, as well as MIN SAT and MAX DNF are equivalent for the differential approximation,
that all these problems are not solvable by polynomial time differential approximation
schemata, unless P = NP, and, finally, that MIN SAT cannot be approximately solved
within differential approximation ratio 1/m1−ε, for any ε > 0 (where m is the number
of the clauses in its instance), unless NP = co-RP. Finally, let us mention here that
both MAX WSAT and MIN WSAT belong to 0-DAPX, the class of the problems for which
no algorithm can guarantee differential approximation ratio strictly greater than 0, unless
P = NP ([16]). This class has been also introduced in [6].

Approximation ratios Inapproximability bounds

MAX SAT 4.34/(m + 4.34) /∈ DAPX
MAX E2SAT 17.9/(m + 19.3) 11/12
MAX 3SAT 4.57/(m + 5.73) 1/2
MAX E3SAT 8/(m + 8) 1/2
MAX EkSAT 2k/(m + 2k) 1/p, p the largest prime s.t. 3(p − 1) � k
MIN SAT 2/(m + 2)
MIN (E)kSAT 2k/((2k−1 − 1)m + 2k) 1/p, p the largest prime s.t. 3(p − 1) � k
MIN 2SAT 4/(m + 4) 11/12

Table 1: Summary of the main results of the paper.
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In this paper, we further study differential approximability of MAX SAT, MIN SAT,
MIN DNF and MAX DNF, and give approximation results and inapproximability bounds
for several versions of these problems. A summary of the main results obtained is pre-
sented in Table 1. As one can see from the second column of the first line of this table,
MAX SAT is not approximable within a constant approximation ratio, unless P = NP. This
result is very interesting since it indicates that Max-NP ([17]) is not included in DAPX.
This is an important difference with the standard approximability classes landscape where
Max-NP ⊂ APX. Another assessment with respect to our results is that the gap between
lower and upper approximation bounds for the problems dealt is still large. However, this
paper undertakes a systematic study of satisfiability problems in the differential paradigm,
it extends the results of [6] and shows that none of the most classical satisfiability prob-
lems is in 0-DAPX. This approximability class has been introduced in [6] and represents
the worst possible configuration for differential approximation since it includes the prob-
lems for which no polynomial time approximation algorithm can guarantee differential
ratio greater than 0. Inclusion of the problems dealt here in 0-DAPX or not, was a major
question we handled since [6].

2 Affine reductions between optimal satisfiability prob-
lems

Let us first note that there does not exist general technique in order to transfer approxi-
mation results from differential (resp., standard) paradigm to standard (resp., differential)
one, except for the case of maximization problems and for transfers between differential
and standard paradigms. Proposition 2 just below deals with this last case.

Proposition 2. If a maximization problem Π can be solved within differential approxima-
tion ratio δ, then it can be solved within standard approximation ratio δ, also.

Proof. Consider any differential polynomial time approximation algorithm A guarantee-
ing differential-approximation ratio δ for any instance x of a maximization problem Π.
Denote by A(x), a solution computed by A when running on x. Then,

m(x, A(x)) − ω(x)

opt(x) − ω(x)
� δ =⇒ m(x, A(x)) � δ opt(x)+(1−δ)ω(x)

δ�1

ω(x)�0
=⇒ m(x, A(x))

opt(x)
� δ

and the claim of the proposition is proved.

Corollary 1. Any standard inapproximability bound for a maximization problem Π is also
a differential inapproximability bound for Π.
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We give in this section some affine reductions and equivalences between the problems
dealt in the paper. These results will allow us to focus ourselves only in the study of MAX

SAT, MIN SAT and their restrictions without studying explicitly MAX and MIN DNF. We
first recall a result already proved in [6].

Proposition 3. ([6]) MAX SAT ≡AF MIN DNF and MIN SAT ≡AF MAX DNF.

The following proposition shows that one can affinely pass from MAX EkSAT to MAX

E(k + 1)SAT. This, allows us to transfer inapproximability bounds from MAX E3SAT to
MAX EkSAT, for any k � 4.

Proposition 4. MAX EkSAT ≤AF MAX E(k + 1)SAT.

Proof. Consider an instance ϕ of MAX EkSAT on n variables x1, . . . , xn and m clauses
C1, . . . , Cm. Consider also a new variable y and build formula ϕ′, instance of MAX E(k +
1)SAT as follows: for any clause Ci = (�i1 , . . . , �ik) of ϕ, where, for j = 1, . . . , k, �ij is a
literal associated with xij , ϕ′ contains two new clauses (�i1 , . . . , �ik , y) and (�i1 , . . . , �ik , ȳ).
Hence, ϕ′ is the conjunction of 2m clauses of size k + 1 on n + 1 variables. Assume
any truth assignment T on the variables of ϕ and denote by (T, 1) (resp., (T, 0)) the
extension of T on ϕ′ by setting y = 1 (resp., y = 0). Then, it is easy to see that
m(ϕ′, (T, 1)) = m(ϕ′, (T, 0)) = m + m(ϕ, T ).

In other words, reduction just described, associating to any assignment T ′ of ϕ′ its
restriction T on variables x1, . . . , xn as assignment for ϕ, is affine and the proof of the
proposition is complete.

We now show that, for k fixed, problems kSAT and kDNF are affine equivalent.

Proposition 5. For any fixed k, MAX kSAT, MIN kSAT, MAX kDNF, MIN kDNF, MAX

EkSAT, MIN EkSAT, MAX EkDNF and MIN EkDNF are all affine equivalent.

Proof. We first prove affine equivalence between MAX kSAT and MIN kSAT. Given n
variables x1, . . . , xn, denote by Ck the set of clauses of size k and by C�k the set of clauses
of size at most k on the set {x1, . . . , xn}. Let us remark that any truth assignment verifies
the same number vk of clauses on Ck and the same number v�k of clauses on C�k. Note
also that, since k is assumed fixed, sets Ck and C�k are of polynomial size.

Let ϕ be an instance of MAX EkSAT on variable-set {x1, . . . , xn} and on a set C =
{C1, . . . , Cm} of m clauses. Consider instance ϕ′ on the clause-set C′ = Ck \ C. Then,
for any truth assignment T on {x1, . . . , xn}: m(ϕ, S) + m(ϕ′, S) = vk; in other words,
reduction just described is an affine reduction from MAX EkSAT to MIN EkSAT. Consid-
ering ϕ as instance of MIN EkSAT this time, the above describe an affine reduction from
MIN EkSAT to MAX EkSAT.
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Furthermore, if C is an instance of MAX kSAT, then we can see the clause-set C�k \ C
as an instance of MIN kSAT and the same arguments conclude an affine reduction from
the former to the latter problem.

We now prove equivalence between versions of SAT and the corresponding versions
of DNF. Given a clause C = (�i1 ∨ . . .∨ �ik) on k literals, we build the cube (conjunction)
D = (�̄i1 ∧ . . . ∧ �̄ik). Any truth assignment T on �ij verifies C, if and only if it does
not verify D, i.e., m(C, T ) = m − m(D,T ). This specifies an affine reduction between
MAX EkSAT and MIN EkDNF, MIN EkSAT and MAX EkDNF, MAX kSAT and MIN kDNF

and between MIN kSAT and MAX kDNF.

We finally show equivalence between MAX kSAT and MAX EkSAT. We first notice
that the latter problem being a sub-problem of the former one, direction MAX EkSAT ≤AF

MAX kSAT is immediate. On the other hand, as in Proposition 4, given an instance of
MAX kSAT, one can construct, for any clause of size at most k, a set of clauses of size
exactly k, in such a way that this reduction is affine.

Combination of equivalences shown above completes the proof of the proposition.

It is shown in [12] (see also [4]), that MAX E3SAT is inapproximable within standard
approximation ratio (7/8) + ε, for any ε > 0, and MAX E2SAT is inapproximable within
standard approximation ratio (21/22) + ε, for any ε > 0 (in what follows for such results
we will use, for simplicity, expression “within better than”). Discussion above, together
with these bounds leads to the following result.

Proposition 6. MAX 2SAT, MAX E2SAT, MIN 2SAT, MIN E2SAT, MAX 2DNF, MAX

E2DNF, MIN 2DNF and MIN E2DNF are inapproximable within differential approxima-
tion ratio better than 21/22. Furthermore, for any k � 3, MAX kSAT, MAX EkSAT,
MIN kSAT and MIN EkSAT, MAX kDNF, MAX EkDNF, MIN kDNF and MIN EkDNF, are
inapproximable within differential approximation ratio better than 7/8.

Proof. Concerning MAX 2SAT and associates, Corollary 1 extends the result of [12] to
the differential paradigm. Then, Proposition 5 suffices to conclude the proof.

For MAX kSAT and associates, Corollary 1 extends the result of [15] to the differential
paradigm, for MAX 3SAT and Proposition 5 transfers it to MAX E3SAT. Then, Proposi-
tion 4 extends it for any k � 4. Finally, Proposition 5 suffices to conclude the proof.

Since the satisfiability problems stated in Proposition 6 are particular cases either
of MAX SAT, or of MIN SAT, or of MAX DNF, or, finally, of MIN DNF, application of
Proposition 6 and of Proposition 3 concludes the following corollary.

Corollary 2. MAX SAT, MIN SAT, MAX DNF and MIN DNF are inapproximable within
differential approximation 7/8.
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Results of Corollary 2 are not the best ones. In Section 4, we strengthen the one for
MAX SAT. On the other hand, as it is proved in [6], MIN SAT is inapproximable within
differential ratio better than mε−1, for any ε > 0. Proposition 5 has to be used with
some precautions in order to yield positive or negative approximation results. Indeed, if
one of the problem stated in it is approximable within constant differential approximation
ratio (i.e., within ratio that does not depend on an instance parameter), then this ratio
is naturally transferred to all the other problems. A contrario, one can see in the proof
of Proposition 5 that in many cases the number of the clauses for the derived instance
can be much larger that the one for the initial instance. In such cases, if we deal with
ratios functions of m the form of these ratios is certainly preserved but not their value.
For instance, assume that some problem Π among the ones stated in Proposition 5 is
approximable within ratio f(|ϕ|), where |ϕ| denotes the number of clauses, or cubes,
in ϕ, and f decreases with |ϕ|. Assume also that there exists another problem Π′ (among
the ones stated in Proposition 5) such that Π′ ≤AF Π and, furthermore, that this affine
reduction transforms a formula ϕ′ of Π′ into a formula ϕ for Π. Then, it transforms an
approximation ratio f(|ϕ|) for the latter into an approximation ratio f(|ϕ|) for the former
but, if the values |ϕ| and |ϕ′| are very different the one from the other, then f(|ϕ|) 	=
f(|ϕ′|).

In fact, one can easily observe that affine reductions of Proposition 5 perform the
following differential ratio transformations:

• reduction from MAX EkSAT to MIN EkSAT transforms ratios f(m,n) into f((2n)k−
m,n);

• reduction from MAX kSAT to MIN kSAT transforms ratios f(m,n) into f((2n +
1)k − m,n);

• reductions between SAT and DNF are invariant for approximation ratios;

• reduction from MAX kSAT to MAX EkSAT transforms ratios f(m,n) into f(2k−1m,
n + k − 1).

In other words, dealing with common approximability of the problems stated in Proposi-
tion 5, the following remarks hold:

• if one of these problems is in DAPX, then all the other ones are so;

• problems MAX kSAT,MAX EkSAT, MIN k DNF and MIN EkDNF are approximable
within differential ratios of O(f(m)) for a function f strictly decreasing with m
if and only if one of them is O(f(m)) differentially approximable for f(m) =
O(mα), for some α > 0, or f(m) = O(log m); the same holds for the quadruple
MIN kSAT,MIN EkSAT, MAX k DNF and MAX EkDNF;
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• all problems are in Log-DAPX (the class of problems differentially approximable
within ratios of O(1/ log |x|)) if and only if one of them is so (observe that reduc-
tions dealt transform differential ratios of O(log m) into ratios of the form O(log m)
or of O(log n), and ratios of O(log n) into ratios of the same form).

Finally, reduction of Proposition 4 transforms ratios f(m,n) into f(2m,n + 1).

3 Positive results

3.1 Maximum satisfiability

Consider an instance ϕ of an optimal satisfiability problem, defined on n boolean vari-
ables x1, . . . , xn and m clauses C1, . . . , Cm; consider also the very classical algorithm
RSAT assigning at any variable value 1 with probability 1/2 and, obviously, value 0 with
probability 1/2.Then, denoting by Sol(ϕ), the set of the 2n possible truth assignments
for ϕ, and by E(RSAT(ϕ)) the expectation of a solution computed by RSAT when running
on ϕ, the following holds: E(RSAT(ϕ)) =

∑
T∈Sol(ϕ) m(ϕ, T )/2n.

Algorithm RSAT can be derandomized by the following technique denoted by DSAT.
For i = 1, . . . , n:

• compute E ′
i = E(m(ϕ, T )|xi = 1) and E ′′

i = E(m(ϕ, T )|xi = 0), where T is
a random assignment and the values of the i − 1 first variables have already been
fixed in iterations 1, . . . i − 1;

• set xi = 1, if E ′
i � E ′′

i ; otherwise, set xi = 0.

Lemma 1. m(ϕ, DSAT(ϕ)) � E(RSAT(ϕ)).

Proof. It is easy to see that E(RSAT(ϕ)) = (E ′
1/2) + (E ′′

1/2); hence max{E ′
1, E

′′
1} �

E(RSAT(ϕ)). Furthermore, at any of the n steps of DSAT, max{E′
i, E

′′
i } = (E ′

i+1/2) +
(E ′′

i+1/2) � max{E ′
i+1, E

′′
i+1}. Consequently, we have E(RSAT(ϕ)) � max{E ′

1, E
′′
1} �

max{E ′
n, E ′′

n} = DSAT(ϕ), that concludes the proof of the lemma.

Note finally, that DSAT is polynomial since, for any i = 1, . . . , n, computation of E′
i

and E ′′
i is performed in polynomial time. Indeed, for any such computation it suffices to

determine with what probability any clause of ϕ is satisfied and to sum these probabilities
over all the clauses of ϕ.

We are ready now to state and prove positive differential approximation results for the
problems dealt here.
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Proposition 7. Algorithm DSAT achieves for MAX EkSAT differential approximation ratio
2k/(opt(ϕ) + 2k). This ratio is bounded below by 2k/(m + 2k).

Proof. Note first that we can assume that opt(ϕ) > ω(ϕ) (otherwise, MAX EkSAT would
be polynomial on ϕ). Then,

ω(ϕ) < E(RSAT(ϕ)) � m(ϕ, DSAT(ϕ)) (1)

From (1) and given that feasible values of MAX EkSAT are integer, we get:

m(ϕ, DSAT(ϕ)) − ω(ϕ) � 1 (2)

Since clauses in ϕ are of size k, the expectation that any of them is satisfied equals 1−2−k.
Hence,

m(ϕ, DSAT(ϕ)) � E(RSAT(ϕ)) = m

(
1 − 1

2k

)
� opt(ϕ)

(
1 − 1

2k

)
(3)

Using (2) and (3), we get:

δ(ϕ, DSAT(ϕ)) � max

{
1

opt(ϕ) − ω(ϕ)
,
opt(ϕ)

(
1 − 1

2k

) − ω(ϕ)

opt(ϕ) − ω(ϕ)

}
(4)

The first term in (4) is increasing with ω(ϕ), while the second one is decreasing. Equality
holds when ω(ϕ) = (opt(ϕ)(1 − 2−k)) − 1. In this case, (4) gives

δ(ϕ, DSAT(ϕ)) � 2k

opt(ϕ) + 2k
� 2k

m + 2k
(5)

Last inequality in (5) holding thanks to the fact that opt(ϕ) � m, qed.

Notice that the ratio claimed by Proposition 7 increases with k. This is quite natural
since for k > log m, MAX kSAT is polynomial. Indeed, using (3) with such a k, we get
m(ϕ,DSAT(ϕ)) � m − (m/2k) > m − 1, i.e., m(ϕ,DSAT(ϕ)) = m, since the feasible
values of MAX kSAT are integer.

We now propose a reduction transferring approximation results for MAX SAT problems
from standard to differential paradigm. It will be used in order to achieve differential
approximation results for MAX SAT, MAX 3SAT and MAX 2SAT.

Proposition 8. If a maximum satisfiability problem is approximable on an instance ϕ,
within standard approximation ratio ρ, then it is approximable in ϕ within differential
approximation ratio ρ/((1 − ρ)ω(ϕ) + 1).
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Proof. Fix any maximum satisfiability problem Π, sharing the ones dealt until now, and
assume that there exists a polynomial time algorithm achieving standard approximation
ratio ρ for Π. Consider an instance ϕ of Π, run both A and DSAT on ϕ and retain assign-
ment T satisfying the maximum number of clauses between A(ϕ) and DSAT(ϕ). Obvi-
ously, m(ϕ, T ) � ρ opt(ϕ). Hence, the differential approximation ratio of T is

δ(ϕ, T ) � m(ϕ, T ) − ω(ϕ)
m(ϕ,T )

ρ
− ω(ϕ)

(6)

Since, as we have seen in the proof of Proposition 7, m(ϕ, T ) � ω(ϕ) + 1, (6) becomes

δ(ϕ, T ) � 1
ω(ϕ)+1

ρ
− ω(ϕ)

=
ρ

(1 − ρ)ω(ϕ) + 1
(7)

The proof of the proposition is now complete.

From the result of Proposition 8, we can deduce several corollaries by specifying
values for ω(ϕ) and ρ. The main such corollaries are stated in the propositions that follow.
Before stating and proving them, let us remark that, in the case of MAX kSAT

E(RSAT(ϕ)) � m

(
1 − 1

2k

)
(8)

Then (1) and (8) yield:

ω(ϕ) � m

(
1 − 1

2k

)
(9)

Proposition 9. MAX SAT is approximable within differential approximation ratio 4.34/(m+
4.34).

Proof. We can assume ω(ϕ) � m − 1, otherwise (ω(ϕ) = m) all feasible solutions of ϕ
have the same value. Since 1 − ρ � 0, the differential ratio of (7) decreases with ω(I).
So, it suffices to substitute m − 1 for ω(ϕ), to use the fact that MAX SAT is approximable
within standard ratio 1/1.2987 ([3]), and the proof of the proposition is complete.

Proposition 10. MAX 2SAT is approximable within differential approximation ratio
17.9/(m + 19.3), and MAX 3SAT within 4.57/(m + 5.73).

Proof. For MAX 2SAT, remark first that, using (3), the expectation of the solution com-
puted by the random algorithm RSAT is, using (9), less than, or equal to, 3m/4. Con-
sequently, ω(ϕ) � 3m/4. Next, the fact that MAX SAT is approximable within standard
ratio 1/1.0741 ([10]) suffices to conclude the proof.

For MAX 3SAT, ω(ϕ) � 7m/8 and ρ = 1/1.249 ([18]).
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3.2 Minimum satisfiability

We finish this section by studying MIN SAT and some of its versions. Before stating our
results, we note that algorithm RSAT can be derandomized in an exactly symmetric way,
in order to provide a solution for MIN kSAT with value smaller than expectation’s value.

Proposition 11. If a minimum satisfiability problem is approximable on an instance ϕ,
within standard approximation ratio ρ, then it is approximable in ϕ within differential
approximation ratio

ρ

(ρ − 1)
(
1 − 1

2k

)
m + ρ

Proof. As in the proof of Proposition 7, since we deal with a minimization problem, (1)
becomes:

opt(ϕ) � m(ϕ, DSAT(ϕ)) � E(RSAT(ϕ)) < ω(ϕ) (10)

Consequently, (2) becomes:

ω(ϕ) − m(ϕ, DSAT(ϕ)) � 1 (11)

Considering the best among the solutions computed by DSAT and A (the ρ-standard ap-
proximation algorithm assumed for MIN kSAT in the statement of the theorem), denoting
it by T and using (10) and (11), we get:

δ(ϕ, T ) � max

{
1

ω(ϕ) − opt(ϕ)
,
ω(ϕ) − ρ opt(ϕ)

ω(ϕ) − opt(ϕ)
,
ω(ϕ) − m

(
1 − 1

2k

)
ω(ϕ) − opt(ϕ)

}
(12)

where the third term in (12) is due to the fact that T has a better value than the value of
algorithm RSAT.

The first term in (12) is decreasing with ω(ϕ), while the second and third ones are
increasing. We distinguish two cases depending on the relation between these terms.

If the second term is greater than the third one, i.e., if ρ opt(ϕ) � m(1 − 2−k), then
equality of the first two terms of (12) is achieved when ω(ϕ) = 1 + ρ opt(ϕ). In this
case, (12) gives:

δ(ϕ, T ) � ρ

(ρ − 1)m
(
1 − 1

2k

)
+ ρ

(13)

If, on the other hand, second term is smaller than the third one, i.e., if ρ opt(ϕ) � m(1 −
2−k), then equality of the first and the third term in (12) is achieved when ω(ϕ) = m(1−
2−k) + 1. In this case also, δ(ϕ, T ) verifies (13). The proof of the proposition is now
complete.

The best standard approximation ratios known for MIN kSAT and MIN SAT are 2(1 −
2−k) and 2, respectively ([7]). With the ratio just mentioned for MIN kSAT, the result of
Proposition 11 can be simplified as indicated in the following corollary.
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Corollary 3. MIN kSAT is approximable within differential ratio 2k/((2k−1 − 1)m + 2k).

Proposition 12. MIN SAT is approximable within differential ratio 2/(m + 2).

Proof. Use Proposition 11 with ρ = 2 ([7]).

Also, using Corollary 3 with k = 2 and k = 3, the following corollary holds and
concludes the section.

Corollary 4. MIN 2SAT and MIN 3SAT are approximable within differential ratios 4/(m+
4) and 8/(3m + 8), respectively.

4 Inapproximability

We first recall some basics about MAX E3LINp that will be used for deriving our results.
In this problem, we are given a positive prime p, n variables x1, . . . , xn in Z/pZ, m linear
equations of type αi�xi� + αj�

xj�
+ αk�

xk�
= β� and our objective is to determine an

assignment on x1, . . . , xn, in such a way that a maximum number among the m equations
is satisfied.

As it is proved in [12] (see also [9] for the case where all the coefficients equal 1),
for any p � 2 and for any ε > 0, MAX E3LINp cannot be approximated within standard
approximation ratio (1/p) + ε, even if coefficients in the left-hand sides of the equations
are all equal to 1. Note that, due to Corollary 1, this bound is immediately transferred to
the differential paradigm.

Finally, let us quote the following GAP-reduction (see [2] for more about this kind of
reductions), proved in [12], that will be used in order to yield our results.

Proposition 13. ([12]) Given a problem Π ∈ NP and a real δ > 0, there exists a poly-
nomial transformation g from any instance I of Π into an instance of MAX E3LIN2 such
that:

• if I is a yes-instance of Π (we use here classical terminology from [11]), then
opt(g(I)) � (1 − δ)m;

• if I is a no-instance of Π, then opt(g(I)) � (1 + δ)m/2.

Proposition 13 shows, in fact, that MAX E3LIN2 is not approximable within standard ratio
1/2 + ε, for any ε > 0, because an algorithm achieving it would allow us to distinguish
in polynomial time the yes-instances of any problem Π ∈ NP from the no-ones. Devising
of such reductions is one of the most common strategies for proving inapproximability
results in standard approximation.
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4.1 Bounds for MAX E3SAT

We first prove a GAP-reduction analogous to the one of Proposition 13 from any problem
Π ∈ NP to MAX E3SAT. Note that this is the first time that a GAP-reduction is used in
the differential approximation paradigm.

Proposition 14. Given a problem Π ∈ NP and a real δ > 0, there exists a polynomial
transformation f from any instance I of Π into an instance of MAX E3SAT such that:

• if I is a yes-instance of Π, then opt(f(I)) − ω(f(I)) � (1 − 2δ)m/4;

• if I is a no-instance of Π, then opt(f(I)) − ω(f(I)) � δm/4.

Proof. We first prove that the reduction of Proposition 13 can be translated into the
differential paradigm also. Consider an instance I ′ = g(I) of MAX E3LIN2 and a feasible
solution 
x = (x1, x2, . . . , xn) for I (we will use the same notation for both variables
and their assignment) verifying k among the m equations of I ′. Then, vector 
̄x = (1 −
x1, . . . , 1 − xn), verifies the m − k equations not verified by 
x. In other words, opt(I) +
ω(I) = m; hence, function g claimed by Proposition 13 is such that:

• if I is a yes-instance of Π, then opt(I ′) − ω(I ′) � (1 − 2δ)m;

• if I is a no-instance of Π, then opt(I ′) − ω(I ′) � δm.

We are ready now to continue the proof of the proposition. Consider an instance I of
MAX E3LIN2 on n variables xi, i = 1, . . . , n and m equations of type xi + xj + xk = β
in Z/2Z, i.e., where variables and second members equal 0, or 1. In the same spirit as
in [12], we transform I into an instance ϕ = h(I) of MAX E3SAT in the following way:

• for any equation xi + xj + xk = 0, we add in h(I) the following four clauses:
(x̄i ∨ xj ∨ xk), (xi ∨ x̄j ∨ xk), (xi ∨ xj ∨ x̄k) and (x̄i ∨ x̄j ∨ x̄k);

• for any equation xi + xj + xk = 1, we add in h(I) the following four clauses:
(xi ∨ xj ∨ xk), (x̄i ∨ x̄j ∨ xk), (x̄i ∨ xj ∨ x̄k) and (xi ∨ x̄j ∨ x̄k).

It can immediately be seen that h(I) has n variables and 4m (distinct) clauses.

Given a solution y for MAX E3SAT on h(I), we construct a solution y′ for I by setting
xi = 1 if xi = 1 in h(I) also; otherwise, we set xi = 0.

For instance, consider equation xi + xj + xk = 0 in I . It is verified if either 0 or 2 of
the variables are equal to 1. The several satisfaction possibilities for the clauses derived
in h(I) for this equation are the following:
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• if zero, or two variables are set to 1 (true), then all the four clauses are satisfied;

• if one, or three variables are set to 1, then 3 clauses are satisfied.

As a consequence, iterating this argument for any clause set built from an equation, we
conclude that solution y for MAX E3SAT on h(I) verifies m(h(I), y) = 3m + m(I, y′).
Since transformation between y′ and y is bijective, we get ω(h(I)) = 3m + ω(I) and
opt(h(I)) = 3m + opt(I). In other words, the reduction just described is an affine
reduction from MAX E3LIN2 to MAX E3SAT.

It suffices now to remark that the composition f = h ◦ g verifies the statement of the
proposition and its proof is concluded.

Proposition 14 has a very interesting corollary, expressed in the Proposition 15 just
below, that exhibits another point of dissymmetry between standard and differential para-
digms.

Proposition 15. Unless P = NP, no polynomial algorithm can compute, on an instance ϕ
of MAX E3SAT a value that is a constant approximation of the quantity opt(ϕ) − ω(ϕ).

In view of Proposition 15, what is different between standard and differential paradigms
with respect to the GAP-reduction is that in the former such a reduction immediately
concludes the impossibility for a problem (assume that it is a maximization one) to be
approximable within some ratio, by showing the impossibility for the optimal value to be
approximated within this ratio. For that, it suffices that one reads the value of the solution
returned by the approximation algorithm. In the latter paradigm such a conclusion is not
always immediate. In fact, a reasoning similar to the one of the standard approximation is
possible when computation of the worst solution can be done in polynomial time (this is,
for instance, the case of maximum independent set and of many other NP-hard problems).
In this case a simple reading of the value of the approximate solution is sufficient to give
an approximation of opt(x)−ω(x). A contrario, when it is NP-hard to compute ω(x) (this
is the case of the problems dealt here –simply think that the worst solution for MAX SAT is
the optimal one for MIN SAT and that both of them are NP-hard –, of traveling salesman,
etc.), then reading the value m(x, y) of the approximate solution does not provide us with
knowledge about m(x, y) − ω(x) and, consequently no approximation of opt(x) − ω(x)
can be immediately estimated. So, use of GAP-reduction for achieving inapproximability
results is different from the one paradigm to the other.

However, for the case we deal with, we will take advantage of a combination of Propo-
sitions 5 and 15 in order to achieve the inapproximability bound for MAX E3SAT given in
Proposition 16 that follows.

Proposition 16. Unless P = NP, MAX E3SAT is inapproximable within differential ap-
proximation ratio greater than 1/2.
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Proof. Assume that an approximation achieves differential ratio δ > 1/2, for MAX E3SAT.
Then, by Proposition 5, there exists an algorithm achieving the same differential ratio
for MIN E3SAT. Denote by T1 and T2, respectively, the solutions computed by these
algorithms on an instance ϕ of these problems. We have:

m (ϕ, T1) − ω(ϕ) � δ(opt(ϕ) − ω(ϕ)) (14)

where opt(·) and ω(·) are referred to MAX E3SAT. By the relations between all these
parameters for the two problems specified in the proof of Proposition 5, we get:

opt(ϕ) − m (ϕ, T2) � δ(opt(ϕ) − ω(ϕ)) (15)

Adding (14) and (15) member-by-member, we get m(ϕ, T1)−m(ϕ, T2) � (2δ−1)(opt(ϕ)−
ω(ϕ)). So, simple reading of the values of T1 and T2, can provide us a constant approxi-
mation (since δ has been assumed to be a fixed constant greater than 1/2) of the quantity
opt(ϕ) − ω(ϕ), impossible by Proposition 15.

Proposition 16 together with Proposition 5 conclude the following corollary.

Corollary 5. For any k � 3, MAX EkSAT, MIN EkSAT, MAX kSAT and MIN kSAT are
differentially inapproximable within ratios better than 1/2.

4.2 MAX EkSAT, k � 3

In this section, we will generalize the GAP-reduction of Proposition 14 in order to further
strengthen inapproximability results of Corollary 5.

Proposition 17. For any prime p > 0, MAX E3LINp ≤AF MAS E3(p − 1)SAT.

Proof. Consider a positive prime p and an instance I of MAX E3LINp on n variables
and m equations. Consider an equation x1 + x2 + x3 = β (in Z/pZ) of I and, for any
i = 1, 2, 3, p − 1 new variables x1

i , . . . , x
p−1
i ∈ {0, 1}. Consider, finally, equation

p−1∑
j=1

xj
1 +

p−1∑
j=1

xj
2 +

p−1∑
j=1

xj
3 = β (16)

It is easy to see that (16) is verified if and only if the number of variables set to 1 is either β
or β + p, or, finally, β + 2p.

Consider now the set of all the possible clauses on 3(p − 1) literals issued from vari-
ables x1

i , . . . , x
p−1
i , i = 1, 2, 3. Any truth assignment will satisfy all but one clause. For

example, if any variable is assigned with 1, the only unsatisfied clause is the one where
all variables appear negative.
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What is of interest for us is to specify when the number of variables set to 1 is either β
or β + p, or, β + 2p. For this, denote by Ck the set of clauses on 3(p − 1) literals issued
from variables x1

i , . . . , x
p−1
i , i = 1, 2, 3 with exactly k negative literals. Then, a truth

assignment setting k variables to 1, verifies |Ck| − 1 clauses of Ck, while any other truth
assignment on the variables of Ck verifies all the |Ck| clauses. So, for an equation x1 +
x2 + x3 = β, we will add in the instance of MAX E3(p − 1)SAT the set Ck, for k ∈
{0, . . . , 3(p − 1)} and k /∈ {β, β + p, β + 2p}. Hence, if a truth assignment for these
clauses has β, or β+p, or β+2p variables set to 1, it will verify all the clauses constructed,
otherwise it will verify all but one of these clauses.

In all, for any of the variables x1
i , . . . , x

p−1
i we will build one new variable and we will

transform any of the m equations of I into an equation as in (16). Then, for any of these
new equations we add in the instance of MAX E3(p− 1)SAT the set of clauses as built just
above. The instance ϕ of MAS E3(p − 1)SAT so constructed has n(p − 1) variables and,
since the number of clauses issued from any equation is no more than 23(p−1), ϕ will have
at most mϕ � m23(p−1) clauses.

Given a truth assignment T on the variables of ϕ, we set xi = |{xk
i : xk

i = 1 in T}|.
Discussion above leads to m(ϕ, T ) = mϕ − m + m(I, S). On the other hand, it is
easy to see that our reduction implies that any solution S of I is transformed into a truth
assignment T on the variables of ϕ such that the relation between the values of S and T
given just above is always satisfied. This relation confirms that the reduction specified is
an affine one from MAX E3LINp to MAX E3(p − 1)SAT.

Finally, let us remark that it is possible that formula ϕ contains many times the same
clause. This, for instance, is the case if I simultaneously contains equations say x1 +
x2 + x3 = β1 and x1 + x2 + x3 = β2, for β1 	= β2. In this case, we can modify
the construction described, by building the subset of Ck or k ∈ {0, . . . , 3(p − 1)} and
k /∈ {β1, β1+p, β1+2p, β2, β2+p, β2+2p}. This concludes the proof of the proposition.

The result of Proposition 17 together with the result of [12] stated in the beginning of
the section and Proposition 1, lead to the following corollary.

Corollary 6. For any prime p, MAX E3(p − 1)SAT is inapproximable within differential
ratio greater than 1/p.

Furthermore, Propositions 4 and 5 allow us to rewrite Proposition 17 as follows.

Proposition 18. For any k � 3, neither MAX EkSAT, nor MIN EkSAT can be approx-
imately solved within differential ratio greater than 1/p, where p is the largest positive
prime such that 3(p − 1) � k.

Easy consequences of Proposition 18 are the following differential inapproximability
bounds for several instantiations of maximum and minimum k-satisfiability:
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• MAX and MIN 3SAT 4SAT and 5SAT are differentially inapproximable within ratio
better than 1/2;

• MAX and MIN 6SAT, . . . , 11SAT are differentially inapproximable within ratio bet-
ter than 1/3;

• MAX and MIN 12SAT, . . . , 17SAT are differentially inapproximable within ratio
than 1/5, . . .

Finally, MAX SAT being harder to approximate than any MAX kSAT problem, the follow-
ing result holds and concludes the section.

Proposition 19. MAX SAT /∈ DAPX.

In [17] is defined a logical class of NPO maximization problems called MAX-NP. A
maximization problem Π ∈ NPO belongs to Max-NP if and only if there exist two finite
structures (U, I) and (U,S), a quantifier-free first order formula ϕ and two constants k
and � such that, the optima of Π can be logically expressed as:

max
S∈S

∣∣{x ∈ Uk : ∃y ∈ U �, ϕ(I, S, x, y)
}∣∣ (17)

The predicate-set I draws the set of instances of Π, set S the solutions on I and ϕ the
feasibility conditions for the solutions of Π. In the same article is proved that MAX SAT ∈
Max-NP and that MAX-NP ⊂ APX.

It is easy to see that (17) can be identically used in both standard and differential
paradigms. So, Proposition 19 draws an important structural difference in the landscape of
approximation classes in the two paradigms, since an immediate corollary of this propo-
sition is that MAX-NP 	⊂ DAPX. We conjecture that the same holds for the other one
of the celebrated logical classes of [17], the class MAX-SNP, i.e., we conjecture that
MAX-SNP 	⊂ DAPX

4.3 MAX E2SAT

We have already seen in Proposition 6 that MAX E2SAT is differentially inapproximable
within ratio 21/22. In this section, we improve this result by operating an affine reduction
from MAX E2LIN2 to MAX E2SAT.

Indeed, consider an instance I of the former problem (on n variables and m equations)
and an equation x1 + x2 = 0 in I . Add in ϕ (the instance of MAX E2SAT under construc-
tion) clauses x̄1 ∨ x2 and x1 ∨ x̄2. On the other hand, for an equation x1 + x2 = 1, add
in ϕ clauses x1 ∨ x2 and x̄1 ∨ x̄2. Performing this transformation for any equation in I ,
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we finally build a formula ϕ of MAX E2SAT on n variables and 2m clauses. Moreover,
for any truth assignment T on the variables of ϕ, one gets a solution S for I such that
m(ϕ, T ) = m + m(I, S), qed.

It is shown in [12] that MAX E2LIN2 is inapproximable within standard approximation
ratio better than 11/12. By Proposition 2, this bound is transferred to the differential
paradigm. Then, the affine reduction just described concludes the following result.

Proposition 20. MAX E2LIN2 ≤AF MAX E2SAT. Consequently, MAX E2SAT is differen-
tially inapproximable within ratio greater than 11/12.

5 Ideas for further research

We give in this concluding section a few ideas about possible ways for further improving
results of the paper or for yielding new ones.

Consider a graph G(V,E) of order n and with maximum degree ∆. We construct an
instance ϕ of MAX DNF on n variable x1, . . . , xn and n cubes C1, . . . , Cn as follows: for
any vertex vi ∈ V , with neighbors vi1 , . . . , viδi

, we add in ϕ clause xi ∧ x̄i1 ∧ . . . ∧ x̄iδi
.

Let T be a truth assignment satisfying k cubes, say Cj1 , . . . , Cjk
. Then, obviously, the

vertex-set V ′ = {vj1 , . . . , vjk
} is an independent set for G (of size k). Conversely, given

an independent set of G of size k consisting of vertices vj1 , . . . , vjk
, the truth assignment

setting variables xj1 , . . . , xjk
to 1 and any other variable of ϕ in 0 satisfies k cubes. Ob-

serve finally that the size of the cubes built for ϕ is bounded by ∆ + 1. In all we have just
exhibited an affine reduction from MAX INDEPENDENT SET-∆ (i.e., MAX INDEPENDENT

SET on graphs with maximum degree bounded by ∆) to MAX ∆ + 1DNF.

On the other hand, there exists an ε > 0 such that, for any ∆ � 3, MAX INDEPEN-
DENT SET-∆ is not approximable within approximation ratio 1/∆ε ([1]). Since standard
and differential approximation ratios coincide for MAX INDEPENDENT SET (the worst
independent set in a graph is the empty set), the result of [1] holds immediately for dif-
ferential paradigm and can be used in order to conclude that there exists an ε > 0 such
that, for any k � 4, MAX kDNF is not differentially approximable within ratio greater
than 1/kε. This recovers the result of Proposition 19, namely, that MAX SAT /∈ DAPX.

If one wishes to improve this result, a possible issue is the following. Recall that trans-
formation of MAX kDNF to MAX kSAT of Proposition 5, consists of substituting any cube
of size � by 2�−1 clauses of size �. We so can affinely (but not polynomially) reduce MAX

INDEPENDENT SET to MAX SAT by building an instance ϕ of the latter on n variables and
at most n2∆+1 clauses. But, if ∆ is bounded by log n, then this reduction is polynomial.
In other words, if one obtains an inapproximability bound for MAX INDEPENDENT SET-
log n (for example a bound of the type 1/ logε n, for some positive ε), then one can extend
it immediately to MAX SAT improving so the bound of the paper.
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