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Differential approximation of MIN SAT,
MAX SAT and related problems

Bruno Escoffier*, Vangelis Th. Paschos*

Abstract

We present differential approximation results (both positive and negative) for
optimal satisfiability, optimal constraint satisfaction, and some of the most popular
restrictive versions of them. As an important corollary, we exhibit an interesting
structural difference between the landscapes of approximability classes in standard
and differential paradigms.

Key words: Satisfiability, Polynomial Approximation, Differential Ratio

1 Introduction and preliminaries

In this paper we deal with the approximation of some of the most famous and classical
problems in the domain of the polynomial time approximation theory, the MIN and MAX
SAT aswell asthe MIN and MAX DNF and some of their restricted versions, namely MAX
and MIN k and EkSAT and MAX and MIN k& and EXDNF. We study their approximability
using the so-called differential approximation ratio which, informally, for an instance =
of acombinatorial optimization problem II, measures the relative position of the value of
an approximated solution in the interval between the worst-value of z, i.e., the value of a
wor st feasible solution of =, and optimal-value of z, i.e., the value of a best solution of x.

Given a set of clauses (i.e., digunctions) C1, ..., C,, onn variables z1, . .., z,,, MAX
SAT (resp., MIN SAT) consists of determining a truth assignment to the variables that
maximizes (minimizes) the number of clauses satisfied. On the other hand, given a set
of cubes (i.e., conjunctions) C', ..., C,, onn variables x4, . . ., x,,, MAX DNF (resp., MIN
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Differential approximation of MIN SAT, MAX SAT and related problems

DNF) consists of determining a truth assignment to the variables that maximizes (min-
imizes) the number of conjunctions satisfied. For an integer £ > 2, MAX kSAT, MAX
EDNF, MIN kSAT, MIN kKDNF (resp., MAX EKSAT, MAX EEDNF, MIN EESAT, MIN EEDNF)
are the versions of MAX SAT, MAX DNF, MIN SAT, MIN DNF where each clause or con-
junction has size at most (resp., exactly) k. Finally, let us quote two particular weighted
satisfiability versions, namely, MAX WSAT and MIN WSAT. In the former, given a set of
clausesCy, ..., C,, onn variablesz4, . . ., z,,, with non-negative integer weights w(x) on
any variable x, we wish to compute a truth assignment to the variables that both satisfies
all the clauses and maximizes the sum of the weights of the variables set to 1. We consider
that the assignment setting all the variablesto O (even if it does not satisfy all the clauses)
is feasible and represents the worst-value solution for the problem. The latter problem is
similar to the former one, up to the fact that we wish to minimize the sum of the weights
of the variables set to 1 and that feasible is now considered the assignment setting all the
variablesto 1.

A problem IT in NPO isaquadruple (Zyy, Soly, my, opt(Il)) where:

e 7y isthe set of instances (and can be recognized in polynomia time);

e given x € Iy, Soly(x) isthe set of feasible solutions of z; the size of afeasible so-
[ution of  ispolynomial inthesize |z| of theinstance; moreover, one can determine
in polynomial time if asolution isfeasible or not;

e givenx € Iy and y € Soly(x), mu(z,y) denotes the value of the solution y of the
instance x; my; is called the objective function, and is computable in polynomial
time; we suppose here that mp(x,y) € N;

e opt(Il) € {min, max}.

Given an instance x of an optimization problem IT and a feasible solution y € Soly (),
we denote by opty(x) the value of an optimal solution of x, and by wy(z) the value
of aworst solution of z. The standard approximation ratio of y is defined as ri(z,y) =
m(z,y)/ opty(x), whilethedifferential approximation ratio of y isdefined asdp (z, y) =
[mu (2, y) — wn(z)|/| optn(z) — wn(z)].

For afunction f of |x|, an algorithm is a standard f-approximation algorithm (resp.,
differential f-approximation algorithm) for a problem II if, for any instance = of II, it
returns a solution y such that r(x,y) < f(|z|), if opt(IT) = min, or r(z,y) > f(|z|), if
opt(Il) = max (resp., 6(z, y) = f(|z])).

With respect to the best approximation ratios known for them, NPO problems can be
classified into approximability classes. The most notorious among them are the following:
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APX or DAPX: the class of problems for which there exists a polynomial algorithm
achieving standard or differential approximation ratio f(|x|) where function f is
constant (it does not depend on any parameter of the instance);

PTAS or DPTAS: the class of problems admitting a polynomial time approximation
schema; such a schemais a family of polynomial agorithms A., £ €]0, 1], any of
them guaranteeing approximation ratio 1 — ¢ (under the differential approximation
paradigm and under the standard one in the case where opt(IT) = max), or 1 + ¢
(under the standard approximation paradigm in the case where opt(I1) = min);

FPTAS and DFPTAS: the class of problems admitting a fully polynomial time ap-
proximation schema; such a schema is a polynomial time approximation schema
(Az)=cj0,1], Where the complexity of any A. is polynomial in both the size of the
instanceandin 1/¢.

We now define a kind of reduction, called affine reduction and denoted by AF, which, as
we will see, isvery natural in the differential approximation paradigm.

Definition 1 Let IT and IT" be two NPO problems. Then, IT AF-reducesto IT' (IT <ag IT'),
if there exist two functions f and ¢ such that:

1. forany x € Iy, f(x) € Iry;
2. forany y € Solyy(z), g(z,y) € Soln(x); moreover, Soly(z) = g(z, Solw (f(z)));

3. forany z € Iyj, thereexist K € Rand k € R* (k > 0 if opt(II) = opt(Il'), &£ < 0,
otherwise) such that, for any y € Solw/(f(x)), mmw (f(x),y) = kmn(z, g(z,y)) +
K.

If II <ap I" and IT" <af II, then IT and IT’ are called affine equivalent. This equivalence
will be denoted by IT =5 IT. K

It is easy to see that differential approximation ratio is stable under affine reduction. For-
mally, if, for I, II" € NPO, R = (f, g) is an AF-reduction from II to IT’, then for any
x € I and for any y € Soly (f(x)), dn(x, g(x,y)) = éw(f(z),y). Indeed, by Condi-
tion 2 of Definition 1, worst and optimal solutionsin = and f(x) coincide. Since the value
of any feasible solution of IT" is an affine transformation of the same solution seen as a
solution of 11, the differential ratios for y and g(z, y) coincide also. Hence, the following
holds.

Proposition 1. If IT =g IT', then, for any constant r, any r-differential approximation
algorithm for one of themis an r-differential approximation algorithm for the other one.
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Optimization satisfiability problems as MIN SAT and MAX SAT are of great interest from
both theoretical and practical points of view. On the one hand, the satisfiability prob-
lem (SAT) is the first complete problem for NP and MAX SAT, MIN SAT have gener-
alizations or restrictions that are the first problems proved complete for numerous ap-
proximation classes under various approximability preserving reductions ([4, 19]). For
instance, MAX 3sAT is APX-complete under the AP-reduction and M ax-SNP-complete
under the L-reduction ([17]), MAX WSAT and MIN WSAT are NPO-complete under the
AP-reduction ([8]), etc. In general, many optimal satisfiability problems have for the
polynomial approximation theory the same status as SAT for NP-completeness theory.
On the other hand, many problems in mathematical logic and in artificial intelligence can
be expressed in terms of versions of SAT; constraints satisfaction isone such version. Also
problemsin database integrity constraints, query optimization, or in knowledge bases can
be seen as optimization satisfiability problems. Finally, some approaches to inductive
inference can be modeled as MAX SAT problems ([13, 14]). The interested reader can
be referred to [5] for a survey on standard approximability of optimization satisfiability
problems.

Let us note that differential approximability of the problems dealt here, has already
been studied in [6]. There, among other results, it was shown that MAX SAT and MIN
DNF, aswell asMIN SAT and MAX DNF are equivalent for the differential approximation,
that all these problems are not solvable by polynomia time differential approximation
schemata, unless P = NP, and, finally, that MIN SAT cannot be approximately solved
within differential approximation ratio 1/m'~¢, for any ¢ > 0 (where m is the number
of the clauses in its instance), unless NP = co-RP. Finaly, let us mention here that
both MAX WSAT and MIN WSAT belong to 0-DAPX, the class of the problems for which
no algorithm can guarantee differential approximation ratio strictly greater than O, unless
P = NP ([16]). This class has been aso introduced in [6].

| Approximationratios | | napproximability bounds
MAX SAT 4.34/(m + 4.34) ¢ DAPX
MAX E2SAT 17.9/(m + 19.3) 1112
MAX 3SAT 4.57/(m +5.73) 1/2
MAX E3SAT 8/(m + 8) 1/2
MAX EkSAT 28 /(m + 2F) 1/p, pthelargest primest. 3(p — 1) < k
MIN SAT 2/(m+2)
MIN (E)kSAT || 28/((2*1 — 1)m + 2%) | 1/p, p thelargest primest. 3(p — 1) < k
MIN 2SAT 4/(m +4) 1112

Table 1: Summary of the main results of the paper.
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In this paper, we further study differential approximability of MAX SAT, MIN SAT,
MIN DNF and MAX DNF, and give approximation results and inapproximability bounds
for several versions of these problems. A summary of the main results obtained is pre-
sented in Table 1. As one can see from the second column of the first line of this table,
MAX SAT isnot approximable within aconstant approximation ratio, unlessP = NP. This
result is very interesting since it indicates that Max-NP ([17]) is not included in DAPX.
Thisisan important difference with the standard approximability classes|andscape where
Max-NP c APX. Another assessment with respect to our resultsis that the gap between
lower and upper approximation bounds for the problems dealt is still large. However, this
paper undertakes a systematic study of satisfiability problemsin the differential paradigm,
it extends the results of [6] and shows that none of the most classical satisfiability prob-
lemsisin 0-DAPX. This approximability class has been introduced in [6] and represents
the worst possible configuration for differential approximation since it includes the prob-
lems for which no polynomial time approximation algorithm can guarantee differential
ratio greater than 0. Inclusion of the problems dealt here in 0-DAPX or not, was a major
guestion we handled since [6].

2 Affine reductions between optimal satisfiability prob-
lems

Let us first note that there does not exist general technique in order to transfer approxi-
mation results from differential (resp., standard) paradigm to standard (resp., differential)
one, except for the case of maximization problems and for transfers between differential
and standard paradigms. Proposition 2 just below deals with this last case.

Proposition 2 If a maximization problem IT can be solved within differential approxima-
tion ratio ¢, then it can be solved within standard approximation ratio 9, also.

Proof. Consider any differential polynomial time approximation algorithm A guarantee-

ing differential-approximation ratio ¢ for any instance x of a maximization problem II.

Denote by A(x), asolution computed by A when running on . Then,
5<1

m(z,A(x)) — w(z) () “E20 m(z, A(z))
opt(z) — w(2) >0 = m(x,A(x)) = dopt(z)+(1-)w(z) = “optl@)

and the claim of the proposition is proved. i

Corollary 1 Any standard inapproximability bound for a maximization problemII isalso
a differential inapproximability bound for I1.
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We give in this section some affine reductions and equivalences between the problems
dealt in the paper. These resultswill allow usto focus ourselves only in the study of MAX
SAT, MIN SAT and their restrictions without studying explicitly MAX and MIN DNF. We
first recall aresult already proved in [6].

Proposition 3 ([6]) MAX SAT =ar MIN DNF and MIN SAT =ar MAX DNF.

The following proposition shows that one can affinely pass from MAX ELSAT to MAX
E(k + 1)SAT. This, allows us to transfer inapproximability bounds from MAX E3SAT to
MAX EkSAT, for any k > 4.

Proposition 4 MAX EESAT <ar MAX E(k + 1)SAT.

Proof. Consider an instance ¢ of MAX EESAT on n variables x4, . .., z, and m clauses
Ci,...,Cy,. Consider also anew variable y and build formula ¢/, instance of MAX E(k +
1)sAT asfollows: for any clause C; = ({;,, ..., {;,) of ¢, where, for j =1,...,k, {;, isa
literal associated with z;,, o' containstwo new clauses (¢;,, . .., £;,,y) and (L, . .., 3, ).
Hence, ¢’ is the conjunction of 2m clauses of size k + 1 on n + 1 variables. Assume
any truth assignment 7" on the variables of ¢ and denote by (7,1) (resp., (7,0)) the
extension of 7" on ¢’ by setting y = 1 (resp., y = 0). Then, it is easy to see that
m(g', (T,1)) = m(, (T,0)) = m+ m(p,T).

In other words, reduction just described, associating to any assignment 7" of ¢’ its
restriction 7" on variables x4, . . ., z,, as assignment for ¢, is affine and the proof of the
proposition is complete. i

We now show that, for k fixed, problems £SAT and kDNF are affine equival ent.

Proposition 5. For any fixed k, MAX kSAT, MIN kSAT, MAX kEDNF, MIN EDNF, MAX
ELSAT, MIN EESAT, MAX EEDNF and MIN EADNF are all affine equivalent.

Proof. We first prove affine equivalence between MAX kSAT and MIN kSAT. Given n
variableszy, . . ., z,,, denote by C; the set of clauses of size k and by C;, the set of clauses
of sizeat most k ontheset {1, ..., x,}. Let usremark that any truth assignment verifies
the same number v;, of clauses on C;, and the same number v, of clauses on C;. Note
aso that, since £ is assumed fixed, sets C;, and C¢;, are of polynomial size.

Let ¢ be an instance of MAX ELSAT on variable-set {z1,...,z,} andonaset C =
{C1,...,Cy} of m clauses. Consider instance ¢’ on the clause-set C' = C;, \ C. Then,
for any truth assignment 7 on {x1, ..., x,}: m(p, S) + m(¢',S) = v; in other words,
reduction just described is an affine reduction from MAX ELSAT to MIN ELSAT. Consid-
ering ¢ as instance of MIN EESAT this time, the above describe an affine reduction from
MIN EkSAT to MAX EESAT.
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Furthermore, if C is an instance of MAX kSAT, then we can seethe clause-set C;, \ C
as an instance of MIN k£SAT and the same arguments conclude an affine reduction from
the former to the latter problem.

We now prove equivalence between versions of SAT and the corresponding versions
of DNF. Givenaclause C' = (¢;, V...V {;, ) on k literals, we build the cube (conjunction)
D = (l;; A...AG;,). Any truth assignment T on ¢;; verifies C, if and only if it does
not verify D, i.e, m(C,T) = m —m(D,T). This specifies an affine reduction between
MAX EESAT and MIN EXDNF, MIN EESAT and MAX EEDNF, MAX kSAT and MIN KDNF
and between MIN £SAT and MAX kDNF.

We finally show equivalence between MAX ESAT and MAX EkSAT. We first notice
that the latter problem being a sub-problem of the former one, direction MAX EASAT <af
MAX kSAT isimmediate. On the other hand, as in Proposition 4, given an instance of
MAX kSAT, one can construct, for any clause of size at most k, a set of clauses of size
exactly k, in such away that this reduction is affine.

Combination of equivalences shown above completes the proof of the proposition. i

It isshown in [12] (see also [4]), that MAX E3SAT isinapproximable within standard
approximation ratio (7/8) + ¢, for any e > 0, and MAX E2SAT is inapproximable within
standard approximation ratio (21/22) + ¢, for any € > 0 (in what follows for such results
we will use, for simplicity, expression “within better than™). Discussion above, together
with these bounds leads to the following result.

Proposition 6. MAX 2SAT, MAX E2SAT, MIN 2SAT, MIN E2SAT, MAX 2DNF, MAX
E2DNF, MIN 2DNF and MIN E2DNF are inapproximable within differential approxima-
tion ratio better than 21/22. Furthermore, for any £ > 3, MAX kSAT, MAX EESAT,
MIN kSAT and MIN EkLSAT, MAX kDNF, MAX EEDNF, MIN kDNF and MIN EkEDNF, are
inapproximable within differential approximation ratio better than 7/8.

Proof. Concerning MAX 2SAT and associates, Corollary 1 extends the result of [12] to
the differential paradigm. Then, Proposition 5 suffices to conclude the proof.

For MAX kSAT and associates, Corollary 1 extends the result of [15] to the differential
paradigm, for MAX 3sSAT and Proposition 5 transfers it to MAX E3SAT. Then, Proposi-
tion 4 extendsit for any £ > 4. Finally, Proposition 5 suffices to conclude the proof. i

Since the satisfiability problems stated in Proposition 6 are particular cases either
of MAX SAT, or of MIN SAT, or of MAX DNF, or, finaly, of MIN DNF, application of
Proposition 6 and of Proposition 3 concludes the following corollary.

Corollary 2. MAX SAT, MIN SAT, MAX DNF and MIN DNF are inapproximable within
differential approximation 7/8.
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Results of Corollary 2 are not the best ones. In Section 4, we strengthen the one for
MAX SAT. On the other hand, asit is proved in [6], MIN SAT is inapproximable within
differential ratio better than m<=*, for any ¢ > 0. Proposition 5 has to be used with
some precautions in order to yield positive or negative approximation results. Indeed, if
one of the problem stated in it is approximable within constant differential approximation
ratio (i.e., within ratio that does not depend on an instance parameter), then this ratio
is naturally transferred to all the other problems. A contrario, one can see in the proof
of Proposition 5 that in many cases the number of the clauses for the derived instance
can be much larger that the one for the initial instance. In such cases, if we deal with
ratios functions of m the form of these ratios is certainly preserved but not their value.
For instance, assume that some problem IT among the ones stated in Proposition 5 is
approximable within ratio f(|p|), where || denotes the number of clauses, or cubes,
inp, and f decreases with ||. Assume also that there exists another problem IT" (among
the ones stated in Proposition 5) such that II' <,¢ II and, furthermore, that this affine
reduction transforms a formula ¢’ of 11" into a formula ¢ for I1. Then, it transforms an
approximation ratio f(|¢|) for the latter into an approximation ratio f(|,|) for the former
but, if the values |¢| and || are very different the one from the other, then f(|p|) #

FeD)-

In fact, one can easily observe that affine reductions of Proposition 5 perform the
following differential ratio transformations:

e reduction from MAX ELSAT to MIN ELSAT transformsratios f (m, n) into f((2n)*—
m,n);

e reduction from MAX kSAT to MIN kSAT transforms ratios f(m,n) into f((2n +
DF —m,n);

e reductions between SAT and DNF are invariant for approximation ratios;
e reduction from MAX kSAT to MAX ELSAT transformsratios f(m,n) into f(2%~1m,

n+k—1).

In other words, dealing with common approximability of the problems stated in Proposi-
tion 5, the following remarks hold:

e if one of these problemsisin DAPX, then all the other ones are so;

e problems MAX kSAT,MAX EkSAT, MIN k& DNF and MIN EXDNF are approximable
within differential ratios of O(f(m)) for a function f strictly decreasing with m
if and only if one of them is O(f(m)) differentially approximable for f(m) =
O(m®), for some « > 0, or f(m) = O(logm); the same holds for the quadruple
MIN kSAT,MIN ELSAT, MAX k DNF and MAX EKDNF;
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e al problems arein Log-DAPX (the class of problems differentially approximable
within ratios of O(1/log |x|)) if and only if one of them is so (observe that reduc-
tionsdealt transform differential ratios of O(log m) into ratios of theform O(log m)
or of O(logn), and ratios of O(log n) into ratios of the same form).

Finally, reduction of Proposition 4 transformsratios f(m, n) into f(2m,n + 1).

3 Postiveresults

3.1 Maximum satisfiability

Consider an instance ¢ of an optimal satisfiability problem, defined on »n boolean vari-
ables x4, ...,x, and m clauses C1,...,C,,; consider also the very classical agorithm
RSAT assigning at any variable value 1 with probability 1/2 and, obvioudly, value 0 with
probability 1/2.Then, denoting by Sol(y), the set of the 2" possible truth assignments
for ¢, and by E(RSAT(¢y)) the expectation of a solution computed by RSAT when running
on ¢, the following holds: E(RSAT(¢)) = > rego,) mle, T) /2"

Algorithm RSAT can be derandomized by the following technique denoted by DSAT.
For:=1,...,n:

e compute E! = E(m(p,T)|z; = 1) and E! = E(m(p,T)|x; = 0), where T' is
a random assignment and the values of the i — 1 first variables have already been
fixed initerations1,...7 — 1;

o setu; =1,if E] > E; otherwise, set z; = 0.
Lemmal m(p,DSAT(yp)) = E(RSAT(yp)).

Proof. It iseasy to seethat E(RSAT(¢)) = (E1/2) + (EY/2); hence max{E}, E/} >
E(RSAT(yp)). Furthermore, at any of the n steps of DSAT, max{E], E/'} = (E/,,/2) +
(E!1/2) < max{E/, , E/,,}. Consequently, we have E(RSAT(y)) < max{E}, B/} <
max{FE! E!} = DSAT(y), that concludes the proof of the lemma. i

Note finally, that DSAT is polynomial since, for any i = 1,...,n, computation of E!
and E! is performed in polynomial time. Indeed, for any such computation it suffices to

determine with what probability any clause of ¢ is satisfied and to sum these probabilities
over al the clauses of .

We are ready now to state and prove positive differential approximation resultsfor the
problems dealt here.
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Proposition 7. Algorithm DSAT achievesfor MAX EkSAT differential approximation ratio
2k / (opt (i) + 2%). Thisratio is bounded below by 2% /(m + 2F).

Proof. Note first that we can assume that opt(yp) > w(p) (otherwise, MAX ELSAT would
be polynomial on ¢). Then,

w(p) < E(RSAT(p)) < m(p, DSAT()) )

From (1) and given that feasible values of MAX ELSAT are integer, we get:

m(p,DSAT(¢)) —w(p) > 1 )

Sinceclausesin ¢ are of size k, the expectation that any of them is satisfied equals 1 —2-*.
Hence,

. DST(9) > BT = (1- o) zom(e) (1-5:) @)

Using (2) and (3), we get:

1 opt(p) (1 - 5) - w@)} @

6(¢, DSAT(y)) > max { opt(p) —w(p)”  opt(p) — w(p)

Thefirst termin (4) isincreasing with w(y), while the second oneis decreasing. Equality
holds when w(¢) = (opt(¢)(1 — 27%)) — 1. Inthis case, (4) gives

2k 2k
>
opt(p) +2F 7 m 4 2k

6(1p, DSAT(p)) = (5

Last inequality in (5) holding thanks to the fact that opt(¢) < m, qed. i

Notice that the ratio claimed by Proposition 7 increases with k. Thisis quite natural
since for £ > logm, MAX kSAT is polynomial. Indeed, using (3) with such a k&, we get
m(p, DSAT(p)) = m — (m/2%) > m — 1, i.e, m(p, DSAT(¢)) = m, since the feasible
values of MAX kSAT areinteger.

We now propose areduction transferring approximation resultsfor MAX SAT problems
from standard to differential paradigm. It will be used in order to achieve differential
approximation resultsfor MAX SAT, MAX 3SAT and MAX 2SAT.

Proposition 8. If a maximum satisfiability problem is approximable on an instance ¢,
within standard approximation ratio p, then it is approximable in ¢ within differential
approximation ratio p/((1 — p)w(p) + 1).
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Proof. Fix any maximum satisfiability problem I1, sharing the ones dealt until now, and
assume that there exists a polynomial time algorithm achieving standard approximation
ratio p for II. Consider an instance ¢ of I1, run both A and DSAT on ¢ and retain assign-
ment T satisfying the maximum number of clauses between A(yp) and DSAT(yp). Obvi-
ously, m(p,T) = popt(y). Hence, the differential approximation ratio of 7" is

(p,1) > 2 1) — ) ©
=2 —w(e)

Since, as we have seen in the proof of Proposition 7, m(y, T) > w(y) + 1, (6) becomes

1 _ p
T2 ) T U e+ )

The proof of the proposition is now complete. i

From the result of Proposition 8, we can deduce severa corollaries by specifying
valuesfor w(y) and p. Themain such corollaries are stated in the propositions that follow.
Before stating and proving them, let us remark that, in the case of MAX kSAT

pmsat() < m (1 5 ) ©®)

Then (1) and (8) yield:

s <m(1- ) ©

Proposition @ MAX SAT isapproximablewithin differential approximationratio4.34/(m—+
4.34).

Proof. We can assume w(y) < m — 1, otherwise (w(¢) = m) all feasible solutions of ¢
have the same value. Since 1 — p > 0, the differentia ratio of (7) decreases with w(7).
So, it sufficesto substitute m — 1 for w(yp), to use the fact that MAX SAT is approximable
within standard ratio 1/1.2987 ([3]), and the proof of the proposition is complete. i

Proposition 10.  MAX 2SAT is approximable within differential approximation ratio
17.9/(m + 19.3), and MAX 3SAT within 4.57/(m + 5.73).

Proof. For MAX 2sAT, remark first that, using (3), the expectation of the solution com-
puted by the random algorithm RSAT is, using (9), less than, or equa to, 3m /4. Con-
sequently, w(y) < 3m/4. Next, the fact that MAX SAT is approximable within standard
ratio 1/1.0741 ([10]) suffices to conclude the proof.

For MAX 3SAT, w(p) < 7m/8 and p = 1/1.249 ([18]).1
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3.2 Minimum satisfiability

We finish this section by studying MIN SAT and some of its versions. Before stating our
results, we note that algorithm RSAT can be derandomized in an exactly symmetric way,
in order to provide a solution for MIN £SAT with value smaller than expectation’s value.

Proposition 11. If a minimum satisfiability problem is approximable on an instance ¢,
within standard approximation ratio p, then it is approximable in ¢ within differential

approximation ratio
P

(p=1) (1 —3)m+p

Proof. Asin the proof of Proposition 7, since we dea with a minimization problem, (1)
becomes:

opt () < m(p,DSAT(p)) < E(RSAT(¢)) < w(y) (10)
Consequently, (2) becomes:
w(p) —m(p,DSAT(p)) > 1 (11)

Considering the best among the solutions computed by DSAT and A (the p-standard ap-
proximation algorithm assumed for MIN £SAT in the statement of the theorem), denoting
it by T"and using (10) and (11), we get:

1 w(p) — popt(p) wlp) —m (1—3) } (12)

(¢, T) = max {w(so) —opt(p)” w(p) —opt(p) * wl(p) — opt(y)

where the third term in (12) is due to the fact that 7' has a better value than the value of
algorithm RSAT.

The first term in (12) is decreasing with w(), while the second and third ones are
increasing. We distinguish two cases depending on the relation between these terms.

If the second term is greater than the third one, i.e., if popt(yp) < m(1 — 27%), then
equality of the first two terms of (12) is achieved when w(yp) = 1 + popt(p). In this
case, (12) gives: )

>
If, on the other hand, second term is smaller than the third one, i.e., if popt(p) > m(1 —
27F), then equality of thefirst and the third term in (12) is achieved when w(y) = m(1 —
27%) + 1. In this case also, §(y, T)) verifies (13). The proof of the proposition is now
complete. i

The best standard approximation ratios known for MIN £SAT and MIN SAT are 2(1 —
2%) and 2, respectively ([7]). With the ratio just mentioned for MIN kSAT, the result of
Proposition 11 can be ssimplified as indicated in the following corollary.
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Corollary 3 MIN kSAT is approximable within differential ratio 2% /((2*=! — 1)m + 2).
Proposition 12 MIN SAT is approximable within differential ratio 2/(m + 2).

Proof. Use Proposition 11 with p = 2 ([7]).

Also, using Corollary 3 with £ = 2 and £ = 3, the following corollary holds and
concludes the section.

Corollary 4 MIN 2sSAT and MIN 3SAT are approximable within differential ratios4/(m+
4) and 8/(3m + 8), respectively.

4 Inapproximability

We first recall some basics about MAX E3LINp that will be used for deriving our results.
In this problem, we are given a positive prime p, n variables x4, . . . , x,, INZ/pZ, m linear
equations of type «;,z;, + o, x;, + ay,xr, = [, and our objective is to determine an
assignment on x4, .. ., x,,, in such away that a maximum number among the m equations
is satisfied.

Asitis proved in [12] (see dso [9] for the case where all the coefficients equal 1),
for any p > 2 and for any ¢ > 0, MAX E3LINp cannot be approximated within standard
approximation ratio (1/p) + €, even if coefficients in the left-hand sides of the equations
are adl equal to 1. Note that, due to Corollary 1, this bound is immediately transferred to
the differential paradigm.

Finally, let us quote the following GAP-reduction (see[2] for more about this kind of
reductions), proved in [12], that will be used in order to yield our results.

Proposition 13. ([12]) Given a problem IT € NP and areal § > 0, there exists a poly-
nomial transformation ¢ from any instance I of II into an instance of MAX E3LINZ2 such
that:

e if [ is a yes-instance of IT (we use here classical terminology from [11]), then
opt(g(1)) = (1 = &)m;

e if I isano-instance of I1, then opt(g(1)) < (1 + &)m/2.

Proposition 13 shows, infact, that MAX E3LIN2 ishot approximable within standard ratio
1/2 + ¢, for any € > 0, because an algorithm achieving it would allow us to distinguish
in polynomial time the yes-instances of any problem IT € NP from the no-ones. Devising
of such reductions is one of the most common strategies for proving inapproximability
results in standard approximation.
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4.1 Boundsfor MAX E3SAT

We first prove a GAP-reduction anal ogous to the one of Proposition 13 from any problem
IT € NP to MAX E3sSAT. Note that thisis the first time that a GAP-reduction is used in
the differential approximation paradigm.

Proposition 14. Given a problemII € NP and areal § > 0, there exists a polynomial
transformation f from any instance / of I1 into an instance of MAX E3SAT such that:

e if I isayes-instance of I1, then opt(f (1)) — w(f(1)) = (1 — 25)m/4;
e if I isano-instance of I1, then opt(f (1)) — w(f(I)) < dm/4.

Proof. We first prove that the reduction of Proposition 13 can be trandated into the
differential paradigm also. Consider aninstance I’ = ¢g(I) of MAX E3LIN2 and afeasible
solution 7 = (xy,xo,...,x,) for I (we will use the same notation for both variables
and their assignment) verifying & among the m equations of I’. Then, vector 7 = (1 —
r1,...,1 —x,), verifiesthem — k eguations not verified by Z. In other words, opt(7) +
w(I) = m; hence, function g claimed by Proposition 13 is such that:

e if I isayes-instance of II, then opt(I') — w(I’) > (1 — 20)m;

e if I isano-instance of II, then opt(I’) — w(I’) < om.

We are ready now to continue the proof of the proposition. Consider an instance I of
MAX E3LIN2 onn variables z;, i = 1,...,n and m equations of type x; + =, + z;, =
in Z/2Z, i.e., where variables and second members equal O, or 1. In the same spirit as
in[12], we transform I into an instance ¢ = h(I) of MAX E3SAT in the following way:

e for any equation x; + z; + x;, = 0, we add in h(I) the following four clauses:
(Zf‘i V Z; V ZL‘k), (IZ V fj V [Ek), (ZL’Z V Z; V jk) and (ZZ’Z V j]j V fk),

e for any equation z; + x; + x;, = 1, we add in h(I) the following four clauses:
(.I'Z' V Z; V xk), (i’l V Zj V l’k>, (fl V Z; V i’k) and (331 V Zj vV f'k)
It can immediately be seen that h(1) hasn variables and 4m (distinct) clauses.

Given asolution y for MAX E3SAT on h(1), we construct asolution i/’ for I by setting
x; = 1if z; = 1in h(I) also; otherwise, we set z; = 0.

For instance, consider equation x; + x; + x; = 0in I. Itisverified if either O or 2 of
the variables are equal to 1. The several satisfaction possibilities for the clauses derived
in h(I) for this equation are the following:
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e if zero, or two variables are set to 1 (true), then all the four clauses are satisfied;

e if ong, or three variables are set to 1, then 3 clauses are satisfied.

As a consequence, iterating this argument for any clause set built from an equation, we
conclude that solution y for MAX E3SAT on h(1) verifiesm(h(I),y) = 3m + m(I,y).
Since transformation between ' and y is bijective, we get w(h(I)) = 3m + w(/) and
opt(h(I)) = 3m + opt(I). In other words, the reduction just described is an affine
reduction from MAX E3LIN2 t0O MAX E3SAT.

It suffices now to remark that the composition f = h o g verifies the statement of the
proposition and its proof is concluded. i

Proposition 14 has a very interesting corollary, expressed in the Proposition 15 just
below, that exhibits another point of dissymmetry between standard and differential para-
digms.

Proposition 15 Unless P = NP, no polynomial algorithm can compute, on an instance ¢
of MAX E3SAT avalue that is a constant approximation of the quantity opt(¢) — w(yp).

In view of Proposition 15, what is different between standard and differential paradigms
with respect to the GAP-reduction is that in the former such a reduction immediately
concludes the impossibility for a problem (assume that it is a maximization one) to be
approximable within some ratio, by showing the impossibility for the optimal value to be
approximated within thisratio. For that, it suffices that one reads the value of the solution
returned by the approximation algorithm. In the latter paradigm such a conclusion is not
alwaysimmediate. In fact, areasoning similar to the one of the standard approximation is
possible when computation of the worst solution can be done in polynomial time (thisis,
for instance, the case of maximum independent set and of many other NP-hard problems).
In this case a simple reading of the value of the approximate solution is sufficient to give
an approximation of opt(x) —w(z). A contrario, whenitis NP-hard to computew(z) (this
isthe case of the problems dealt here —simply think that the worst solution for MAX SAT is
the optimal one for MIN SAT and that both of them are NP-hard —, of traveling salesman,
etc.), then reading the value m(z, y) of the approximate solution does not provide uswith
knowledge about m(x,y) — w(z) and, consequently no approximation of opt(x) — w(x)
can beimmediately estimated. So, use of GAP-reduction for achieving inapproximability
results is different from the one paradigm to the other.

However, for the case we deal with, we will take advantage of acombination of Propo-
sitions 5 and 15 in order to achieve the inapproximability bound for MAX E3SAT givenin
Proposition 16 that follows.

Proposition 16. Unless P = NP, MAX E3SAT is inapproximable within differential ap-
proximation ratio greater than 1/2.
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Proof. Assumethat an approximation achievesdifferential ratiod > 1/2, for MAX E3SAT.
Then, by Proposition 5, there exists an algorithm achieving the same differentia ratio
for MIN E3SAT. Denote by 77 and T3, respectively, the solutions computed by these
algorithms on an instance ¢ of these problems. We have:

m (¢, T1) — w(p) = d(opt(p) — w(yp)) (14)

where opt(-) and w(-) are referred to MAX E3SAT. By the relations between al these
parameters for the two problems specified in the proof of Proposition 5, we get:

opt(p) —m (¢, Tz) = 6(opt(p) — w(y)) (15)

Adding (14) and (15) member-by-member, weget m(p, T1)—m(p, Tz) = (26—1)(opt(p)—
w(yp)). So, simple reading of the values of 7} and 75, can provide us a constant approxi-
mation (since ¢ has been assumed to be a fixed constant greater than 1/2) of the quantity
opt(p) — w(p), impossible by Proposition 15. 1

Proposition 16 together with Proposition 5 conclude the following corollary.
Corollary 5. For any k£ > 3, MAX ELKSAT, MIN EESAT, MAX kSAT and MIN kSAT are
differentially inapproximable within ratios better than 1/2.

42 MAXELKSAT,k > 3

In this section, we will generalize the GAP-reduction of Proposition 14 in order to further
strengthen inapproximability results of Corollary 5.

Proposition 17. For any prime p > 0, MAX E3LINp <ar MASE3(p — 1)SAT.

Proof. Consider a positive prime p and an instance I of MAX E3LINp on n variables
and m equations. Consider an equation x; + 2 + x3 = (3 (in Z/pZ) of I and, for any
i=1,2,3,p—1newvariablesz!,... '"' € {0,1}. Consider, finally, equation

[a)

—

p—1 p—1
x{—l—Zxé—%Zxé:ﬁ (16)

j=1 J J

p—

<
Il

Itiseasy to seethat (16) isverified if and only if the number of variablessetto 1iseither 5
or 3+ p, or, finaly, 3 + 2p.

Consider now the set of al the possible clauses on 3(p — 1) literalsissued from vari-
ablesz), ... ,xf‘l,z‘ = 1,2,3. Any truth assignment will satisfy all but one clause. For

example, if any variable is assigned with 1, the only unsatisfied clause is the one where
all variables appear negative.
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Wheat is of interest for usisto specify when the number of variables set to 1 iseither 3
or 5+ p, or, 5 + 2p. For this, denote by C;, the set of clauseson 3(p — 1) literals issued
from variables z}, . .. ,:cffl, 1 = 1,2,3 with exactly k negative literals. Then, a truth
assignment setting k variables to 1, verifies |Cx| — 1 clauses of C, while any other truth
assignment on the variables of C;, verifies all the |C| clauses. So, for an equation x; +
o + x3 = [, we will add in the instance of MAX E3(p — 1)SAT the set Cy, for k& €
{0,...,3(p—1}and k & {5,5+ p, B + 2p}. Hence, if atruth assignment for these
clauseshas 3, or 5+p, or 3+2p variablesset to 1, it will verify all the clauses constructed,

otherwise it will verify all but one of these clauses.

Inal, for any of thevariablesz}, .. ., xffl we will build one new variable and we will
transform any of the m equations of I into an equation asin (16). Then, for any of these
new equations we add in the instance of MAX E3(p — 1)SAT the set of clauses as built just
above. Theinstance ¢ of MAS E3(p — 1)SAT so constructed has n(p — 1) variables and,
since the number of clauses issued from any equation is no more than 23— » will have
a most m,, < m23®~1 clauses.

Given a truth assignment 7" on the variables of o, we set #; = |[{z¥ : 2% = 1inT}|.
Discussion above leads to m(¢,T") = my, — m + m(/,.S). On the other hand, it is
easy to see that our reduction implies that any solution S of [ istransformed into a truth
assignment 7" on the variables of ¢ such that the relation between the values of S and T
given just above is always satisfied. This relation confirms that the reduction specified is
an affine one from MAX E3LINp to MAX E3(p — 1)SAT.

Finally, let us remark that it is possible that formula ¢ contains many times the same
clause. This, for instance, is the case if I simultaneously contains equations say =, +
X9 +x3 = Oy and x1 + x9 + 23 = (o, fOr 1 # (5. In this case, we can modify
the construction described, by building the subset of C;, or £ € {0,...,3(p — 1)} and
k & {51, B1+p, B1+2p, B2, o+, B2+ 2p}. Thisconcludesthe proof of the proposition. i

The result of Proposition 17 together with the result of [12] stated in the beginning of
the section and Proposition 1, lead to the following corollary.

Corollary 6. For any prime p, MAX E3(p — 1)SAT isinapproximable within differential
ratio greater than 1/p.

Furthermore, Propositions 4 and 5 allow usto rewrite Proposition 17 as follows.
Proposition 18. For any &£ > 3, neither MAX EESAT, nor MIN EkESAT can be approx-
imately solved within differential ratio greater than 1/p, where p is the largest positive

primesuchthat 3(p — 1) < k.

Easy consequences of Proposition 18 are the following differential inapproximability
bounds for several instantiations of maximum and minimum k-satisfiability:
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e MAX and MIN 3sSAT 4sAT and 5SAT are differentially inapproximable within ratio

better than 1/2;

e MAX and MIN 6SAT, ..., 11sAT are differentially inapproximable within ratio bet-
ter than 1/3;

e MAX and MIN 12sAT, ..., 17sAT are differentially inapproximable within ratio
than 1/5, ...

Finally, MAX SAT being harder to approximate than any MAX kSAT problem, the follow-
ing result holds and concludes the section.

Proposition 19. MAX SAT ¢ DAPX.

In [17] is defined a logical class of NPO maximization problems called MAX-NP. A
maximization problem IT € NPO belongsto Max-NP if and only if there exist two finite
structures (U, Z) and (U, S), a quantifier-free first order formula ¢ and two constants &
and ¢ such that, the optima of I1 can be logically expressed as:

Igleag(‘{xEUk:ElyEUe,go(I,S,a:,y)}‘ a7

The predicate-set 7 draws the set of instances of II, set S the solutions on Z and ¢ the
feasibility conditions for the solutions of I1. In the same article is proved that MAX SAT €
Max-NP and that MAX-NP C APX.

It is easy to see that (17) can be identically used in both standard and differential
paradigms. So, Proposition 19 draws an important structural differencein the landscape of
approximation classes in the two paradigms, since an immediate corollary of this propo-
sition isthat MAX-NP ¢ DAPX. We conjecture that the same holds for the other one
of the celebrated logical classes of [17], the class MAX-SNP, i.e., we conjecture that
MAX-SNP ¢ DAPX

4.3 MAX E2SAT

We have aready seen in Proposition 6 that MAX E2SAT is differentially inapproximable
within ratio 21/22. In this section, we improve this result by operating an affine reduction
from MAX E2LIN2 t0O MAX E2SAT.

Indeed, consider an instance I of theformer problem (on n variables and m equations)
and an equation z; + xo = 0in I. Add in ¢ (the instance of MAX E2SAT under construc-
tion) clauses 7, V z, and z; V T3. On the other hand, for an equation z; + =z, = 1, add
in o clauses x; V x5 and z; V T,. Performing this transformation for any equation in 1,
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we finally build a formula ¢ of MAX E2SAT on n variables and 2m clauses. Moreover,
for any truth assignment 7" on the variables of ¢, one gets a solution .S for I such that
m(e,T) =m+m(I,S), ged.

Itisshownin[12] that MAX E2LIN2 isinapproximable within standard approximation
ratio better than 11/12. By Proposition 2, this bound is transferred to the differential
paradigm. Then, the affine reduction just described concludes the following result.

Proposition 20 MAX E2LIN2 <ar MAX E2SAT. Consequently, MAX E2SAT is differen-
tially inapproximable within ratio greater than 11/12.

5 Ideasfor further research

We give in this concluding section afew ideas about possible ways for further improving
results of the paper or for yielding new ones.

Consider agraph G(V, E) of order n and with maximum degree A. We construct an
instance p of MAX DNF on n variable x4, ..., z, and n cubes C1, . .., C,, asfollows:. for
any vertex v; € V, with neighbors v, , . . . , Vg, WE addin g clausex; A Z;y A ... A Tis,
Let 7" be a truth assignment satisfying k& cubes, say C},,...,C};, . Then, obviously, the
vertex-set V' = {v;,,...,v;, } isanindependent set for G (of size k). Conversely, given
an independent set of G of size k consisting of verticesv,,, ..., v;,, the truth assignment
setting variables z;,, . . ., z;, to 1 and any other variable of ¢ in O sétisfies £ cubes. Ob-
servefinally that the size of the cubes built for ¢ isbounded by A + 1. In al we have just
exhibited an affine reduction from MAX INDEPENDENT SET-A (i.e.,, MAX INDEPENDENT
SET on graphs with maximum degree bounded by A) to MAX A + 1DNF.

On the other hand, there exists an ¢ > 0 such that, for any A > 3, MAX INDEPEN-
DENT SET-A is not approximable within approximation ratio 1/A¢ ([1]). Since standard
and differential approximation ratios coincide for MAX INDEPENDENT SET (the worst
independent set in a graph is the empty set), the result of [1] holds immediately for dif-
ferential paradigm and can be used in order to conclude that there exists an e > 0 such
that, for any k£ > 4, MAX kDNF is not differentially approximable within ratio greater
than 1/k¢. Thisrecoversthe result of Proposition 19, namely, that MAX SAT ¢ DAPX.

If onewishesto improvethisresult, apossibleissueisthefollowing. Recall that trans-
formation of MAX kDNF to MAX kSAT of Proposition 5, consists of substituting any cube
of size by 2/ —1 clauses of size (. We so can affinely (but not polynomially) reduce MAX
INDEPENDENT SET to MAX SAT by building an instance ¢ of the latter on n variables and
at most n24+! clauses. But, if A is bounded by log n, then this reduction is polynomial.
In other words, if one obtains an inapproximability bound for MAX INDEPENDENT SET-
log n (for example abound of the type 1/ log® n, for some positive ), then one can extend
it immediately to MAX SAT improving so the bound of the paper.
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