
HAL Id: hal-00018223
https://hal.science/hal-00018223v2

Preprint submitted on 31 Jan 2006 (v2), last revised 14 Jan 2009 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dense Linear Algebra over Finite Fields: the FFLAS
and FFPACK packages

Jean-Guillaume Dumas, Thierry Gautier, Pascal Giorgi, Clément Pernet

To cite this version:
Jean-Guillaume Dumas, Thierry Gautier, Pascal Giorgi, Clément Pernet. Dense Linear Algebra over
Finite Fields: the FFLAS and FFPACK packages. 2006. �hal-00018223v2�

https://hal.science/hal-00018223v2
https://hal.archives-ouvertes.fr

cc
sd

-0
00

18
22

3,
 v

er
si

on
 2

 -
 3

1
Ja

n
20

06

Dense Linear Algebra over Finite Fields: the

FFLAS and FFPACK packages

Jean-Guillaume Dumas
Université de Grenoble

Thierry Gautier
INRIA Rhône-ALpes

Pascal Giorgi
University of Waterloo / Université de Perpignan

Clément Pernet
Université de Grenoble

January 31, 2006

Abstract

In the last past two decades, several efforts have been made to reduce
exact linear algebra problems to matrix multiplication in order to pro-
vide algorithms with optimal asymptotic complexity. To provide efficient
implementations of such algorithms one need to be careful with the under-
lying arithmetic. It is well know that modular technique such as Chinese
remainder algorithm or p-adic lifting allow in practice to achieve better
performances especially when word size arithmetic are used. Therefore,
finite field arithmetics becomes an important core for efficient exact linear
algebra libraries.

In this paper we study different implementations of finite field in order
to achieve efficiency for basic linear algebra routines such as dot product
or matrix multiplication; our goal being to provide an exact alternate
to numerical BLAS library. Following matrix multiplication reductions,
our kernel has many symbolic linear algebra applications: symbolic trian-
gularization, system solving, exact determinant computation and matrix
inversion are then studied and we demonstrate the efficiency of these re-
ductions in practice.

1 Introduction

Finite fields play a crucial role in computational algebra. Indeed, finite fields are
the basic representation used to solve many integer problems. The whole solu-
tions are then gathered via the Chinese remainders or lifted p-adically. Among
those problems are integer polynomial factorization [58], integer system solving
[12, 55], integer matrix normal forms [25] or integer determinant [41]. Finite

1

fields are also of intrinsic use in polynomial linear algebra [28] but also in cryp-
tology (e.g. large integer factorization [47], discrete logarithm computations
[49]) or for error correcting codes. Moreover, nearly all of these problems in-
volve linear algebra resolutions. Therefore, a fundamental issue is to implement
efficient elementary arithmetic operations and very fast linear algebra routines
over finite fields.

We propose a way to implement the equivalent of the basic BLAS level 1, 2,
and 3 numerical routines (respectively dot product, matrix-vector product and
matrix-matrix product), but over finite fields. We will focus on implementations
over fields with small cardinality, namely not exceeding machine word size, but
with any characteristic (consequently, we do not deal with optimizations for
powers of 2 cardinalities). For instance, we show that symbolic matrix mul-
tiplication can be as fast as numerical matrix multiplication (see section
3) when using word size finite fields. Our aim is not to rebuild some specialized
routines for each field instance. Instead, the main idea is to use a very efficient
and automatically tuned numerical library as a kernel (namely ATLAS [57])
and to make some conversions in order to perform an exact matrix multiplica-
tion (i.e. without any loss of precision). The performances will be reached by
performing as few conversions as possible. Moreover, when dealing with sym-
bolic computations, fast matrix multiplication algorithms, such as Strassen’s or
Winograd’s variant [26], do not suffer from instability problems. Therefore their
implementation can only focus on high efficiency.

Many algorithms have been designed to use matrix multiplication in order to
be able to prove an optimal theoretical complexity. In practice those algorithms
were only seldom used. This is the case e.g. in many linear algebra problems
such as determinant, rank, inverse, system solution or minimal and character-
istic polynomial. We believe that with our kernel, each one of those optimal
complexity algorithms can also be the most efficient. One goal of this paper is
then to show the actual effectiveness of this belief. In particular we focus on
matrix factorization of any shape and any rank matrices. The application of
such factorization to determinant, rank, and inverse is presented as well.

Some of the ideas from preliminary versions of this paper [21], in particular
the BLAS-based matrix multiplication for small prime fields, are now incorpo-
rated into the Maple computer algebra system since its version 8 and also into
the 2005 version of the computer algebra system Magma. Therefore an effort
towards effective reduction has been made [22] in C++ and within Maple by
A. Storjohann[7]. Effective reduction for minimal and characteristic polynomial
were proposed in [23] and A. Steel has reported on similar efforts within his
implementation of some Magma routines.

The matrix factorization, namely the exact equivalent of the LU factorization
is thus extensively studied. Indeed, unlike numerical matrices, exact matrices
are very often singular, even more so if the matrix is not square ! Consequently,
Ibarra, Moran and Hui have developed generalizations of the LU factorization,
namely the LSP and LQUP factorizations [39]. Then we adapt the scheme
for rank, determinant, inverse (classical or Moore-Penrose), nullspace computa-

2

tions, etc.
There, we will give not only the asymptotic complexity measures but the con-

stant factor of the dominant term. Most of these terms will give some constant
factor to the multiplication time and we will compare those theoretical ratios
to the practical performances we achieve. This will enable us to give a measure
of the effectiveness of our reductions (see especially section 4.3). The following
two lemmas will be useful there, the first one giving the order of magnitude
when both matrix dimensions are equal:

Lemma 1.1. Let m be a positive integer and suppose that

1. T (m) = CT (m
2) + amω + ǫ(m), with ǫ(m) ≤ gm2 for some constant g.

2. T (1) = e for some constant e.

3. log2(C) ≤ ω.

Then T (n) = O(mω).

Proof. Let t = log2(m). The recursion gives,

T (m) = CtT (1) + amω
1−

(
C
2ω

)t

1− C
2ω

+
t−1∑

i=0

Ciǫ(
m

2i
).

Then, on the one hand, if C 6= 4 this yields T (m) = a2ω

2ω−C
mω + kCt + g′m2,

where g′ < 4g
4−C

and k < T (1)− a2ω

2ω−C
− g′. On the other hand, when C = 4,

we have T (m) = a2ω

2ω−C
mω + k′Ct + gm2 log2(m), where k′ < T (1)− a2ω

2ω−C
. In

both case, with Ct = mlog2(C), this gives T (m) = a2ω

2ω−C
mω + o(mω).

Now we give the order of magnitude when the matrix dimensions differ:

Lemma 1.2. Let m and n be two positive integers and suppose that

1. T (m; n) =
∑k

i=1 ciT (m
2 ; n − di

m
2) + amω + bmω−1n + ǫ(m; n), with C =∑k

i=1 ci, D =
∑k

i=1 cidi and ǫ(m; n) ≤ gm2 + hmn .

2. T (1, F) ≤ eF for a constant e.

3. log2(C) ≤ ω − 1

Then T (m; n) = O(mω + mω−1n).

Proof. As in the preceding lemma, we use the recursion and geometric sums to

3

get

T (m; n) =

k∑

i1=1

ci1 . . .

k∑

it=1

cit
T (1; n− f(d1, . . . , dt, m))+

mω

(
a
1−

(
C
2ω

)t

1− C
2ω

− bD
1−

(
C

2ω−1

)t

1− C
2ω−1

)
+ bmω−1n

1−
(

C
2ω−1

)t

1− C
2ω−1

+

k∑

i1=1

ci1H(m/2, n− dim/2) . . .+

k∑

i1=1

ci1 . . .

k∑

it=1

cit
H(1; n− f(d1, . . . , dt, m))

(1)

Thus, we get αmω + βmω−1n ≤ T (m; n) ≤ αmω + βmω−1n + CtT (1; n) +
∑t

i=1 CiH(m
2i ; n). The last term is bounded by gm2 1−(C

4)
t

1−C
4

+ fmn
1−(C

2)
t

1−C
2

when

C 6= 4 and C 6= 2. In this case CtT (1; n)+
∑t

i=1 CiH(m
2i ; n) ≤ mlog2(C)

(
(e + 2g

C−2)n + 4g
C−4

)
=

O(mω + mω−1n). When C = 2, a supplementary log2(m) factor arises in the
small factors, but the order of magnitude is preserved since log2(C) + 1 = 2 <
ω.

These two lemmas are useful in the following sections where will apply the
lemmas and solve (e.g. T (n) = αmω solved via the recurring relation for α) to
get the actual constant of the dominant term. Thus, when we give an equality
on complexities, this equality means that the dominant terms of both complex-
ities are equal. In particular, some lower order terms may differ.

Now, we provide a full C++ package available directly1 or through the exact
linear algebra library LinBox

2 [20]. Extending the work undertaken by the au-
thors et al.[50, 21, 5, 27, 19, 22, 23], this paper focuses on finite field arithmetic
with more implementations ; on vector dot products with more experiments
and algorithms, in particular a fast centered representation ; on matrix multi-
plication with an extended Winograd variant optimizing memory allocation ; on
simultaneous triangular system solving; on matrix factorization and improved
constant factors of complexity for many linear algebra equivalent routines (in-
verse, squaring, upper-lower or upper-upper triangular multiplication, etc.).

The paper is organized as follows. Section 2 deals with the choice of data
structures to represent elements of a finite field ; with different ways to im-
plement the basic arithmetic operations and the dot product. Then section
3 presents efficient ways to generically implement matrix multiplication over
prime fields (finite fields with prime cardinality), including a study of fast ma-
trix multiplication, and a matrix multiplication based simultaneous resolution
of n triangular systems. Therefore, section 4 presents the matrix factorizations
and their applications with a study of complexity and practical performances.

1www-lmc.imag.fr/lmc-mosaic/Jean-Guillaume.Dumas/FFLAS
2www.linalg.org

4

2 Finite field arithmetic

The first task, to implement linear algebra routines is to develop the underlying
arithmetic implementation. As this is crucial for high performances, we present
in this section several variant of implementations and analyze their behavior
on nowadays hardware architectures. These implementations present distinct
constraints on the representable fields. We thus provide their respective range
of use for 32 and 64 bits machines.

2.1 Prime field representations

We present here various methods implementing seven of the basic arithmetic
operations:

• addition, subtraction, negation, multiplication, division,

• a multiplication followed by an addition (r ← a ∗ x + y) or AXPY (also
called “fused-mac” within hardware).

• a multiplication followed by an in-place addition (r ← a ∗ x + r) or AX-
PYIN.

Within linear algebra in general (e.g. Gaussian elimination, or matrix-vector
iterations) and for dot product in particular, these last two operations are the
most widely used. We now present different ways to implement these operations.

2.1.1 Classical representation with integer division

The classical representation, with positive values between 0 and p− 1, for p the
prime, will be denoted by “Zpz”.

• Addition is a signed addition followed by a test. An additional subtraction
of the modulus is made when necessary. Subtraction is similar.

• Multiplication is machine multiplication and machine remainder.

• Division is performed via the extended gcd algorithm.

• AXPY is a machine multiplication and a machine addition followed by
only one machine remainder.

For the results to be correct, the intermediate AXPY value must not overflow.

For a m−bit machine integer, the prime must therefore be below 2
m−1

2 − 1 if
signed values are used. For 32 and 64 bits this gives primes below 46337 and
below 3037000493.

Note that with some care those operations can be extended to work with un-
signed machine integers (e.g. an additional test is required for the subtraction).
The possible primes then being below 65521 and 4294967291.

5

2.1.2 Montgomery representation

To avoid the costly machine remainders, Montgomery designed another reduc-
tion [46]:

Given an integer B such that gcd(p, B) = 1. Let nim ≡ −p−1 mod B and
T such that 0 ≤ T ≤ pB; if U ≡ Tnim mod B then (T + Up)/B is an
integer and (T + Up)/B ≡ TB−1 mod p.

Moreover, (T + Up)/B is an integer between 0 and 2p and, thus, the mod
p reduction has almost been performed.

The idea of Montgomery is to set B to half the word size. Thus, multiplication
and divisions by B will just be shifts and remaindering by B which is just
the application of a bit-mask. Then, one can use the reduction to perform the
remainderings by p. Indeed the example implementation of this reduction shown
below with one shift, two bit-masks and two machine multiplications is often
much less expensive than a machine remaindering:

Montgomery reduction

#define MASK 65535UL

#define B 65536UL

#define HALF_BITS 16

/* nim is precomputed to -1/p mod B with the extended gcd */

...

unsigned long c0 (c & MASK); /* c mod B */

c0 = (c0 * nim) & MASK; /* -c/p mod B */

c += c0 * p; /* c = 0 mod B */

c >>= HALF_BITS; /* high bits of c */

return (c>p?c-p:c); /* c is between 0 and 2p */

The idea is then to change the representation of the elements: every element
a is stored as aB mod p. Then additions, subtractions are unchanged and the
prime field multiplication is now a machine multiplication, followed by only one
Montgomery reduction. Nevertheless, one has to be careful when implementing
the AXPY operator since axB2 cannot be added to yB directly. We will see
section 2.4.3 that this is actually not a problem for the dot product. Finally,
the primes must verify (p− 1)2 + p ∗ (B− 1) < B2, which gives p ≤ 40499 (resp.
p ≤ 2654435761) for B = 216 (resp. B = 232).

2.1.3 Floating point representation

Yet another way to perform the reduction is to use the floating point routines.
According to [11, Table 3.1], for most of the architectures (alpha, AMD, Pentium
IV, Itanium, Sun Solaris, etc.) those routines are faster than the integer ones
(except for the Pentium III). The idea is then to compute T mod p by way of

6

a precomputation of a high precision numerical inverse of p:

T mod p = T − ⌊T ∗
1

p
⌋ ∗ p.

The idea here is that floating point division and truncation are quite fast
when compared to machine remaindering. Now on floating point architectures
the round-off can induce a ±1 error when the flooring is computed. This re-
quires then an adjustment as implemented e.g. in Shoup’s NTL [54] :

NTL’s floating point reduction

double P, invP, T;

...

T -= floor(T*invP)*P;

if (T >= P) T -= P;

else if (T < 0) T += P;\\

A variant of this scheme is to use a floating point computation of the re-
mainder via fmod directly instead of flooring. There also round-off errors have
to be taken into account.

2.1.4 Discrete logarithms

This representation is also known as Zech logarithms, see e.g. [16] and references
therein. The idea is to use a generator of the multiplicative group, namely a
primitive element [17]. Then, every non zero element is a power of this primitive
element and this exponent can be used as an internal representation:

0 if x = 0

q − 1 if x = 1

i if x = giand 1 ≤ i < q − 1

Then many tricks can be used to perform the operations that require some
extra tables see e.g. [36, 3]. This representation can be used for prime fields
as well as for their extensions, we will therefore use the notation GFq. The
operations are then:

• Multiplication and division of invertible elements are just an index addi-
tion and subtraction modulo q = q − 1.

• Negation is identity in characteristic 2 and addition of i−1 = q−1
2 modulo

q in odd characteristic.

• Addition is now quite complex. If gi and gj are invertibles to be added
then their sum is gi + gj = gi(1 + gj−i). The latter can be implemented
using index addition and subtraction and access to a “plus one” table
(t plus1[]) of size q. This table gives the exponent h of any number of the
form 1 + gk, so that gh = 1 + gk.

7

Operation Elements Indices Cost
+/- Tests Accesses

Multiplication gi ∗ gj i + j (−q) 1.5 1 0

Division gi/gj i− j (+q) 1.5 1 0

Negation −gi i− i−1 (+q) 1.5 1 0

Addition gi + gj k = j − i (+q)
i + t plus1[k] (−q) 3 2 1

Subtraction gi − gj k = j − i + i−1 (±q)
i + t plus1[k] (−q) 3.75 2.875 1

Table 1: Number of elementary operations to implement Zech logarithms for an
odd characteristic

Table 1 shows the number of elementary operations to implement Zech loga-
rithms for an odd characteristic finite field. Only one table of size q is considered.
Those operations are of three types: mean number of exponent additions and
subtractions (+/-), number of tests and number of table accesses.

We have counted 1.5 index operations when a correction by q actually arises
only for half the possible values. The fact that the mean number of index
operations is 3.75 for the subtraction is easily proved in view of the possible
values taken by j − i + q−1

2 for varying i and j. In this case, j − i + i−1 is

between − q
2 and 3q

2 and requires a correction by q only two eighth of the time.
The total number of additions or subtractions is then 2+0.25+1+0.5 = 3.75

and the number of tests 1 + 0.875 + 1 = 2.875 follows (one test towards zero,
one only in case of a positive value i.e. seven eighth of the time, and a last one
after the table lookup). It is possible to actually reduce the number of index
exponents, (for instance replacing i + x by i + x − q−1

2) but to the price of an
extra test. In general, such a test (a > q ?) is as costly as the a− q operation.
We therefore propose an implementation minimizing the total cost with a single
table.

These operations are valid as long as the index operations do not overflow,
since those are just signed additions or subtractions. This gives maximal prime
value of e.g. 1073741789 for 32 bits integer. However, the table size is now a
limiting factor: indeed with a field of size 226 the table is already 256 Mb. Table
reduction is then mandatory. We will not deal with such optimizations in this
paper, see e.g. [37, 16] for more details.

2.1.5 Fully tabulated multiplication

One can also further tabulate the Zech logarithm representation. The idea is to
code 0 by 2q instead of 0. Then a table can be made for the multiplication:

8

• t mul[k] = k for 0 ≤ k < q.

• t mul[k] = k − q for q − 1 ≤ k < 2q.

• t mul[k] = 2q for 2q ≤ k ≤ 4q.

The same can be done for the division via a shift of the table and creation of
the negative values, thus giving a table of size 5q. For the addition, the t plus1
has also to be extended to other values, to a size of 4q. For subtraction, an
extra table of size 4q has also to be created. When adding the back and forth
conversion tables, this gives a total of 15q. Even with some table reduction
techniques, this becomes quite huge and quite useless nowadays when memory
accesses are a lot more expensive than arithmetic operations [18].

2.1.6 Quadratic tabulation

One can even further tabulate, by using tables of size p2 so that every arithmetic
operation is precomputed and tabulated[43]. For extremely small primes one
can have certain speed-ups for single operations. This happens only on slow ma-
chines where memory speed was comparable to the one of arithmetic operations.
For bigger primes, one need to have smaller tables. The idea is to have tables of

size
(

p
k

)2
. Then one computes the k parts of the operand separately and adds

the k results together. This is only useful when 2k − 1 modular additions and
k memory accesses are faster than 1 multiplication. In practice Kawame and
Murao [43] shows that this is nowadays seldom the case even for k = 1.

2.2 Field extensions

Some of the presented implementations for prime fields can be used for other
fields or rings. The classical representation can e.g. be used with non prime
modulus. Extension fields, or Galois fields of size pd can also be implemented
the following way:

1. Integer division. Extension fields would be implemented with polyno-
mial arithmetic.

2. Montgomery Reduction. Direct use of Montgomery reduction is not
possible, but there exists some efficient polynomial reductions. See e.g.
[3] and references therein.

3. Zech logarithms. A very interesting property is that whenever this im-
plementation is not at all valid for non prime modulus, it remains identical
for field extensions. Indeed one can also find generators modulo an irre-
ducible polynomial or even build extensions with primitive polynomials
(X is thus a generator) [33, 18]. In this case the classical representation
would introduce polynomial arithmetic. This discrete logarithm represen-
tation, on the contrary, would remain atomic, thus inducing a speed-up
factor of O(d2), for d the extension degree. See e.g. [21, §4] for more
details.

9

4. A q−adic representation. Another idea, by B. D. Saunders [53], is
to go back to the polynomial arithmetic but in a q−adic way, with q a
sufficiently big prime or power of a single prime.

Suppose that a =
∑k−1

i=0 αiX
i and b =

∑k−1
i=0 βiX

i are two elements of
GF(pk) represented by Z/pZ[X]/Q. One can perform the polynomial mul-

tiplication ab via q−adic numbers. Indeed, by setting ã =
∑k−1

i=0 αiq
i

and b̃ =
∑k−1

i=0 βiq
i, the product is computed in the following manner (we

suppose that αi = βi = 0 for i > k − 1):

ãb =
2k−2∑

j=0

(
j∑

i=0

αiβj−i

)
qj (2)

Now if q is big enough, the coefficient of qi will not exceed q. In this
case, it is possible to evaluate a and b as floating point numbers, compute
the product of these evaluations, and convert back to finite field element,
via a q−adic reconstruction, a division by p and a division by Q. This
e.g. enables the use of floating point numerical routines for finite field
extensions as we will see in section 2.4.7.

Remark 2.1. For the performances, a first naïve implementation would
only give limited speed-up as the conversion cost is then very expensive.
However, the prime power q can be chosen to be a power of 2. Then the
Horner like evaluation of the polynomials at q is just a left shift. One
can then compute this shift with exponent manipulations in floating point
arithmetic and use then native C++ << operator as soon as values are
within the 32 bits range, or use the native C++ << on 64 bits when
available. This choice also speeds up the radix inverse reconversion.

2.3 Atomic comparisons

We now present a comparison between the preceding implementation possi-
bilities. The idea is to compare just the atomic operations. “%” denotes an
implementation using machine remaindering (machine division) for every oper-
ation. This is just to give a comparing scale. “NTL” denotes NTL’s floating
point flooring for multiplication ; “Z/pZ” denotes our implementation of the
classical representation when tests ensure that machine remaindering is used
only when really needed. Last “GFq” denotes the discrete logarithm implemen-
tation of section 2.1.4. In order to be able to compare those single operations,
the experiment is an application of the arithmetic operator on vectors of a given
size (e.g. 256 for figures 1, 2 and 3).

We compare the number of millions of field arithmetic operations per second,
Mop/s.

Figure 1 shows the results on a UltraSparc II 250 Mhz, with compiler “gcc
version solaris2.9/3.3.2”. First one can see that the need of Euclid’s algorithm

10

�

�

��

��

��

��

��

��

��

$GGLWLRQ 6XEWUDFWLRQ 1HJDWLRQ 0XOWLSOLFDWLRQ 'LYLVLRQ $;3<,1 $;3<

6SHHG��0RS�V� � =�S= 17/ *)T

Figure 1: Single arithmetic opera-
tion modulo 32749 on a sparc ultra
II, 250 MHz

�

��

��

��

��

���

���

���

���

���

���

$GGLWLRQ 6XEWUDFWLRQ 1HJDWLRQ 0XOWLSOLFDWLRQ 'LYLVLRQ $;3<,1 $;3<

6SHHG��0RS�V� 0RQWJRPHU\ =�S= 17/ *)T

Figure 2: Single arithmetic opera-
tion modulo 32749 on a Pentium III,
1 GHz, cache 256 Kb

�

��

���

���

���

���

���

���

���

���

���

$GGLWLRQ 6XEWUDFWLRQ 1HJDWLRQ 0XOWLSOLFDWLRQ 'LYLVLRQ $;3<,1 $;3<

6SHHG��0RS�V� 0RQWJRPHU\ =�S= 17/ *)T

Figure 3: Single arithmetic operation modulo 32749 on a Pentium IV, 2.4 GHz,
cache 512 Kb

11

for the field division is a huge drawback of all the implementations save one.
Indeed division over “GFq” is just an index subtraction. Next, we see that
floating point operations are quite faster than integer operations: NTL’s multi-
plication is better than the integer one. Now, on this machine, memory accesses
are not yet much slower than arithmetic operations. This is the reason why
discrete logarithm addition is only 2 to 3 times slower than one arithmetic call.
This, enables the “GFq” AXPY (base operation of most of the linear algebra
operators) to be the fastest.

On newer PC, namely Intel Pentium III and IV of figures 2 and 3, the
compiler used for the C/C++ programs was “gcc version 3.2.3 20030309 (Debian
prerelease)”. One can see that now memory accesses have become much too
slow. Then any tabulated implementation is penalized, except for extremely
small modulus. NTL’s implementation is also penalized, both because of better
integer operations and because of a pretty bad flooring (casting to integer) of
the floating point representation. Now, for Montgomery reduction, this trick is
very efficient for the multiplication. However; it could seems that it becomes
less useful as the machine division improves as shown by the AXPY results
of figure 3. Actually, we looking closely to figures 2 and 3 one sees that the
“Zpz” AXPY on the Pentium III can reach 5.5% of the peak performances, and
this is the same (5.4%) for the Pentium IV. Thus division has not improved,
it is Montgomery’s representation which is slowed down ! As shown section
2.1.2 the Montgomery AXPY is less impressive because one has to compute
first the multiplication, one reduction and then only the addition and tests.
This is due to our choice of representation aB. “Zpz”, not suffering from this
distinction between multiplied and added values can perform the multiplication
and addition before the reduction so that one test and sometimes a correction
by p are saved. Nevertheless, we will see in next section that our choice of
representation is not anymore a disadvantage for the dot product.

2.4 Dot products

In this section, we extend the results of [19, §3]. Two main techniques are used:
regrouping operations before performing the remaindering, and performing this
remaindering only on demand. Several new variants of the representations of
section 2.1 are tested and compared. For “GFq” and “Montgomery” represen-
tations the dot products are of course performed with their representations. In
particular the timings presented do not include conversions. The argument is
that the dot product is computed to be used within another higher level compu-
tation. In this paradigm, conversions will only be useful for reading the values
in the beginning and for writing the results at the end of the whole program.

2.4.1 53 and 64 bits

The first idea is to use a representation where no overflow can occur during the
course of the dot product. The division is then delayed to the end of the product:

12

if the available mantissa is of m bits and the modulo is p, the division happens
at worst every λ multiplications where λ verifies the following condition:

λ(p− 1)2 < 2m ≤ (λ + 1)(p− 1)2 (3)

For instance when using 64 bits integers with numbers modulo 40009, a dot
product of vectors of size lower than 1.15 1010 will never overflow. Hence one has
just to perform the AXPY without any division. A single machine remaindering
is needed at the end for the whole computation. This produces very good speed
ups for 53 (double representation) and 64 bits storage as shown on curves (5)
and (6) in figure 4.

There, the floating point representation performs the division “à la NTL”
using a floating point precomputation of the inverse and is slightly better than
the 64−bit integer representation. Note also the very good behavior of an
implementation of P. Zimmermann [59] of Montgomery reduction over 32−bit
integers.

2.4.2 AXPY blocks

The extension of this idea is to specialize dot product in order to make several
multiplications and additions before performing the division (which is then de-
layed), even with a small storage. Indeed, one needs to perform a division only
when the intermediate result is able to overflow.

Blocked dot product

res = 0;

unsigned long i=0; if (K<DIM) while (i < (DIM/K)*K) {

for(unsigned long j = 0; j < K; ++j, ++i) res += a[i]*b[i];

res %= P;

}

for(; i< DIM; ++i) res += a[i]*b[i];

res %= P;

This method will be referred as “block-XXX”. Figure 5 shows that it is
optimal for small primes since it performs nearly one arithmetic operation per
processor cycle. Then, the step shape of the curve reflects the thresholds when
an additional division is made.

2.4.3 Choice of Montgomery representation

We see here, that our choice of representation (aB) for Montgomery is interest-
ing. Indeed, the basic dot product operation is a cumulative AXPY. A classical
AXPY would then be axB2 + yB, henceforth needing an additional reduction
before the addition of yB. Now, within a dot product, each one of the added
values is in fact the result of a multiplication. Therefore, the additions are be-
tween elements of the form sB2+ = xiyiB

2. This proves that the reduction can
indeed be delayed.

13

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
pe

ed
 (

M
op

/s
)

Prime

Dot product of a vector with 512 elements on a PIII 993 MHz

Classic. (1)
GFq. (2)

Montgomery. (3)
delayed unsigned long long, 64 bits. (5)

delayed double, 53 bits mantissa. (6)

Figure 4: Dot product by delayed division, on a PIII

2.4.4 Centered representation

Another idea is to use a centered representation for “Z/pZ”: indeed if elements
are stored between − p−1

2 and p−1
2 , one can double the sizes of the blocks;

equation 3 now becomes

λcentered

(
p− 1

2

)2

< 2m−1 ≤ (1 + λcentered)

(
p− 1

2

)2

(4)

Still and all, for small primes, any one of the blocked representation is better
than a floating point representation. The slight differences between the three
being the different thresholds for a single additional reduction.

2.4.5 Division on demand

The second idea is to let the overflow occur ! Then one should detect this
overflow and correct the result if needed. Indeed, suppose that we have added a
product ab to the accumulated result t and that an overflow has occurred. The
variable t now contains actually t− 2m.

Well, the idea is just to precompute a correction CORR = 2m mod p and
add this correction whenever an overflow has occurred.

Now for the overflow detection, we use the following trick: since 0 < ab < 2m,
an overflow has occurred if and only if t + ab < t. The “Z/pZ” code now should
look like the following:

14

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
pe

ed
 (

M
op

/s
)

Prime

Dot product of a vector with 512 elements on a PIII 993 MHz

Classic. (1)
Montgomery. (3)
block−ZpZ. (1b)

block−Montg. (3b)
block−centered. (4b)

double. (6)

Figure 5: Dot product by blocked and delayed division, on a PIII

Unsigned Overflow detection trick

sum = 0;

for(unsigned long i = 0; i<DIM; ++i) {

product = a[i]*b[i];

sum += product; if (sum < product) sum += CORR;

}

Of course one can also apply this trick to Montgomery reduction. Indeed,
as shown on curve (3c) in figure 6, the trick of using a representation storing
aB mod p for any element a enables to perform only one reduction at the
end of each block. We see also, that as soon as one reduction is needed, the
drop of performances is tremendous. The pipeline is completely broken and
“overflow-ZpZ” as well as “overflow-Montgomery” are rapidly outperformed by
the floating point representation.

The centered representation can be used also in this case. This gives the bet-
ter performances for small primes and enables a slower drop of performances.
This is due to its higher threshold. However, for this representation, the un-
signed trick does not apply directly anymore. The overflow and underflow need
to be detected each by two tests:

Signed overflow detection trick

if ((sum < oldsum) && (oldsum - sum < 0)) sum += CORR;

else if ((oldsum < sum) && (sum - oldsum < 0)) sum -= CORR;

Thus, the total of four tests is costlier and for bigger primes this overhead
is too expensive as shown on curve (4c) of figure 6.

15

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
pe

ed
 (

M
op

/s
)

Prime

Dot product of a vector with 512 elements on a PIII 993 MHz

Montgomery. (3)
overflow−Montgomery. (3c)

overflow−ZpZ. (1c)
overflow−zpz−centered. (4c)

double. (6)

Figure 6: Overflow detection, on a PIII

2.4.6 Hybrid

Of course, one can mix both 2.4.2 and 2.4.5 approaches and delay even the
overflow test when p is small. One has just to slightly change the bound on λ
so that, when adding the correction, no new overflow occur:

λ(p− 1)2 + (p− 1) = λp(p− 1) < 2m. (5)

This method will be referred as “block-overflow-XXX”.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

S
pe

ed
 (

M
op

/s
)

Prime

Dot product of a vector with 512 elements on a PIII 993 MHz

Classic. (1)
Montgomery. (3)

block−overflow−Montgomery. (3d)
block−overflow−ZpZ. (1d)

block−overflow−−center. (4d)
double. (6)

Figure 7: Hybrid (block AND overflow detection), on a PIII

We compared those ideas on a vector of size 512 with 32 bits (unsigned
long on PIII). First, we see that as long as 512p(p− 1) < 2m, we obtain quasi
optimal performances, since only one division is performed at the end. Then,

16

when the prime exceeds the bound (i.e. for p(p−1) > 232−9, which is p > 2897)
an extra division has to be made. On the one hand, this is dramatically shown
by the drops of figure 6.

On the other hand, however, those drops are levelled by our hybrid approach
as shown in figure 7. There the step form of the curve shows that every time
a supplementary division is added, performances drop accordingly. Now, as the
prime size augments, the block management overhead becomes too important.

One can remark than no significant difference exist between the performances
of “block-overflow-Zpz” and “block-overflow-Montgomery”. Indeed, the code is
now exactly the same except for a single reduction for the whole dot product.
This makes the Montgomery version better but only extremely slightly.

Lastly, here also, an hybrid centered version is useful. When compared to
Montgomery or Zpz, one can remark that the signed overflow detection is two
times as costly as the unsigned overflow detection. However, the block size is
twice as big (one looses a bit for the sign but gains 2 bits since the multiplied
numbers are then both of absolute value less than p−1

2).

2.4.7 Extension fields dotproduct

In an extension of degree k, one needs to compute the sum of products of
polynomials of degree k − 1. The first idea is to use the delayed paradigm:

• Delay the modular reduction of every coefficient of the resulting polyno-
mial, using the previous sections.

• Delay the polynomial reduction. There the degrees remains 2k − 1 all
along the dotproduct and no overflow as to be feared.

That way only one polynomial reduction is made thus reducing the cost of the
dotproduct by a factor k.

One can also use the q-adic representation of section 4 to perform efficiently
the dotproduct over an extension field.

Theorem 2.2. Let m be the number of available mantissa bits within the ma-
chine floating point numbers. If

q > nk(p− 1)2 and (2k − 1) log[2](q) < m,

then Algorithm 1 is correct.

Proof. In equation 2 we can see that any coefficient of ql in the product ãb is
a sum of at most k elements over Z/pZ, therefore its value is at most k(p −
1)2. First, we can state in the same manner that any coefficient γ̃l is at most
nk(p− 1)2 as it is a sum of n products. Therefore if q is bigger than nk(p− 1)2,
there is no carry in the floating point dot product and the q−adic to polynomial
conversion is correct. Then, as the products double the q−adic degree, r̃ is
strictly lower than q2k−1. The result follows from the fact that an overflow
occurs only if r̃ is bigger than 2m.

17

Algorithm 1 Dot product over Galois fields via q−adic conversions to floating
point numbers

Require: a field GF(pk) represented as polynomials mod p and mod Q, for Q
a degree k irreducible polynomial over Z/pZ.

Require: Two vectors v1 and v2 of n elements of GF(pk) each, as polynomials.
Require: a prime power q.
Ensure: R ∈ GF(pk), with R = vT

1 .v2. {Polynomial to q−adic conversion}
1: Set ṽ1 and ṽ2 to the floating point vectors of the evaluations at q of the

elements of v1 and v2. {Using Horner’s formula, for instance} {One com-
putation}

2: Compute r̃ = ṽ1
tṽ2 {Building the solution}

3: r̃ =
∑2k−2

l=0 γ̃lq
l. {Using radix conversion, see [26, Algorithm 9.14] for

instance}
4: For each l, set γl = γ̃l mod p
5: set R =

∑2k−2
l=0 γlX

l mod Q

Typically, m = 53 for 64-bits double precision; in that case, the biggest
implementable fields are GF(28), GF(36), GF(74), GF(233) and GF(3172), with
n = 1. Table 19 in appendix B gives the biggest possible block size for different
fields, and the associated prime for the q−adic decomposition. Of course a
highest block order of 1 is of absolutely no interest in practice. However, on the
Pentium, for instance, as soon as the size approaches 200, the conversion cost
will be compensated by the cache effects. We can see this for curve (4) on figure
10.

This method is already interesting for quite a few cases. Nonetheless, on
a 64-bits architecture (DEC alpha for instance) where machine integers have 8
bytes, this can be applied to even more cases. Table 20, in appendix B, shows
that about a factor of 10 can be gained for the maximum matrix size, when
compared to 53-bits mantissas. Also the biggest implementable fields are now
GF(29), GF(37), GF(55), GF(114), GF(473) and GF(11292). As shown in [21, figure 6
and 9], on theses machines, as a good use of the cache is essential, our wrapping
is unavoidable to obtain good performances.

Remark 2.3. Some sparse primitive polynomials modulo p can be chosen to
build GF(pk). Then the division to get the remainders can be simplified. The
idea is to consider primitive trinomials, or when generating is not the bottleneck,
irreducible binomials. Indeed at least one of those exists for nearly every prime
field [3, Theorem 1]. In this case, we suppose that Q = Xk + βXt + α is
primitive over Z/pZ with t < k

2 (this is not a restriction since whenever Q
is primitive, its reciprocal is primitive also and no primitive polynomial is self
reciprocal [45, Theorem 3.13]). Now, as we are working in Z/pZ[X]/Q, we

want to compute the division of W =
∑2k−2

l=0 γlX
l by Q. Therefore, we first

split W into its higher and lower parts: W = HXk + L = H(−βXt − α) + L
mod Q. We then pursue by splitting H also into its higher and lower parts:
H = HhXk−t + Hl, leading to W = −βHhXk − βHlX

t−αH + L which is also

18

W = β2HhXt + αβHh − βHlX
t − αH + L mod Q. We conclude by using the

fact that W is of degree at most 2k − 2, so that Hh is of degree less than t− 1.
This proves that the expression above is of degree strictly less than k and that
it is exactly the remainder of the division of W by Q. A careful counting of the
operations, taking advantage of the respective degrees of the terms, would also
show that this computation requires less than 5k field operations. That way, the
division can be replaced by the equivalent of two and a half simple polynomial
subtractions ! This speed up is even better when β is zero, because then the
division is only one subtraction: −αH + L.

As shown on figure 10 for the matrix multiplication, with those optimization
we can reach very high peak performances, quite close to those obtained with
prime fields, namely 420 Mop/s on the PIII, 735 MHz.

2.4.8 Vector size influence

In this last section, we discuss the vector size influence. Until now we have used
vectors of size 512. We see on figure 8 that the best vector size is indeed around

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 16 64 256 1024 4096

S
p

e
e

d

(
M

o
p

/
s
)

Vedctor Size

Dot product of a vector modulo 3 on a PIII 993 MHz

block−overflow−center. (4d)
block−ov−Montg. (3d)

block−ov−ZpZ. (1d)
double. (6)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 16 64 256 1024 4096

S
p

e
e

d

(
M

o
p

/
s
)

Vedctor Size

Dot product of a vector modulo 20063 on a PIII 993 MHz

block−overflow−center. (4d)
block−ov−Montg. (3d)

block−ov−ZpZ. (1d)
double. (6)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 4 16 64 256 1024 4096

S
p

e
e

d

(
M

o
p

/
s
)

Vedctor Size

Dot product of a vector modulo 40459 on a PIII 993 MHz

block−overflow−center. (4d)
block−ov−Montg. (3d)

block−ov−ZpZ. (1d)
double. (6)

Figure 8: Hybrid (function of the vector size) modulo 3, 20063 and 40459 on a
PIII 993 MHz

this size. Those three figures shows at least two things:

• On the one hand, the floating point representation is the most stable one
for half word size primes. Then, vector size do not really infer with its
performances. On the other hand, those performances are interesting only
for big vector sizes.

• Except when the prime is too big the hybrid centered representation is
nearly always the best one.

We have seen different ways to implement a dot product over word size finite
fields. The conclusion is that most of the times, a floating point representation
is the best implementation.

19

However, with some care, it is possible to improve this speed for small primes
by a hybrid method using overflow detection and delayed division. Now, the
floating point representation approximately doubles its performances on the P4
2.4 GHz, when compared to the 1 GHz Pentium III. But surprisingly, the hybrid
versions only slightly improve. Still and all, an optimal version should switch
from block methods to a floating point representation according to the vector
and prime size and to the architecture.

Nevertheless, bases for the construction of an optimal dot product over word
size finite fields have been presented: the idea is to use an Automated Empir-
ical Optimization of Software [57] in order to produce a library which would
determine and choose the best switching thresholds at install time.

3 Finite Field Linear Algebra Subroutines

A näive approach to matrix-vector and matrix-matrix products would be to
consider them as n or n2 dotproducts. Thus the performances would just be
the performances of previous section. However, enormous effort has been made
to improve on these linear operations in order to take benefit of the memory
hierarchy of nowadays machines [57].

In most of the modern computer architecture, a memory access to the R.A.M.
is more than one hundred times slower than an arithmetic operation. To cir-
cumvent this slow down, the memory is structured into two or three levels of
cache acting as buffers to reduce the number of accesses to the R.A.M. and
reuse as much as possible the buffered data. This technique is only possible if
the algorithm enables to reuse some data. This is the main reason why matrix
product is the most suited operation for this kind of optimization: it is the first
basic operation in linear algebra, where the time complexity (O(n3)) is an order
of magnitude higher than the space complexity (O(n2)).

These considerations have driven the numericians to develop the basic linear
algebra subroutines (BLAS) [14], mainly based on a tuned kernel for matrix
multiplication. One of its ground idea (among many others) is to perform the
matrix multiplication by blocks of small dimension, fitting into the L2 cache,
and limit therefore the overhead due to memory accesses.

We show in this section how we use this effort together with delayed modulus
for exact computations so as to enable higher efficiency.

3.1 Matrix multiplication

The salient features of our approach to exact matrix multiplication over a finite
field are

1. The possibility to convert a finite field matrix into a matrix with floating
point elements, applying the numerical routines, and converting back to
the finite field. This is because nowadays processors focus on floating point
arithmetic.

20

2. Choosing block sizes for cache optimization: this can be done over the
finite fields or be left to the numerical BLAS.

3. The use of the Winograd improved variant of Strassen fast multiplication
does not suffer from bad stability in the exact case.

Each one of those ideas induces some choices for block cutting of the matrices:

• First, the wrapping of the BLAS corresponds to a computation over Z.
The result is then reduced with a modulo at the conversion back to the
finite field. This is similar to the delayed modulus technique, developed in
section 2.4.2 for the dotproduct. Therefore, the same constraint arises for
the correctness of the result: the computation over Z must not exceed the
capacity of the floating point representation: 53 bits of mantissa. This
condition is k max{ai,j , bi,j}

2 < 253, where k is the common dimension
between A and B. If it is not satisfied, the input matrices must be split
into blocks of size m × kmax for A and kmax × n for B, where kmax =

253

max{ai,j ,bi,j}2 . The wrapping of the BLAS can then be applied to multiply

these blocks, and the final result will be recovered by some additions over
the finite field. This implies a limitation on both p and k. Here two
different situations appear:

1. p is given. Then an upper bound kmax on k can be derived from (3)
or (4). The algorithm splits the operands into blocks of size m×kmax

and kmax×n, each of then are multiplied using the wrapping of BLAS.
The result is recovered by adding each of these subresults.

2. In a homomorphic computation of an integer result, several compu-
tation modulo different primes are performed. In this case, these
primes can be chosen randomly and as large as possible, but still
respecting the relation for k.

• To optimize the usage of the cache, one can consider to split the input
matrices into small blocks so that a product of these blocks would fit
into the cache. This idea is developed in [31]. Instead of performing this
splitting by hand, we can let it to the BLAS. Indeed automatically tuned
BLAS, such as ATLAS offer a smart decision process to determine the
optimal splitting.

Hence, the wrapping of the BLAS makes it possible to benefit from the two
following advantages: a delayed modulus using efficient machine floating point
machine arithmetic and an optimized cache blocking.

This is emphasized on figure 9, where the näive approach is extremely slow.
On this machine the optimal block size is 33. The curve block-33 shows the
improvement that one can get doing blocking by hand. Now the numerical
BLAS also takes benefit of the Pentium 4 fused-mac instruction and is able to
compute more than one arithmetic operation per cycle. One can also see that
the overhead we have over prime fields is negligible. For extension fields, this
overhead is more important but still 4 times faster than the näive approach as
shown by curve (4) on figure 10.

21

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000 6000 7000

M
fo

ps

Matrix order

Classic matrix multiplication over Z/65521Z on a PIV, 3.4 GHz

ATLAS::dgemm FFLAS::fgemm Standard Block-33

Figure 9: Blocking classical matrix multiplication, on a Pentium 4, 3.4 GHz.

0

100

200

300

400

500

600

700

0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
pe

ed
 (

M
op

/s
)

Matrix order

Matrix−matrix classic multiplication on a PIII 735 MHz

ATLAS. (1)
GF(19) −− Delayed with 32 bits. (2)

GF(19) −− Prime field on top of Atlas. (3)
GF(32) −− Galois field on top of Atlas. (4)

Figure 10: Speed comparison between matrix-matrix multiplications on a Pen-
tium III 735 MHz.

22

3.2 Winograd fast algorithm

To improve further the efficiency of this routine, one can use a fast matrix
multiplication algorithm. We will focus on Winograd’s variant [26, algorithm
12.1] of Strassen’s algorithm [56]. We denote by MM(n) the dominant term of
the arithmetic complexity of performing the matrix multiplication. The value of
MM(n) thus reflects the choice of algorithm, e.g. MM(n) = 2n3 for the classical
algorithm, and mean that the actual complexity of the classical algorithm is
2n3 + O(n2). We also denote by ω the asymptotic exponent of MM(n), it
is thus 3 for the classical algorithm, log2(7) ≈ 2.807354922 for the Strassen-
Winograd variant, and the actual best known exponent is 2.375477 by [8].

In [34] Winograd’s variant is discarded for numerical computations because
of its bad stability and despite its better running time. In [42] aggregation-
cancellation techniques of [44] are also compared. They also give better stability
than the Winograd variant but worse running time. In the exact case stability
has no meaning and Winograd’s faster variant is thus preferred.

3.2.1 A Cascade structure

Asymptotically, this algorithm improves the number of arithmetic operations
required for matrix multiplication from MM(n) = 2n3 to MM(n) = 6n2.8074.
But in practice, one can improve the total number of arithmetic operations
by switching after a few recursive levels of Winograd’s algorithm to the classic
algorithm. Table 2 compares the number of arithmetic operations depending on
the matrix order and the number of recursive levels:

Recursive levels of Winograd’s algorithm
n Classic 1 2 3 4 5 6
4 112 144 214
8 960 1024 1248 1738
16 7936 7680 8128 9696 13126
32 64512 59392 57600 60736 71712 95722
64 520192 466944 431104 418560 440512 517344 685414

Table 2: Number of arithmetic operations in the multiplication of two n × n
matrices

This phenomenon is amplified by the fact that additions in classic matrix
multiplication are cheaper than the ones in Winograd algorithm since they are
incorporated in the BLAS routine. As a consequence, the optimal number of
recursive levels depends on the architecture and must be determined experimen-
tally. It can be described by a simple parameter: the matrix order w for witch
one recursive level is as fast the classic algorithm. Then the number of levels l
is given by the formula

l = ⌊log2

n

w
⌋+ 1.

We will now focus on the memory complexity.

23

3.2.2 Memory allocations

Consider the computation of the product C ← A × B. One recursive level of
Winograd’s algorithm is composed by the following 22 operations:

Considering A =

[
A11 A12

A21 A22

]
and B =

[
B11 B12

B21 B22

]
.

• 8 additions:

S1 ← A21 + A22 T1 ← B12 −B11

S2 ← S1 −A11 T2 ← B22 − T1

S3 ← A11 −A21 T3 ← B22 −B12

S4 ← A12 − S2 T4 ← T2 −B21

• 7 multiplications, by recursive calls:

P1 ← A11 ×B11 P5 ← S1 × T1

P2 ← A12 ×B21 P6 ← S2 × T2

P3 ← S4 ×B22 P7 ← S3 × T3

P4 ← A22 × T4

• 7 final additions:

U1 ← P1 + P2 U5 ← U4 + P3

U2 ← P1 + P6 U6 ← U3 − P4

U3 ← U2 + P7 U7 ← U3 + P5

U4 ← U2 + P5

• The result matrix is: C =

[
U1 U5
U6 U7

]

Using the dependencies between the tasks shown in figure 11, one can build
the schedule given in table 3. It only requires the allocation of two temporary
matrices X1 and X2 of dimensions m/2×max(n, k)/2 and k/2× n/2.

operation loc. # operation loc. # operation loc.
1 S1 = A21 + A22 X1 9 P7 = S3T3 C21 17 U5 = U4 + P3 C12

2 T1 = B12 −B11 X2 10 S4 = A12 − S2 X1 18 T4 = T2 −B21 X2

3 P5 = S1T1 C22 11 P3 = S4B22 C11 19 P4 = A12T4 C11

4 S2 = S1 −A11 X1 12 P1 = A11B11 X1 20 U6 = U3 − P4 C21

5 T2 = B22 − T1 X2 13 U2 = P1 + P6 C12 21 P2 = A12B21 C11

6 P6 = S2T2 C12 14 U3 = U2 + U7 C21 22 U1 = P1 + P2 C11

7 S3 = A11 −A21 X1 15 U7 = U3 + P5 C22

8 T3 = B22 −B12 X2 16 U4 = U2 + P5 C12

Table 3: Schedule of Winograd’s algorithm for operation C ← AB

24

A11 A12A21 A22B11B12 B21B22

S1

S2

S3

S4

T1

T2

T3

T4

P1 P2

P3 P4

P5

P6

P7 U1

U2

U3 U4

U5 U6U7

Figure 11: Tasks dependencies in one recursive level of Winograd’s algorithm

Summing the temporary allocations of every recursive level, one can bound
the extra memory requirements of this implementation by

2

logn∑

i=1

(n

2i

)2

<
2

3
n2.

Note that this schedule was already presented in [15]. We recall it here
before presenting the schedule for the more general operation C ← A×B +βC:

A first method would be to store the matrix C into a temporary matrix
and apply the previous schedule. This would involve a total amount of memory
allocation of (2 + 2/3)n2.

Alternatively, we propose the schedule of table 4, that requires the allocation
of three temporary matrices X1, X2, X3, of dimension m/2 × n/2, m/2 × k/2
and k/2× n/2.

This corresponds to a total memory allocation bounded by

3

logn∑

i=1

(n

2i

)2

< n2

Moreover, this schedule incorporates as much as possible the extra additions
into the recursive calls and at last into the BLAS call where the operations are
cheaper. Only two additional additions are required, instead of four in the first
method.

25

operation loc. # operation loc. # operation loc.

1 P2 = αA12B21 + βC11 C11 9 P5 = αS1T1 + βC12 C12 17 U1 = P1 + P2 C11

2 T3 = B22 − B12 X3 10 T2 = B22 − T1 X3 18 U2 = P1 + P6 tmpU2

3 S3 = A11 − A21 X2 11 S2 = S1 − A11 X2 19 U3 = U2 + P7 tmpU3

4 C22 = C22 − C12 C22 12 P6 = αS2T2 X1 20 U7 = U3 + P5 C22

5 C21 = C21 − C22 C21 13 S4 = A12 − S2 X2 21 U4 = U2 + P5 C12

6 P7 = αS3T3 + βC22 C22 14 T4 = T2 − B21 X3 22 U6 = U3 − P4 C21

7 T1 = B12 − B11 X3 15 P4 = αA12T4 − βC21 C21 23 P3 = αS4B22 X1

8 S1 = A21 + A22 X2 16 P1 = αA11B11 X3 24 U5 = U4 + P3 C12

Table 4: Schedule of Winograd’s algorithm for operation C ← AB + βC

3.2.3 Control of the overflow

As we saw at the beginning of section 3.1, one has to control the growth of the
integral values stored in the floating point representation. Our main result here
is to show that, in the worst case, the largest intermediate computation occurs
during the recursive computation of P6. This result generalizes [21, theorem
3.1] for the computation of AB + βC.

Theorem 3.1. Let A ∈ Z
M×K , B ∈ Z

K×N C ∈ Z
M×N be three matrices and

β ∈ Z with mA ≤ ai,j < MA, mB ≤ bi,j < MB and mC ≤ ci,j < MC . Moreover,
suppose that 0 ≤ −mA ≤ MA, 0 ≤ −mB ≤ MB, 0 ≤ −mC ≤ MC, MC ≤ MB

and |β| ≤MA, MB Then every intermediate value z involved in the computation
of A×B + βC with l (l ≥ 1) recursive levels of Winograd algorithm satisfy:

|z| ≤

(
1 + 3l

2
MA +

1− 3l

2
mA

)(
1 + 3l

2
MB +

1− 3l

2
mB

)⌊
K

2l

⌋

Moreover, this bound is optimal.

The proof is given in appendix A.
If the prime field elements are converted into integers between 0 and p− 1,

then the following corollary holds:

Corollary 3.2 (Positive modular representation). Let A ∈ Z
M×K , B ∈

Z
K×N and C ∈ Z

M×N be three matrices and β ∈ Z with 0 ≤ ai,j < p, 0 ≤
bi,j < p, 0 ≤ ci,j < p and 0 ≤ β < p. Then every intermediate value z involved
in the computation of A × B + βC with l (l ≥ 1) recursive levels of Winograd
algorithm satisfy:

|z| ≤

(
1 + 3l

2

)2 ⌊
K

2l

⌋
(p− 1)2

Moreover this bound is optimal.

Proof. Apply theorem 3.1 with mA = mB = mC = 0 and MA = MB = MC =
p− 1.

26

Instead, if the prime fields elements are converted into integers between
− p−1

2 and p−1
2 , this bound can be improved:

Corollary 3.3 (Centered modular representation). Let A ∈ Z
M×K , B ∈

Z
K×N and C ∈ Z

M×N be three matrices and β ∈ Z with − p−1
2 ≤ ai,j ≤

p−1
2 ,

− p−1
2 ≤ bi,j ≤

p−1
2 , − p−1

2 ≤ ci,j ≤
p−1
2 and − p−1

2 ≤ β ≤ p−1
2 . Then every

intermediate value z involved in the computation of A×B + βC with l (l ≥ 1)
recursive levels of Winograd algorithm satisfy:

|z| ≤

(
3l

2

)2 ⌊
K

2l

⌋
(p− 1)

2

Moreover, this bound is optimal.

Proof. Apply theorem 3.1 with mA = mB = mC = − p−1
2 and MA = MB =

MC = p−1
2 .

Corollary 3.4. One can compute l recursive levels of Winograd algorithm with-
out modular reduction over integers of γ bits as soon as K < Kmax where

Kmax =

(
2γ+2

((1 + 3l)(p− 1))
2 + 1

)
2l

for a positive modular representation and

Kmax =

(
2γ+2

(3l(p− 1))
2 + 1

)
2l

for a centered modular representation.

Proof. The bounds of corollaries 3.2 and 3.3 must be below 2γ . We set d =
⌊

K
2l

⌋
,

and solve for d. Now, 2ld ≤ K < 2l(d + 1) yields the results.

3.2.4 Performances and comparison with numerical routines

In this section we discuss the practical benefit of fast matrix multiplication for
exact computation. As shown in the section 3.2.1 the Winograd’s algorithm al-
low to decrease the number of arithmetic operations as soon as a good threshold
is used to switch to classical matrix multiplication. In the following we show
that the use of such hybrid implementation leads in practice to outperform the
performances of numerical BLAS matrix multiplication. In particular this is
achieved over the prime field of integer modulo 65521.

We use two different BLAS library in our experimentation: one is tuned us-
ing ATLAS software [57] and we refer to it with the name “ATLAS”; the other
comes from optimized BLAS by Kazushige Goto [30] and we refer to it with the
name “GOTO”.

27

n 1000 2000 3000 5000 7000 8000 9000 10000

fgemm 0.41s 2.86s 8.81s 36.82s 101.27s 144.66s 213.69s MT
dgemm 0.39s 3.06s 10.28s 47.19s 129.20s 192.61s 276.43s 379.05s

A
T

L
A

S

fgemm
dgemm

1.05 0.93 0.85 0.78 0.78 0.75 0.77 -

fgemm 0.37s 2.60s 8.32s 34.80s 90.54s 128.18s 181.98s MT
dgemm 0.36s 2.79s 9.35s 43.36s 118.07s 178.23s 251.11s 344.73s

G
O

T
O

fgemm
dgemm

1.02 0.93 0.88 0.80 0.76 0.71 0.72 -

MT: Memory Trashing

Table 5: Performance improvement using fast matrix multiplication on a P4,
3.4GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

fgemm 0.50s 3.66s 11.87s 51.21s 131.78s 188.14s 273.39s 363.41s
dgemm 0.46s 3.47s 11.74s 53.90s 147.06s 217.20s 311.57s 422.85s

A
T

L
A

S

fgemm
dgemm

1.08 1.05 1.01 0.95 0.89 0.86 0.87 0.85

fgemm 0.44s 3.35s 10.68s 46.08s 119.33s 173.24s 245.50s 328.22s
dgemm 0.40s 3.17s 10.61s 48.90s 133.90s 200.26s 284.47s 391.01s

G
O

T
O

fgemm
dgemm

1.1 1.05 1.00 0.94 0.89 0.86 0.86 0.83

Table 6: Performance improvement using fast matrix multiplication on Ita-
nium2, 1.3GHz

28

The tables 5 and 6 report timings obtained for both exact and numeric ma-
trix multiplication. They explicitly state the improvement brought by using
fast hybrid matrix multiplication for exact computation. We refer to “fgemm”
for hybrid matrix multiplication over finite field and to “dgemm” for numerical
matrix multipliciation over double precision floating point numbers. From these
tables one can see that fast hybrid matrix multiplication becomes more pow-
erful as soon as matrices are getting larger and indeed more Winograd levels
are used. In particular, we can notice that two levels of Winograd’s algorithms
are already enough to outperform BLAS matrix multiplication: in our tests the
switching thresholds are around 1000 with our P4 architecture and around 2500
with our Itanium2 architecture. It seems that one level of Winograd’ algorithm
is not yet enough to completely amortize the cost of modular reduction involved
in computation over finite field. Nevertheless, with larger matrices the cost of
modular reduction is no more a problem and few Winograd’s steps lead to non
negligible improvements (e.g. 13% to 25% for matrix dimension 9000).

One can also notice that since our hybrid implementation is still based on
top of BLAS matrix multiplication routine we directly benefit without effort
of improvements made in BLAS implementation. In our examples one can see
that GOTO BLAS are faster than ATLAS BLAS on our targeted architecture.
This improvement is directly reflected in the performances of our hybrid imple-
mentation and the use of Winograd algorithm even amplifies this phenomenon.
For example the improvement of GOTO BLAS matrix multiplication regard-
ing ATLAS BLAS is about 10% for matrix dimension 9000 whereas for our
implementation the improvement becomes roughly 15%.

3.3 Triangular system solving with matrix hand side

We now discuss the implementation of solvers for triangular systems with matrix
right hand side (or equivalently left hand side). This is also the simultaneous
resolution of n triangular systems. The resolution of such systems is a classical
problem of linear algebra. It is e.g. one of the main operation in block Gaussian
elimination as we will see in section 4.1. For solving triangular systems over
finite fields, the block algorithm reduces to matrix multiplication and achieves
the best known arithmetic complexity. Let us denote by R(m, k, n) the arith-
metical cost of a m × k by k × n rectangular matrix multiplication. Now let
us suppose that k ≤ m ≤ n, then R(k, m, n), R(m, k, n) and R(m, n, k) are
all bounded by

⌈
mn
k2

⌉
MM(k) (see e.g. [35, (2.5)] for more details). In the fol-

lowing subsections, we present a block recursive algorithm and two optimized
implementation variants of triangular system solving for which we study their
behaviors and their performances.

From now on, we will denote by Zpthe field of integer modulo the prime p.

29

3.3.1 Scheme of the block recursive algorithm

The classical idea is to use the divide and conquer approach. Here, we consider
the upper left triangular case without loss of generality, since the any combi-
nation of upper/lower and left/right triangular cases are similar: if U is upper
triangular, L is lower triangular and B is rectangular, we call ULeft-Trsm the
resolution of UX = B, LLeft-Trsm that of LX = B, URight-Trsm that of
XU = B and LRight-Trsm that of XL = B.

Algorithm 2 ULeft-Trsm(A, B)

Require: A ∈ Zp
m×m, B ∈ Zp

m×n.
Ensure: X ∈ Zp

m×n such that AX = B.
1: if m=1 then
2: X := A−1

1,1 ×B.
3: else
4: (splitting matrices into

⌊
m
2

⌋
and

⌈
m
2

⌉
blocks)

A X B
︷ ︸︸ ︷[

A1 A2

A3

] ︷ ︸︸ ︷[
X1

X2

]
=

︷ ︸︸ ︷[
B1

B2

]

5: X2 :=ULeft-Trsm(A3, B2).
6: B1 := B1 −A2X2.
7: X1 :=ULeft-Trsm(A1, B1).
8: end if
9: return X.

Lemma 3.5. Algorithm ULeft-Trsm is correct and the dominant term of its
arithmetic complexity over Zp is

TRSM(m; n) =

{
1

2ω−1−2

⌈
n
m

⌉
MM(m) if m ≤ n

1
2ω−1−2

⌈
m
n

⌉2
MM(n) if m ≥ n

The latter is min{mn2, nm2} with classical multiplication.

Proof. The correctness of algorithm ULeft-Trsm can be proven by induction on
the row dimension of the system. For this, one only has to note that

X =

[
X1

X2

]
is solution⇐⇒

{
A3X2 = B2

A1X1 + A2X2 = B1

Let TRSM(m, n) be the cost of algorithm ULeft-Trsm where m is the dimen-
sion of A and n the column dimension of B. It follows from the algorithm that
TRSM(m, n) = 2TRSM(m

2 , n) + R(m
2 , m

2 , n). We note t = log2(m), then if
m ≤ n, we have thus TRSM(m, n) = 2TRSM(m

2 , n) + 1
2ω−1

⌈
n
m

⌉
MM(m) =

30

2tTRSM(1, n)+ 1
2ω−1

⌈
n
m

⌉
MM(m)

1−(2

2ω−1)t

1− 2

2ω−1

. As TRSM(1, n) = 2n and
(
2ω−1

)t
=

mω−1, we get TRSM(m, n) = 1
2ω−1−2

⌈
n
m

⌉
MM(m) + O(m2 + mn). When

m ≥ n, the trick is to consider two TRSM with the same triangular ma-
trix, but of right hand side of size n/2. R(m

2 , m
2 , n) = 2R(m

2 , m
2 , n

2). There-
fore the inequality m ≥ n is preserved all along the algorithm and the cost
is thus TRSM(m, n) = 4TRSM(m

2 , n
2) + 2R(m

2 , m
2 , n

2) = 4TRSM(m
2 , n

2) +

1
2ω−1

⌈
n
m

⌉2
MM(n). Thus TRSM(m, n) = 4tT (1; 1)+ 1

2ω−1

⌈
m
n

⌉2
MM(m)

1−(4
2ω)

t

1− 4
2ω

.

This yields the dominant term 2
2ω−4

⌈
m
n

⌉2
MM(m).

3.3.2 Implementation using the BLAS “dtrsm”

Matrix multiplication speed over finite fields was improved in [21, 50] by the
use of the numerical BLAS3 library: matrices were converted to floating point
representations (where the linear algebra routines are fast) and converted back
to a finite field representation afterwards. The computations remained exact
as long as no overflow occurred. An implementation of ULeft-Trsm can use
the same techniques. Indeed, as soon as no overflow occurs one can replace the
recursive call to ULeft-Trsm by the numerical BLAS dtrsm routine. But one
can remark that approximate divisions can occur. So we need to ensure both
that only exact divisions are performed and that no overflow appears. Not only
one has to be careful for the result to remain within acceptable bounds, but,
unlike matrix multiplication where data grows linearly, data involved in linear
system grows exponentially as shown in the following.
The next two subsections first show how to deal with divisions, and then give
an optimal theoretical bound on the coefficient growth and therefore an optimal
threshold for the switch to the numerical call.

3.3.3 Dealing with divisions

In algorithms like ULeft-Trsm, divisions appear only within the last recursion’s
level. In the general case it cannot be predicted whether these divisions will
be exact or not. However when the system is unitary (only 1’s on the main
diagonal) the division are of course exact and will even never be performed.
Our idea is then to transform the initial system so that all the recursive calls to
ULeft-Trsm are unitary. For a triangular system AX = B, it suffices to factor
first the matrix A into A = UD, where U , D are respectively an upper unit
triangular matrix and a diagonal matrix. Next the unitary system UY = B is
solved by any ULeft-Trsm (even a numerical one), without any division. The
initial solution is then recovered over the finite field via X = D−1Y . This
normalization leads to an additional cost of:
• m inversions over Zp for the computation of D−1.

3www.netlib.org/blas

31

• (m− 1)m
2 + mn multiplications over Zp for the normalizations of U and

X .
Nonetheless, in our case, we need to avoid divisions only during the numer-

ical phase. Therefore, the normalization can take place only just before the
numerical routine calls. Let β be the size of the system when we switch to a
numerical computation. To compute the cost, we assume that m = 2iβ, where
i is the number of recursive level of the algorithm ULeft-Trsm. The implemen-
tation can however handle any matrix size. Now, there are 2i normalizations
with systems of size β. This leads to an additional cost of:
• m inversions over Zp.
• (β − 1)m

2 + mn multiplications over Zp.
This allows us to save

(
1
2 −

1
2i+1

)
m2 multiplications over Zp from a whole nor-

malization of the initial system. One iteration suffices to save 1
4m2 multiplica-

tions and we can save up to 1
2 (m2 −m) multiplications with log m iterations.

3.3.4 A theoretical threshold

We want to use the BLAS trsm routine to solve triangular systems over the
integers (stored as double for dtrsm or float for strsm). The restriction is
then the coefficient growth in the solution. Indeed, the kth value in the solution
vector is a linear combination of the (n−k) already computed next values. This
implies a linear growth in the coefficient size of the solution, with respect to the
system dimension. Now this resolution can only be performed if every element
of the solution can be stored in the mantissa of the floating point representation
(e.g. 53 bits for double). Therefore overflow control consists in finding the
largest block dimension β, such that the result of the call to BLAS trsm routine
will remain exact.

We now propose a bound for the values of the solutions of such a system;
this bound is optimal (in the sense that there exists a worst case matching
the bound when n = 2iβ). This enables the implementation of a cascading
algorithm, starting recursively and taking advantage of the BLAS performances
as soon as possible.

Theorem 3.6. Let T ∈ Z
n×n be a unit diagonal upper triangular matrix, and

b ∈ Z
n, with 0 ≤ T ≤ p− 1 and 0 ≤ b ≤ p− 1. Let X = (xi)i∈[1..n] ∈ Z

n be the
solution of T.X = b over the integers. Then, ∀ k ∈ [0..n− 1]:

{
(p− 2)k − pk ≤ 2

xn−k

p−1 ≤ pk + (p− 2)k if k is even

−pk − (p− 2)k ≤ 2xn−k

p−1 ≤ pk − (p− 2)k if k is odd

Proof. The idea is to use an induction on k with the relation xk = bk −∑n
i=k+1 Tk,ixi. A lower and an upper bound for xn−k are computed, depending

whether k is even or odd: Let us define the following induction hypothesis IHl:

∀ k ∈ [0..l − 1]

{
−uk ≤ xn−k ≤ vk if k is even
−vk ≤ xn−k ≤ uk if k is odd

32

When l = 0, xn = bn which implies that −u0 = 0 ≤ xn ≤ p − 1 = v0. Thus
IH0 is proven. Let us suppose that ∀j ∈ [0..l] IHj is true, and prove IHl+1.
There are two cases: either l is odd or not ! If l is odd, l + 1 is even. Now, by
induction,

xn−l−1 ≤ (p − 1)

1 +

l−1

2∑

i=0

u2i + v2i+1

≤ p − 1 +

l−1

2∑

i=0

(p − 1)2

2

[
p
2i
− (p − 2)2i + p

2i+1 + (p − 2)2i+1
]

≤ p − 1 +

l−1

2∑

i=0

(p − 1)2

2

[
p
2i(p + 1) + (p − 2)2i(p − 3)

]

≤ p − 1 +
(p − 1)2

2

[
(p + 1)

pl+1
− 1

p2 − 1
+ (p − 3)

(p − 2)l+1
− 1

(p − 2)2 − 1

]

≤
p − 1

2

[
p

l+1 + (p − 2)l+1
]

= vl+1

Similarly,

xn−l−1 ≥ −(p − 1)

l−1

2∑

i=0

v2i + u2i+1

≥ −
(p − 1)2

2

l−1

2∑

i=0

[
p
2i + (p − 2)2i + p

2i+1
− (p − 2)2i+1

]

≥ −
(p − 1)2

2

l−1

2∑

i=0

[
p
2i(p + 1) − (p − 2)2i(p − 3)

]

≥ −
p − 1

2

[
p

l+1
− (p − 2)l+1

]
= ul+1

Finally, If l is even, a similar proof leads to −vl+1 ≤ xn−l+1 ≤ ul+1.

Corollary 3.7. |X | ≤ p−1
2

[
pn−1 + (p− 2)n−1

]
.

Moreover, this bound is optimal.

Proof. We denote by un = p−1
2 [pn − (p− 2)n] and vn = p−1

2 [pn + (p− 2)n] the
bounds of the theorem 3.6. Now ∀ k ∈ [0..n− 1] uk ≤ vk ≤ vn−1. Therefore the
theorem 3.6 gives ∀ k ∈ [1..n] xk ≤ vn−1 ≤

p−1
2

[
pn−1 + (p− 2)n−1

]

Let T =

. . .
. . .

. . .
. . .

. . .

1 p− 1 0 p− 1
1 p− 1 0

1 p− 1
1

, b =

...
0

p− 1
0

p− 1

33

Then the solution X = (xi)i∈[1..n] ∈ Z
n of the system T.X = b satisfies ∀ k ∈

[0..n− 1] |xn−k| = vk

One can derive the same kind of bound for the centered representation, but
with an 2n gain.

Theorem 3.8. Let T ∈ Z
n×n be a unit diagonal upper triangular matrix, and

b ∈ Z
n, with |T | ≤ p−1

2 and |b| ≤ p−1
2 . Let X = (xi)i∈[1..n] ∈ Z

n be the solution

of T.X = b over the integers. Then |X | ≤ p−1
2

(
p+1
2

)n
.

Moreover, this bound is optimal.

Proof. The proof is simpler than that of theorem 3.6, since the inequations are

symmetric. Therefore, un = vn and the induction yields un = p−1
2

(
1 +

∑n−1
i=0 ui

)
=

p−1
2

(
1 + p−1

2

(p+1

2)n
−1

p+1

2
−1

)
= p−1

2

(
p+1
2

)n
.

Thus, for a given p, the dimension n of the system must satisfy

p− 1

2

(
p + 1

2

)n

< 2m (6)

where m is the size of the mantissa so that the resolution over the integers using
the BLAS trsm routine is exact. For instance, with a 53 bits mantissa, this
gives quite small matrices, namely at most 92 × 92 for p = 2, at most 4 × 4
for p ≤ 3089, and at most p = 416107 for 2 × 2 matrices. Nevertheless, this
technique is speed-worthy in most cases as shown in section 3.3.6.

3.3.5 Recursive with delayed modulus

In the previous section we noticed that BLAS routines within Trsm are used only
for small systems. An alternative is to change the cascade: instead of calling the
BLAS, one could switch to the classical iterative algorithm: Let A ∈ Zp

m×m

and B, X ∈ Zp
m×n such that AX = B, then

∀i, Xi,∗ =
1

Ai,i

(Bi,∗ −Ai,[i+1..m]X[i+1..m],∗) (7)

The idea is that the iterative algorithm computes only one row of the whole
solution at a time. Therefore its threshold t is greater than the one of the
BLAS routine, namely it requires only

t(p− 1)2 < 2m with an unsigned representation (i.e. [0..p− 1]), or

t(p− 1)2 < 2m+1 with a signed one (i.e. [1−p
2 ..p−1

2]).
(8)

Resultantly, an implementation of this iterative algorithm depends mainly on
the matrix-vector product. The arithmetical cost of such an algorithm is now
cubic in the size of the system, where blocking improved the theoretical com-
plexity.But in practice fast matrix multiplication algorithms are not better than
the classical one for such small matrices as shown in [21, §3.3.2].

34

3.3.6 “Trsm” implementations behavior

As shown in section 3.3.1 the block recursive algorithm Trsm is based on ma-
trix multiplications and allows us to reuse our efficient matrix multiplication
routines presented in section 3.1 and 3.2. In the following we compare three
implementation variants of Trsm based on the classic matrix multiplication of
section 3.1. The pure recursive version of section 3.3.1 is labeled “pure rec”
while the optimized variant of section 3.3.2 with optimal threshold is designed
by “blas”. The label “delayedt” denotes the variant of section 3.3.5 where t sat-
isfies equation 8 with unsigned representation and corresponds to the switching
threshold.

Our comparisons use classical prime field arithmetic of section 2.1.1 with
word size prime number and two datatype representations (i.e. 32-bits integer
and 64-bits floating point number). Remember that the latter only uses the
53-bits of mantissa in order to guarantee an exact arithmetic. The two imple-
mentations are denoted respectively: ZpZ-int and ZpZ-double.

n 400 700 1000 2000 3000 5000

pure rec. 853 1216 1470 1891 2059 2184
blas 1306 1715 1851 2312 2549 2660

Z
/
5
Z

delayed100 1163 1417 1538 1869 2042 2137
delayed50 1163 1491 1639 1955 2067 2171

pure rec. 810 1225 1449 1886 2037 2184
blas 1066 1504 1639 2099 2321 2378

delayed100 1142 1383 1538 1860 2019 2143
delayed50 1163 1517 1639 1955 2080 2172

Z
/
3
2
7
4
9
Z

delayed3 914 1279 1449 1941 2139 2159

Table 7: Comparing speed (Mfops) of Trsm using Zpz-double, on a P4, 2.4GHz

n 400 700 1000 2000 3000 5000

pure rec. 571 853 999 1500 1708 1960
blas 688 1039 1190 1684 1956 2245

delayed150 799 1113 909 1253 1658 2052

Z
/
5
Z

delayed100 831 1092 1265 1571 1669 2046
delayed23 646 991 1162 1584 1796 2086

pure rec. 551 786 1010 1454 1694 1929
blas 547 828 990 1449 1731 1984

delayed100 703 958 1162 1506 1570 1978
delayed50 842 1113 1282 1731 1890 2174

Z
/
3
2
7
4
9
Z

delayed3 528 769 900 1367 1664 1911

Table 8: Comparing speed (Mfops) of Trsm using ZpZ-int, on a P4, 2.4GHz

One can see from table 7 that “blas” Trsm implementation with a ZpZ-double

35

representation is the most efficient choice for small primes (here switching to
BLAS happens for n = 23 when p = 5). Now for larger primes, despite a
very small granularity (e.g switching to BLAS happens only for n = 3 when
p = 32749), this choice remains the best as soon as systems are large (i.e.
n > 1000). This is because grouping operations into blocks speeds up the com-
putation. Now in case of smaller systems, the “delayedt” variant becomes more
efficient, due to the good behavior of dot product. However the threshold t has
to be chosen carefully as shown in table 8. As a comparison, we provide perfor-
mances for several thresholds, in particular the same as within “blas” variant
(i.e. 3 and 23). Indeed using a threshold of 50 enables better performances
than “blas” variant. This is because conversions from 32-bits integers to float-
ing points numbers becomes too big a price to pay. However, for larger matrices,
conversions (O(n2)) are dominated by computations (O(nω)), and then “blas”
variant becomes again the fastest one, provided that the field is small enough.

To summarize, one would rather use ZpZ-double representation and “blas”
Trsm variant in most cases. However, when the base field is already specified
“delayedt” could provide slightly better performances. This requires a search for
optimal thresholds which again could be done through an Automated Empirical
Optimizations of Software [57].

3.3.7 Performances and comparison with numerical routines

In the previous section we showed that Trsm optimized variant based on nu-
merical solving allows us to achieve the best performances. In this section we
compare these performances with pure numerical solving and with matrix multi-
plication. In order to achieve the best performances we use as much as possible
fast matrix multiplication of section 3.2. For this purpose we use an experi-
mental switching threshold to classic multiplication since table 2 reflects only
theoretical behavior. As for matrix multiplication in section 3.2.4, we compare
our routines according to two different BLAS optimizations (i.e. ATLAS and
GOTO) and two different architectures. Nevertheless, we do not present the
results with ATLAS on P4 architecture due to really poor performances of AT-
LAS “dtrsm” routine during our tests. We use a ZpZ-double representation
with a 16-bits prime (i.e. 65521) for exact computation labeled “ftrsm” in the
following.

Tables 9 and 10 show that our implementation of exact Trsm solving is not far
from numerical performances. In particular, “ftrsm” performances tend to catch
up with BLAS ones as soon as the dimensions of matrices increase. Moreover,
with our P4 architecture and GOTO BLAS, we are able to achieve even better
performances than numerical solving for matrices of dimension 10 000.

The good performances of our implementation is mostly achieved with the
reduction to matrix multiplication. The figure 12 shows the performances ratio
of our Trsm implementation with our matrix multiplication routine. One can
see from this figure that our experimental ratio converges to the theoretical one.
In particular, the theoretical ratio is slightly more than 1

2 since fast matrix mul-
tiplication algorithm is used. According to lemma 3.5 and complexity exponent

36

n 1000 2000 3000 5000 7000 8000 9000 10000

ftrsm 0.35s 2.18s 6.38s 25.66s 64.38s 91.19s 127.99s 170.44s
dtrsm 0.19s 1.50s 4.92s 22.94s 59.97s 90.08s 127.05s 173.67s

G
O

T
O

ftrsm
dtrsm

1.84 1.45 1.29 1.11 1.07 1.01 1.00 0.98

Table 9: Timings of triangular solver with matrix hand side on a P4, 3.4GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

ftrsm 0.52s 3.17s 9.33s 38.48s 96.83s 139.56s 192.34s 259.80s
dtrsm 0.27s 2.04s 6.71s 29.62s 79.44s 117.00s 166.18s 224.15s

A
T

L
A

S

ftrsm
dtrsm

1.92 1.55 1.39 1.29 1.21 1.19 1.15 1.15

ftrsm 0.48s 2.87s 8.60s 35.85s 87.29s 123.91s 172.49s 240.53s
dtrsm 0.30s 2.01s 6.37s 27.14s 72.21s 106.99s 150.86s 223.75s

G
O

T
O

ftrsm
dtrsm

1.6 1.42 1.35 1.32 1.20 1.15 1.14 1.07

Table 10: Timings of triangular solver with matrix hand side on Itanium2,
1.3GHz

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ra
tio

Matrix dimension

ratio of triangular system solving with matrix hand side / matrix multiplication

Itanium2 ATLAS
Itanium2 GOTO

P4 ATLAS
P4 GOTO

Figure 12: Comparing triangular matrix system solving with matrix multipli-
cation

37

of Winograd fast matrix multiplication [56] the theoretical ratio tends to be
around 2

3 . For matrix dimension 10 000 our experimental ratio is around 0.7
which is very close from the theoretical one (i.e. 0.6666).

4 Finite Field Matrix Factorizations and Appli-

cations

We now come to one of the major interest of linear algebra over finite field:
matrix multiplication based algorithms. The classical block Gaussian elimina-
tion is one of the most common algorithm to achieve such a reduction [56].
Nevertheless, our main concern here is the singularity of the matrices since we
want to derive efficient algorithms for most problems (e.g. rank or nullspace).
One approach to solve these reductions is then to simplify the problem using a
triangular form of the input matrix. Hence, matrix triangularization algorithm
plays a central role for this approach. In this section we focus on practical
implementations of triangularization in order to efficiently deal with rank pro-
file, unbalanced dimensions, memory management, recursive thresholds, etc. In
particular we demonstrate the efficiency of matrix multiplication reduction in
practice for many linear algebra problems.

4.1 Triangularizations

Indeed, the classical LDU or LUP factorizations (see [1]) can not be used due
to their restriction to non-singular case. Therefore, in this section we present
and study three variants of recursive exact triangularization allowing singular-
ity. First the classical LSP [39] is sketched. In order to reduce its memory
requirements, a first version, LUdivine, stores L in-place, but temporarily uses
some extra memory. Our last implementation is fully in-place without any ex-
tra memory requirements and corresponds to Ibarra’s LQUP. Note that one can
easily recover one to another triangularization by simply using extractions and
permutations.

4.1.1 LSP Factorization

The LSP factorization is a generalization of the well known block LUP factoriza-
tion for the singular case [6]. Let A be a m × n matrix, we want to compute
the triple < L, S, P > such that A = LSP . The matrices L and P are as in
LUP factorization and S reduces to a non-singular upper triangular matrix when
zero rows are deleted. The algorithm with best known complexity computing
this factorization uses a divide and conquer approach and reduces to matrix
multiplication [39]. Let us describe briefly the behavior of this algorithm. The
algorithm is recursive: first, it splits A in halves and performs a recursive call
on the top block. It thus gives the T , Y and L1 blocks of figure 13. Then, after
some permutations ([XZ] = [A21A22]P), it computes G such that GT = X via
Trsm, replaces X by zeroes and eventually updates Z = Z−GY . The third step

38

L

S
YT

X Z
S

L

G
L1

Figure 13: Principle of the LSP factorization

is a recursive call on Z. We let the readers refer e.g. to [4, (2.7c)] for further
details.

Lemma 4.1. Algorithm LSP is correct. The dominant term of its complexity
when m ≤ n is

LSP (m; n) =

(⌈ n

m

⌉ 1

2ω−1 − 2
−

1

2ω − 2

)
MM(m).

The latter is nm2 − 1
3m3 with classical multiplication.

Proof. Lemma 1.2 ensures that the cost is O(mω + nmω−1). We thus just
have to look for the constant factors. Then we write LSP (m; n) = αmω +
βnmω−1 = LSP (m/2; n)+ TRSM(m/2; r)+ R(m/2; r; n− r) + LSP (m/2; n−
r), where r is the rank of the first m/2 rows. This gives αmω + βnmω−1 =

α(m/2)ω +βn(m/2)ω−1+ 1
2ω−1−2

⌈
m
2r

⌉
MM(r)+

⌈
m(n−r)

2r2

⌉
MM(r)+α(m/2)ω +

β(n − r)(m/2)ω−1. With m ≤ n, the latter is maximal for r = m/2, and
then, writing MM(x) = Cωxω , we identify the coefficient on both sides: β =

β
2ω−1 + Cω

2ω−1 + β
2ω−1 , and α = 2 α

2ω −
β
2ω . Solving for α and β gives the announced

terms.

The point here is that, L being square m ×m does not fit in place under
S. Therefore a first implementation produces an extra triangular matrix. The
following subsections address this memory issue.

4.1.2 LUdivine

The main concern with the direct implementation of the LSP algorithm, is the
storage of the matrix L: it can not be stored directly with its zero columns
under S (as shown in figure 13). Actually, there is enough room under S to
store all the non zero entries of L, as shown in figure 14. Storing only the
non zero columns of L is the goal of the LUdivine variant. One can notice
that this operation corresponds to the storage of L̃ = LQ instead of L, where

39

Q is a permutation matrix such that QT S is upper triangular. Consequently,
the recovery of L from the computed L̃ is straightforward. Note that this L̃
corresponds to the echelon form of [40, §2] up to some transpositions.

X Z

Y

Figure 14: Principle of the LUdivine factorization

Further developments on this implementation are presented in [5, 51]. How-
ever, this implementation is still not fully in place. Indeed, to solve the trian-
gular system G = X.T−1, one has then to convert T to an upper triangular
matrix stored in a temporary memory space. In the same way, the matrix prod-
uct Z = Z −GY also requires a temporary memory allocation, since rows of Y
have to be shifted. This motivates the introduction of the LQUP decomposition.

4.1.3 LQUP

To solve the data locality issues, due to zero rows inside S, one can prefer to
compute the LQUP factorization, also introduced in [39]. It consists in a slight
modification of the LSP factorization: S is replaced by U , the corresponding
upper triangular matrix, after the permutation of the zero rows. The transpose
of this row permutation is stored in Q.

Z

Y

X

Figure 15: Principle of the LQUP factorization

This prevents the use of temporaries for Y and T , since the triangles in
U are now contiguous. Moreover, the number of instructions to perform the
row permutations is lower than the number of instructions to perform the block
copies of LUdivine or LSP. Furthermore, our implementation of LQUP also uses
the trick of LUdivine, namely storing L in its compressed form L̃. Thanks to
all these improvements, this triangulation appears to be fully in place. As will
be shown in section 4.1.4, it is also more efficient. Here again, the LSP and LQUP

factorizations are simply connected via S = QU . So the recovery of the LSP is
still straightforward.

40

4.1.4 triangularization implementations behavior

As shown in previous sections the three variants of triangularization mainly
differ by their memory management. Indeed, the main operations remain matrix
multiplication and triangular system solving. Therefore, the implementation of
all these variants are based on our matrix multiplication routines of section 3.1
and triangular system solver of section 3.3.2. The results are impressive: for
example, table 11 shows that it is possible to triangularize a 5000×5000 matrix
over a finite field in 29.9 seconds. We now compare the three routine speed and
memory usage with the same kernels: a ZpZ-double representation (so that no
conversion overhead occur) and classic matrix multiplication routine.

n 400 1000 3000 5000 8000 10000
LSP 0.05 0.48 8.01 32.54 404.8 1804

LUdivine 0.05 0.47 7.79 30.27 403.9 1691
LQUP 0.05 0.45 7.59 29.90 201.7 1090

Table 11: Comparing real time (seconds) of LSP, LUdivine, LQUP over Z101, on
a P4, 2.4GHz

For table 11, we used random dense square matrices (but with 3n non-
zero entries) so as to have rank deficient matrices. The timings given in table
11 are close since the dominating operations of the three routines are similar.
LSP is slower, since it performs some useless zero matrix multiplications when
computing Z = Z − GY (section 4.1.2). LQUP is slightly faster than LUdivine

since row permutations involve less operations than the whole block copy of
LUdivine (section 4.1.3). However these operations do not dominate the cost of
the factorization, and they are therefore of little influence on the total timings.
This is true until the matrix size induces some disk swapping, around matrix
dimension 8000.

n 400 1000 3000 5000 8000 10000
LSP 2.83 17.85 160.4 444.2 1136 1779

LUdivine 1.60 10.00 89.98 249.9 639.6 999.5
LQUP 1.28 8.01 72.02 200.0 512.1 800.0

Table 12: Comparing memory usage (Mega bytes) of LSP, LUdivine, LQUP over
Z101, on a P4, 2.4GHz with 512 Mb RAM

Now for the memory usage, the fully in-place implementation of LQUP saves
20% of memory (table 12) when compared to LUdivine and 55% when compared
to LSP. Actually, the memory usage of the original LSP is approximately that of
LUdivine augmented by the extra matrix storage (which corresponds exactly
to that of LQUP: e.g. 5000 ∗ 5000 ∗ 8bytes = 200Mb). This memory reduction
is of high interest when dealing with large matrices and so with disk swapping
(further improvements on the memory management are presented section 4.2).

41

4.1.5 Performances and comparison with numerical routines

Fast matrix multiplication routine of section 3.2 allowed us to speed up matrix
multiplication as well as triangular system solving. These improvements are
of great interest since they directly improve performances of triangularization.
We now compare our exact triangularization over finite field with numerical
triangularization provided within LAPACK library [2]. In particular, we use an
optimized version of this library provided by ATLAS software in which we use
two different BLAS kernel: ATLAS and GOTO.

Tables 13 and 14 show performances obtained with our exact triangulariza-
tion based on fast matrix multiplication and the one obtained with numerical
computation. Exact computation is done in the prime field of integers modulo
65521. The performances of exact computation are really stupefying since we
are mostly able to obtain the same performances as numerical computation.
More precisely, we are able to compute the triangularization of a 10 000×10 000
matrix over a finite field in about 2 minutes on a P4 3.4GHz architecture. This
is only 10% slower than numerical computation.

We could have expected that our performances would have been even better
than numerical approach since we take advantage of fast matrix multiplication
while numerical computation not. However, in practice we do not fully benefit
from fast matrix multiplication since we work at most with matrices of half
dimension of the input matrix. Then the number of Winograd calls is at least
one less then within matrix multiplication routines. In our tests, it appears
that we only use 3 calls on our P4 architecture and 1 call on the Itanium2
architecture according to matrix multiplication threshold. This explains the
better performances on the P4 compare to numerical routines than the Itanium2
architecture.

4.2 Data locality

To solve even bigger problems, say that the matrices do not fit in RAM, one
has mainly two solutions: either perform out of core computations or parallelize
the resolution. In both cases, the memory requirements of the algorithms to
be used will become the main concern. This is because the memory accesses
(either on hard disk or remotely via a network) dominate the computational
cost. A classical solution is then to improve data locality so as to reduce the
volume of these remote accesses. In such critical situations, one may have to
prefer a slower algorithm having a good memory management, rather than the
fastest one, but suffering from high memory requirements. We here propose to
deal with this concern in the case of rank or determinant computations of large
dense matrices. The generalization to the full factorization case being direct
but not yet fully implemented.

To improve data locality and reduce the swapping, the idea is to use square
recursive blocked data formats [31]. A variation of the LSP algorithm, namely
the TURBO algorithm [24], adapts this idea to the exact case. Alike the LQUP

algorithm which is based on a recursive splitting of the row dimension (see

42

n 1000 2000 3000 5000 7000 8000 9000 10000

lqup 0.34s 1.98s 5.54s 21.38s 54.67s 79.45s 110.29s 137.56s
dgetrf 0.17s 1.22s 3.93s 17.39s 46.65s 65.09s 97.99s 133.01s

A
T

L
A

S

lqup
dgetrf

2.00 1.62 1.40 1.22 1.17 1.22 1.12 1.03

lqup 0.30s 1.78s 5.08s 19.94s 49.67s 73.22s 97.71s 129.76s
dgetrf 0.15s 1.14s 3.54s 16.86s 41.77s 62.28s 88.00s 120.71s

G
O

T
O

lqup
dgetrf

2.00 1.56 1.43 1.18 1.18 1.17 1.11 1.07

Table 13: Performances of matrix triangularization on P4, 3.4GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

lqup 0.45s 2.59s 7.32s 28.94s 71.19s 101.57s 141.79s 189.39s
dgetrf 0.22s 1.53s 4.84s 21.14s 55.84s 81.81s 116.02s 156.34s

A
T

L
A

S

lqup
dgetrf

2.04 1.69 1.51 1.36 1.21 1.24 1.22 1.21

lqup 0.57s 2.48s 6.32s 22.77s 49.36s 68.90s 107.46s 184.83s
dgetrf 0.20s 1.39s 4.33s 18.69s 49.44s 73.28s 103.07s 140.81s

G
O

T
O

lqup
dgetrf

2.85 1.78 1.45 1.21 0.99 0.94 1.04 1.31

Table 14: Performances of matrix triangularization on Itanium2-1.3GHz

43

section 4.1.3), TURBO achieves more data locality by splitting both row and
column dimensions. Indeed the recursive splitting with only the row dimension
tend to produce “very rectangular” blocks: a large column dimension and a
small row dimension. On the contrary, TURBO preserves the squareness of the
original matrix for the first levels. More precisely each recursive level consists
in a splitting of the matrix into four static blocks followed by five recursive
calls to matrix triangularizations (U, V, C, D, and Z, in that order on figure
16), six Trsm and four matrix multiplications for the block updates. In this

Figure 16: Principle of the TURBO decomposition

first implementation, only one recursive step of TURBO is used, the five recursive
calls being performed by the LQUP algorithm. For the actual size of matrices,
the quite complex implementation of more recursive levels of TURBO is not yet
mandatory.

Now for the comparisons of figure 17, we use the full LQUP factorization
algorithm as a reference. Factorization of matrices of size below 8000 fit in
512Mb of RAM. Then LQUP is slightly faster than TURBO, implementation of the
latter producing slightly more scattered groups. Now, the first field represen-
tation chosen (curves 1 and 2) is a modular prime field representation using
machine integers. As presented in [21], any matrix multiplication occurring in
the decomposition over such a representation is performed by converting the
three operands to three extra floating point matrices. This memory overhead
is critical in our comparison. TURBO, having a better data locality and using
square blocks whenever possible, requires smaller temporary matrices than the
large and very rectangular blocks used in LQUP. Therefore, for matrices of order
over 8000, LQUP has to swap a lot while TURBO remains more in RAM. This is
strikingly true for matrices between 8000 and 8500, where TURBO manages to
keep its top speed.

To also reduce the memory overhead due to the conversions to floating point
numbers, one can use the Zpz-double field representation, as used in section
3.3.6. There absolutely no allocation is done beside the initial matrix storage.
On the one hand, performances increase since the conversions and copy are
no longer performed, as long as the computations remain in RAM (see curves
3 and 4). On the other hand, the memory complexities of both algorithms
now become identical. Furthermore, this fully in-place implementation does

44

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 2000 4000 6000 8000 10000 12000

M
fo

ps

Matrix order

TURBO vs LQUP for rank computation over Z101 on a P4−2.4Ghz, 512Mb RAM

(1) TURBO using ZpZ−int
(2) LQUP using ZpZ−int

(3) TURBO using ZpZ−double
(4) LQUP using Zpz−double

Figure 17: TURBO versus LQUP for out of core rank

not create small block copies anymore. Paradoxically, this prevents the virtual
blocks from fitting in the RAM, since they are just a view of the large initial
matrix. For this reason, both performance losses appear for matrices of order
around 8000. However, the drop is lower for TURBO thanks to the recursive
blocked data formats producing better data locality.

This behavior of course confirms that as soon as the RAM is full, data locality
becomes more important than memory saves : TURBO over ZpZ-int is the fastest
for matrices of size bigger than 8000, despite its bigger memory demand. This is
advocating further uses of recursive blocked data formats and of more recursive
levels of TURBO.

4.3 Rank, determinant

The LQUP factorization and the Trsm routines reduce to matrix multiplication
as we have seen in the previous sections. Theoretically, as classic matrix mul-
tiplication requires 2n3 − n2 arithmetic operations, the factorization, requiring
at most 2

3n3 arithmetic operations, could be computed in about 1
3 of the time.

However, when Winograd fast matrix multiplication algorithm is used this ratio
becomes 2

5 . Now, the matrix multiplication routine Fgemm of section 3.2.4 can
compute 5000× 5000 matrix multiplications in only 34.8 seconds on a 3.4GHz
Pentium 4. This is achieved with 3 levels of Winograd algorithm and with very
good performances of the GOTO BLAS. Well, figure 18 shows that with n× n
matrices we are not very far from these quasi-optimal performances also for the
factorization.

Moreover, from the two routines (i.e. LQUP and Trsm, one can also easily
derive several other algorithms:

• The rank is the number of non-zero rows in U .

45

 0

 0.5

 1

 1.5

 2

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ra
tio

Matrix dimension

ratio of matrix triangularization / matrix multiplication

Itanium2 ATLAS
Itanium2 GOTO

P4 ATLAS
P4 GOTO

Figure 18: Comparing matrix triangularization with matrix multiplication

• The determinant is the product of the diagonal elements of U (stopping
whenever a zero is encountered).

4.4 Nullspace basis

Computing a right nullspace basis with the LQUP factorization is immediate
on a m × n full rank matrix, where m ≤ n: if U = [U1U2], the matrix U−1

1 U2

completed with identity matrix yields a basis for the nullspace of A.
This requires NS(m; n) = LQUP (m; n) + TRSM(m; n−m). which gives

NS(m; n) = (
⌈ n

m

⌉ 2

2ω−1 − 2
−

1

2ω − 2
)MM(m) (9)

The latter is (m2n − 1
3m3) + (n −m)m2 = 2m2n − 4

3m3 with classical multi-
plication. One can notice that computing a right nullspace of the transposed of
the input matrix yields a left nullspace basis.

4.5 Triangular multiplications

4.5.1 Triangular matrix multiplication

To perform the multiplication of a triangular matrix by a dense matrix via
a block decomposition, one requires four recursive calls and two dense matrix-
matrix multiplications. The cost is thus TRMM(n) = 4TRMM(n/2)+2MM(n/2),
solving for TRMM(n) = αMM(n) yields

TRMM(n) =
2

2ω − 4
MM(n). (10)

The latter is n3 with classical multiplication.

46

4.5.2 Upper-lower Triangular matrix multiplication

The block multiplication of a lower triangular matrix by an upper triangular
matrix is[

A1 A2

A4

]
×

[
B1

B3 B4

]
=

[
A1B1 + A2B3 A2B4

A4B3 A4B4

]

The cost is thus UTLT (n) = 2UTLT (n/2)+2TRMM(n/2)+MM(n/2), solving
for UTLT (n) = αMM(n) yields

UTLT (n) =
2ω

(2ω − 4)(2ω − 2)
MM(n). (11)

The latter is 2
3n3 with classical multiplication.

4.5.3 Upper-Upper Triangular matrix multiplication

Now the block version is even simpler (of course the lower lower multiplication
is similar):

[
A1 A2

A4

]
×

[
B1 B2

B4

]
=

[
A1B1 A1B2 + A2B4

A4B4

]

The cost is thus UTUT (n) = 2UTUT (n/2) + 2TRMM(n/2), which yields

UTUT (n) =
4

(2ω − 4)(2ω − 2)
MM(n). (12)

The latter is 1
3n3 with classical multiplication.

4.6 Squaring

4.6.1 A×AT

Suppose we want to compute A times its transpose, even with a diagonal in the
middle. The block version is[

A1 A2

A3 A4

]
×

[
D1

D4

]
×

[
AT

1 AT
3

AT
2 AT

4

]
=

[
A1D1A

T
1 + A2D4A

T
2 A1D1A

T
3 + A2D4A

T
4

A3D1A
T
1 + A4D4A

T
2 A3D1A

T
3 + A4D4A

T
4

]

Since AAT is symmetric, the lower left and upper right are just transpose of
one another. The other corners (upper left and lower right) are computed via
recursive calls. Thus the arithmetic cost of this special product is AAT (n) =
4AAT (n/2)+2MM(n/2)+3ADD(n/2)+2(n/2)2 Ignoring the cost of the three
additions and the diagonal multiplications, this yields

AAT (n) =
2

2ω − 4
MM(n). (13)

The latter is n3 with classical multiplication. One can note that when A is
rectangular with m ≤ n the cost extends to

AAT (m; n) =
⌈ n

m

⌉ 2

2ω − 4
MM(m). (14)

47

4.6.2 Symmetric case

When A is already symmetric, and if the diagonal is unitary, the constant factor
improves. Indeed, in this case A2 = AT

3 and then one of the four recursive
calls is saved. Also one of the remaining three recursive call is a call to a non
symmetric AAT . Therefore the cost is now: SymAAT (n) = 2SymAAT (n/2)+
AAT (n/2) + 2MM(n/2), once again ignoring n2. This yields

SymAAT (n) =
2(2ω − 3)

(2ω − 4)(2ω − 2)
MM(n). (15)

The latter is 5
6n3 with classical multiplication.

4.6.3 Triangular case

We here view the explicit computation of LT DL for instance as a special case
of upper-lower triangular matrix multiplication, but where both matrices are
symmetric of one another. We also show that we can add an extra diagonal
factor in the middle at a negligible cost. Consider then
[

L1

L3 L4

]
×

[
D1

D4

]
×

[
LT

1 LT
3

LT
4

]
=

[
L1D1L

T
1 L1D1L

T
3

L3D1L
T
1 L2D1L

T
2 + L4D4L

T
4

]

Thus it requires two recursive call, a call to AAT (with a diagonal in the
middle) only one call to TRMM as both lower-left and upper-right corners are
transpose of one another. This yields

LTL(n) =
4

(2ω − 4)(2ω − 2)
MM(n). (16)

The latter is 1
3n3 with classical multiplication.

4.7 Symmetric factorization

For the sake of simplicity, we here consider the LU factorization of a generic
rank profile symmetric n× n matrix A. We could describe how to perform this
decomposition with the permutation and the possible rank deficiency in the
blocks, but we here only analyze the cost of such a LDLT factorization. The

idea is that one can recursively decompose A =

[
A1 A2

AT
2 A4

]
=

[
L1

G L2

]
×

[
D1

D2

]
×

[
LT

1 GT

LT
2

]
. Well, this requires a recursive call to compute L1

and D1 ; a TRSM to compute G such that LDGT = A2 ; an AAT to compute
GDGT and a recursive call to compute L2D2L

T
2 = A4 − GDGT . The cost is

thus LDLT (n) = 2LDLT (n/2) + TRSM(n/2) + AAT (n/2), which yields

LDLT (n) =
4

(2ω − 4)(2ω − 2)
MM(n). (17)

The latter is 1
3n3 with classical multiplication.

48

4.8 Matrix inverse

4.8.1 Triangular matrix inverse

To invert a triangular matrix via a block decomposition, one requires two re-
cursive calls and two triangular matrix multiplications.

[
A1 A2

A4

]−1

=

[
A−1

1 −A−1
1 A2A

−1
4

A−1
4

]

The cost is thus INV T (n) = 2INV T (n/2) + 2TRMM(n/2) which yields

INV T (n) =
2

2ω − 2
TRMM(n) =

4

(2ω − 4)(2ω − 2)
MM(n). (18)

The latter is 1
3n3 with classical multiplication.

4.8.2 Matrix inverse

To invert a dense matrix, one needs to compute an LQUP decomposition, then
to invert L and permute it with Q−1. A TRSM is then required to solve UX =
Q−1L−1. applying P−1 to X yields the inverse. The cost is then INV (n) =
LQUP (n) + INV T (n) + TRSM(n). This gives

INV (n) =
3× 2ω

(2ω − 4)(2ω − 2)
MM(n). (19)

The latter is INV (n) = 2n3 with classical multiplication.

4.8.3 Symmetric inverse

If A is symmetric, one can decompose it into a LDLT factorization instead of
the LU . Therefore, its inverse is then only one INV T for both L−1 and L−T

followed by an LTL. The cost is then SymINV (n) = LDLT (n)+ INV T (n)+
LTL(n) which yields

SymINV (n) =
12

(2ω − 2)(2ω − 4)
MM(n). (20)

The latter is SymINV (n) = n3 with classical multiplication.

4.8.4 Full-rank Moore-Penrose pseudo-inverse

A is a rectangular full rank m× n matrix. Lets suppose, without loss of gener-
icity, that m ≤ n. The Moore-Penrose inverse of A is thus A† = AT (AAT)−1,
see e.g. [52] and references therein.

Computing the Moore-Penrose inverse is then just a LDLT decomposition
of the symmetric matrix AAT , followed by two rectangular system solvings:
MPINV (m; n) = AAT (m; n) + LDLT (m) + 2TRSM(m; n). The cost is then

MPINV (m; n) =

(⌈ n

m

⌉ 6

2ω − 4
+

4

(2ω − 2)(2ω − 4)

)
MM(m) (21)

49

The latter is 3m2n + 1
3m3 with classical multiplication. This correspond e.g. to

the normal equations numerical resolution [29, algorithm 5.3.1].

4.8.5 Rank deficient Moore-Penrose pseudo-inverse

In this case, one needs to compute a full-rank decomposition of A. This is done
by performing the LSP decomposition of A and if A is of rank r, selecting the

first r columns of L (call them Lr =

[
L1

G

]
) and the first r rows U (call them

Ur = [U1|Y]), forgetting the permutation P . We have A = LrUr and we modify
the formula [48, (7)] as follows:

A† =

[
I

Y T U−T
1

] (
(L1 + L−T

1 GT G)(U1 + Y Y T U−1
1)
)−1

[I|L−T
1 GT]. (22)

We note W = (L1 + L−T
1 GT G)(U1 + Y Y T U−1

1). We compute W by two squar-
ings, two TRSM and a classical matrix multiplication. We perform a reversed
LU decomposition on W to get W = UwLw. Now we compute LT

1 Uw and
LwUT

1 by upper-upper triangular multiplication and H = (LT
1 Uw)−1GT and

Z = Y T (LwUT
1)−1 by two TRSM. Now, A† =

[
W−1 L−1

w H
ZU−1

w ZH

]
. W−1 is two

triangular inverses and an upper lower product. ZH is a rectangular multipli-
cation and the last two blocks are obtained by two triangular solvings.

MPINVr(m; n) = LSP (m; n)+AAT (r; m−r)+AAT (r; n−r)+3TRSM(r, m−r)

+3TRSM(r, n− r)+MM(r)+LSP (r)+2UTUT (r)+2INVT (r)+UTLT (r)

+ R(n− r; r; m− r) (23)

The latter is 2rmn+2r2m+2r2n+m2n− 1
3m3− 4

3r3 with classical multiplication.
To get an idea, numerical computations based on the Cholesky factorization of
AAT presented in [9] as faster than SVD or QR or iterative methods would
require 3m2n + 2r2m + 3r3 flops.

4.8.6 Performances and comparisons with numerical routines

As for triangular system solving and matrix triangularization, we now com-
pare performances of matrix inversion for triangular and dense matrices with
numerical computation and with matrix multiplication. Our comparison with
numerical computation is still based on LAPACK library with two different
BLAS kernel (i.e. ATLAS and GOTO). We do not present the result of trian-
gular matrix inversion over our P4 architecture according to the bad behavior
of “dtrsm” function which is the main routine used by LAPACK for triangular
matrix inversion. Our base field is the prime field of integers modulo 65521 using
a Zpz-double representation and we use fast matrix multiplication of section
3.2.

Tables 15 and 16 illustrate the performances of our exact triangular matrix
inversion regarding performances of LAPACK routine “dtrtri”. Results are a

50

n 1000 2000 3000 5000 7000 8000 9000 10000

tri. inv 0.10s 0.65s 1.99s 8.38s 22.00s 32.34s 45.67s 62.01s
dtrtri 0.19s 1.06s 2.97s 11.27s 27.89s 40.13s 55.43s 74.44s

G
O

T
O

tri.inv
dtrtri

0.52 0.61 0.67 0.74 0.78 0.80 0.82 0.83

Table 15: Timings of triangular matrix inversion on a P4, 3.4GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

tri. inv 0.20s 1.11s 3.17s 12.67s 32.05s 46.26s 64.96s 86.27s
dtrtri 0.10s 0.75s 2.42s 10.66s 28.26s 41.65s 58.83s 79.21s

A
T

L
A

S

tri.inv
dtrtri

2.00 1.48 1.30 1.18 1.13 1.11 1.10 1.08

tri. inv 0.14s 0.84s 2.50s 10.20s 26.37s 38.61s 54.15s 73.34s
dtrtri 0.16s 0.94s 2.72s 10.83s 27.57s 40.14s 56.16s 75.74s

G
O

T
O

tri.inv
dtrtri

0.87 0.89 0.91 0.94 0.95 0.96 0.96 0.96

Table 16: Timings of triangular matrix inversion on Itanium2, 1.3GHz

bit surprising since they show a different behavior according to the BLAS ker-
nel. When ATLAS BLAS are used as kernel, we see that performances of our
routines tend to catch up with the numerical ones following a decreasing gap
with matrix dimension. As soon as GOTO BLAS are used as kernel numerical,
the performances become more efficient only when matrices are greater than
5000. As a consequence our exact computation are alway faster than numerical
one but following an increasing gap. Despite this surprising behavior, one can
see that exact computation of triangular matrix inverse yields about the same
performances as numerical one, sometime slower sometime faster according to
the BLAS kernel.

Now, Tables 17 and 18 provide the same comparisons for dense matrix in-
version. For numerical computation references we use the routine “dgetri” in
combination with the factorization routine “dgetrf” to yield matrix inverse. On
both architecture with ATLAS BLAS kernel, exact computations become the
most efficient when matrix dimension is getting larger. Numerical computation
is only better than exact on the Itanium 2 architecture with GOTO BLAS ker-
nel. In this particular application, the benefit of fast matrix multiplication is
important since it allows to outperform numerical performances.

As shown in previous section, matrix inversion algorithms reduce to matrix
multiplication. Figures 19 and 20 show the correlation between matrix inversion
performances and matrix multiplication performances; triangular and dense case
are studied.

51

n 1000 2000 3000 5000 7000 8000 9000 10000

inverse 0.88s 5.22s 15.00s 59.03s 152.20s 218.15s 310.94s 394.56s
dgetrf+dgetri 0.55s 4.06s 13.85s 64.51s 176.34s 298.89s 422.42s 604.83s

A
T

L
A

S

inverse
dgetrf+dgetri

1.6 1.28 1.08 0.91 0.86 0.72 0.73 0.65

inverse 0.78s 4.66s 13.63s 54.15s 136.55s 197.26s 271.65s 362.91s
dgetrf+dgetri 0.48s 3.52s 11.81s 62.68s 137.21s 201.81s 287.78s 477.27s

G
O

T
O

inverse
dgetrf+dgetri

1.62 1.32 1.15 0.86 0.99 0.97 0.94 0.76

Table 17: Timings of matrix inversion on P4, 3.4GHz

n 1000 2000 3000 5000 7000 8000 9000 10000

inverse 1.22s 7.02s 20.13s 80.91s 201.58s 289.50s 401.41s 538.93s
dgetrf+dgetri 0.65s 4.83s 15.88s 73.17s 206.11s 308.30s 441.29s 603.26s

A
T

L
A

S

inverse
dgetrf+dgetri

1.87 1.45 1.26 1.10 0.97 0.93 0.90 0.89

inverse 1.05s 6.14s 18.10s 73.85s 180.21s 258.17s 356.79s 496.39s
dgetrf+dgetri 0.71s 4.56s 13.96s 59.26s 155.71s 230.29s 323.15s 440.82s

G
O

T
O

inverse
dgetrf+dgetri

1.47 1.34 1.29 1.24 1.15 1.12 1.10 1.12

Table 18: Timings of matrix inversion on Itanium2, 1.3GHz

52

According to section 4.8.1, the ratio of triangular matrix inversion and ma-
trix multiplication is 4/(2ω − 4)(2ω − 2); which gives a theoretical ratio of
1/6 when classic matrix multiplication is used. However this ratio increase
to ≈ 0.267 when Winograd fast matrix multiplication is used (i.e. ω = log2 7).
Since our matrix multiplication routine is using fast matrix multiplication, the
asymptotic behavior of this ratio should tend to the latter. However we observe
in practice that our performances are beyond this ratio. This is due to the
hybrid matrix multiplication which uses both Winograd and classic algorithms.
So the practical ratio obtained here is really close to the theoretical one since it
should asymptotically lie between 0.2674 and 0.166.

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ra
tio

Matrix dimension

ratio of triangular matrix inversion / matrix multiplication

Itanium2 ATLAS
Itanium2 GOTO

P4 ATLAS
P4 GOTO

Figure 19: Comparing triangular
matrix inversion with matrix mul-
tiplication

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

ra
tio

Matrix dimension

ratio of matrix inversion / matrix multiplication

Itanium2 ATLAS
Itanium2 GOTO

P4 ATLAS
P4 GOTO

Figure 20: Comparing matrix inver-
sion with matrix multiplication

From section 4.8.2 one can express the ratio between dense matrix inver-
sion and matrix multiplication as respectively 1 with classic algorithm and 1.4
with Winograd algorithm. In practice we observe that dense matrix inversion
ratio is just above the asymptotic behavior of Winograd based inversion. This
certainly could be explained by the number of different algorithm involved in
this application. In particular it involves three different reduction to matrix
multiplications; which may be of a little influence on the final performances.
Moreover, we do not take into account memory effect which can play a crucial
role in performances as already demonstrated by ATLAS software with opti-
mized BLAS [57]. In our test we used a naive approach which leads us to use
2n2 elements in memory. Decreasing this memory will certainly allow us to get
better performances. In particular, it is not known yet how to perform matrix
inversion in place using a reduction to matrix multiplication.

5 Conclusions

We have achieved the goal of approaching the efficiency of the numerical linear
algebra library but for finite fields. We showed that exact computation can

53

benefit from Winograd fast matrix multiplication algorithm and then even leads
to outperform the performances of the well known BLAS and LAPACK libraries.

This performances are achieved through efficient reduction to matrix mul-
tiplication where we took care of minimizing the ratio and also by reusing the
numerical computation as much as possible. We also showed that from our
routines one can easily implement efficient algorithms for many linear algebra
problem (e.g. null-space, generalized inverse,...). Note that approximate tim-
ings for these algorithms can be derived from the timings provided with our
main routines.

One can try to design block algorithms where the blocks fit in the cache of
a specific machine to reach very good performances. By reusing BLAS library
this has been proven to not be mandatory for matrix multiplication in [21]
and we think we proved here that this is not mandatory for any dense linear
algebra routine. Therefore, using recursive block algorithms, efficient numerical
BLAS and fast matrix multiplication algorithms one can approach the numerical
performances or even surpass them over finite fields. Moreover, long range
efficiency and portability are warranted as opposed to every day tuning with at
most 10% loss in specific cases (e.g. see table 8 where delayed can beat BLAS
only for big primes and with a specific empirical threshold).

Besides, the exact equivalent of stability constraints for numerical compu-
tations is coefficient growth. Therefore, whenever possible, we computed and
improved theoretical bounds on this growth (see bounds 3.7 and [21, Theo-
rem3.1]). Those optimal bounds enable further uses of the BLAS routines.

Further developments include:
• A Self-adapting Software [13] would allow to provide hybrid implementations
with best empirical thresholds (e.g. switch to different algorithms during the
recursive course of Trsm and TURBO).
• The other case where our wrapping of BLAS is insufficient is for very small
matrices where benefits of BLAS are limited and fast algorithms are not useful
(see tables 7 and 8). Here also, automated tuning could produce improved
versions.
• The technique of wrapping BLAS becomes useless when finite fields are
larger than the corresponding bound of feasibility (e.g. p > 226 for matrix
multiplication). At a non negligible price the Chinese remainder algorithm
could be used to authorize the use of BLAS. Optimizing this scheme would be
then a interesting way to provide similar results for larger finite fields.
• Finally, extending the out of core work of section 4.2 to design a parallel
library is promising. Also, in the case of parallelism, our all-recursive approach
enables a very efficient “sequential-first” parallelization as shown e.g. in [10] for
triangular system solving.

54

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

[2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, third edition, 1999.

[3] Daniel V. Bailey and Christof Paar. Efficient arithmetic in finite field exten-
sions with application in elliptic curve cryptography. Journal of Cryptology,
14(3):153–176, 2001.

[4] Dario Bini and Victor Pan. Polynomial and Matrix Computations, Volume
1: Fundamental Algorithms. Birkhauser, Boston, 1994.

[5] Morgan Brassel, Pascal Giorgi, and Clement Pernet. LUdivine: A symbolic
block LU factorisation for matrices over finite fields using blas. In East
Coast Computer Algebra Day, Clemson, South Carolina, USA, April 2003.
Poster.

[6] James R. Bunch and John E. Hopcroft. Triangular factorization and inver-
sion by fast matrix multiplication. Mathematics of Computation, 28:231–
236, 1974.

[7] Zhuliang Chen and Arne Storjohann. Effective reductions to matrix mul-
tiplication, July 2003. ACA’2003, 9th International Conference on Appli-
cations of Computer Algebra, Raleigh, North Carolina State University,
USA.

[8] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arith-
metic progressions. Journal of Symbolic Computation, 9(3):251–280, 1990.

[9] Pierre Courrieu. Fast computation of moore-penrose inverse matrices. Neu-
ral Information Processing - Letters and Reviews, 8(2):25–29, August 2005.

[10] Van-Dat Cung, Vincent Danjean, Jean-Guillaume Dumas, Thierry Gautier,
Guillaume Huard, Bruno Raffin, Christophe Rapine, Jean-Louis Roch, and
Denis Trystram. Adaptive and hybrid algorithms: classification and illus-
tration on triangular system solving. In Jean-Guillaume Dumas, editor,
Proceedings of Transgressive Computing 2006, Granada, Spain. Universi-
dad de Granada, Spain, April 2006.

[11] David Defour. Fonctions élémentaires : algorithmes et implémentations
efficaces pour l’arrondi correct en double précision. PhD thesis, École Nor-
male Supérieure de Lyon, September 2003.

[12] John D. Dixon. Exact solution of linear equations using p-adic expansions.
Numerische Mathematik, 40:137–141, 1982.

55

[13] Jack Dongarra and Victor Eijkhout. Self-adapting numerical software
and automatic tuning of heuristics. Lecture Notes in Computer Science,
2660:759–770, January 2003.

[14] Jack J. Dongarra, Jeremy Du Croz, Sven Hammarling, and Iain
Duff. A set of level 3 Basic Linear Algebra Subprograms.
Transactions on Mathematical Software, 16(1):1–17, March 1990.
www.acm.org/pubs/toc/Abstracts/0098-3500/79170.html.

[15] C. C. Douglas, M. Heroux, G. Slishman, and R. M. Smith. Gemmw: A
portable level 3 blas winograd variant of strassen’s matrix-matrix multiply
algorithm. Journal of Computational Physics, 110:1–10, 1994.

[16] Pierre Douillet. Zech logarithms and finite fields. Technical report, Faculté
des Sciences, Paris, February 2001.

[17] Jacques Dubrois and Jean-Guillauem Dumas. Efficient polynomial time al-
gorithms computing industrial-strength primitive roots. Information Pro-
cessing letters, 97(2):41–45, January 2006.

[18] Jean-Guillaume Dumas. Algorithmes parallèles efficaces pour le cal-
cul formel : algèbre linéaire creuse et extensions algébriques. PhD
thesis, Institut National Polytechnique de Grenoble, France, Decem-
ber 2000. ftp://ftp.imag.fr/pub/Mediatheque.IMAG/theses/2000/-

Dumas.Jean-Guillaume.

[19] Jean-Guillaume Dumas. Efficient dot product over finite fields. In Vic-
tor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors, Pro-
ceedings of the seventh International Workshop on Computer Algebra in
Scientific Computing, Yalta, Ukraine, pages 139–154. Technische Univer-
sität München, Germany, July 2004.

[20] Jean-Guillaume Dumas, Thierry Gautier, Mark Giesbrecht, Pascal Giorgi,
Bradford Hovinen, Erich Kaltofen, B. David Saunders, Will J. Turner,
and Gilles Villard. LinBox: A generic library for exact linear algebra. In
Arjeh M. Cohen, Xiao-Shan Gao, and Nobuki Takayama, editors, Proceed-
ings of the 2002 International Congress of Mathematical Software, Beijing,
China, pages 40–50. World Scientific Pub, August 2002.

[21] Jean-Guillaume Dumas, Thierry Gautier, and Clément Pernet. Finite field
linear algebra subroutines. In Teo Mora, editor, Proceedings of the 2002
International Symposium on Symbolic and Algebraic Computation, Lille,
France, pages 63–74. ACM Press, New York, July 2002.

[22] Jean-Guillaume Dumas, Pascal Giorgi, and Clément Pernet. FFPACK:
Finite field linear algebra package. In Gutierrez [32], pages 119–126.

[23] Jean-Guillaume Dumas, Clément Pernet, and Zhendong Wan. Efficient
computation of the characteristic polynomial. In Manuel Kauers, editor,

56

Proceedings of the 2005 International Symposium on Symbolic and Alge-
braic Computation, Beijing, China, pages 140–147. ACM Press, New York,
July 2005.

[24] Jean-Guillaume Dumas and Jean-Louis Roch. On parallel block algo-
rithms for exact triangularizations. Parallel Computing, 28(11):1531–1548,
November 2002.

[25] Jean-Guillaume Dumas, B. David Saunders, and Gilles Villard. On effi-
cient sparse integer matrix Smith normal form computations. Journal of
Symbolic Computations, 32(1/2):71–99, July–August 2001.

[26] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra.
Cambridge University Press, New York, NY, USA, 1999.

[27] Pascal Giorgi. From blas routines to finite field exact linear algebra solu-
tions, July 2003. ACA’2003, 9th International Conference on Applications
of Computer Algebra, Raleigh, North Carolina State University, USA.

[28] Pascal Giorgi, Claude-Pierre Jeannerod, and Gilles Villard. On the com-
plexity of polynomial matrix computations. In Rafael Sendra, editor,
Proceedings of the 2003 International Symposium on Symbolic and Alge-
braic Computation, Philadelphia, Pennsylvania, USA, pages 135–142. ACM
Press, New York, August 2003.

[29] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hop-
kins Studies in the Mathematical Sciences. The Johns Hopkins University
Press, Baltimore, MD, USA, third edition, 1996.

[30] Kazushige Goto and Robert van de Geijn. On reducing tlb misses in ma-
trix multiplication. Technical report, University of Texas, 2002. FLAME
working note #9.

[31] F. Gustavson, A. Henriksson, I. Jonsson, and B. Kaagstroem. Recursive
blocked data formats and BLAS’s for dense linear algebra algorithms. Lec-
ture Notes in Computer Science, 1541:195–206, 1998.

[32] Jaime Gutierrez, editor. ISSAC’2004. Proceedings of the 2004 International
Symposium on Symbolic and Algebraic Computation, Santander, Spain.
ACM Press, New York, July 2004.

[33] Tom Hansen and Gary L. Mullen. Primitive polynomials over finite fields.
Mathematics of Computation, 59(200):639–643, S47–S50, October 1992.

[34] Nicholas J. Higham. Exploiting fast matrix multiplication within the level
3 BLAS. Trans. on Mathematical Software, 16(4):352–368, December 1990.

[35] Xiaohan Huang and Victor Y. Pan. Fast rectangular matrix multiplications
and improving parallel matrix computations. In ACM, editor, PASCO
’97. Proceedings of the second international symposium on parallel symbolic

57

computation, July 20–22, 1997, Maui, HI, pages 11–23, New York, NY
10036, USA, 1997. ACM Press.

[36] Klaus Huber. Some comments on Zech’s logarithm. IEEE Transactions on
Information Theory, IT–36:946–950, July 1990.

[37] Klaus Huber. Solving equations in finite fields and some results concerning
the structure of GF(pm). IEEE Transactions on Information Theory, IT–
38:1154–1162, May 1992.

[38] Steven Huss-Lederman, Elaine M. Jacobson, Jeremy R. Johnson, Anna
Tsao, and Thomas Turnbull. Implementation of Strassen’s algo-
rithm for matrix multiplication. In ACM, editor, Supercomputing ’96
Conference Proceedings: November 17–22, Pittsburgh, PA, New York,
NY 10036, USA and 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1996. ACM Press and IEEE Computer Society
Press. www.supercomp.org/sc96/proceedings/SC96PROC/JACOBSON/-

INDEX.HTM.

[39] Oscar H. Ibarra, Shlomo Moran, and Roger Hui. A generalization of the
fast LUP matrix decomposition algorithm and applications. Journal of
Algorithms, 3(1):45–56, March 1982.

[40] Erich Kaltofen, Mukkai S. Krishnamoorthy, and B. David Saunders. Paral-
lel algorithms for matrix normal forms. Linear Algebra and its Applications,
136:189–208, 1990.

[41] Erich Kaltofen and Gilles Villard. On the complexity of computing deter-
minants. Computational Complexity, 13(3-4):91–130, 2005.

[42] Igor Kaporin. The aggregation and cancellation techniques as a practical
tool for faster matrix multiplication. Theoretical Computer Science, 315(2-
3):469–510, 2004.

[43] Yasuhiro Kawame and Hirokazu Murao. MBLAS: Modular basic linear
algebra subprograms, design and speedup techniques. In Gutierrez [32].
Poster.

[44] Julian Laderman, Victor Pan, and Xuan-He Sha. On practical algorithms
for accelerated matrix multiplication. Linear Algebra Appl., 162–164:557–
588, 1992.

[45] Rudolf Lidl and Harald Niederreiter. Introduction to Finite Fields and
Their Applications. Cambridge University Press, revised edition, 1994.

[46] Peter L. Montgomery. Modular multiplication without trial division. Math-
ematics of Computation, 44(170):519–521, April 1985.

58

[47] Peter L. Montgomery. A block Lanczos algorithm for finding dependen-
cies over gf(2). In Louis C. Guillou and Jean-Jacques Quisquater, editors,
Proceedings of the 1995 International Conference on the Theory and Ap-
plication of Cryptographic Techniques, Saint-Malo, France, volume 921 of
Lecture Notes in Computer Science, pages 106–120, May 1995.

[48] Ben Noble. A method for computing the generalized inverse of a matrix.
SIAM Journal on Numerical Analysis, 3(4):582–584, December 1966.

[49] Andrew M. Odlyzko. Discrete logarithms: The past and the future. De-
signs, Codes, and Cryptography, 19:129–145, 2000.

[50] Clément Pernet. Implementation of Winograd’s matrix multipli-
cation over finite fields using ATLAS level 3 BLAS. Techni-
cal report, Laboratoire Informatique et Distribution, July 2001.
www-id.imag.fr/Apache/RR/RR011122FFLAS.ps.gz.

[51] Clément Pernet. Calcul du polynôme caractéristique sur des corps finis.
Master’s thesis, University of Delaware, June 2003.

[52] B. D. Saunders. Black box methods for least squares problems. In Bernard
Mourrain, editor, ISSAC 2001: July 22–25, 2001, University of Western
Ontario, London, Ontario, Canada: proceedings of the 2001 International
Symposium on Symbolic and Algebraic Computation, pages 297–302, 2001.

[53] B. David Saunders. Personal communication, 2001.

[54] Victor Shoup. NTL 5.3: A library for doing number theory, 2002.
www.shoup.net/ntl.

[55] Arne Storjohann. The shifted number system for fast linear algebra on
integer matrices. Journal of Complexity, 21(4):609–650, 2005.

[56] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathe-
matik, 13:354–356, 1969.

[57] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Automated empir-
ical optimizations of software and the ATLAS project. Parallel Computing,
27(1–2):3–35, January 2001. www.elsevier.nl/gej-ng/10/35/21/47/-

25/23/article.pdf.

[58] Hans Zassenhaus. A remark on the Hensel factorization method. Mathe-
matics of Computation, 32(141):287–292, January 1978.

[59] Paul Zimmermann, 2002. Personal communication.

59

A Proof of theorem 3.1

To bound the intermediate values in the computation of l recursive levels of
Winograd’s algorithm, we will show that the worst case occurs in the computa-
tion of P6. We will first consider the case K = 2lq and then generalize the result
for every K. To end the proof we will provide an instance of a computation for
which the bound is attained.

A.1 Some properties on the series of the type 2u− v

Consider the series defined recursively by:

ul+1 = 2ul − vl

vl+1 = 2vl − ul

u0 ≤ 0
v0 ≥ 0

Since {
ul+1 + vl+1 = ul + vl = · · · = u0 + v0

vl+1 − ul+1 = 3(vl − ul) = · · · = 3l+1(v0 − u0)

It comes {
ul = u0

(1+3l)
2 + v0

(1−3l)
2

vl = v0
(1+3l)

2 + u0
(1−3l)

2

Thus, the following properties hold:

ul ≤ 0 and vl ≥ 0 (24)

ul is decreasing and vl is increasing (25)

vl > −ul if v0 > −u0 (26)

Now define vA and vB, two series of the type v by setting uA
0 = mA, vA

0 =
MA, uB

0 = mB and vB
0 = MB.

Let us also define tj = 1+3j

2 and sj = 1−3j

2 . Thus tj +sj = 1 and tj−sj = 3j .
The following property holds:

(2MA −mA)tj + (2mA −MA)sj = MAtj+1 + mAsj+1 = vA
j+1 (27)

A.2 Notations

Let

bl =

(
1 + 3l

2
MA +

1− 3l

2
mA

)(
1 + 3l

2
MB +

1− 3l

2
mB

)⌊
K

2l

⌋
.

The series (bl)l>0 is increasing since (25).
Remark that the result of the computation is independent of the algorithm

and is always bounded by Kmax(|mA|, |MA|)max(|mB |, |MB|)+βmax(|mC |, |MC |) ≤

60

(K + 1)MAMB. Now this value is always smaller than b1 for k ≥ 1 and also
smaller than bl ∀l ≥ 1. Therefore, the coefficients of the blocks U1, U5, U6, U7

always satisfy the bound.
Now if the nine following intermediate computations are bounded by bl, we

will be done.

P1 = A11 ×B11

P2 = A12 ×B21 + βC11

P3 = (A12 + A11 −A21 −A22)×B22

P4 = A22 × (B22 + B11 −B21 −B12) + β(C22 − C12 − C21)

P5 = (A21 + A22)× (B12 −B11) + βC12

P6 = (A21 + A22 −A11)× (B22 + B11 −B12)

P7 = (A11 −A21)× (B22 −B12) + β(C22 − C12)

U2 = (A21 + A22 −A11)× (B22 −B12) + (A21 + A22)×B11

U3 = A22 × (B22 −B12) + (A21 + A22)×B11 + β(C22 − C12)

U4 = (A21 + A22)×B22 + A11 × (B12 −B22) + βC12

We will prove that the largest intermediate value always occurs in the com-
putation of P6. Consider l recursive levels indexed by j: j = l is the first
splitting of the matrices into four blocks and j = 0 corresponds to the last level
where the product is done by a classic matrix multiplication algorithm. The
recursive algorithm can be seen as a back and forth process: the splitting is
done from j = l to j = 0 and then the multiplications are done from j = 0 to
j = l.

We also define the following notations:

• M j,k
mA,MA,mB ,MB ,mC ,MC

(X) is an upper bound on the intermediate com-
putations of X = A×B+βC with j recursive levels and mA ≤ ai,j ≤MA,
mB ≤ bi,j ≤ MB and mC ≤ ci,j ≤ MC . k is the common dimension of A
and B

• M j,k
mA,MA,mB ,MB ,mC ,MC

= maxX M j,k
mA,MA,mB ,MB ,mC ,MC

(X).

• M(X) k
2j+1 for M j+1,k

mA,MA,mB ,MB ,mC ,MC
(X).

61

The following formulas correspond to the seven recursive calls:

M j+1,k
mA,MA,mB ,MB ,mC ,MC

=

max

M(P1) = M
j, k

2

mA,MA,mB ,MB ,0,0

M(P2) = M
j, k

2

mA,MA,mB ,MB ,mC ,MC

M(P3) = M
j, k

2

2mA−2MA,2MA−2mA,mB ,MB ,0,0

M(P4) = M
j, k

2

mA,MA,2mB−2MB ,2MB−2mB ,mC−2MC ,MC−2mC

M(P5) = M
j, k

2

2mA,2MA,mB−MB ,MB−mB ,mC ,MC

M(P6) = M
j, k

2

2mA−MA,2MA−mA,2mB−MB ,2MB−mB ,0,0

M(P7) = M
j, k

2

mA−MA,MA−mA,mB−MB ,MB−mB ,mC−MC ,MC−mC

(28)
Moreover, the classic algorithm is used for j = 0:

M0,k
mA,MA,mB ,MB ,mC ,MC

= max

MAMBk + βMC

−mAMBk − βmC

−MAmBk − βmC

 (29)

A.3 Some invariants

Lemma A.1. The following invariants hold in every recursive call:

1. 0 ≤ −mA ≤MA, 0 ≤ −mB ≤MB, 0 ≤ −mC ≤MC

2. mC ≥ mB and MC ≤MB

3. MC −mC ≤MB −mB

Proof. From equation (28), one gets invariants (1) and (2). Then invariant (3)
is a consequence of (1) and (2).

A.4 Induction for K = 2lq

Let IHj be the following induction hypothesis:
If the invariants of section A.3 are satisfied then

M j,k
mA,MA,mB,MB ,mC ,MC

= [vA
j][vB

j]
k

2j

Suppose that the previous invariants are satisfied and that IHj is true. We
will prove that the maximum of (28) is reached during the computation of P6

to show that IHj+1 is satisfied.
The conditions on mA, MA, mB are MB satisfied for every recursive call.

We can therefore apply IHj to every product X ∈ {P1, P2, P3, P4, P5, P6} in
order to compare M(X) with M(P6).

62

• For P1 = A11 ×B11:

M(P6)−M(P1) = [(2MA −mA)tj + (2mA −MA)sj]×

[(2MB −mB)tj + (2mB −MB)sj]− vA11

j vB11

j

= vA
j+1v

B
j+1 − vA11

j vB11

j

≥ vA
j+1v

B
j+1 − vA

j vB
j

And since vA and vB are increasing and positive, we have M(P6) ≥M(P1).

• For P2 = A12 ×B21 + βC11: with the same argument M(P6) ≥M(P2).

• For P3 = (A12 + A11 −A21 −A22)×B22:

M(P6)−M(P3) = vA
j+1v

B
j+1 − vA11+A12−A21−A22

j vB22

j

= vA
j+1v

B
j+1 − [(2MA − 2mA)tj + (2mA − 2MA)sj]v

B
j

= vA
j+1v

B
j+1 − (vA

j+1 −mAtj −MAsj)v
B
j (27)

= vA
j+1[v

B
j+1 − vB

j]− uA
j vB

j

≥ vA
j+1[v

B
j+1 − vB

j]− vA
j+1v

B
j (26)

≥ vA
j+1[v

B
j+1 − 2vB

j]

≥ vA
j+13

j[MB −mB] ≥ 0

• For P4 = A22 × (B22 + B11 −B21 −B12) + β(C22 − C12 − C21): with the
same argument,

M(P6)−M(P4) = vA
j+1v

B
j+1 − vA22

j vB22+B11−B12−B21

j ≥ 0

• For P5 = (A21 + A22)× (B12 −B11) + βC12:

M(P6)−M(P5) = vA
j+1v

B
j+1 − vA21+A22

j vB12−B11

j

= vA
j+1v

B
j+1 − 2vA

j

[
vB

j − uB
j

]

=
[
2vA

j − uA
j

]
vB

j+1 − vA
j

[
vB

j+1 − uB
j

]

= vA
j vB

j+1 − uA
j vB

j+1 + vA
j uB

j

= vA
j

[
vB

j+1 + uB
j

]
− uA

j vB
j+1

= vA
j

[
2vB

j

]
− uA

j vB
j+1

and since uA
j ≤ 0 ≤ vA

j , vB
j , vB

j+1 it comes M(P6)−M(P5) ≥ 0.

• For P7 = (A11 −A21)× (B22 −B12) + β(C22 − C12): using P5,

M(P5)−M(P7) = vA21+A22

j vB12−B11

j − vA11−A21

j vB22−B12

j

= [2MAtj + 2mAsj − (MA −mA)tj − (mA −MA)sj]×

[(MB −mB)tj + (mB −MB)sj]

= [(MA + mA)(tj + sj)] [(MB −mB)(tj − sj)]

≥ 0

63

The coefficients of the blocks U1, U5, U6 and U7 are bounded by kMAMB +
βMC and are therefore smaller than the ones in P6.

Lastly, we must control the size of the coefficients in U2 = P1 + P6, U3 =
U2 + P7 and U4 = U2 + P7.

• For U2 = (A21 + A22 −A11)× (B22 −B12) + (A21 + A22)×B11:

∀x ∈ U2, |x| ≤ max

(2MA −mA)(MB −mB) + 2MAMB

(−2mA + MA)(MB −mB)− 2mAMB

(−2mA + MA)(MB −mB)− 2MAmB

k/2j

(30)
Now 2MA−mA−(−2mA+MA) = MA +mA ≥ 0 and 0 ≤ −mA ≤MA, so
the 30 simplifies into ∀x ∈ U2, |x| ≤ (2MA −mA)(MB −mB) + 2MAMB.

M(P6)−M(U2) ≥ (2MA −mA)(2MB −mB)− (2MA −mA)(MB −mB)

−2MAMB

= (2MA −mA)(MB)− 2MAMB

= −mAMB ≥ 0

• For U3 = A22× (B22−B12)+ (A21 + A22)×B11 + β(C22−C12): with the
same argument

∀x ∈ U3, |x| ≤ max

(MA(MB −mB) + 2MAMB)k/2j + |β|(MC −mC)
(MA(MB −mB)− 2mAMB)k/2j + |β|(MC −mC)
(MA(MB −mB)− 2MAmB)k/2j + |β|(MC −mC)

k/2j

The max is always equal to its first argument, and since k/2j ≥ 1, β ≤
MA −mA and MC −mC ≤MB −mB, we have:

|x| ≤ (MA(MB −mB) + 2MAMB)k/2j + β(MC −mC)

≤ (2MA −mA)(MB −mB) + 2MAMB)k/2j

≤ M(U2) ≤M(P6)

Lastly
M(U3) ≤M(P6)

• For U4 = (A21 + A22)× B22 + A11 × (B12 − B22) + βC12: with the same
argument as for U3,

∀x ∈ U4, |x| ≤ (MA(MB −mB) + 2MAMB)k/2j + |β|MC

Since MC ≤MB −mB, −mA ≤MA and −mB ≤MB, we have

M(U4) ≤M(U3) ≤M(P6).

64

Finally M j+1,k
mA,MA,mB,MB

= M(P6)
k

2j+1 = vA
j+1v

B
j+1

k
2j+1 , and IHj+1 is satis-

fied.

For the initialization of the induction (j = 1), the products of the blocks are
done by the classical algorithm. From (28) and (29), one gets:

M1,k
mA,MA,mB ,MB ,mC ,MC

(P1) = MAMBk/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(P2) = MAMBk/2 + |β|MC

M1,k
mA,MA,mB ,MB ,mC ,MC

(P3) = 2(MA −mA)MBk/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(P4) = 2MA(MB −mB)k/2 + |β|(2MC −mC)

M1,k
mA,MA,mB ,MB ,mC ,MC

(P5) = 2MA(MB −mB)k/2 + |β|MC

M1,k
mA,MA,mB ,MB ,mC ,MC

(P6) = (2MA −mA)(2MB −mB)k/2

M1,k
mA,MA,mB ,MB ,mC ,MC

(P7) = (MA −mA)(MB −mB)k/2 + |β|(MC −mC)

M1,k
mA,MA,mB,MB ,mC ,MC

(U2) = (2MA −mA)(MB −mB)k/2 + 2MAMBk/2

M1,k
mA,MA,mB,MB ,mC ,MC

(U3) = MA(MB −mB)k/2 + 2MAMBk/2 + |β|(MC −mC)

M1,k
mA,MA,mB,MB ,mC ,MC

(U4) = 2MAMBk/2 + MA(MB −mB)k/2 + |β|MC

Again, we will prove that M1,k
mA,MA,mB ,MB ,mC ,MC

(P6) reaches the highest
value, using invariants of section A.3, and the fact that |β| ≤ MA, MB and
k ≥ 2.

It is straightforward for P1 and P2.

• For P3:

M1,k
mA,...(P6)−M1,k

mA,...(P3) = ((2MA −mA)(2MB −mB)− 2(MA −mA)MB)k/2

= (2MAMBk − (2MA −mA)mB)k/2 ≥ 0

• For P4: Since −|β|(2MC −mC) ≥ −MA(2MB −mB), we have

M1,k
mA,...(P6)−M1,k

mA,...(P4) = ((2MA −mA)(2MB −mB)− 2MA(MB −mB))k/2

−|β|(MC − 2mC)

≥ (MA −mA)(2MB −mB)− 2MA(MB −mB)

= mA(mB − 2MB) ≥ 0

• For P5: M1,k
mA,MA,mB,MB ,mC,MC

(P5) ≤M1,k
mA,MA,mB,MB ,mC,MC

(P4)

• For P7:

M1,k
mA,...(P6)−M1,k

mA,...(P7) = ((2MA −mA)(2MB −mB)

−(MA −mA)(MB −mB)k/2− |β|(MC −mC)

≥ MA(2MB −mB) + (MA −mA)MB −MA(MB −mB)

≥ (2MA −mA)MB ≥ 0

65

• For U2, U3, U4: using the same argument as for the case of arbitrary j.

IH1 is then satisfied.

A.5 Case of an arbitrary k

Let l be such that 2ld ≤ k < 2l(d+1) (d =
⌊

k
2l

⌋
). A dynamic peeling technique

[38] is used to deal with odd dimensions: at each recursive level, the largest
blocks with even dimensions at the top left hand corner of the input matrices
are are multiplied using Winograd’s algorithm. Then an optional rank 1 update
is applied, with the odd dimensions.

These updates are using matrix-vector products, dot products and tensor
products. Every intermediate result during these computations are therefore
bounded in absolute value by kMAMb + |β|MC ≤ (k + 1)MAMB

We show now that this bound is always under the one of Winograd’s algo-
rithm.

∀l ≥ 1 2l(d + 1)MAMB ≤ vA
l vB

l

⌊
k

2l

⌋

(since (k + 1)MAMB ≤ 2l(d + 1)MAMB).

• For l = 1, the inequation is satisfied: 2MAMB(d+1) ≤ (2MA−mA)(2MB−
mB)d (since d ≥ 1)

• Let us suppose that it is satisfied for l ≥ 1 and prove it for l + 1:

vA
l+1v

B
l+1

⌊
k

2l+1

⌋
= [(2MA −mA)tl + (2mA −MA)sl]

× [(2MB −mB)tl + (2mB −MB)sl]d

≥ 2[MAtl + mAsl][MBtl + mBsl]2d

≥ vA
l vB

l

⌊
k

2l

⌋

≥ 2(2lMAMB(2d + 1))

≥ 2l+1MAMB(d + 1))

By induction, the bound of section A.4 is valid for any k.

A.6 Optimality of the bound

We simply build a sequence of square matrices Al and Bl of order 2l for which l
recursive calls to Winograd’s algorithm will involve intermediate results equals
to the bound.

Let (Al)l∈N∗ and (Bl)l∈N∗ be recursively defined as follows:

A1 =

[
mA 0
MA MA

]
, B1 =

[
MB mB

0 MB

]

Al+1 =

[
Al 0
Al Al

]
, Bl+1 =

[
Bl Bl

0 Bl

]

66

where Ai,j = MA + mA −Ai,j et Bi,j = MB + mB −Bi,j .
Since at each recursive level, the computation of P6 = (A21 + A22 −A11)×

(B22 +B11−B12) involves the largest possible intermediate values, let us define:

S(Al) = (Al)2,1 + (Al)2,2 − (Al)1,1 = 2Al−1 −Al−1 = 3Al−1 − Jl−1

where Jk is the square matrix of order 2k whose coefficients are all equals to
MA + mA.

Moreover S(Jk) = Jk−1. Thus, applying P6 l times recursively, since S is
linear:

S(S(. . . (S(Al)))) = Sl(Al) = 3l−1S(A1)−

(
l−2∑

k=0

3k

)
J1

Then S(A1) = 2MA −mA and J1 = MA + mA imply:

Sl(Al) = 3l−1(2MA −mA)−
3l−1 − 1

3− 1
(MA + mA) =

1 + 3l

2
MA +

1− 3l

2
mA.

The same holds for Bl:

Sl(Bl) =
1 + 3l

2
MB +

1− 3l

2
mB

The order of Al and Bl is k = 2l, so
⌊

k
2l

⌋
= 1

Therefore, the computation of Al ×Bl with l recursive levels of Winograd’s
algorithm involves intermediate values equals to vAl

l vBl

l

⌊
k
2l

⌋
. This proves the

optimality of the bound.
Note that this bound is unchanged for computations of the type A×B+βC.

B Sizes of non prime Galois fields for which ma-

trix multiplication over numerical BLAS is

possible

Here are some of the galois fields implementable with our q-adic representation.
In the tables, nmax is the biggest matrix size for which this field is usable without
loss of precision and qb(nmax) is the best prime power to use with this maximal
size.

These two tables shows that on 32 bits architectures the q-adic approach is
interesting mainly on quadratic fields (GF(p2)), whereas, on 64 bits architectures
our approach speeds-up cubic fields (GF(p3)) also.

67

GF nmax qb(nmax)

22 104028 208057
23 516 1549
24 45 181
25 11 59
26 4 27
27 2 16
28 1 11
32 26007 208057
33 129 1549
34 11 181
35 2 59
36 1 27
52 6501 208057
53 32 1549
54 2 181
72 2889 208057
73 14 1549
74 1 181

GF nmax qb(nmax)
112 1040 208057
113 5 1549
132 722 208057
133 3 1549
172 406 208057
173 2 1549
192 321 208057
193 1 1549
232 214 208057
233 1 1549
292 132 208057
312 115 208057
472 49 208057
532 38 208057
1012 10 208057
1392 5 208057
2272 2 208057
3172 1 208057

Table 19: Highest block order for some non-prime Galois fields, with a 53 bits
mantissa

68

GF nmax qb(nmax)

22 1321119 2642239
23 2376 7129
24 140 563
25 27 137
26 8 53
27 4 29
28 2 19
29 1 13
32 330279 2642239
33 594 7129
34 35 563
35 6 137
36 2 53
37 1 29
52 82569 2642239
53 148 7129
54 8 563
55 1 137
72 36697 2642239
73 66 7129
74 3 563
112 13211 2642239
113 23 7129
114 1 563

GF nmax qb(nmax)

132 9174 2642239
133 16 7129
172 5160 2642239
173 9 7129
192 4077 2642239
193 7 7129
232 2729 2642239
233 4 7129
292 1685 2642239
293 3 7129
312 1467 2642239
313 2 7129
372 1019 2642239
373 1 7129
412 825 2642239
413 1 7129
472 624 2642239
473 1 7129
532 488 2642239
1012 132 2642239
1392 69 2642239
2272 25 2642239
3172 13 2642239
11292 1 2642239

Table 20: Highest block order for some non-prime Galois fields, with a 64 bits
mantissa

69

