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Abstract

I give three descriptions of the Mukai flop of type Fg 1, one in terms of
Jordan algebras, one in terms of projective geometry over the octonions, and
one in terms of O-blow-ups. Each description shows that it is very similar to
certain flops of type A. The Mukai flop of type s rr is also described.

Introduction

In this article, I study a class of birational transformations called “Mukai
flops”. Let G/ P be aflag variety. Recall [Ric 74] that the natural map T*G//P —
g*, where g is the Lie algebra of G, has image the closure of a single nilpotent
orbit.

Sometimes, it happens that for two parabolic subgroups P,Q C G, the
images in g* of T*G/P and T*G/Q are equal to the same orbit closure @, and
that moreover, the above maps are birational isomorphisms. We therefore get
a birational map

TG/P - TG/Q,
N
0
called a Mukai flop.

Since T*G/ P is a symplectic variety, nilpotent orbit closures provide a wide
class of examples of symplectic singularities and were studied also for this rea-
son. If O is a nilpotent orbit closure, then B. Fu showed that any symplectic
resolution of @ is given by a map 7*G/P — O [Fu 03]. On the other hand, in
[Nam 04], it is proved that any Mukai flop can be described using fundamental
ones, when P (and @) is a maximal parabolic subgroup : G is then of type
A, Dapy1 or Fg. In some sense, this provides a complete understanding of the
different symplectic resolutions of @ and the relations between them.

In fact, the classical fundamental flops, when G is of type A, or Da, 41, are
easy to describe. The only items which are not very well understood in this
matter are the fundamental Mukai flops of type Fg, and the purpose of this
article is to fill this gap.

Along with this motivation in birational geometry, these flops are key ingre-
dients for the definition of generalized dual varieties [Cha 06] for a subvariety of
the homogeneous space G/ P, when G is of type Eg and P is the parabolic sub-
group corresponding to the root ay or ez, with Bourbaki’s notations [Bou 68§].



For example, an easy consequence of theorem 3.3 is theorem 2.1 in [Ch 06],
which generalizes the fact that the dual variety of the smooth quadric in PV
defined by an invertible symmetric map f : V — V* is the quadric in PV*
defined by f~!, when the usual projective space PV is replaced by any Scorza
variety (see subsection 3.1 for the definition of Scorza varieties; for example,
a grassmannian of 2-dimensional subspaces of an even-dimensional fixed space,
and Es/P;, P; the parabolic subgroup of the adjoint group of type Eg corre-
sponding to the root ay, are Scorza varieties).

Finally, a third motivation is the study of the geometry of exceptional ho-
mogeneous spaces. For example, subsection 3.5 starts a study of the geometric
properties of Fg/Ps, with a rather detailed description of its tangent bundle.

There are two flops of type Eg, denoted Eg; (then P corresponds to the
root aq and @ to ag) and Eg jp (P = P2, Q = Ps). 1 give three descriptions of
the flop Fs ; : one via the geometry of the corresponding flag variety, one using
Jordan algebras, and one using a new class of birational transformations that I
call O-blow-ups.

In fact, these three constructions work uniformly for G/ P any Scorza variety.
This gives for example a common description of the flop

0—8—0—0—0—0—=0 — 0—0—0—0—0—9——0

and the flop
*¢—0—0—0—0 — 0—0—Q—0—=e .
] ]

This allows to understand better the latter.

I now describe more precisely the contents of this article. Let k be a field
and let x € P7. Then a non-vanishing tangent vector ¢ € 7, X defines a unique
line ! with the following properties :

e xrel,
o tc Tl

Moreover, the rational map ¢ +— [ is clearly the quotient map T, X ~ A7 —-»
]PZ_l, where ]PZ_l denotes the variety of lines in [P} through x. Dually, we have
a similar rational map T} X --» (]Pz_l)v.

Section 3 is devoted to proving the same kind of results when the variety
P7 is replaced by a Scorza variety (see subsection 3.1), which after [Cha 05]
is considered as a projective space P over a composition algebra .4, so that
when A = k, we recover P7. So, in this section, I show theorems 3.2 and 3.3,
which have the following interpretation in terms of projective geometry over A :
given a generalized projective space Py and a point x € IP", there is a rational

quadratic map vy : TP7% —» ]P)Z‘_l, which maps a tangent vector to the unique
v

A-line through it. Dually, there is a similar map Ve TrP7 - (P 3
Propositions 3.4 and 3.5 show that polarizing v} (resp. v, ), one gets an
isomorphism between the variety of lines in Py through z and the Fano variety



of maximal linear subspaces included in ]P)Z‘_l (resp. (]P)Zt_l)v). These two results
don’t have analogs when A = k.

Note that this last (P7y~ 1)v is the projective space of hyperplanes containing
x; it is therefore included in (P7%)Y. The connection with Mukai flops is as
follows : assume that G/P is the Scorza variety P7. Let x € G/P. We will see
that there is a Mukai flop 7*P% --» T*(P%)". The structure map 7*G/Q —
G/Q and this Mukai flop yield a composition T}P"% = T-G/P —— T*G/Q —
G/Q = (P%)Y. Theorem 3.3 shows that this composition is the map vz :
TP — (P C (P

Then, I show a general canonical isomorphism of quotients of tangent spaces
to homogeneous spaces (theorem 4.1). As a particular case, this theorem gives
a way of computing a Mukai flop T*G/P --» T*G/() once we know the com-
position T*G/P --» G/Q. 1 deduce a description of the flop of type Es 1
(proposition 4.1), in terms of Jordan algebras.

In subsection 4.3, I give a maybe more geometric description of the flop F 1.
Recall that the minimal resolution of the simplest Mukai flop T*P™ —» T*(P")"
is the blow-up of T*P™ along the zero section. I show that the same result holds
for the Fg ;-flop T*]P)(%) — T (]P(%))v, if one replaces the usual notion of blow-up
with an octonionic version of it (theorem 4.2).

Finally, concerning the Mukai flop of type FEs 7, I use the fact that the
homogeneous space Fg/Ps can be realized as the space of lines included in
Es/Pi. Theorem 4.3 uses this model and the study of the tangent bundle
T(Eg/Ps) performed in subsection 3.5 to give also a description of the Mukai
flop of type g r1.

Sections 1 and 2 study the restriction of the flops to a cotangent space in
the two cases when G is of type Es. They are of course L-equivariant rational
maps, if L is a Levi factor of P, and happen to be quite subtil. In each case,
I show that they are the only P-equivariant rational map T;G/P -—-+ (G/Q)s
(propositions 1.5 and 2.1), if (G/Q), denotes the variety of y’s in G/@Q with
stabilizor ¢}, such that P, N @), is parabolic.

In the case of a flop of type Fs ; for instance, we get a Spinig-equivariant
rational map; G/P is often called the Moufang plane ]P(%) (it is some kind of
octonionic projective plane). As an example of the above discussion, the re-
striction of the flop to a cotangent space should interpret as the “quotient map”
AZ --+ P}, In the first section, I show that this map has some properties of such
a quotient; for example, its fibers carry a natural structure of algebra isomor-
phic with the octonions (corollary 1.12). T also study the projective geometry
of the corresponding spinor variety.

Similarly, section 2 gives a model for the restriction of the Mukai flop of type
Fg 11 to a cotangent space. In this case, a Levi factor contains SLs x SLs and
the relevant factor of T* Eg/Ps is Hom(C?, (A2C5)*). The given classification
of (GLs x GLs)-orbits in Hom(C?, (/\2C5)*) allows to understand the Es-orbits
in T* Eg/ Ps. Finally, corollary 4.3 states that the Mukai flop is defined only on
the open orbit of T* Eg/Ps, and describes the image of all orbits in 7% Es/ P5 as
nilpotent orbits in ¢s.

Acknowledgement 1 thank Baohua Fu for many usefull discussions on the
topic of nilpotent orbits, and stimulating questions.
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1 The group Spinj; and P},

1.1 Geometric definition of composition algebras

For more details on composition algebras, the reader my consult [Cha 05]. T
recall that if R is a ring, then Rg, Cgr,Hg and Qg denote the four usual split
composition algebras over R. Therefore, Rp = R, Cp = R® R, Hg is the
algebra of 2 x 2-matrices with coefficients in R, and Qg is obtained from Hpg by
Cayley-Dickson’s process.

Their norms will be denoted N. If A is one of those and z € A, then L, and
R, denote the endomorphisms of A of left and right multiplication by z, and
L(z), R(z) C A their images.

In the following, we will have to define a composition algebra structure on
a vector space by geometric means. This subsection explains how it is possible.
In this section, k is an algebraically closed field of caracteristic different from 2.

Proposition 1.1. Let V be a k-vector space of dimension a, with a € {1,2,4}.
Let xg € V — {0} and N' C PV be a smooth quadric such that the class of xg in
PV does not belong to N.

Then if a € {1,2}, there exists a unique composition algebra structure on V
with unit o and such that N is the quadric of elements with vanishing norm.
If a = 4, there are two such composition algebras.



Therefore, giving a composition algebra structure on V is equivalent with giving
a smooth quadric in PV and a point out of its affine cone (if @ = 4, we must
moreover choose a component of the variety of maximal isotropic subspaces of
the quadric).

Proof : The existence of the algebra is an immediate consequence of the fact
that Aut(N) acts transitively on PV — A

The unicity in the cases when a € {1,2} is easy. Assume a = 4 and let
(z,y) — 2y be a composition product satisfying the conditions of the proposi-
tion. Let £, R ~ P! be the two families of isotropic lines. For z € Q, denote
[(x) (resp. r(z)) the isotropic line in £ (resp. R) containinig . Up to chang-
ing the algebra structure (z,y) — 2y into (z,y) — yz, we may assume that
Vo € N, L(z) € L. Therefore, L(z) = l(z) and R(z) = r(z).

If z € V, let [2] denote its class in PV. Then, for generic z,y € N, [zy] =
L(z)N R(y) = I(xz) Nr(y). Therefore, the product of two elements of A is fixed
up to a scale once A is. One checks also that zy = 0 if and only if (z) N{(y)
is orthogonal to the unit, with respect to the scalar product defined by A. In
view of lemma 1.1 applied to left multiplication by & € A, the proposition is
proved. O

Lemma 1.1. Let V and W be vector spaces and f, g -V — W linear maps. Let
X C PV be an wrreducible variety included in no hyperplane of PV. Assume that
the induced rational maps [f]|x,[9]|x : X —+ PW are equal and that ker f =
kerg. Then there exists A € k — {0} : f = Ag.

Proof : f and g have the same image, spanned by f(X) = ¢(X). They also
have the same kernel by hypothesis. Therefore, there is a linear automorphism
h of this common image, such that ¢ = hf. Since [f]jx = [¢]jx, any vector in
F(X) is an eigenvector for h, from which the lemma follows. O

We now consider the case of the octonions.

Proposition 1.2. Let V be an 8-dimensional vector space and N C PV a
smooth quadric. Let G denote the grassmannian of mazimal isotropic subspaces
of N, and let | be an isomorphism between N and an irreducible component of
G. Assume Vo € N,z € l(z) and let zg € V — {0} such that [zo] € N.

Then there exists a unique composition algebra structure on V with unit xg

and such that for all x € N, we have l(z) = L(z).

Proof : Given an octonionic structure on V, it is known as “triality principle”
[Che 97, chapter IV] that L is an isomorphism on its image, which is a connected
component of .

The unicity of the algebra structure follows the lines of the previous propo-
sition. Let (z,y) — xy be an algebra structure on V with unit 2 and such that
L =1.1f z € N is generic, then the line (z, zg) meets A" at x and Z. Therefore,
zg determines the conjugation. By hypothesis, L(z) = I(x), therefore we get
R(x) as @ Now, the class of the product zy in PV is again L(z) N R(y), and
zy = 0 if and only if dim L(z) N R(z) = 3, as is well-known [Che 97, TV.4.2].
Therefore, lemma 1.1 proves the unicity of the algebra.

Let us prove its existence. Put on V' an arbitrary structure of composition
algebra (x,y) — xy such that the quadric of elements of vanishing norm is
N. This induces isomorphisms L, R between A and the components of G. Set

r(z) = (T). We can assume that L and [ have the same image. Therefore,



there exist f,g € Aut(N) such that I(z) = L(f(z)) and r(z) = R(g(x)). The
hypothesis « € {(z) implies z € r(z), and so f(z) € L(x) and g(z) € R(x)
[Cha 05, proposition 1.1]. By the following lemma 1.2, there exist invertible «, 8
such that f(z) = z« and g(y) = By. The composition algebra z xy = (za)(By),
with unit ~ta ™!, satisfies the conditions of the proposition. O

Lemma 1.2. Let m : Oy — Qp a lincar map preserving N and such that
Vo € Nym(z) € L(z). Then there exists « € Oy such that Yz € O, m(z) = za.

Proof : Left to the reader [Cha 03, p.48]. O

1.2 The 8-dimensional quadric as P

I have juste recalled the triality principle, which implies that the three 8-
dimensional fundamental representations of Sping can be identified with the
algebra of octonions. The goal of this subsection is to relate the group Spinig
with the octonions, see proposition 1.4. To study the representations of Spinyg,
my strategy is to restrict them to representations of Sping. Before proving
proposition 1.4, I need to make a computation in Clifford algebras. My notations

are those of [Che 97].

Let V be a k-vector space of even dimension and equipped with a non-
degenerate quadratic form ¢. Let V/ C V be a codimension two subspace in
V such that gy is non-degenerate. Let C,C” denote the Clifford algebra of
V, V' (the Clifford algebra of V is the tensor algebra of ¥V mod out by the
relations # ® © = ¢(x)). Let « be the “main antiautomophism” of V', defined by
a(vy...v5) = vg .. .01

Let V! = N'@® P’ be a decomposition into isotropic subspaces. Let xq,yg € V
be orthogonal to V' and such that ¢(zg,y0) = 1. Denote N = N’ & k.zg and
P = P/ D k’.yo.

Let Cn C C (resp. C C C') be the subalgebra of C' (resp. C') generated
by N (resp. N’). Let f' € Cl be the product of the elements of a basis of
N’ and f = f'yo. Let S* and S be the spin representations of Spin(V) and
Spin(V'). We may choose St (resp. S7) be the subspace of even (resp. odd)
elements of Cy, and similarly for S,

There are isomorphisms ¢ between ST @ §'~ = CY and S* = C’f,, given
by ot (v +ul) = uly +ul_xo and ¢~ (v, +u_) = /2o +u_ . Finally, there is a
quadratic map 8 : Cy x Cxy — AV, where S(u, v) is the image of ufa(v) € C'in
AV under the canonical vector space isomorphism C' ~ AV [Che 97, p.102,103
and IT 1.6]. Let 8’ : Cy x Cly — AV’ be the similar map for V'.

Proposition 1.3. Let v/ = dimV'/2. Let u/,, v/, € S and let u'_ v € S,
We have

Bty ), ¥ + 00
ﬁ’(u’_l_l, V) Ayo —xo Ayo A BN (uly, vl ) 4 B (uly, vl)

+ (=1)" (o Ayo A B (ul, vl ) 4+ B (ul vl ) — o A B (ul vl ),
and

Blem 0y + 0 ). () +10)]
xo/\ﬁ’(u’_l_,vfl_) + (=1)" (o A yo /\ﬁ’(u’_l_,v’_) —|—ﬁ’(u’+,v’_))
T oAz AT ) 4 B ) — B0 ) Ao,



Proof : We have, in the Clifford algebra C', u! f'yoa(vly) = o\ f'a(v!)yo,
so Alet(ul), et (v )] = B'(u,v}) Ayo. We can compute the other terms
Blet (wly), ¢T (v)L)] using the facts

u!, fryoa(vxo) = yorou!y ffa(vl), ul_zof'yoa(vl) = (—1)T1$0youl_f/04(vf|.),
and u”_zgflyoa(v) = xoyoroul fla(vl) = mou’ fla(vl).

The computation of Blp~ (u!y + u’), ™ (v + v’ )] is similar. O

Our second task is to describe spinor representations using octonions. Let
V = H3(0%) denote the 10-dimensional k-vector space of 2 x 2 hermitian ma-
trices with entries in Q. Let det be the quadratic form on H2(Qy) defined by
det (( ; z )) =tu—N(z) (t,u € k and z € Q). Recall [Che 97, TIT 1.2,11I
1.4] that the variety of maximal isotropic subspaces of V has two components;
they will be denoted G5(5, V) and G5(5, V). Moreover, there are natural pro-

Jjective embeddings G$(5, V) C PS* in the projectivized spinor representations,
the elements of ST which class are in G$(5, V) being called “pure spinors”.
Let v : O x O — Ho(Qf) the quadratic map defined by v (a,b) =
N(a) ab + ati + ot — Lt
( b N(b)) and p*t the polarization of v™ : p*((a,b),(c,d)) =vi(a+ec, b+
o _ N(b) ab -
_ 7t _ _
d) — vy (a,b) — va(e,d)). Similarly, let v; (a,b) = ( b N(a)) and p~ the

polarization of v; .

Let XT = X~ C P(Of @ Of) be defined by [(a,b)] € XT <= I/Zi(a,b) =0.

Proposition 1.4. The variety X* is isomorphic with G$(5, V). An isomor-
phism X* — G$(5, V) maps (u,v) on the image of p*((u,v),.).

. - N LAY _ {00 (10
Proof : Let ¢ = det,V_{<EO ~ O, zg = 0 —1 and yo = 00/

Let B denote the component in A*V C AV of 3. Since ¢ restricts to the norm
of octonions on V' ~ Oy, by the triality principle [Che 97, Chapter IV], with
the notations of proposition 1.3, there are linear isomorphisms st Oy such
that the map 8] : ST x S'” — V' identifies with the product of octonions, and
(BT ST xSt =k (B4)” : ST x ST — k identify with the scalar product
of octonions. Composing with the automorphism b — b, of S~ ~ Oy, we may
assume that 3] is in fact given by (a,b) — ab.

By proposition 1.3, ST and S~ therefore identify with Q@ @ O}, in such a
way that 8 ((a,b), (a,b)) = 2N (a)yo — 2N (b)xo + 2ab and By ((a,b), (a,b)) =
—2N (a)xo 4+ 2N (b)yo + 2ab, that is to say, ﬁli =t

By proposition [Che 97, TII 5.2] the spinor varieties G$(5, V) C PS* are

defined by the equations N(a) = N(b) = 0,ab = 0, which is equivalent to

1/2i = 0. Therefore, they are isomorphic with X®. Moreover, since the linear
space corresponding to s is the image of u* (s, .) [Che 97, 111 4.4], the proposition

is proved. O

In the sequel, we will identify both St and S~ with O ®Qy, keeping however
in mind the fact that St and S~ are non-equivalent Spiny-representations. The
projectivization PST of ST have two Spinjg-orbits, by [Igu 70, prop. 2 p.1011].
The closed orbits are X+ and X~.



Now comes the explanation of the title of this subsection : the variety of

z

classes of matrices [( ; " )] € PV with tu — N(z) = 0 is a Sping-conformal

compactification of the variety of classes of matrices of the form [( ; N?z) )]

which is isomorphic with Oy ~ A(%), therefore, it can be thought as ]P)%D. Moreover,
the projectivisations 1/2i : ST —5 P{det = 0} of the maps 1/2i are some kind of
quotient maps A%) —> ]P)%D. Proposition 1.8 and corollary 1.12 illustrate this
viewpoint. L L

For the moment, we show that 1/;' and v; are the only natural (ie Spingo-

equivariant) candidates for such a kind of quotient (proposition 1.5). Let @ C
PV denote the quadric defined by det.

Lemma 1.3. There is a unique 15-dimensional Spinig-orbit in (PST—XT)x Q.

Proof : Let (s1,21),(s2,22) € (PST — X)) x Q. We may assume that s; =
s9 = s. Let Gog C Spinyg be ﬁe stabilizor of s. From the proof of [Igu 70,
prop. 2 p.1011], it follows that v (s) € @ is the only line in @ stabilized by Gy.
Therefore, 1 = x5 = 1/;'(5). O

Proposition 1.5. 1/;' : ST ——» Q s the only (k* x Spinyg)-equivariant rational

map ST —» Q.

Proof : Let v : ST —» @ be any (k* x Spiny)-equivariant rational map S* --+
Q. Then v} and v induce rational maps PSt —» @, which will be denoted
with the same letter. Since v is Spinig-equivariant, it is defined on PSt — X T.
Therefore, the variety of {(s,v(s)) : s € PST — Xt} is a 15-dimensional orbit
in (PST — X*) x Q. By lemma 1.3, it is equal to the orbit {(s,vJ(s)) : s €
PST — X+1}. O

1.3 Projective geometry of the spinor variety

We keep the notations of the previous subsection; namely, V' = H3(QOy),
ST =85~ = Q@0 are the two spinor representations of Spinig, and 1/2i (SE
V' are the quadratic Spinig-equivariant maps defined above. Their polarizations
are denoted pu*. We denote Q C PV the smooth quadric defined by det. If
(a,b) € Oy & O we denote [a, b] its class in P(Ty & Op). Finally, if X C P” is
a variety and x € X, let T, X its tangent space and let Xc AZ‘H denote the
affine cone over X.

Recall from [Che 97, TIT 2.3] that there is a Spinjg-equivariant perfect pairing
ST x §7 — k. This allows identifying S™ with the dual of ST. Recall that the
dual variety of a variety X is the closure of the set of tangent hyperplanes, where
a tangent hyperplane is by definition a hyperplane containing a tangent space
T X at a smooth point # € X.

Proposition 1.6. The equivariant isomorphism PST" ~ PS~ identifies the dual
variety of XT with X .



Proof : The dual variety of XT is a Spinjo-stable closed variety. Since in PS5~
there are only two orbits, by [Igu 70, prop 2 p.1011], it is either the whole
projective space PS™, which is absurd, or the variety X . O

If X C P”1s a subvariety of projective space, and if z € P? — X, the entry
locus of z is classically defined as the closure of the set of points # € X such
that the line joining # and z meets X at at least two distinct points.

If s € PST—X* denote LE the variety (Vzi)_l(k*.yzi(t)) C S*, wheret € St
is such that [t] = s. Let LT denote the variety {(s,v) € (PS* — Xiﬁ xSt ve
L;t} Finally, let Pzi :PST— X% — Q denote the map induced by vy SE v

Proposition 1.7. Let s € PST — X+, Then the entry locus QT of s in X+
is a smooth 6-dimensional quadric in the 7-dimensional projective space PLT.
Moreover, the fibration L — PST — X1 s locally trivial and is the push-back by
7;' of a vector bundle on Q) C PV.

Remark : The bundle over @ of the proposition is often called the spinor
bundle.

Proof : Since PST — X+ is a single Spinig-orbit, it is enough to check the first
claim of the proposition for s = [1, 0]. Computing Q7 is equivalent with solving
the equation (1,0) = (a,z)+ (b,y) in O & Oy, with (a, z) and (b, y) in the affine
cone over XT. Equivalently, (a,z) satisfies N(a) = N(z) = 0 and ax = 0, and
similarly for (b, y).

Now, the equality a + b = 1 implies N(a,b) # 0 (N(.,.) denotes the po-
larization of N). This, in turn, implies R(a) N R(b) = {0} [Che 97, TV 4.4].
Since aZ = 0, # € R(a) [Cha 05, proposition 1.1] and similarly y € R(b). Since
r = —y, it follows that € R(a) N R(b), so # = 0.

We thus have proved that the entry locus Q% is included in the variety of
elements [a, 0] with N(a) = 0. Conversely, this smooth quadric is included in
Q7F. Since if N(a) # 0, then left multiplication by a is invertible, and a direct
computation shows that L}t = Oy & {0}.

To show that L* is a vector bundle, let s € ST and = = [v(s)] € Q. Let
L, C V denote the line corresponding to x. First recall by definition that the
image of the restriction of 1/;' to LT is the line of multiples of 1/;'(5). Therefore,
pt (s, L) = k.vf(s). The linear space put(s,S¥) is m, thus the kernel of the

+ S,. T = . .
composition ST uL}) TeX — Ty X /L, is exactly L. Therefore, LT is the

kernel of a morphism of vector bundles over PST — Xt with constant rank; so,
it 1s locally free.
-1

Since L} is constant on a fiber (74)” (z), LT is the push-back of a vector

bundle on @. O

We now study the family of quadrics {Q}}. Let G(8,ST) denote the grass-
mannian of 8-dimensional linear spaces in ST and consider the variety Q C
G/(8,S™T) of 8-dimensional linear spaces L in St such that Xt NP L is a smooth
6-dimensional quadric.

Proposition 1.8. The variety Q is Spinyo-equivariantly isomorphic with @
and any element of Q is of the form Q,. Moreover, let s,t € PST — X+ one of
the following holds :



1 LY =L and Q, = Q.

2. QrnQf =PLINPL ~ P32,

3. PLINPL = 0.

Remark : Although this does not make sense due to the lack of associativity of
the octonions, the maps 1/2i - ST ——5 ( should be some kind of quotient maps
A2 --» P{. The linear space L} can be interpreted as the set of Qg-multiples
of s (in Oy @ Of). With this point of view, the proposition says that for two
non-degenerate (out of X*) vectors in QO & Oy, there are three possibilities :
either they are linked (1), either they are free (3), either they are “weakly linked”
(2). This last case would not occur if we would consider non-split octonions, say
for example over the field R of real numbers. The same situation holds when
one considers two non-degenerate vectors v, w € H @ H . In fact, it is easy to
check that

dim ({Av: A el tn{Aw: A€ H,}) €{0,2,4}.

(see the remark after lemma 2.1 in [Cha 05]).
Proof : Proposition 1.7 and the fonctorial property of grassmannians show that
there is a map ¢ : @ — Q. In the other way, let [ € Q. Let § be a generic line in

PP{; this line meets the quadric X+ NP/ in two points x and y. Since v vanishes

on )A(‘l', for any s in §, we have 7 (s) = @t (x, y). Therefore, T3 is constant on
the generic lines in P/, so 1t 1s constant on P/. This proves that there is a map
v Q — @, induced by 1/;'.

It is obvious, by construction, that ¢ and 1 are inverse maps, so the first
point of the proposition i1s proved.

The rest of the proposition follows. In fact, set s = (1,0), so that Lf =
Op @ 0. Ift = s, then L} = LF. If t = (1,b), with N(b) = 0, then an easy
computation shows that PL¥ NPL}Y = QF N QF = {(c,0) : ¢ € R(b)}. If
t =(0,1), then L = 0@ Oy and so PLF NPLF = 6.

Since there are three Spinjg-orbits in @ x ), these three examples exhaust
all the possibilities for a couple (L}, L) € @ x Q. O

Let s € PST— XT. Define )7 as the intersection of X~ with the orthogonal
of Lt (in other words, Q7 C (X1)™ is the variety of tangent hyperplanes which
contain LT).

Proposition 1.9. With notations above, Q7 s a 6-dimensional smooth quadric

in X~. Moreover, its linear span in S~ is the closure of (1/2_)_1(147*.1/;'(5)) =

Proof : Arguing as in the proof of proposition 1.4 one can show that the equiv-
ariant duality between ST and S~ is ((a, b), (¢, d)) = N(a,¢)+N (b, d). Therefore,
if s = [1,0], then @ is the variety {[0,b]: N(b) = 0}. Tts linear span is 0 & Oy,
which is sent by v5 on (é 8) = v (s). O

Let ot denote the isomorphisms between X* and the components of the

grassmannian of maximal isotropic subspaces in (). We have another caracteri-
sation of the quadrics QF and Q5 :

Proposition 1.10. Let # € X* and s € St. Then x € QF if and only if
vy (s) € p*(x).
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Proof : By proposition 1.7, there exists a quadratic form ¢; on L}, which zero
locus is QF, and such that Yu € L, vf(u) = ¢i(u)vi(s). Let = € @j’ C
LT, then for u € LT, we have pt(x,u) = g¢4(x,u)vy (s). Therefore, v (s) €
{nt(z,u) ue ST} =" ().

The converse implication vi (s) € ¢t (x) = = € QF follows by a dimension
count argument.

In view of proposition 1.9, the proof of the same result for Q7

5 issimilar. O

1.4 Equivariant octonionic structure on the fibers on v

In a honest projective space P}, over a field k, the choice of an element
v E AZ‘H identifies the closure of the fiber of the quotient map AZ'H —» P7
with k, since any element in this fiber can uniquely be written as A.v, with
A € k. Therefore, this fiber carries the structure of a field, isomorphic with k.

We will see (corollary 1.12) in this subsection something analogous for Vzi,
which is interpreted as a quotient map. However, let s € ST; the image of the
stabilizer of 5 in GL(L}) contains Spin; by [Igu 70, prop 2 p.1011]. Therefore,
there is no hope to give LT an equivariant octonionic structure.

I will show that given two generic spinors s, € ST, there are equivariant
octonionic structures on L} and L} (and indeed the stabilizor of two elements
has a quotient isomorphic with G'3). T don’t know how to interpret the neces-
sity of two spinors to define such a structure in terms of octonionic projective
geometry.

Let s,t € PST — X+ such that (v (s), v (t)) # 0. The idea of the geometric
definition of an octonionic structure on LT is as follows : we have the two
quadrics QF and Q7. Let @, denote variety of lines in @ containing [v5(s)].
Then @; is isomorphic with a 6-dimensional quadric. By proposition 1.10, QF
and 7 parametrize the maximal isotropic linear spaces of ). The point is to
show that s and ¢ yield an isomorphism QF = Q7. Then, proposition 1.2 gives
the octonionic structure.

The next proposition yields the isomorphism ¢ : Q¥ 5 Q7. Let x € QF be

such that the line through z and s is not a tangent line to Q7. Call T the other
point of intersection of this line with Q5. Moreover, set r(z) = (T, X T, Lj’>J' C
PSt" =PS~.
Proposition 1.11. For all x € QF, r(x) is a mazimal isotropic subspace of
Q5. Moreover, if (x,s) is not a tangent line to Qs, then r(x) and r(T) are
supplementary subspaces of Ly . Call () the image of t by the projection on
r(z) with center v(z). Then ¢ : QF — Q7 is an isomorphism.

Proof : Assume s = [1,0] and ¢ = [0,1]. Let « = [a,0] € QF (therefore
N(a) = 0). Since X7 is the variety of pairs [a,b] with N(a) = N(b) = 0 and
ab =10, T, Xt = {[c,d]: N(a,¢) = 0 and ad = 0}. Therefore, its orthogonal is
the set of [¢, d] with ¢ colinear with @ and d € R(¢). So r(z) = {[0,d]: d € R(a)}.
This is endeed a maximal isotropic subspace of (5 .

Moreover, we have T = [, 0], and so »(Z) = {[0,d] : d € R(a@)}. Therefore,
r(z) and r(Z) are supplementary.

Finally, since ¢t = [0,1] = [0, (¢ + @)/2], we deduce that ¢(x) = [0,a]. We
have proved that ¢([a,0]) = [0, a], so ¢ is an isomorphism. O
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Corollary 1.12. Let s,t € PST — X+ such that (v (s), v (t)) #0. Then LT
has a natural structure of algebra, 1somorphic with Q.

Moreover, when (s,t) vary, this octonionic structure on the vector bundle with
fiber LT varies algebraically.

Proof : We have isomorphisms 1% between QF and the components of the
variety of maximal isotropic subspaces in @), as explained at the beginning of
this paragraph.

If s = (1,0) and t = (0,1), it follows from the proof of proposition 1.11
that Yz € QF,dim (¢ % (x) N ¢~ (¢(x))) = 3. This is analogous to the condition
x € l(x) of proposition 1.2, and therefore s and the isomorphisms ¢, ¥+ o~
define a unique octonionic structure on L7 .

It follows by general arguments that this octonionic structure varies alge-
braically. Alternatively, one can give another construction of this octonionic
structure, where the algebraicity is clear.

Let * = vf(s) and M = T,Q/k.z. Then, as one checks one the example
s=(1,0),t = (0,1), ut(s,.) restricts to an isomorphism v; between Lj and M
and pt(¢,.) to an isomorphism v, between LT and M. We can therefore give
an octonionic structure to LT by setting

Yu,v € LT, wo = v pt (v, v v (v)))].
A direct computation shows that this octonionic structure is the same as the
previous one. |

2 Geometry associated with two skew-forms in £’

In this section, we consider a model for the restriction of the Mukai flop of
the second kind to a tangent space. In the first subsection, we prove lemmas
which will suffice defining this restriction, in section 4. The second subsection
will be used when classifying the orbits in T*G/P, for G of type Fs and P
corresponding to as. The third subsection shows that the involved rational
map 1s the unique equivariant rational map.

Let k denote an arbitrary field.

2.1 A rational map Hom(k* (A*k*)7) —» G(3,k°)

Let r be an integer and let F' be a vector space of dimension 2r + 1. An
element w in AZF* yields a skew-symmetric map F — F* which will be denoted
L. The rank, image, and kernel of w will be those of Ly,. If f1, fa € F,w(/f1, f2)
will denote the number Ly, (f1)(f2).

Lemma 2.1. Let w € A’F* of rank 2t and U C F a linear subspace of dimen-
sion 2r + 1 —t and such that w1 N> U. Then

o IfuelU, then w(u,U) =0.
o kerw CU.

Proof : Taking a basis of F' containing a basis of U and decomposing w along
this basis, one checks that the condition w1l A? U is equivalent to VYu,v €
U,w(u,v) = 0, proving the first point.

12



Therefore, we have L, (U) C UL, and since 2t = rg(L,) < rg(Lwjr) +1, we
have rg(Ly ) =t and so L, (U) = U+, Since moreover L,, is skew-symmetric,

it follows that ker L, = (Im Lw)J' C (UJ‘)J' =U. O

Notation 2.1. Let wy,ws € A’F*. We denote
lwy,wa) :={f € F :Vu € kerwy,ws(u, f) = 0}.

Lemma 2.2. Assume 2(2r + 1) = 5t. Let wy,ws € A2F* with rank 2t be such
that

1. kerw; Nkerwy = {0}, and
2. Ly, (kerwy) N Ly, (kerwa) = {0}.

If a linear subspace U C F of dimension 2r +1—t is such that AU Lw;,i = 1,2,
then U = l{wy,ws) N(wz,wy).

We will see in lemma 2.3 that for the minimal possible values of r ¢, which
are those of interest to describe Mukai’s flop, U = l(wy,w2) N (wa,wy) satisfies
indeed A?2U Lw;, i = 1,2; this is not the case in general.

Proof : Let u € kerw;. By the previous lemma, we have kerw; C U, sou € U.
If f €U, it follows that wa(u, f) = 0, so f € l{wy,ws) and U C {(wy,ws2). By
symmetry, we have also U C {(w2,w;). By condition (1),

dimkerwy = dim L, (kerwy) = dim L, (ker we) = 2r + 1 — 2¢,
and by condition (2),
dim( Ly, (ker wy) 4+ dim Ly, (ker we)) = 2(2r + 1 — 2t).

Since we know that U is orthogonal to this space, and since by hypothesis
2r+1—-22r4+1-2t) =4 —(2r4+1)=2r+1—t=dimU, U is exactly the
orthogonal of this space, proving the lemma. O

Notation 2.2. Denote U(wy,ws) := (w1, ws) N{{wz,wy).

Lemma 2.3. Assume r = t = 2 and let wi,wy € A2F* be arbitrary. Then
there exists U C F of dimension 3 such that A2U Lwy,wo. Therefore, if the two
conditions of lemma 2.2 are satisfied, then N*U(wi,ws2)Llwi,wa. If moreover
wi,wh are linear combinations of wy,ws which also satisfy the two conditions,
then U(wy,wh) = U(wy,wa).

Proof : The second claim is a consequence of the first and the lemma 2.2. The
third claim follows from the second since A2U(wy,ws)Llw,wh. It is therefore
enough to prove the first claim.

Let G = A2F* & AF* ~ Hom(k® A?F*). There is a natural GLy x GL(F)
action on G. Let G(3, F') denote the grassmannian of 3-spaces in I and consider
the incidence variety I C G(3, F) x PG defined by (U, [wy,ws]) € I if and only
if A2U Lwy,ws. It is a closed projective G'Lg x GGL(F)-stable variety. Therefore,
its projection ps(I) C PG also.

Now, let fi,..., fs be a basis of I and f7,..., fi be the dual basis of I'*.
Set wi = AN+ AL andws = 5 AfS+ fE A5 It is clear that if
U = Vect(f1, f2, f3), then AU Lwi,ws; therefore [wy,ws] € pa(I). It is proved
in [KS 77, proof of proposition 13 p.94] that the GLs x GL(F)-orbit through
[w1,wa] is dense (it also follows from lemma 2.5); therefore po(I) = G and the
existence claim of the lemma is proved. [l
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2.2 (G Ly x GGLs-orbits

Let as above F' a bH-dimensional vector space over k. In this subsection,
I describe the GLy x GL(F)-orbits in Hom(k? A?F*), and prove where the
previous rational map U : P Hom(k* A?F*) —» G(3, F), defined on the open
orbit by notation 2.2, extends.

We start with a result of co-diagonalisation of 2-forms of maximal rank :

Lemma 2.4. Let wy,ws € A2F* be forms such that ¥(aq,a2) € k2 — {(0,0)},

a1wi + aaws has rank 4. Then there exists a basis [}, ..., f& of F* such that
wi o= AN+ EAS
wy = fINFE+ NS

Proof : For i € {1,2} and u,v € F, we denote (u,v); := Ly, (u)(v).

Assume that kerw; = kerws,. Denote K this 1-dimensional vector space.
Then wy,ws belong to A%(F/K)*. The variety of degenerate 2-forms in (F/K)*
is a hypersurface, so there exists (a1, as) € k% —{(0,0)} such that ajwy + asws
is degenerate, contradicting the hypothesis of the lemma.

We consider 0 # f; € kerw; and 0 # fo € kerwa; f1 and fy are therefore

not colinear.

Assume now that Ly, (f2) and Ly, (f1) are colinear. Denote [ this common
image. The map F* — F*/I induces a map A?F* — A%(F*/I) Let w; €
/\Z(IJ‘)* denote the image of w; under this map. Both @; and @, vanish on
f1, fo. Therefore, they are proportional 2-forms : let a1 + asws be a non-
trivial relation. Since It is an isotropic subspace for ajwi + @aws, this form
does not have rank 4, contradicting the hypothesis.

We set f& = Ly, (f1) and ff = Ly, (f2); fi and fi are therefore not colinear.
Note that (f}, f1) = (f2, fi)1 = 0 because L, (f1) = 0, and that (f, f2) =
(fa, fa)1 = 0; therefore, f5 € (f1, f2)1, and similarly 3 € (f1, f2)*.

We now let [w;] be the composition F' L—>w’ F* = F*/{f¥, f£). T claim that
Kerlui] = (f3, )L

Note that ImL,, = f+ D (fs, f2). I will prove the claim when i = 1. Both
spaces are 3-dimensional and contain (f1, f2). So let f such that L., (f) = f2,
and let us see that f € (f5, fi)L. Since Ly, (f) = f2 by assumption, (fZ, f) = 0.
Similarly, (f5, f) = (fo )1 = —(f2, f2) = —(f1, fo)a = 0, since L, (f2) = 0.

So the claim is proved.
wy L

Looking at the surjective maps (f5, f2)t 257 (f5, f2), one proves that
there exists fs € (f5, fi)t such that L, (f3) € (fi) — {0} and L.,(f3) €

(f7y—A{0}. Up to scaling f; (and so f& = Ly, (f1)) and f2 (and so f}), we may
assume that Ly, (f3) = f& and Ly, (fs) = f}.

Up to now, the vectors fi, fa, fs, f1, [& were determined, up to a scale, by
wy and wy. We now make a more significant choice for f4 : let f4 € (f;;)L
such that (f}, fa) = 1. Note that this implies {f3, fa)2 = (fo, fa)1 = 1, by
definition of f3 and ff. We moreover choose f5 € (fjf)J' such that {(f¥ f5) =1
and <f4, f5>1 = <f4, f5>2 = 0 Note that thlS implies <f5, f3>1 = <f5, f1>2 = —1.
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It is then easy to check that for i € {1,...,5}, we have fZ(fi) = dis
and f5(fi) = d;4. So it will not conflict notations to consider the dual ba-
sis (f7,..., f5) of the basis (f1,..., fs) of F. In this dual basis, w; and ws are
as in the proposition. O

Let (ff,..., fZ) be a basis of F™. Let wy,ws denote the forms f5 A f5 + f3 A
5 FENFE+ T3 A . Wenow classify the G Ly x GL(F)-orbits in Hom(k?, A2F*).

Lemma 2.5. There are eight G Ly x G'Ls-orbits in Hom(k?*, A2F*). The fol-
lowing array gives elements in each orbit, its dimension and a label.

fabel | 7((1.0)) | 7((0, D)) | dim
Ay 4244 w1 W 20
A2 —|— A1 Wi ff A f; 18
As w1 faNST | 16
3A17a Wi f; /\féF 15
3Ave | AINF | fINS |12
3A176 Wi Wi 11
24, SInf [ fEAfS |8
Ay 0 0 0

Finally, the closure of an orbit O contains the orbit O if and only if O lies
above O in this array, except that the closure of the orbit labelled 3A; , does
not contain the orbit labelled 3A; ..

Proof : Granting the classification of the orbits, I leave it to the reader to check
the dimensions of the orbits and the decomposition of their closures.

Solet again F' = k® and f € Hom(k? , A2F*). If the rank of f, as a morphism
of vector spaces, is one, then there are three cases (labelled Aq,2A41,34, ),
according to the rank (as an element of A2F*) of a generic element of its image.

Assume f has rank two. If all non-vanishing elements of the image of f have
rank 4, then, by lemma 2.4, we are in case As 4+ 2A;. If all these elements are
degenerate, then it is well-known that we are in case 34, p.

Otherwise, we may assume that f((1,0)) has rank 4 and w := f((0,1)) has
rank 2. There is a basis fi,..., fs of I’ such that in terms of the dual basis
fiyo 12, f((1,0)) = wy. The kernel of L, is generated by f;. Consider
the 4-dimensional subspace F’ := (f5, fi, fi, ) C F* and the 5-dimensional
projective space P A? F/ containing the 4-dimensional quadric G(2, F’) of classes
of elements of rank 2. The generic element w; € A2F’ defines a polar hyperplane
(with respect to the quadric) in P A? F’| which will be denoted H. Note that
HNG(2,F') is a smooth 3-dimensional quadric.

o Assume first that L, does not vanish on f; and let g7 be an element in
Im L, not vanishing on fi1. Let g5 # 0 be an element in Im L, N Im L, .
The variety of classes of elements of the form [g5 A ¢*],9* € F' is a P? in
the quadric G(2, F'). Therefore, it can’t be included in H. Let g5 € F”
such that [¢5 A g5] ¢ H; the projective line through [¢5 A g}] and [w;]
is therefore a secant line : let [g5 A g£] be an element in the intersection
of this line and G(2, F’). We can assume w1 = g5 A g% + g5 A g5 and
w = g7 A g5; therefore, we are in the case labelled A5 + A;.

15



e Assume now that L, (f1) = 0. In this case, both w and w; are in AZF’.
There are two G L(F')-orbits for the projective line through w and w; :
either it is a secant line to the quadric G(2, F), either it is a tangent line;
this corresponds to the cases A, and 34, 4. O

Recall the rational map U of notation 2.2. It is a model for the restriction
of the Mukai flop of the second kind to a tangent space, so it is interesting to
know where it is defined.

Lemma 2.6. The open orbit is the locus where U is defined.

Proof : Let as before wy = fo A f5+ 3 A fo, and let wa(t) = fEAfE+E. NS
Let f: k% — A2F* be defined by f((1,0)) = wy and f((0,1)) = wa(t); we have
U) = (F2. ).

The same construction with wh () = frAfe+t. 5N vields U(f) = (f£, £5).
Now, since wy(t) and w)(t) converge to ff A £, this proves that U is not defined
at the point fy defined by fo((1,0)) = fAAf7+ 5 A and fo((0,1)) = fT A fE.

Therefore, the indeterminacy locus of U contains the orbit labelled A; + Ay;
since 1t 1s closed, it contains all the orbits but the open one. O

2.3 Unicity of the equivariant rational map

Recall that F' is a 5-dimensional vector space over k. In this subsection,
I show that the rational map U : Hom(k* A?F*) - G(3, F) of notation 2.2
is the unique (GLy x GL(F))-equivariant rational map Hom(k? AZF*) —»
((3, F). This is a result analogous to proposition 1.5, and the strategy of proof
is the same : we caracterize its graph as an orbit of minimal dimension.

Let O denote the open (G Lz x GL(F))-orbit in Hom(k* A2F*).

Lemma 2.7. In O x G(3, F), there is a unique 20-dimensional orbit.

Proof : The set of (f, &) with o = U(f) is such an orbit. Let (f,a) be in an
orbit of dimension 20. Since O is homogeneous, we can assume that f((1,0)) =
wi = N+ AS and f((0,1) = wa = fE A2+ 5 A fr Let Gy
denote the stabilizor of f in GLa x GL(F); we have Gy = {1} x G, with G; =

t 0 0 0 0
0 ¢t 0 0 0
0 0 ¢t 0 0 :t€k*a,b,e,d €k} (these matrices express the
a ¢ d t71 0
b d a 0 t7!

action of G; on F™* in the dual basis ff,..., f&). This fact can be proved by a
direct computation; we will only use the obvious fact that (1 stabilizes f.

Let F, C F denote the 3-dimensional subspace corresopnding to «, and let
FL C F~* denote its orthogonal. Since (f, a) belongs to an orbit of dimension
20, 1 must stabilize o. Assume there exists f* € Fi with f* = Yz ff
and z; # 0. The action of Gy implies that fZ belongs to Fi}, and so also f}.
Therefore we have a contradiction. The same contradiction arises if Fi- contains
a form with non-vanishing coefficient along f3. From this it follows easily that

Fl is generated by f; and f2, so a = U(f). O

Proposition 2.1. There is a unique (GLa x GL(F))-equivariant rational map
Hom(k*, A2F*) —» G(3, F).
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Proof : U is such a rational map. Let u denote any (G Lz x GL(F))-equivariant
rational map Hom(k?*, A2F*) -——» G(3, F).

Recall that O C Hom(k? A?F*) denotes the open orbit; since u is equiv-
ariant, it is defined on O and surjective. The variety {(f,u(f)) : f € O} is a
20-dimensional orbit in O x G(3, F); therefore, by lemma 2.7, it is equal to the

variety {(f,U(f)) : f € O}. O

3 Tangency in Scorza varieties

In a projective space, given a point ¢ and a non-vanishing tangent vector
t € T, X, there is a unique line [ through  and such that ¢ € T, X. Similarly,
given a non-vanishing cotangent form f € T7¥ X, there is a unique hyperplane h
such that f vanishes on T,h. Therefore, a tangent vector defines a line and a
cotangent form a hyperplane. This will be extended to a projective space over
a composition algebra in this section. Both of these maps will be also defined
using Jordan algebras.

3.1 Notations for Scorza varieties

Let A be a composition algebra over C, of dimension a. If n is an integer,
let Hp(A) denote the space of (n x n) hermitian matrices with coeficients in A.
Let
vy A" — H,(A)

(21, 2) = (2iFj)1<ij<n

be the map generalizing that of section 1. Recall from [Cha 05] that in H,(A)
there is a notion of rank. The variety of rank n — 1-elements i1s a hypersurface;
let det denote a reduced equation of this hypersurface. The variety of rank one
matrices may be described, by [Cha 05, theorem 3.1 (4) and proposition 4.2], as
the closure X = {[va(1, 2z2,...,22)] : 2 € A}

Scorza varieties were defined and classified by F. Zak as varieties having some
extremal properties with respect to their secant varieties [Zak 93, Cha 03]. For
our purpose, the following theorem will serve as a definition :

Theorem 3.1 (Zak). Let a € {1,2,4,8} and n be integers. A Scorza variety
of type (n,a) is a pair (V, X), where V is a C-vector space, and X C PV is a
projective variety projectively isomorphic to the variety of classes of rank one
matrices in the projectivisation of the space H,(A) (with dim A = a).

X is a kind of projective space; moreover, one can define a dual “projective
space” XV C PV*, non-canonically isomorphic with X, and an incidence relation
for (#,h) € X x XY denoted « F k. In fact, XV is the variety of hyperplanes
containing n — 1 general tangent spaces to X and = F h if and only if 7, X C h.
For h € XV, the Schubert cell of ’s incident to h will be denoted C}. The
quadratic representation corresponding to the Scorza variety (V*, XV) will be
denoted UY; therefore, UV is a quadratic map V* — Hom(V, V*).

For the convenience of the reader, I recall, given a and n, the corresponding
Scorza varieties and their automorphism group (G(nyi,n2) denotes the grass-
mannian of ni-dimensional subspaces in C"2.
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a A Vv X XV Aut(X)

1| C Sz pr-t (pr-17 PGL,

2| Cac|CroC [Pr-txpr-t] (PN x (") | PGL, x PGL,
4| My(C) | AZC G(2,2n) G(2n —2,2n) PG Loy,

8 @(C dim 27 E6/P1 E6/P6 E6

In each case, it is well-known that there is a Mukai flop T*X --—» T*XV.
One aim of the rest of the article is to describe this flop.

Let (X,V) be a Scorza variety of type (n,a). Recall from [Ch 06, section
1] the “quadratic representation” : it is a quadratic map V. — Hom(V* V),
canonically defined using only X. If A € V| we will denote Uy € Hom(V*,V)
the image of A under the quadratic representation.

In concrete terms, when we will have to compute a quadratic representation
in V, we will allways do the following. First, we will identify V' with H, (A).
Second, we will choose the scalar product (A, B) = tr(AB), which identifies V
and V*. These two choices will not affect the final result. Then, to compute
Ua(B), for A € V and B € V* ~ V, we will allways manage to be in the
situation when all the coefficients of A and B belong to an associative subalgebra
of A (this holds, for example, if A itself is associative). Then we use the fact that
Ua(B) is ABA, where juxtaposition stands for the usual product of matrices
[Ch 06].

Recall also that for any integer r < n there is a well-defined variety G 4(r, X)
parametrizing Scorza subvarieties of type (r,a) in X. To an element A € PV of
rank r is associated a subvariety X4 € G4(r, X) and its linear span in PV is
denoted X4 [Ch 06, proposition 1.3].

As explained in [Cha 05] and [Ch 06], the Scorza varieties admit a model
over 7, and the quadratic representation is defined over Z. Therefore, all the
following constructions are valid on this base, and we get a description of Mukai
flops over Z. For the clarity of redaction, I will work over C, since it is the usual
context of Mukai flops.

In the following, (V, X) will be a Scorza variety of type (n, a), and G denotes
the automorphism group of X.

3.2 A generic tangent vector defines a line

Let ¢ € X and let L, C V be the line it represents. We have T, X =
Hom(Ly, Ty X /Lz). Let t € T, X; in the next proposition, I say that 7' € T, X
represents ¢ if the morphism¢ € Hom(L,, T, X /L;) has image the line generated

by the class modulo L, of T

By [Ch 06, proposition 1.5], the .A-lines through a point « € X are naturally
parametrized by a subvariety of P(V/T,X). Isay that a representative of an .A-

e

line through « is L (with L € V/T,X) if the class of L in ]P)(V/ﬁ) corresponds
to [.

Theorem 3.2. Let x € X and t € T, X generic. There erists a unique A-line
1 € G4(2,X) such that x € | and t € Tyl. A representative for | in V/T,X is

L=[Ur(A), ifT € T/x}( represents t and A is a generic element in V*.
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Notation 3.1. Let v} denote the quadratic map Ty X — V/ﬁ(,T — Ur(A)
of this theorem.

Proof: Let x € X and ¢ € T, X be generic. Let T represent ¢. Then T has
rank two, so by [Ch 06, proposition 1.4], T' defines the A-line Xp. We will prove
that X7 is the unique A-line with the properties of the proposition. To this
end, we assume that n = 3 to simplify notations, since larger values of n would
not change the argument.

We assume that V' = H,(A) and X is the variety of rank one matrices.

100 110
By [Ch 06, proposition 1.3], we can assume 2 = |0 00 | and T = [100
000 000
x *x 0
Then Xt 1s the set of rank one matricesof theform | * * 0 |. We therefore
0 0 0
o * % 0
check that x € Xp and T € T, X7 = | x 0 0
000

Conversely, let | € G4(2,X) such that » € [ and t € T,l. Let B € PV
of rank 2 such that [ = Xpg. Then since T represents ¢ and ¢t € T,[, we have
T e fx\l C ¥p. By [Ch 06, proposition 1.4], ¥ = Xp and [ = Xp.

The fact that L = [Up(A)] € V/ﬁ( is a representative for { follows from
the fact that by [Ch 06, proposition 1.4] again, X is the image of Up, and the
fact that the isomorphism of [Ch 06, proposition 1.5] maps the A-line Xy on
the line Im Uz /Ty X C V/TpX. O

Let d be an integer and A a composition algebra; recall the map vs : A —
H4(A) defined in subsection 3.1. Its projectivisation s : A¢ ——» P H4(A) may
be considered as a kind of quotient map A% —» ]P)fa_l [Cha 05, subsection 3.4].

Corollary 3.1. There are identifications of Tp X with A?~' and V/ﬁ( with
H,_1(A) such that v} identifies with vo : A"~1 — H,_1(A).

Proof : With the notations of the previous proof, to see that v} identifies
with va, we choose the scalar product (A4, B) w— tr(AB) on V = H,(A), which
identifies V' and V*, and moreover we choose A € V* to be the linear form
corresponding to the identity matrix in V = H,(A). Then, by subsection 3.1,

t Z1 79 * * *
ifT =z 0 0], then Up(A) = T? = | * N(z1) 2172 |. Therefore, v
za 00 % 2271 N(z2)

1dentifies with vs.

3.3 A generic cotangent form defines a hyperplane
A cotangent form f € 7, X* is an element f € Hom(L}, (ﬁ/Lx)*) I say
that f € V* represents f if flﬁ generates the image of f. Recall (subsection

3.1) that for h € XV, C} denotes the Schubert cell in X defined by h. Let
pT*X ——» T* XV denote the Mukai flop and 7 : T* XY — XV the projection.

Theorem 3.3. Let x € X, xo € L, — {0}, and f € T X generic. There evists
a unique h € XV such that f vanishes on T Cy. If f € V™ represents f, then a
representative of h s Uj}’(xo) € (V/T:X)*. Finally, 7o u(z, f) = h.

19



Notation 3.2. Let v denote the quadratic map T;X — (V/T;E()*,f —
U}'(l‘o) of this theorem.
Proof : The last claim follows from the first and [Cha 06], where it is proved
that 7o pu(x, f) is the only A € XV such that f vanishes on T,C}.

To simplify notations, we assume in the proof that V' = Hs(A) and we
identify V' and V* via the scalar product (A, B) = tr(AB). Assume as before

10 0 t 71 7o
that z = 0 0 0 and that f z1 0 0 = Re(z2).
0 0 0 z2 0 0
0 0 0 t z 0
Let hg = 0 0 0 ). Lety=[ Z w 0 ], witht,ueéCandzec A
0 0 1 0 0 0

and tu — N(a) = 0, be an element of X. By [Cha 05, theorem 3.1 (4) and
proposition 4.2], X = {lva(l, z1,22)] © 2z € A}. We deduce that if (m; ;) € )A(,
then the minors m; ;m;; — N(m; ;) vanish. It follows that if ¢ # 0, Tyf/ 1s
orthogonal to hg.

* *x 0
Therefore, by continuity, the intersection of x % 0 with X lies in
0 0 0

the Schubert cell C},, and for dimension reasons we have equality. This shows
that f vanishes on T;C},,. Therefore h = hy.

0 71 7»
Finally, let f =l =z t =z be a linear form (¢t,u € C and z, 21,22 € A
z9  z u
071 72 0 0 0
are arbitrary); then UV(f).e = fae.f=f[0 0 0| = [0 N(z1) z172 |, s0
00 0 0 2271 N(Zz)
that v, identifies with v5. Moreover, if 21 = 0 and z2 = 1, then f represents f
and we have [v,(f)] = ho, as claimed. O

In the proof of the theorem, we showed :

Corollary 3.2. There are identifications of T, X* and (V/ﬁ)* with A1
and Hy,_1(A) such that v identifies with vy : A=t — H,_1(A).

3.4 The variety of lines through a point in P’ as Fano
variety of maximal linear subspaces of P’

The goals of this subsection are propositions 3.4 and 3.5.

The normal bundle to X in PV twisted by (—1) will be denoted N and
let # : N — X (resp. @ : PN — X) be the structure map of this vector
bundle (resp. its projectivisation). Similarly, let ¢ and ¥ denote the natural
maps TX(—1) - X and PTX(—1) —» X. Let z € X; the quotient map
V — V/ﬁ( = N, will be denoted m,. The normal bundle N admits an
interesting subvariety : the image of X. This variety will be denoted N(X) :
by definition, the fiber N(X), := 771 (z) N N(X) is Fx()?) Recall [Ch 06] that
(Ny, PN (X)) is a Scorza variety of type (n — 1, a).

Assume a > 1. Let F(0,1,X) denote the variety of couples (#,!) where
z € PV, 1 C PV is a projective line, and « € [ C X. The map which sends a
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pair (z,l) € F(0,1,X) to (x,t) € PTX, where ¢t € PT, X is the projectivisation
of the tangent vector of [ at x shows that F'(0,1,X) can be considered as a
subvariety of PTX. By [Ch 06, lemma 1.2 and proposition 1.3], F/(0,1, X) is
homogeneous.

The first interesting point is that (E*N)IF(O,LX) admits a subbundle included

in E_l(N(X)). For (z,1) € F(0,1,X) and « # y €[, define T, := ﬂx(ﬁ)

Proposition 3.3. T, does not depend on y € l and T,, — F (0,1, X) defines a
rank (ra/2 + 1)-subbundle of (E*N)F(O,l,X); entirely included in E_l(N(X)).

Proof : Assume for the simplicity of notations that n = 3. 1 use the fact
that if z1, 22, 23 generate an associative subalgebra of A, then vq(z1, 22, 23) € X
[Cha 05, proposition 4.2]. The condition on z1, 29, 23 holds for example if A
itself is associative or if z; = 1, since in O¢, the subalgebra generated by two
elements is allways associative.

100 170
Let z = [000]) and y=|200] in Hs(A), with 2 € A and N(z) =
000 000
0. Then the line through [z] and [y] in PH3(A) lies in X, because z + ty =
ok ok
va(1,t2,0). Moreover, differentiating vs, we have T/x}( = x 0 0
*x 0 0
- Re(u) wz4+7v w
and T, X = zu+v Re(zv) zwW | :u,v,we&Ay. It follows that
w wz 0
e *
TyX/TxX:{< s 0 ) :weA}.

Therefore, this space does not change if y is replaced by a point of the line
through # and y. Since F(0,1, X) is homogeneous, this holds for any of its

elements. Therefore, T, ;y is allways a (a/2 + 1)-linear subspace of V/ﬁ It
follows that it is a subbundle of (E*N)|F(0,1,X)a as 1t 1s locally the image of the

bundle ﬁ (y alocal section of [ different from z) under a constant rank vector
bundle map.

00 0 _
Moreover, since | 0 * zw | belongs to )A(, ( * Z(;U ) belongs to N(X);,
0wz 0
and so the subbundle 7' is included in E_l(N(X)x). O

Let # € X and denote F(z,1, X) the variety of lines through  and included

in X. Theorem 3.2 yields a quadratic map v : T/x}(/Lx — N, well-defined up
to a scale. Let pf(.,.) denote its polarization.

Proposition 3.4. The map | — T(, ;) defines a map between F(x,1,X) and
some components of the Fano variety of maximal linear subspaces in PN (X),.
This map is an isomorphism when a # 4, and is surjective with fibers isomorphic
to P when a = 4. Moreover, let 0 £t € Tyl; Tz is the tmage of pf (t,.).

In particular, in the case A = Q¢ this proposition proves that the variety of
lines in X through a fixed point & € X 1s 1somorphic with a 10-dimensional
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spinor variety; this fact is proved in [LM 03, prop 3.4 p.77], but I give here
a direct proof which makes it clear which isotropic spaces this spinor variety
parametrizes.

Proof : First of all, by [Ch 06, proposition 1.4], there are two P-orbits in PT, X
if P denotes the stabilizor of # in G. Therefore, F(z,1,X) = P{y, = 0} C
PT,X. We know that v, identifies with v and in [Cha 05, section 3.4], I
described the locus where vy vanishes; therefore, we get the following array
(G5(5, 10) denotes a 10-dimensional spinor variety and @ an 8-dimensional

projective quadric; G(2,2n — 2) is the grassmannian of 2-dimensional spaces
in C*=2) .

v Flo,,X) | PN(X), |- +1

T, (Co) [P 20 P2 [P 2x P2 n—1

H.(Hg) | BT x B0 | G(2,2n—2) | 2n—3

H3(O¢) St Q 5

Let now z € A such that N(z) = 0; the image of uf((2,0,...,0),.) is
* ZUL,y .y ZUp—2
Ulf
0 cu; €A ;
Un_zf

it is of dimension 14 ¢(n — 2), so it is a maximal linear subspace of N (X),. If
l € F(x,1,X), the fact that the image of u} (I, .) is T(, is a consequence of the
formula for v} and the computation of T(z 1) made in the proof of proposition
3.3.

In the case when A = O¢, proposition 1.4 shows that the map of the propo-
sition is an isomorphism. I leave it to the reader to check that in case A = C¢,
it is an isomorphism, and in case A4 = H, it has fibers isomorphic with P'. O

Let v : (T/x}(/Lx)* — N, X* C V* be the quadratic map of theorem 3.3
and p; its polarization. We know that (N, PN (X);) is a Scora variety of type
(n—1,a); let PN (X)Y C PN} denote its dual Scorza variety.

We have a similar result for the cotangent space :

Proposition 3.5. The map | — Im u; (t,.), where 0 £t € Tl defines a mor-
phism between F(x,1,X) and some components of the Fano variety of mazimal
linear subspaces in PN (X)Y. It is an isomorphism if a # 4, and is surjective

with fibers isomorphic to P if a = 4.

From the array in the proof of proposition 3.4, we see that in case n = 3,
PN (X), is a smooth quadric of dimension a. So there are two families of maxi-
mal linear subspaces in N(X),. In case A = Cg, the two families are described
by proposition 3.4. But in case a > 4, we only get one family. The other fam-
ily comes with proposition 3.5, because we can use the canonical isomorphism
PN(X)Y = PN(X), which holds since PN(X); is a smooth quadric. One can
check that we indeed find two different families with the two dual constructions
of propositions 3.4 and 3.5.
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3.5 The tangent bundle to the variety of lines in a Severi
variety

In this subsection, we prepare the description of the Mukai flop of the second
kind. Let X C PV be a Scorza scheme of type (3, a) (these schemes are called
Severi varieties in [Zak 93]) and assume a > 2. Note [Cha 05] that if ¢ = 2,
then X is isomorphic with P? x P2 C P® and that if ¢« = 4, then X is isomorphic
with the grassmannian G(2,6) C P** of 2-dimensional subspaces of C°.

Let Y denote an irreducible component of the variety of projective lines in
PV which are included in X. If @ = 2, then Y ~ (P?)¥ x (P?) and if a = 4,
then Y is isomorphic with the flag variety F'(1,3,6) of 1-dimensional subspaces
included in a 3-dimensional subspace included in a fixed C®. If ¢ = 8, then
it follows from [LM 03, theorem 4.3 p.82] that YV is the quotient GG/ Ps, where
G 1s a simply-connected group of type Es and Ps is the parabolic subgroup
corresponding to the simple root as. Therefore, the Mukai flop of the second
kind is a rational map T*Y -—» T*YV where YV = G/ Ps.

The aim of this subsection is to describe the tangent bundle TY. As before,
this will be done in a unified way for all Severi varieties with @ > 2 (if a = 1,
the variety Y is empty).

Let us start with an easy lemma. Let det(.,.,.) be the polarization of the
degree 3 polynomial det (that is, the unique trilinear symmetric form such that

Yo € V,det(v,v,v) = 6det(v)).
Lemma 3.1. Let X be a Severi variety and x € X. Then we have

ﬁ ={v:VYw € V,det(x,v,w) = 0}.

Proof : By [Cha 05, propositions 3.5 and 4.2], the ideal of X is generated by
the quadratic equations det(x,#,.) = 0. Therefore, by differentiation, we get
the given equations for the tangent space at z. |
Now, let « € Y. The 2-dimensional linear space it represents will be denoted
L. We set R
Se = <TxX>xELa—{0}

IO( = ﬂxELa—{O} TxX

It is clear that S and I are G-homogeneous subbundles of the trivial bundle
V ® Oy over Y. We moreover consider the quotient bundles defined by A, :=
Ioc/Loca B, = Soc/lom Co = V/Soc~

Proposition 3.6. The ranks of the bundles A, B,C are, respectively, 3a/2 —
2,a+2,a/2+ 1. There is a G-equivariant short exact sequence of bundles

0— Hom(L,A) = TY — N*L* ® C* — 0.

Remark : The image of Hom(L, A), in T,,Y may be described geometrically,
by [LM 03, theorem 4.3 p.82], as the linear subspace generated by the tangent
vectors to lines through « included in Y.

100 10
Proof : Let u € A such that N(u) =0. Let # = |00 0] andy= [0 0
000 u 0

o o g
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be vectors in X. The tangent spaces Tx)A( and Ty)A( were computed during the
proof of proposition 3.3; it follows from this computation that T, X N Ty X =

* .
R(u) 0 0 (the dots replace coefficients above the diagonal which are
ut 0 0
¥k
conjugates of elements under it) and that <Tx)A(,Ty)A(> = * 0 *
x  L(u) =

Note that these spaces do not change when z is replaced by M.z, and y by v.y,
A,v € C. Therefore, if « represents the subspace generated by z and y, we
have I, = T, X NT, X and S, = (I, X,T,X). We see that dim I, = 3a/2 and
dim Sy = 5a/2+ 2. The first result on the ranks of the vector bundles therefore
follows.

Let a € Y; I now define a map T,,Y — A?L%, @ C%. Let G(2,V) denote the
grassmannian of 2-dimensional linear subspaces of V. We use the fact that 7,V
as a subspace of T, G(2, V), may be described as the set of ¢ : L, = V/L, such
that Yo € Lo, ¢(x) € Tx)A(/La. So an element ¢ € T,Y C Hom(Ly, V/Ly)
defines a linear map g @ Lo® L, — V*

r@y = (wedet(x, o(y), w)).

Now, if y = Az, with A € C, then ¢(y) € Ty)A( = Tx)A(, and so by lemma
3.1, det(z,¢(y),w) = 0 for all w € V. Therefore, ¢y induces a linear map
01 AL, = V™. R

Moreover, assume there exists © € Ly — {0} such that w € T, X. Then
we have det(z, ¢(y), w) = det(z,w,¢(y)) = 0 because w € T, X. Choosing
y € L, not colinear with z, this proves that ¢1(A?L,) C SE. Since St = C%,
we therefore get an element @2 € A2L% @ C%. The map ¢ + o is the map
ToY — A2L% © CF of the proposition.

From the realization of T,,Y" as a subspace of Hom(Lgy, V/Ly), it is moreover
clear that Hom(L,, Ay) is a subspace of T,,Y. Assume now that ¢o = 0. This
implies that if z,y € L, and w € V, then det(x, ¢(y),w) = 0. By lemma
3.1 again, this implies that ¢(y) € T,X. It follows that Im ¢ C A, and ¢ €
Hom(Ly, Ag). Since dimY = 25, the above map ¢ — ¢ is surjective and the
sequence of the proposition is exact. O

We will see (proposition 3.8) that the projectivised bundle PA contains
a subvariety which is isomorphic to the relative grassmannian G(2,C) of 2-
dimensional subspaces in C'. Here is a first result in this direction.

Proposition 3.7. There is a G-equivariant injective map of bundles v : A2C'®
A2L — A. The cokernel bundle is trivial except when a = 4, in which case it is
a line bundle.

Proof : Assume first that « = 4. Let £ be a 6-dimensional vector space; we
have already seen that Y = F/(1,3, F'). So a point o in Y defines a 1-dimensional
subspace F of F and a 3-dimensional subspace E3 of E; moreover, B C Ej3.
Consider now Fq, F3 as bundles over Y.

We have V®OY = /\2E, L= El/\Eg = E1®(E3/E1), A= E1®(E/E3)@
A (E3/Ey) and C = A*(E/E3). Set A’ = F1 @ (E/Es). Recall that if Z is a 3-

dimensional vector space, then A?(A%2Z) is canonically isomorphic with Z@A3Z.
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Therefore,
AN2C @ AL (E/E3) @ N3(E/E3) @ By @ E1 @ A*(Es/Eh)
(E/E3) @ N3(E/E3) @ E1 © A’E3
E1® (E/Es3) @ A°E
= A

The last equality follows from the fact that A®E is the trivial line bundle on
Y. We therefore get the map A2C' @ A2L — A, which is injective and has
1-dimensional cokernel.

The case when a = 2 is similar.

Assume now that ¢ = 8. In this case, I don’t know any better proof than
checking the weights. Recall from [Bou 68] the following : the highest weight

of Vis A = %[45342] and the lowest is %[_2 —4 :g =5 _4]. Let # be a

1[15642

vector of weight A and y a vector of weight s, (A) = 3 3 . We may assume

that L, i1s the space generated by = and y. I claim that the weights of C, are
1l—-2—-4-6-5—-4] 1|-2-4-6-5-1 —-2-4-6-2-1
—3 )3 -3 ’ —3 )

w
Wl

% —2-4 :% —2-1 and% —2-4 _03 —2-1 . In fact, first, we see that
these weights are obtained from the lowest adding successively ag, as, aa, as
(this proves by the way that if L ~ SLy x SLs is included in a Levi factor of Ps,
then C, is an irreducible SLs-module). Second, the corresponding weight lines
are not in T, X (resp. neither in 7, X) since the weights of this linear subspace
are the sum of A (resp. sq,(A)) and a root. Since no root has a coefficient —3
in oy, the claim follows.

Adding the two highest weights of (', and the two weights of L, one gets
%[1 2342]. This is exactly the highest weight of A. Therefore, there is an L-
equivariant map A?C, @ AL, — A,. Since this is a map between irreducible
L-representations, it 1s also a Ps-equivariant map, proving the proposition. [

Lemma 3.2. Leta €Y and z,y € PI,—PL, such that xt =y mod L,. Then
x € X ifand only ify € X.

Proof : Let z; # 2o € PL, and i € {1,2}. By definition of I,, z € T,, X. If
z € X, then the projective line (xz;) through « and z; meets X at the points z;
and x, and with multiplicity at least two at z;. Since X is defined by quadratic
equations, (zz;) C X. Therefore, the plane (zz122) meets X along the three
lines (z122), (x21), (222); so this plane is included in X. Therefore, y € X. O

Notation 3.3. Let A’ C A denote the image of A°C @ A2L under the map of
proposition 3.7. Let X(«) C PAL denote the intersection of the image of X
under the rational projection PI, -——» PA, and PA’,.

Proposition 3.8. Assume a > 4. Let a« € Y and x € X(«). The projectivisa-
tion of the inverse of the isomorphism o : A2Co, @ A2Lo — A’, maps x on the
element in G(2,C,) representing the 2-dimensional space Ty)A(/Sa C V/Sa, tf
y € I, ts any vector with class x in PA,,.
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Proof : Assume first that ¢« = 8. Let « € Y. Since A, is an irreducible SLs-
representation isomorphic with A2C®, there is a unique non-trivial invariant

subvariety in PA,, and therefore it is X (o). If @ = 4, then obviously we also
have X (o) = PAL.

Let a € {4,8} and assume as in the proof of proposition 3.6 that « =
100 10w 107w
000],y=1000] and L, is spanned by # and y. If z = |00 0|,
000 w00 v 00

with (u,v) = 0, then the 3-dimensional space generated by z,y, z lies in X and
TZ)A(/SO( C Cy, 1s 2-dimensional and does not change if z is replaced by a linear
combination of #,y and z. By homogeneity of X («), this fact holds for any
[2] € X(«) and so we have a well-defined map X (o) — G(2,C,). Since there is
only one such Ps-equivariant map, this map also coincides with the restriction
of the projectivisation of ¥~1. O

We now assume a = 8, and conclude this subsection classifying the Eg-orbits
in T*Y. By propositions 3.6 and 3.7, there is a vector bundle map 7°Y —
Hom(L* @ A2L, \2C*) = Hom(L, A2C*); 1 denote it h.

Proposition 3.9. Let o« € Y and f,g € T*Y, and assume f and g both don’t
vanish. Then f,g lay in the same FEg-orbit if and only if the two elements
h(f),h(g) € Hom(La, N2C2) lay in the same (GL(Ly) x GL(Cy))-orbit.

In view of lemma 2.5, this gives a complete understanding of the Eg-orbits in
™Y.

Proof : Let P C Eg be the stabilizor of « and L(P) a Levi factor of P. We
know that the image of L(P) in End(Hom(Ly, A?Cy)) is the same as that of
GL(Lgy) x GL(Cy). T h(f) = h(g) = 0, then, by proposition 3.6, f and ¢ are
elements in (AL, @ Cy) — {0}, which is obviously homogeneous under L(P),
and so lay in the same P-orbit.

Assume h(f) # 0 and h(g) # 0. Since by hypothesis A(f) and h(g) lay in
the same L(P)-orbit, we may assume that h(f) = h(g). Let R,(P) denote the
unipotent radical of P; R, (P) acts trivially on the irreducible P-representation
Hom(Ly, A2C?%). Therefore, it is enough to prove that the R, (P)-orbit of f is
dense in h=(h(f)). Equivalently, we will prove that the image of the action of
the Lie algebra of R, (P) on f contains A?Ly, @ Cl.

It is enough to prove this when A(f) is in the minimal non-zero orbit of
GL(L,) x GL(Cy) in Hom(L,, A*C%). This, in turn, can be verified at the
level of weights. In fact, we assume that A(f) is a highest weight vector of

Hom(Ly, A2C%). Therefore, h(f) has weight [1 1 % 2 1] . In fact, as we saw in the
proof of proposition 3.7, the highest weight of L7, is % —1-5 :g —4-2 ,
and the two highest weights of C7 are %[24354] and %[2435 1] .

Since the weight of A2L is %[5 10 162 8 4] and the heighest weight of C'is

-2 -4 43 -2 _1],theheighest weightofAZLa®Cis[12if21] = wy.

Since this is the highest weight of Hom(Ly, A2C%) plus a3+ a4, which is a root
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of Ry(P), we are done. O

4 Mukai flops of type FEjy

Let (V,X) be a Scorza variety and (V*, XV) the dual Scorza variety. An
element in 7% X will be denoted (x, @), where # € X and « is a linear form on
Ty X. The flop is a map T*X —+ XV, (z,a) — (h, &) = (h(z, a), k(2 a)).

For flops of type Eg 1, the element h(z, «) was described in the preceeding
section. The complete description of Mukai flops should also include a formula
for k(z,«). However, it is not easy to follow the identification of T, Fs/Pi,
seen more or less as a subspace of V* with a subspace of the Lie algebra of G.
Instead, given h(x, @), I explain in the next subsection a general geometric way
to put our hands on k(z, «).

4.1 Canonical isomorphism of quotients of tangent spaces
to flag varieties

Let G be a reductive algebraic group and let P, Q denote two flag varieties
parametrizing two classes of parabolic subgroups of GG. Let R denote the flag
variety of parabolic subgroups which are intersections of a parabolic subgroup in
P and a parabolic subgroup in Q. Since a parabolic subgroup in R is contained
in exactly one subgroup in P (resp. @), R is canonically isomorphic with a
subvariety of P x Q; an element in R will threrefore be denoted (z,y), with
xE€P and y € Q.

If # € P, let Q, denote the variety of parabolic subgroups y such that
(z,y) € R, and define similarly P,. The following quite general theorem allows,
as a special case, describing Mukai flops T*X ——» T™ XV of type Fg 1 as soon
as we know the composition 7" X —-» T*XV — XV. Since it is the case by
theorem 3.3, it will be easy to deduce a Jordan-theoretic formula for this Mukai
flop, in proposition 4.1.

In the next theorem, (C,0,%) will denote a pointed curve (C,0) which is
smooth at 0, together with a tangent vector ¢ at the point 0. Moreover, if YV is
an algebraic variety and f : C' = Y is a map, then f'(0) € Ty )Y will denote
the derivative dfy(t). Tsay that there is a Mukai flop T*P —-» T*Q if the natural
maps T*P — g, T*Q — g are birational and have the same image.

Theorem 4.1. Let (x,y) € R. Then there is a canonical isomorphism p(z,y) :
Tj;zgy — ;;yQQI If (C,0,1) is as above, and if v : (C,0) — (P, z) is any map,
such an isomorphism maps the class of v'(0) on the class of §'(0), if§ : (C,0) =
(Q,y) is any map such that (v,0)(C) C R.

If, moreover, there is a Mukai flop T*P —-» T*Q, then this flop maps a generic

form f € (T,P/TuPy)* to (y, ' p(z, y)~ (f)).

Proof : Let 7p : R — P and ng : R — @ denote the natural projections.
Consider the diagram

T.P  ¢P Tz, R o T,Q
“ — =

TPy (T(z,y)ﬂpl(x)yT(z,y)ﬂ'Ql(y» TyQe

72 a/(pna) ~ 8/a

a/p - {p,a)/(pNa) -  pla

27



where pp (resp. ¢q) is induced by the differential d(, . 7p (resp. d(y ,)Tq). All
the terms on the second line are canonically isomorphic with g/(p, q). Obviously,

the diagram commutes, so ¢p and g are isomorphisms. Let p(z,y) : TT”;) —
zy
T,Q

T.0, denote the canonical isomorphism g o gp}l.

Let f € (I, P/T,Py)* be generic. Let (v, f') € T*Q denote the image
of (z, f) by the flop 7P —-» T*Q. By [Cha 06], 3 is the only element in
Q such that f vanishes on T,Py; since by assumption, f vanishes on TP,
Y = y. Moreover, we have canonical isomorphisms (7, P /T, Py)* ~ u(p)Nu(q) ~
(T, Q/TyQz)*, and under this isomorphism, f is mapped to f/ by definition of
the Mukai flop. It is clear that this isomorphism is the transpose of p(z,y)™!,

so the last claim of the proposition is proved.

If (v,6) are as in the proposition, then (y/(0),d'(0)) € T{s4)R; denote by
/ / : : T, R
[v'(0),d'(0)] its class in T = (@) T s @)
we have pp([y/(0),8'(0)]) = [v'(0)] and ¢q([y(0),6"(0)]) = [¢"(0)]. We therefore
have, as expected, pg o 95 ([¥'(0)] = [§'(0)].

. By definition of ¢p and ¢g,

O

4.2 Mukai flop of type Fs; in terms of Jordan algebras

Let p(x,y) denote the isomorphism of proposition 4.1. In this subsection, I
give an expression of p(x,y) in the case of Scorza varieties, in terms of Jordan
algebras. Therefore, this gives also a formula for the Mukai flop.

More precisely, let (V, X) be a Scorza variety of type (n,a) and let (V*, XV)
be the dual Scorza variety. Let (z,h) € X x XV such that # - h. Let us choose
(2,h) € V x V= such that [#] = z and [h] = h. This identifies T, X (resp.
Tp XV) with Tf)A(/Ci‘ (resp. T;L)/(V/C/Nz). The previous isomorphism p(z, h) :
T.X/T,Cp ~ Tp XV /TyCy induces an isomorphism Ti}?/Ti‘é; ~ Tﬁ)/(;/Tﬁé;.

The goal of this section is to give a formula for this isomorphism in Jordan
terms.

For A,B € V, let c4(B) € V* denote the linear form U ~ D? det(B,U).
Note that this is equal, modulo D4 det, to S4(B) [Cha 06]. For h € XV, let

V(h) = (T,X¥)" C V.
Lemma 4.1. Let A € V(h). Then o4(&) is proportional to h.

Proof : We can assume that V = Hz(A) and X C PV is the variety of rank
one elements. Identify V' and V* as usually. Since XV is homogeneous under G,

000 ¥ %0
we may assume that A = |0 0 0 |. Then V(h) = * * 0 . It is enough
001 000

to prove the lemma for generic A in V(h), so we may assume that A has rank 2.

Moreover, let (G, denote the stabilizor in Aut(X) of h. Tt is clear that G, acts

transitively on the set of rank 2 elements of V' (£), and on the set of its rank 1
100

elements. So we may assume £ = [0 0 0 | . Moreover, for the stabilizor of = in

000
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100
Gy, the set of A’s of rank 2 is made of two orbits and A = [0 1 0 | is in the
000

open orbit, as it 1s easily checked case by case.
Therefore it is enough to compute o4 (&) for these choices of # and A. Let
m = (m; ;) € V. Then one computes

DAdetmm Zm“mnn ZN My i) (1)
i<n i<n
The lemma immediately follows. O

Let as before + € X, h € Cp, A€ V(h), and let & € V,h € V* represent z and
h.

Proposition 4.1. Let v € Ti}?, and let [v] denote its class in Ti)?/Tié; ~
TeX/TpCh. If c4(Z) = h, then the vector

[ca(v)] € T, XV )T5Cp ~ Th XV /THC,
identifies with p(x, h)([v]).

The isomorphism Ti)?/Tié; ~ T, X/T,C} depends on the choice of &, and the
isomorphism T;Lé\ ~ Tp XV /Ty, Cyp depends on the choice of h. However, the
proposition says that the corresponding map T, X/T,Cp, — T, XV /T,C,y does
not depend on these choices, neither on the choice of A, as long as o4 (%) = h.

Proof : As in the previous lemma, we assume that V = H,(A). Let X, denote
the variety of rank r matrices. If B € X,,_1, then Dpg det belongs to XV. Since
D4 det = h and ﬁ C TA/Xn\_l, we have the implication u € T/xE( — oa(u) €
TH XV

Now, let v € T, X and let u be the class of v in T, X/Cx Let go(x h, A)(u)
denote the element of T, XV corresponding to the class of o4(v) in ThXV/C h
(by lemma 4.1, this class depends only on u).

We first show that if z, h A are multiplied by a scalor, then (&, h , A) does
not vary. So let A\, yu, v € C and assume o, 4(A.Z) = p. h. Since by assumption
oa(Z) = h, this means that »"~2.X = u. Now, A.& will identify u with A.v.
Then, o, a(Av) = v""2X.0a(v) = p.oa(v), and the class of this vector will
identify with (%, h, A)(u) € T XV with the choice p.h instead of .

Therefore, the claim is proved, and one can choose the same elements /Nz, z, A

t w7z
as in the proof of the lemma. By formula (1), if v = [w 0 0] € ﬁ(, then
z 00
0 0 —z
oalv) = 0 0 0 |,ifoneidentifies V and V* via the usual scalar product.
—z0 t
000
Note that Tﬁéx = { 00 % , so that the class of 04 (v) does not depend on
0 % *

w, neither on t.
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Let us now compute p(x, h)([v]) using theorem 4.1, and assuming w = 0.

Solet z € A and t € C. Recall that generic elements of X can be written as
a? azy azZo

valay 21, z2), with a € Cy 21,22 € A, and va(or, 21,22) = | az1 N(z21) =172
azZo 22721 N(Zz)

10 7zt
Denote z(t) = v2(1,0,t2) = |0 0 0 ; we have z(t) € X and 2 (0) =
zt 0 N(z2)t?
00z
000
200
Differetiating vo we get
e 2c 71 72 + atz
TeyX = 11 0 t217 ca€Ciz,me A

atz 4 z2 tzz1 (272 + 227)

Recall that the incidence relation between X and XVis: zF hif A D ﬁ(;
2N (2)/2 0 —tz

therefore, if we set h(t) = 0 0 0 , we have z(t) F h(t), and since
—tz 0 1
007z
h'(0)=—=10 00 |, the proposition follows. O
200

4.3 Mukai flops for Scorza varieties in terms of A-blow-up

The simplest Mukai flop T*P™ —» T*(P")" can be resolved blowing-up the
zero section. Let’s recall this construction. Let Z C T*P™ be the zero section,
and let B be the blow-up of T*P” along Z. It is known that there is a map
B — T*(P™)" such that the following triangle commutes :

B

v N\ (2)
T*Pn s T*(P")Y.

Moreover, this is the minimal resolution, in the sense that for any other B’
with the same property, there is a map B’ — B and an obvious commutative
diagram.

In this subsection, I give a similar resolution of the rational map 7% X --»
T* XY, if X is a Scorza variety and XV the corresponding dual Scorza variety.
In fact, the main idea is that since X behaves like a projective space P’ over
A, one should consider an “A-blow-up”.

Let me make a heuristic comment. Given a composition algebra A, I believe
in the existence of a category A—V ar of A-varieties, containing projective spaces
and grassmanians over 4. Moreover, if ¥ C X is a closed immersion in this
category, then there should be an object Blx (Y) over X defined by a universal
property analogous to that defining usual blow-ups, but in the category A—Var.
Since for the moment I don’t know how to define A — Var, I will not give this
construction here. In the following we will only have very simple .A-blow-ups to
do, and in these simple cases we can guess what the blow-up should be.
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So let A be a composition algebra over € of dimension ¢ and n > 2 an
integer, with n = 2 if A = O¢. Let the affine space A" be just A", the affine
(an)-dimensional space over C.

Recall that in subsection 1.2, I introduced a map 7 : A%) - ]P)%D, where by
definition P} is an 8-dimensional smooth quadric. Recall also the rank 8 vector
bundle L over ]P)%D of proposition 1.7. By definition, L is a subbundle of the
trivial bundle A% ® (’)% of rank 16 over P, Therefore, if £ denotes the total

space of the vector bundle L, there is an inclusion £ C A3 x P{. Therefore we
have a map £ — A%)

The case of associative algebras is simpler and was studied in [Cha 05] :
recall that there is a rational map v : A7 —» ]P)Z_l and a rank a subbundle £
of the trivial bundle A% ® OPz—l with fiber A% over ]P)Z_l. This subbundle is

also defined by £, = {v € A : D5 (v) is defined and Ty(v) = #}. Let £ denote
its total space.

Definition 4.1. The A-blow-up Blar, (0) of the affine space A7 at the origin is
the map L — A7

Recall that in A% there are three Spinjg-orbits : the open orbit, the point 0,
and the affine cone S over a spinor variety S C ]P)A(%). The map BZA% (0) — A%) is
an isomorphism above the open orbit, and the fiber over 0 is 1Isomorphic with ]P)%D.
Except for the existence of the intermediate orbit S-— {0} in A3, the situation
is therefore very similar to that of the usual blow-up of the origin in A(% A

similar statement holds in general for the blow-up of A7 . The following result
gives another analogy with usual blow-ups :

Proposition 4.2. This A-blow-up is the minimal resolution of the rational map
Uyt AT - PO

Proof : Let 7 : £ — A7y denote this A-blow-up. The restriction of 7 to the
regular locus of 75 1s an isomorphism. By definition, there are maps Bly» (0) —

% and Blgr (0) — P%~! such that the diagram

Blys, (0)
v ¢

Ty ATy —> Pt

commutes.
Let
B/
v ¢
Tyt ATy —s Pyt

be another resolution. Then we have a map B’ — A% x ]P)Z_l. Since the above
diagram is commutative, the image of this map is Blyn (0), and we get the
desired map B’ — Bly» (0). O
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Let (V, X) be a Scorza variety of type (n,a) with n > 3. The above con-
struction of the blow-up of a point in the fixed vector-space Az_l extends read-
ily to a blow-up of the zero section in the vector bundle T*X. In fact, let
z € X; recall (theorem 3.3) that we have a quadratic map v, : T, X — NX,
where N, X = V/ﬁ, and so a rational map vy, : Ty X -—» PNZX. This
map is isomorphic with our model map 7y : A?~1 ——» ]P)Z‘_Z. Letting x vary,
we get an algebraic map v~ : T*X — N*X over X, and so a rational map
v T*X —» PN*X.

In subsection 3.4, the projectivisation of the image of v~ was denoted
PN(X)V; PN(X)V is a locally trivial fibration over X with fibers Scorza va-
rieties of type (n — 1, a). Let px : PN(X)Y — X denote the natural projection.

Consider the bundle p%7T*X above PN(X)Y. An element of this bundle
will be denoted (z,h, f), with € X, h € PN(X)Y and f € Ty X. Globalizing

xr

the above construction, let £ C p%T™ X be defined as the closure of the set of
(z,h, f) € px T* X such that vz (f) is defined and equals A.

Lemma 4.2. £ C p5T"X 1s a subbundle.

Proof : Assume first that ¢ = 8. Then it is simply a global version of propo-

sition 1.7. By theorem 3.3, We know that v~ is a global algebraic map, which

on each fiber 7% X is isomorphic with the map v5 : Oy ® Oy —» ]P)%D defined in

subsection 1.2. Therefore, the argument of proposition 1.7 works in this situa-

tion. The case of associative composition algebras A is similar and left to the

reader. |
Let Z C T* X denote the zero section.

Definition 4.2. The A-blow-up Blr.x(Z) of T*X along Z is the map L —
T™X.

Theorem 4.2. This A-blow-up is the minimal resolution of the Mukai flop
pr X —— TXVY.

Proof : Globalizing the proof of proposition 4.2, we see that Blr«x(Z) is the
minimal resolution of the rational map v= : T*X —-» PN (X)V. In view of theo-

rem 3.3, it is also the minimal resolution of the composition T X Hrexy o
XY. Now, by theorem 4.1, resolving the Mukai flop 7% X --» T* XV is equivalent
with resolving its projection to XV, so the theorem follows. O

4.4 Mukai flop of type Fs s

Let Y = Fs/Ps be the homogeneous space considered in subsection 3.5,
YV = Es/ Ps the “dual” homogeneous space and A, B, C' the homogeneous vector
bundles over Y defined there. Let also X = Eg/P; and XV = Eg/Ps.

We already used the fact that Y is isomorphic with the Fano variety of
projective lines included in X. Similarly, YV is the variety of lines included in
XY. Denote as before PV the ambient space of X. As we have already seen,
XV identifies with the set of hyperplanes in V' which contain two tangent spaces
to X.

Therefore, given a point o € Y| which represents a projective line [, con-
tained in X, and given two points  # y € X, any hyperplane A C PV which
contains the span of 7;X and 7, X can be considered as an element of XV.
A codimension two subspace Vg C V containing this span defines a pencil of
hyperplanes belonging to XV, or a point in YV.
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Let @ € Y. Recall that the linear space V/(ﬁ, E}Q (where  and y are
different points of the line [,,) was denoted C|, in subsection 3.5. Let PC* denote
the projective bundle over Y and G(3, (') the relative grassmannian of 3-spaces
in C'. The preceeding remarks show that there are natural maps PC* — XV
and G(3,C) = YV. Let f: G(3,C) = YV be this map.

For any o € Y, let go : Hom(Ly, N°CY) ——» G(3,C,) be the map defined
by lemmas 2.2 and 2.3 using F = C, (namely, go(¢) = Ul(p(l1),¢(l2)) for
¢ € Hom(Ly,A?C?%) and any non-colinear [1,l3 € L,). By propositions 3.6
and 3.7, there is a natural vector bundle map T*Y — Hom(L* @ A’L, A*C*) =
Hom(L, A2C*), which I denote h.

Let finally p : T°Y -—» T*YV be the Mukai flop and 7 : T*YY — YV the
structure map.

Theorem 4.3. The composition
* h 2 1k g f v
TY = Hom(L,A*C") == G(3,C) > Y

equals the composition
Y L T yv Sy,

Remark : This describes the rational map 7 o g. The rational map p itself is
then described using proposition 4.1.

Proof : Let o € Y and generic n € T2Y. We know that o u(n) is the unique
B € f(G(3,C4)) such that 5 vanishes on the tangent space 7,5Cs at « of the
Schubert cell SCg C Y defined by 3. So first, we compute 7,,SC}3.

If 3 = f(Bo), with 8o € G(3,C4), let ¢g C Cq be the 3-dimensional subspace
corresponding to fp. Let ag denote the image of /\26@ Q@ A?Ly C AN2C, @ A2L,,
in A, under the isomorphism of proposition 3.7. By proposition 3.8, if the class
modulo L, of # € X is in Pag, then T, X /S, C ¢s.

Let vg C V denote the inverse image of ag under the projection I, = A, =
I./L,. Since SCjp is the variety of lines { C X such that Vo € l,ﬁ/Sa C cg,
we deduce G(2,vg) C SCjp.

Now, given o« € Y, the cell SC, € YV identifies with G(3, Cy). By symmetry,
SC'g is also isomorphic with a six-dimensional grassmannian, and so G(2,vg) =

SCg. Therefore, T,5Cs = Hom(Lq, ag).

Now, we complete the proof. We already saw that a cotangent formn € TY
defines an element h(n) € Hom(Lq, A2C?). Given the previous computation of
T,SCs, 1 vanishes on T, SCps if and only if A%cs LIm h(n). Therefore, we can
conclude thanks to lemmas 2.2 and 2.3. |

Recall that if V5 and V5 are vector spaces of respective dimensions 2 and
5, there are 8 (GL(V2) x GL(Vs))-orbits in Hom(Va, A?Vs), which were given a
label in lemma 2.5. We also use the standart labels for nilpotent orbits, as in

[McG 02, p.202].
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Corollary 4.3. Let o € Y and 0 £ f € 1Y . Under the natural map T*Y —
es, [ is mapped to the nilpotent orbit with the same label as that of the (GL(L) x
GL(C))-orbit h(f) € Hom(L, N2C*) belongs. The Mukai flop is defined exactly
on the open orbit of T*Y .

In this corollary, I mean that if A(f) is the orbit labelled 34, 4,341, or 34; ,
then it is mapped on the nilpotent orbit labelled 3A4;.

Proof : This corollary follows from dimension arguments, which are not so
illuminating on the geometry of the resolution. The map T*Y — eg being
birational and proper, it has 50-dimensional closed image; so it is the closure of
the unique 50-dimensional orbit in e¢g, labelled As + 2A4;. By the given graph
of orbit closures [McG 02, p.212], the image of T*Y is the union of the orbits
labelled 0, Al, 2A1, 3A1, Az, A2 + A1 ; A2 + 2A1 .

Let « € Y and f,g € 12Y, with f # 0 and g # 0. Then f and g lay in
the same Eg-orbit if and only if h(f), h(g) € Hom(Ly, A2C%) lay in the same
(GL(Ly) x GL(Cy))-orbit, by proposition 3.9. Tt is clear that the zero section
in 7T*Y 1s mapped to the 0-orbit in es. Let us label the other Eg-orbits in T*Y
by the labels of their images in Hom(L, A>C*).

We first begin with a trivial remark : the image of an orbit in 7*Y is an
orbit in eg of non-greater dimension. From this it follows that the orbits in 7*Y
labelled A5 4+ 2A1, Ay + Ay, A1 map to the orbits in ¢g with the same label.

Suppose the orbit in T*Y labelled 34, , maps to the orbit in es labelled
As. The the fibers above the nilpotent orbit A, would have dimension 3, and
the preimage of the nilpotent orbit labelled 3A4; would be included in the orbits
labelled 3A; ;, and 3A4; .. So the fibers above this orbit would have dimension
1 or 2, contradicting the semi-continuity of the dimensions of the fibers of a
morphism. Therefore, 34, o maps to 3A4;.

We know that the resolution T*Y — ¢ is semi-small, so the 38-dimensional
orbit 1n 7T*Y labelled 24; cannot contract to the 22-dimensional orbit labelled
Aq; therefore, it maps to 2A4;.

We deduce that the fibers above the Aj-orbit are 8-dimensional; by semi-
continuity again, the orbits labelled 3A4; 5, 3A; . map to the orbit 34;.

Since by lemma 2.5 the map U of notation 2.2 is defined only on the open
orbit of Hom(Ly, A?C?), the Mukai flop is also defined only on the open orbit
of T*Y. O
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