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A Kesten-Spitzer result for a random walk in a stationary scenery with stong decorrelation properties

In this paper, we extend a result of Kesten and Spitzer [15]. Let us consider an invertible probability dynamical system (M, F, ν, T ) and f : M → R some function with null expectation. We define the stationary sequence (ξ k := f • T k ) k∈Z . Let (S n ) n≥0 be a simple symmetric random walk on Z independent of (ξ k ) k∈Z . We are interested in the study of the sequence of random variables of the form

We give examples of partially hyperbolic dynamical systems (M, F, ν, T ) and of functions f such that 1 n 3 4 n k=1 ξ S k n≥1 converges in distribution.

Introduction

Let us consider two sequences of random variables (ξ ) ∈Z (with values in R) and (S n ) n≥1 (with values in Z). We suppose that these two sequences are independent one to the other. Let us define W n = n k=1 ξ S k . This random variable can be understood as the cumulative amount got at time n if one starts from 0 at time 0 and get the amount ξ if he is at position = S k at time k. In [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF], Kesten and Spitzer consider the situation when (ξ ) ∈Z and (S n -S n-1 ) n≥1 are two sequences of independent identically distributed random variables, with distributions in the attraction basin of some stable distributions. They got different results depending on the limit stable distributions. In particular, (ξ ) ∈Z is centered and square integrable and if (S n ) n≥1 is the simple symmetric random walk on Z, they prove that 1 n 3 4 n i=1 ξ S k n≥1 converges in distribution and they identify the limit distribution.

Our idea is to prove that this result of Kesten and Spitzer remains true in some situations where (ξ ) ∈Z is stationary but satifies strong conditions of decorrelation. In this paper, (S n ) n will be the simple symmetric random walk on Z and (ξ ) ∈Z will satisfy a central limit theorem. Before presenting our result, let us mention some extensions of the results of Kesten and Spitzer we are interested in.

Extension of the Kesten-Spitzer result to higher dimension have been done by Boltausen in [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] (for 2-dimensional) and by Revesz and Shi in [START_REF] Revesz | Strong approximation of spatial random walk in random scenery[END_REF] (d ≥ 3). In [START_REF] Khoshnevisan | A law of the iterated logarithm for stable processes in random scenery[END_REF], approximation results are given. Extensions to transient random walk and stationary (ξ ) ∈Z are also given by Guillotin-Plantard and Schneider [START_REF] Guillotin-Plantard | Limit theorems for sampled dynamical systems[END_REF]. Another possible extension is to get rid off the independence condition for the variables S n -S n-1 . This has been done for some cases in [START_REF] Borgne | Exemples de systèmes dynamiques quasi-hyperboliques à décorrélations lentes[END_REF] in order to give examples of non-standard limit theorem for regular invertible dynamical systems. Other related works are [START_REF] Piau | Further scaling exponents of random walks in random sceneries[END_REF], Deo 1973 + Dehling 1980.

In the present paper, (S n ) n≥1 and (ξ ) ∈Z are still supposed to be independent one to the other. Here (S n ) n≥1 is still the simple symmetric random walk on Z. But we do not suppose anymore that (ξ ) ∈Z is a sequence of independent variables. We suppose that (ξ ) ∈Z is a stationary sequence of random variables satisfying some strong decorrelation properties. This applies to situations when (ξ k ) k∈Z is a stationary sequence of random variables given by a dynamical system with some hyperbolic properties. More precisely, we study the cases when (ξ k = f • T k ) k∈Z , with f a ν-centered Hölder continuous function and when (M, F, ν, T ) is one of the following dynamical systems :

• the transformation T is an ergodic algebraic automorphism of the torus M = T d0 endowed with its normalised Haar measure ν (for some d 0 ≥ 2);

• the transformation T is a diagonal transformation on a compact quotient M of Sl d0 (R) by a discrete subgroup, M being endowed with a natural T -invariant probability measure ν;

• the transformation T is the Sinai billiard transformation.

In these situations, we prove that 1 Spitzer when ( ξm ) m is a sequence of independent identically distributed random variables with null expectation and with variance 1. Let us notice that, in our cases, m∈Z E[ξ 0 ξ m ] is well defined and is nonnegative since it is the limit of the variance of 1

√ n n-1 l=0 ξ l as n goes to infinity. We also get the same result of convergence in distribution for the following sequence (ξ k ) k∈Z . Let us consider the same examples of dynamical systems (M, F, ν, T ). Instead of taking ξ k = f • T k , we suppose that, conditionally to ω ∈ M , (ξ k ) k∈Z is an independent sequence of random variables with values in {-1; 1}. We suppose that, conditionally to ω ∈ M , ξ k (ω, •) is equal to 1 with probability h • T k (ω), for some nonnegative Hölder continuous function h with expectation 1 2 . This model is envisaged by Guillotin-Plantard and Le Ny in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF] for other questions and with other hypotheses on (M, F, ν, T ) and on f . Moreover we generalize this to the case when ξ k takes p values (conditionally to ω ∈ M , (ξ k ) k∈Z is an independent sequence of random variables, ξ k being equal to θ j with probability f j • T k (ω), with f 1 + ... + f p = 1 and with f 1 , ..., f p are nonnegative Hölder continuous functions).

In section 2, we state a general result under technical hypotheses of decorrelation (our theorem 1). Section 5 is devoted to the proof of this result (the idea of the proof is inspired by one step of an inductive method of Jan [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF][START_REF]Rates of convergence in the CLT for Markov chains and some dynamical systems processes[END_REF] used in [START_REF] Pène | Rates of convergence in the CLT for two-dimensional dispersive billiards[END_REF]).

In section 3, we give some applications of our abstract theorem 1. We apply our theorem 1 to the examples mentionned previously (ergodic algebraic automorphisms of the torus, diagonal transformation of a compact quotient of Sl d0 (R), billiard transformation). The proofs of the results of section 3 are done in sections 3 and 4.

A technical result

Theorem 1. Let (S n ) n≥1 and (ξ k ) k∈Z be two sequences of random variables defined on the same probability space (Ω, T , P) such that :

1. (S n ) n≥0 and (ξ k ) k∈Z are independent one of the other; 2. (S n ) n≥0 is a simple symmetric random walk on Z;

3. (ξ k ) k∈Z is a stationary sequence of centered random variables admitting moments of the fourth order;

4. we have :

p≥0 1 + p |E[ξ 0 ξ p ]| < +∞ and sup N ≥1 N -2 k1,k2,k3,k4=0,...,N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| < +∞.
5. There exists some C > 0, some (ϕ p,s ) p,s∈N and some integer r ≥ 1 such that : 

∀(p, s) ∈ N 2 , ϕ
Cov e i n 2 k=n 1 α k ξ k , e i n 4 k=n 3 β k ξ k ≤ C 1 + n2 k=n1 |α k | + n4 k=n3 |β k | ϕ n3-n2,n4-n3 .
Then, the sequence of random variables 1

n 3 4 n i=1 ξ S k n≥1 converges in distribution to p∈Z E[ξ 0 ξ p ]∆ 1 , where ∆ 1 := R L 1 (x) dB x
, where (B x ) x∈R and (b t ) t≥0 are two independent standard brownian motions and (L t (x)) t≥0 is the local time at x of (b t ) t≥0 , i.e. L t (x) = lim ε↓0

1 2ε t 0 1 (x-ε,x+ε) (b s ) ds.

Applications

Now we'll give some examples of stationary sequences (ξ k ) k satisfying our theorem 1.

We say that (M, F, ν, T ) is an invertible dynamical system if (M, F, ν) is a probability space endowed with an invertible bi-measurable transformation T : M → M . Definition 2. We say that an invertible dynamical system (M, F, ν, T ) is strongly mixing if there exists C 0 > 0, there exist two real sequences (ϕ n ) n≥0 and (κ m ) m≥0 and, for any function g : M → C, there exist

K (1) g ∈ [0; +∞] and K (2)
g ∈ [0; +∞] such that, for all bounded functions g, h : M → C :

1. for all integer n ≥ 0, we have :

|Cov ν (g, h • T n )| ≤ c 0 g ∞ h ∞ + h ∞ K (1) g + g ∞ K (2) h ϕ n ;
2. for all integer m ≥ 0, we have :

K (1) g•T -m ≤ c 0 K (1) g ;
3. for all integer m ≥ 0, we have :

K (2) h•T m ≤ c 0 K (2) h (1 + κ m ); 4. we have : K (1) g×h ≤ g ∞ K (1) h + h ∞ K (1) g ; 5. we have : K (2) g×h ≤ g ∞ K (2) h + h ∞ K (2) g ;
6. the sequence (ϕ n ) n≥0 is decreasing, the sequence (κ m ) m≥0 is increasing and there exists an integer r ≥ 1 such that : sup n≥1 n 6 (1 + κ n )ϕ nr < +∞.

For some hyperbolic or partially hyperbolic transformations, such properties are satisfied with K

(1) g some Hölder constant of g along the unstable manifolds and K

h some Hölder constant of h along the stable-central manifolds, with ϕ n = α n for some α ∈]0; 1[ and κ m = m β for some β ≥ 0. Let us mention, for example, the ergodic algebraic automorphisms of the torus as well as the diagonal transformation on compact quotient of Sl d0 (R) (cf. [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]). Moreover, in the case of the Sinai (citeSin70 billiard transformation, these properties will come from estimations got in [START_REF] Chernov | Brownian Brownian Motion -I[END_REF][START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]. Theorem 3. Let (M, F, ν, T ) be a strongly mixing dynamical system. Let one define the sequence (ξ k ) in one of the three following way.

(a) Let us suppose that f :

M → R bounded, ν-centered, function such that K (1) f < +∞ and K (2) f < +∞.
We suppose that there exists some real number c 1 > 0 such that, for any real number α, we have : K (b) Let us suppose that f takes its values in [0; 1] and that M f dν = 1 2 . Moreover let us suppose that there exists some c 1 > 0 such that, for any a, b ∈ C, we have K 

af +b ≤ c 1 |a|. Let Ω 1 :=]0; 1[ Z , F 1 := (B(]0; 1[)) ×Z , ν 1 := λ ⊗Z
where λ is the Lebesgue measure on ]0; 1[. We define (ξ k ) k∈Z on the product (Ω 2 := M × Ω 1 , F 2 := F ⊗ F 1 , ν 2 := ν ⊗ ν 1 ) as follows :

ξ k (ω, (z m ) m∈Z ) := 2.1 {z k ≤f •T k (ω)} -1.
(c) Let us fix an integer p ≥ 2. Let us fix p real numbers θ 1 , ..., θ p (and θ 0 := 0) and p non-negative functions f 1 , ..., f p : M → [0; 1] such that M (θ 1 f 1 + ... + θ p f p ) dν = 0 and f 1 + ... + f p = 1 and such that there exists c 2 > 0 such that, for all complex numbers a 1 , ..., a p-1 , b, we have

max(K (1) 
a1f1+...+ap-1fp-1+b , K

a1f1+...+ap-1fp-1+b ) ≤ c 2 (|a 1 | + ... + |a p-1 |). (2) 
Let Ω 1 :=]0; 1[ Z , F 1 := (B(]0; 1[)) ⊗Z , ν 1 := λ ⊗Z where λ is the Lebesgue measure on ]0; 1[. We define (ξ k ) k∈Z on the product

(Ω 2 := M × Ω 1 , F 2 := F ⊗ F 1 , ν 2 := ν ⊗ ν 1 )
as follows :

ξ k (ω, (z m ) m∈Z ) = p l=1 (θ l -θ l-1 ) 1 {z k ≤ l j=1 fj (T k (ω))} .
Then, if S n is a simple symmetric random walk on Z independent of (ξ k ), the sequence of random

variables 1 n 3 4 n i=1 ξ S k n≥1 converges in distribution to p∈Z E[ξ 0 ξ p ]∆ 1 , where ∆ 1 := R L 1 (x) dB
x , where (B x ) x∈R and (b t ) t≥0 are two independent standard brownian motions and

(L t (x)) t≥0 is the local time at x of (b t ) t≥0 , i.e. L t (x) = lim ε↓0 1 2ε t 0 1 (x-ε,x+ε) (b s ) ds.
Let us make some comments on the point (b).

Conditionally to ω ∈ M , (ξ k (ω, •)) k∈Z is a sequence of independent random variables with values in {-1; 1} and ξ k (ω, •) is equal to 1 with probability f • T k (ω).
This model is envisaged by Guillotin-Plantard and Le Ny in [START_REF] Guillotin-Plantard | Transient random walks on 2d-oriented lattices[END_REF].

The case (c) is a generalization of the case (b) to the case when ξ k takes p values (conditionally to

ω ∈ M , ξ k (ω, •) is equal to θ j with probability f j • T k (ω)).

Now we give some examples of strongly mixing dynamical systems.

Proposition 4. Let us consider an integer d 0 ≥ 2. The following two dynamical systems (M, F, ν, T ) are strongly mixing :

(i) M is the d 0 -dimensional torus T d0 = R d0 /Z d0 endowed with its Borel σ-algebra F and with the normalised Haar measure ν on T d0 and T is an algebraic automorphism of T d0 given by a matrix S ∈ Sl d0 (Z) the eigenvalues of which are not root of the unity. We endow T d0 with the metric d induced by the natural metric on R d0 .

(ii) M is a compact quotient of Sl d0 (R) by a discrete subgroup Γ of Sl d0 (R) : M := {xΓ; x ∈ Sl d0 (R)}; endowed with the normalised measure ν induced by the Haar measure on Sl d0 (R). The transformation T corresponds to the multiplication on the left by a diagonal matrix S = diag(T 1 , ..., T d0 ) ∈ Sl d0 (R) not equal to the identity and such that, for all i = 1, ..., d 0 -1, T i ≥ T i+1 > 0. We endow M with the metric d induced by a right-translations invariant riemanian metric on SL d0 (R).

Proof. Let η > 0. Let us denote by Γ (s,e) the set of stable-central manifolds and by Γ u the set of unstable manifolds. In [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF], each γ u ∈ Γ u is endowed with some metric d u and each γ (s,e) ∈ Γ (s,e) is endowed with some metric d (s,e) such that there exist c0 > 0, δ 0 ∈]0; 1[ and β > 0 such that, for any integer n ≥ 0, for any γ u ∈ Γ u and any γ (s,e) ∈ Γ (s,e) , we have :

• For any y, z ∈ γ u , d u (y, z) ≥ d(y, z
) and for any y , z ∈ γ (s,e) , d (s,e) (y , z ) ≥ d(y , z ).

• For any y, z ∈ γ u , there exists γ u (n) such that T -n (y) and T -n (z) belong to γ u (n) and we have :

d u (T -n (y), T -n (z)) ≤ c0 (δ 0 ) n d u (y, z).
• For any y, z ∈ γ (s,e) , there exists γ (s,e)

(n) such that T n (y) and T n (z) belong to γ (s,e) (n) and we have :

d (s,e) (T n (y), T n (z)) ≤ c0 (1 + n β )d (s,e) (y, z).
Let us define :

K (1) f := sup γ u ∈Γ u sup y,z∈γ u :y =z |f (y) -f (z)| (d u (y, z)) η and K (2) f := sup γ (s,e) ∈Γ (s,e) sup y,z∈γ (s,e) :y =z |f (y) -f (z)| (d (s,e) (y, z)) η .
Hence, points 2, 3, 4 and 5 of the definition of strongly mixing dynamical systems are satisfied with κ n = n β . Moreover, these two quantities are less than the Hölder constant of order η of f . In [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF], the point 1 is proved in the particular case (ii). The same proof can be used in the case (i). We get a sequence (ϕ n ) n decreasing exponentially fast (cf. lemme 1.3.1 in [START_REF] Borgne | Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques[END_REF]).

For the billiard transformation, we prove the following (see appendix for details and for the proof) :

Proposition 5. Let (M, F, ν, T ) be the time-discrete dynamical system given by the discrete Sinai billiard (corresponding to the reflection times on a scatterer). We suppose that the billiard domain is Proof. According to [START_REF] Ibragimov | Some limit theorems for stationary processes[END_REF], lemma 1.2, the defintion of a strongly dynamical system is satisfied with the following choice of

D := T 2 \ I i=1 O i ,
K (1) • and of K (2) • . If g is σ(ξ k , k ≤ 0)-measurable, we have K (1) g := 1; otherwise we have K (1) g := ∞. If h is σ(ξ k , k ≥ 0)-measurable, we have K (2) h := 1; otherwise we have K (2)
h := ∞. We conclude with theorem 3, qed.

Let us observe that, in the case of proposition 5, we can take the function f constant on each atom of C m for some integer m ≥ 0.

For example f = 1 {ϕ> π 2 -1 k 0 2 } -1 {ϕ<-π 2 + 1 k 0
2 } satisfies the case (a) of theorem ?? for the Sinai billiard ( with the notation k 0 of [6] page 5). In the case (c) of theorem ??, we can take p = 3,

θ 1 = 1, θ 2 = -1, θ 3 =0, f 1 = 1 {ϕ> π 2 -1 k 0 2 } , f 2 = 1 {ϕ<-π 2 + 1 k 0 2 } and f 3 = 1 -f 1 -f 2 in
the case of the Sinai billiard (with again the notations of [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] page 5).

Proof of theorem 3

In the cases (a), (b) and (c), it is easy to see that (ξ k ) k is a stationary sequence of bounded random variables

Proof of (a)

We have :

p≥0 1 + p|E[ξ 0 ξ p ]| = p≥0 1 + p|E ν [f.f • T p ]| ≤ c 0 f ∞ f ∞ + K (1) f + K (2) f p≥0 1 + pϕ p < +∞.
Let us consider an integer N ≥ 1. We have :

1 N 2 k1,k2,k3,k4=0,...,N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| ≤ 24 N 2 0≤k1≤k2≤k3≤k4≤N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| .
Let us consider the set E

(1)

N of (k 1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and k 4 -k 3 ≥ N 1 3
We have :

(k1,k2,k3,k4)∈E (1) N |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| = (k1,k2,k3,k4)∈E (1) N Cov ν f • T k1-k3 f • T k2-k3 f, f • T k4-k3 ≤ c 0 N 4 f 4 ∞ + f 3 ∞ (K (2) 
f + 3c 0 K (1) f ) ϕ N 1 3 ≤ c 0 N 2 f 4 ∞ + f 3 ∞ (K (2) 
f + 3c 0 K (1) f ) sup n≥1 n 6 ϕ n .
Let us consider the set E

(2)

N of (k 1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and k 4 -k 3 < N 1 3
and k 3 -k 2 ≥ rN 1 3 . We have :

(k1,k2,k3,k4)∈E (2) N |Cov (ξ k1 ξ k2 , ξ k3 ξ k4 )| = (k1,k2,k3,k4)∈E (2) N Cov ν f • T k1-k2 f, (f.f • T k4-k3 ) • T k3-k2 ≤ c 0 N 4 f 4 ∞ + 2c 0 f 3 ∞ (K (2) 
f + K (1) f ) (1 + κ N 1 3 )ϕ r N 1 3 ≤ 2 6 c 0 N 2 f 4 ∞ + 2c 0 f 3 ∞ (K (2) f + K (1) f ) sup n≥1 n 6 (1 + κ n )ϕ rn .
Moreover, we have :

(k1,k2,k3,k4)∈E (2) N |E[ξ k1 ξ k2 ]E[ξ k3 ξ k4 ]| ≤   0≤k1≤k2≤N -1 |E[ξ k1 ξ k2 ]|   2 ≤   N k≥0 E ν [f.f • T k ]   2 ≤ N 2   c 0 f 2 ∞ + f ∞ (K (1) 
f + K (2) f ) k≥0 ϕ k   2 .
Let us consider the set E

(3)

N of (k 1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and k 4 -k 3 < N 1 3
and k 3 -k 2 < rN

1 3 and k 2 -k 1 ≥ r(1 + r)N 1 3
. By the same method, we get :

(k1,k2,k3,k4)∈E (3) N |E [ξ k1 ξ k2 ξ k3 ξ k4 ]| ≤ N 2 c 0 2 6 (1 + r) 6 f 4 ∞ + 3c 0 f 3 ∞ (K (2) 
f + K (1) f ) sup n≥1 n 6 (1 + κ n )ϕ rn .
Since the number of (k

1 , k 2 , k 3 , k 4 ) such that 0 ≤ k 1 ≤ k 2 ≤ k 3 ≤ k 4 ≤ N -1 and that do not belong to E (1) 
N ∪ E

(2)

N ∪ E (3) 
N is bounded by N 2 2(r + 1) 3 , we get :

sup N ≥1 1 N 2 k1,k2,k3,k4=0,...,N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]| < +∞.
Now, let us prove the point 5. Let n 1 , n 2 , n 3 and n 4 be four integers such that 0

≤ n 1 ≤ n 2 ≤ n 3 ≤ n 4 .
Let us consider any real numbers α n1 , .., α n2 and β n3 , ..., β n4 . We have :

Cov e i n 2 k=n 1 α k ξ k , e i n 4 k=n 3 β k ξ k = Cov ν e i n 2 k=n 1 α k f •T -(n 2 -k)
, e i n 4 k=n 3

β k f •T k-n 3 • T n3-n2 ≤ c 0 1 + K (1) exp i n 2 k=n 1 α k f •T -(n 2 -k) + K (2) exp i n 4 k=n 3 β k f •T k-n 3 ϕ n3-n2 ≤ c 0 1 + n2 k=n1 K (1) exp(iα k f •T -(n 2 -k) ) + n4 k=n3 K (2) exp(iβ k f •T k-n 3 ) ϕ n3-n2 ≤ c 0 1 + n2 k=n1 c 0 c 1 |α k | + n4 k=n3 c 0 c 1 |β k |(1 + κ n4-n3 ) ϕ n3-n2 .
We conclude by taking ϕ p,s := (1 + κ s )ϕ p .

Proof of (b) and of (c)

Let us consider (c) which is an extension of the case (b) (by taking p = 2,

θ 1 = 1, θ 2 = -1, f 1 = f and f 2 = 1 -f ).
Let us define the function g := p j=1 θ j f j (in the case (b), we have : g = 2f -1). This function is ν-centered. More generally, for any integer m ≥ 1, let us define : g m := p j=1 θ j m f j .

These functions satisfy K

(1)

gm + K (2)
gm < +∞ We observe that, conditionally to ω ∈ M , the expectation of (ξ k (ω, •)) m is equal to g m • T k (ω). Using the Fubini theorem and starting by integrating over Ω 1 , we observe that, for any integers p ≥ 1, we have : E[ξ 0 ξ p ] = E ν [g.g • T p ] and that, for any integers

k 1 , k 2 , k 3 , k 4 , we have : E [ξ k1 n1 ξ k2 n2 ξ k3 n3 ξ k4 n4 ] = E ν 4 j=1 g nj • T kj .
Hence, we can prove the point 4 of theorem 1 as we proved it for (a). Now, let us prove the point 5 of theorem 1. We observe that, conditionally to ω ∈ M , the ξ k are independent and that the expectation of exp(iuξ k (ω, •)) is h u •T k with (h u := p l=1 e iθ l u f l ). This function can be rewritten : h u = e iθpu + p-1 l=1 e iθ l u -e iθpu f l . The modulus of this function is bounded by 1 and we have : Let n 1 , n 2 , n 3 and n 4 be four integers such that 0 ≤ n 1 ≤ n 2 < n 3 ≤ n 4 . Let us consider any real numbers α n1 , .., α n2 and β n3 , ..., β n4 . We have :

max K (1) hu , K (2) 
Cov e i n 2 k=n 1 α k ξ k , e i n 4 k=n 3 β k ξ k = = Cov ν n2 k=n1 h α k • T k , n4 k=n3 h β k • T k ≤ c 0 1 + c 0 c 2 2p max j=0,...,p |θ j | n2 k=n1 |α k | + n4 k=n3 |β k | (1 + κ n4-n3 )ϕ n3-n2 .

Proof of theorem 1

To prove our result of convergence in distribution, we use characteristic functions. Let us fix some real number t. We will show that :

lim n→+∞ E exp it n 3 4 n k=1 ξ S k = E   exp   it p∈Z E[ξ 0 ξ p ]∆ 1     .
Let us notice that we have (cf [15] lemma 5, for example) :

E [exp (iu∆ 1 )] = E exp - u 2 2 R (L 1 (x)) 2 dx .
Hence, it is enough to prove that :

lim n→+∞ E exp it n 3 4 n k=1 ξ S k = E   exp   - t 2 2 p∈Z E[ξ 0 ξ p ] R (L 1 (x)) 2 dx     .
In the following, for any integer m ≥ 1 and any integer k, we define :

N m (k) := Card{j = 1, ..., m : S j = k}.
We notice that, for any integer n ≥ 1, we have :

n j=1 ξ Sj = k∈Z ξ k N n (k).
In the step 1 of our proof, we will use the following facts :

C 0 := sup n≥1 sup K>0 K 2 n -1 P max m=1,...,n |S m | ≥ K < +∞, C 1 := sup n≥1 sup k∈Z n -1 2 N n (k) 6 < +∞, C 2 := sup n≥1 sup k, ∈Z N n ( ) -N n (k) 2 1 + | -k|n 1 4
< +∞.

The first fact comes from the Kolmogorov inequality. The second fact comes from [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF] lemma 1. The third fact comes from [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF] lemmas 2 and 3.

Step 1 : Technical part

This is the big part of our proof. In this part, we prove that the following quantity goes to zero as n goes to +∞ :

E exp it n 3 4 ∈Z ξ N n ( ) -E   exp   - t 2 2n 3 2
,k∈Z

E[ξ ξ k ]N n ( ) 2     .
Let us fix ε > 0. We will prove that, if n is large enough, this quantity is less than ε.

Our proof is inspired by a method used by Jan to establish central limit theorem with rate of convergence (cf. [START_REF]Rates of convergence in the CLT for Markov chains and some dynamical systems processes[END_REF], [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF], method also used in [START_REF] Pène | Rates of convergence in the CLT for two-dimensional dispersive billiards[END_REF]). More precisely, we adapt the idea of the first step of the inductive method of Jan.

• For any K ≥ 1 and any integer n ≥ 1, we have :

P max m=1,...,n |S m | ≥ K √ n ≤ C 0 n K 2 n = C 0 K 2 .
Let us fix K ≥ 1 such that 2 C0 K 2 < ε 10 . Then, we have

E exp it n 3 4 ∈Z ξ N n ( ) -E   exp   it n 3 4 K √ n =-K √ n ξ N n ( )     ≤ 2 C 0 K 2 < ε 10 (1) 
and :

E   exp   - t 2 2n 3 2
,k∈Z

E[ξ ξ k ]N n ( ) 2     -E   exp   - t 2 2n 3 2 K √ n =-K √ n k∈Z E[ξ ξ k ]N n ( ) 2     < ε 10 .
(2) Hence we have to estimate :

A n := E   exp   it n 3 4 K √ n =-K √ n ξ N n ( )     -E   exp   - t 2 2n 3 2 K √ n =-K √ n k∈Z E[ξ ξ k ]N n ( ) 2     . (3) 
• In the following, L will be some real number bigger than 8 and large enough and n any integer bigger than 1 and large enough so that : 2K √ n L ≥ L. We will have :

K √ n L ≤ 2 K √ n +1 L ≤ 5K √ n L .
• We split our sums

K √ n =-K √ n in L sums over 2 K √ n +1 L
terms and one sum over less than L terms and so over less than 2 K √ n +1 L terms. Let us introduce the following notation :

α (k) = α (k,n,L) = -K √ n + k 2 K √ n +1 L if k = 0, ..., L K √ n + 1 if k = L + 1
.

For all k = 0, ..., L, we define :

a k,n,L = exp   - t 2 2n 3 2 α (k+1) -1 =α (k) k∈Z E[ξ ξ k ]N n ( ) 2   and b k,n,L = exp   it n 3 4 α (k+1) -1 =α (k) ξ N n ( )   .
Let us notice that, for any k = 0, ..., L, we have :

|a k,n,L | ≤ 1 and |b k,n,L | ≤ 1.
We have :

|A n | = E L k=0 b k,n,L - L k=0 a k,n,L = L k=0 E k-1 m=0 b m,n,L (b k,n,L -a k,n,L ) L m =k+1 a m ,n,L . (4) 
• Now we explain how we can restrict our study to the sum over the k such that (r + 1)

3 ≤ k ≤ L -1.
Indeed, the number of k that do not satisfy this is equal to (r + 1) 3 + 1. Let us consider any k = 0, ..., L. We have :

E [|b k,n,L -1|] ≤ |t| n 3 4 E   α (k+1) -1 =α (k) ξ N n ( )  
and :

E [|a k,n,L -1|] ≤ t 2 2n 3 2 E   α (k+1) -1 =α (k) m∈Z E[ξ ξ m ]N n ( ) 2   .
But, for any integers α and β with β ≥ 1, we have :

E   α+β =α+1 ξ N n ( ) 2   ≤ α+β =α+1 α+β m=α+1 |E[ξ ξ m ]| |E[N n ( )N n (m)]| ≤ α+β =α+1 α+β m=α+1 |E[ξ ξ m ]| N n ( ) 2 N n (m) 2 ≤ (C 1 ) 2 nβ m∈Z |E[ξ 0 ξ m ]|.
From which, we get :

E [|b k,n,L -1|] ≤ |t| n 3 4 (C 1 ) 2 n 5K √ n L m∈Z |E[ξ 0 ξ m ]| ≤ |t| √ L C 1 5K m∈Z |E[ξ 0 ξ m ]|.
Moreover we have :

E [|a k,n,L -1|] ≤ t 2 2n 3 2 E   α (k+1) -1 =α (k) m∈Z E[ξ ξ m ]N n ( ) 2   ≤ t 2 2n 3 2 5K √ n L m∈Z E[ξ 0 ξ m ](C 1 ) 2 n ≤ 5t 2 2 K(C 1 ) 2 L m∈Z E[ξ 0 ξ m ].
Let L 1 ≥ 8 be such that, for all L ≥ L 1 , we have :

((r + 1) 3 + 1) |t| √ L C 1 5K m∈Z |E[ξ 0 ξ m ]| < ε 20 
and

((r + 1) 3 + 1) 5t 2 2 K(C 1 ) 2 L m∈Z E[ξ 0 ξ m ] < ε 20 .
Then, if we have L ≥ L 1 and n ≥ 1 such that 2K

√ n L ≥ L, we have :

E [|b L,n,L -a L,n,L |] + (r+1) 3 -1 k=0 E [|b k,n,L -a k,n,L |] < ε 10 . (5) 
It remains to estimate :

L-1 k=(r+1) 3 E k-1 m=0 b m,n,L (b k,n,L -a k,n,L ) L m =k+1 a m ,n,L . (6) 
• We estimate :

B n,L := L-1 k=(r+1) 3 E     k-(r+1) 3 m=0 b m,n,L       k-(r+1) 2 m=k-(r+1) 3 +1 b m,n,L   -1   × ×     k-r-1 m=k-(r+1) 2 +1 b m,n,L   -1   k-1 m =k-r b m ,n,L (b k,n,L -a k,n,L ) L m =k+1 a m ,n,L   .
We have :

B n,L ≤ L-1 k=(r+1) 3   k-(r+1) 2 m=k-(r+1) 3 +1 b m,n,L   -1 3   k-r-1 m=k-(r+1) 2 +1 b m,n,L   -1 3 b k,n,L -a k,n,L 3 .
-We have :

b k,n,L -1 3 ≤ |t| n 3 4 α (k+1) -1 =α (k) ξ N n ( ) 3 .
For any integers α and β with β ≥ 1, we have :

E   α+β =α+1 ξ N n ( ) 4   ≤ α+β 1, 2, 3, 4=α+1 |E [ξ 1 ξ 2 ξ 3 ξ 4 ]| (C 1 ) 4 n 2 ≤ (C 1 ) 4 n 2 C 2 β 2 . ( 7 
)
with

C 2 := sup N ≥1 N -2 k1,k2,k3,k4=0,...,N -1 |E[ξ k1 ξ k2 ξ k3 ξ k4 ]|. Hence, we have : b k,n,L -1 3 ≤ |t| n 3 4 (C 1 ) 4 n 2 C 2 5K √ n L 2 1 4 ≤ |t|C 1 (C 2 ) 1 4

5K

L .

-We have :

a k,n,L -1 3 ≤ t 2 2n 3 2 k∈Z E[ξ 0 ξ k ] ••• =••• N n ( ) 2 3 ≤ t 2 2n 3 2 k∈Z E[ξ 0 ξ k ] ••• =••• N n ( ) 2 6 ≤ t 2 2n 3 2 k∈Z E[ξ 0 ξ k ] 5K √ n L (C 1 ) 2 n ≤ 5t 2 2 k∈Z E[ξ 0 ξ k ] K L (C 1 ) 2 .
-Using formula [START_REF] Chernov | Brownian Brownian Motion -I[END_REF],we get :

  k-(r+1) 2 m=k-(r+1) 3 +1 b m,n,L   -1 3 ≤ |t| n 3 4 α (k-(r+1) 2 +1) -1 =α (k-(r+1) 3 +1) ξ N n ( ) 3 ≤ |t| n 3 4 (C 1 ) 4 n 2 C 2 (r(r + 1) 2 ) 2 5K √ n L 2 1 4 ≤ |t|C 1 (C 2 ) 1 4 √ r(r + 1) 5K L .
-Analogously, we get :

  k-r-1 m=k-(r+1) 2 +1 b m,n,L   -1 3 ≤ |t|C 1 (C 2 ) 1 4 √ r(r + 1) 5K L .
Hence, we have :

B n,L ≤ L |t|C 1 (C 2 ) 1 4 √ r(r + 1) 5K L 2 |t|C 1 (C 2 ) 1 4 5K L + 5t 2 2 k∈Z E[ξ 0 ξ k ] K L (C 1 ) 2 ≤ |t| 2 (C 1 ) 2 (C 2 ) 1 2 r(r + 1) 2 5K |t|C 1 (C 2 ) 1 4 5K L + 5t 2 2 k∈Z E[ξ 0 ξ k ] K L (C 1 ) 2 .
Let L 1 ≥ L 1 be such that, for all L ≥ L 1 , the right term of this last inequality is less than ε 10 . Then, for any L ≥ L 1 and any n ≥ 1 such that 2K √ n L ≥ L, we have : B n,L ≤ ε 10 .

• In the following, we suppose L ≥ L 1 and 2K √ n L ≥ L. It remains to estimate :

L-1 k=(r+1) 3 +1 C n,k,L,1,3 + C n,k,L,1,2 + C n,k,L,2,3
where C n,k,L,j0,j1 is the following quantity :

E     k-(r+1) j 1 m=0 b m,n,L     k-1 m=k-(r+1) j 0 +1 b m,n,L   (b k,n,L -a k,n,L ) L m =k+1 a m ,n,L  
• Let j 0 , j 1 be fixed. We estimate C n,k,L,j0,j1 . We have :

C n,k,L,j0,j1 ≤ D n,k,L,j0,j1 + E n,k,L,j0,j1 ,
where :

D n,k,L,j0,j1 := E Cov |(Sp) p≥0 (∆ n,k,L,j1 , Γ n,k,L,j0 ) L m =k+1 a m ,n,L and E n,k,L,j0,j1 := E E [ ∆ n,k,L,j1 | (S p ) p≥0 ] E [ Γ n,k,L,j0 | (S p ) p≥0 ] L m =k+1 a m ,n,L . with ∆ n,k,L,j1 := k-(r+1) j 1 m=0 b m,n,L and Γ n,k,L,j0 := k-1 m=k-(r+1) j 0 +1 b m,n,L (b k,n,L -a k,n,L ).
• Control of the terms with the product of the expectations.

Let j 0 , j 1 be fixed. Let k = (r + 1) 3 , ..., L -1. We can notice that E n,k,L,j0,j1 is bounded from above by the following quantity :

F n,k,L,j0,j1 := E   E   k m=k-(r+1) j 0 +1 b m,n,L -   k-1 m=k-(r+1) j 0 +1 b m,n,L   a k,n,L (S p ) p≥0     .
We use the Taylor expansions of the exponential function.

-Let us show that, in F n,k,L,j0,j1 , we can replace

k m=k-(r+1) j 0 +1 b m,n,L = exp   it n 3 4 α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n ( )  
by the formula given by the Taylor expansion of the exponential function at the second order :

1 + it n 3 4 α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n ( ) - t 2 2n 3 2   α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n ( )   2 . (8) 
Indeed the L 1 -norm of the error between these two quantities is less than :

|t| 3 6n 9 4 E    α (k+1) -1 =α (k-(r+1) j 0 +1) ξ N n ( ) 3   
which, according to formula [START_REF] Chernov | Brownian Brownian Motion -I[END_REF], is less than :

|t| 3 6n 9 4 (C 1 ) 4 n 2 C 2 ((r + 1) j0 ) 5K √ n L 2 3 4 = |t| 3 6 (C 1 ) 3 (C 2 ) 3 4 (r + 1) j0 5K L 3 2
.

Hence, the sum over k = (r + 1) 3 , ..., L -1 of the L 1 -norm of these errors is less than :

1 √ L |t| 3 6 (C 2 ) 3 4 (C 1 ) 3 (r + 1) j0 5K 3 2 .
Let us consider L 2 ≥ L 1 such that, for all L ≥ L 2 , this last quantity is less than ε 10 .

-Let us introduce Y k := 2 . We show that, in F n,k,L,j0,j1 , we can replace

α (k) -1 =α (k-(r+1) j 0 +1) ξ N n ( ) and Z k := α (k+1) -1 =α (k) m∈Z E[ξ ξ m ]N n ( )
  k-1 m=k-(r+1) j 0 +1 b m,n,L   a k,n,L = exp it n 3 4 Y k - t 2 2n 3 2
Z k by the formula given by the Taylor expansion of the exponential function at the second order :

1 + it n 3 4 Y k - t 2 2n 3 2 Z k + 1 2 it n 3 4 Y k - t 2 2n 3 2 Z k 2 , (9) 
Indeed, the L 1 -norm of the error between these two quantities is less than :

1 6 E it n 3 4 Y k - t 2 2n 3 2 Z k 3 ≤ 4 3 E it n 3 4 Y k 3 + t 2 2n 3 2 Z k 3 .
According to formula [START_REF] Chernov | Brownian Brownian Motion -I[END_REF], we have :

4 3 E it n 3 4 Y k 3 ≤ 4|t| 3 3 (C 1 ) 3 (C 2 ) 3 4 
(r + 1) j0 5K L .

Moreover, we have :

4 3 E t 2 2n 3 2 Z k 3 = t 6 6n 9 2 m∈Z E[ξ 0 ξ m ] 3 E   α (k+1) -1 1 2, 3=α(k) N n ( 1 ) 2 N n ( 2 ) 2 N n ( 3 ) 2   ≤ t 6 6n 9 2 m∈Z E[ξ 0 ξ m ] 3 5K √ n L 3 (C 1 ) 6 n 3 .
The sum over k = (r + 1) 3 , ..., L -1 of the L 1 -norm of these errors is less than :

1 √ L 4|t| 3 3 (C 2 ) 3 4 (C 1 ) 3 (r + 1) j0 5K 3 2 + 1 L 2 t 6 6 m∈Z E[ξ 0 ξ m ] 3 (5K) 3 (C 1 ) 6 .
Let us consider L 2 ≥ L 2 such that, for all L ≥ L 2 , this last quantity is less than ε 10 . -Now we show that, in formula (9), we can ommit the term with (Z k ) 2 . Indeed, we have :

1 2 E t 2 2n 3 2 Z k 2 ≤ t 4 8n 3 m∈Z E[ξ 0 ξ m ] 2 5K √ n L 2 (C 1 ) 4 n 2 .
The sum over k = (r + 1) 3 , ..., L -1 of the L 1 -norm of these errors is less than :

1 L t 4 8 m∈Z E[ξ 0 ξ m ] 2 (5K) 2 (C 1 ) 4 .
Let us consider L 2 ≥ L 2 such that, for all L ≥ L 2 , this last quantity is less than ε 10 .

-From now, we fix L := L 2 and we consider an integer n ≥ L 4 4K 2 . -Hence, it remains to estimate the following quantity called G n,k,L,j0,j1 :

E E it n 3 4 (Y k + W k ) - t 2 2n 3 2 (Y k + W k ) 2 - it n 3 4 Y k + t 2 2n 3 2 Z k + + t 2 2n 3 2 (Y k ) 2 + it n 3 4 Y k t 2 2n 3 2 Z k (S p ) p with W k := α (k+1) -1 =α (k)
ξ N n ( ). Using the fact that the ξ k are centered and independent of (S p ) p , we get :

G n,k,L,j0,j1 = E E - t 2 2n 3 2 (Y k + W k ) 2 + t 2 2n 3 2 Z k + t 2 2n 3 2 (Y k ) 2 (S p ) p = t 2 2n 3 2 E E (W k ) 2 + 2W k Y k -Z k (S p ) p .
Let us notice that we have :

Z k := α (k+1) -1 =α (k)   E[(ξ ) 2 ]N n ( ) 2 + 2 m≤ -1 E[ξ ξ m ]N n ( ) 2   .
-Let us show that, in the last expression of G n,k,L,j0,j1 , we can replace Z k by :

Zk := α (k+1) -1 =α (k)   E[(ξ ) 2 ]N n ( ) 2 + 2 m≤ -1 E[ξ ξ m ]N n ( )N n (m)   .
Indeed, we have :

t 2 2n 3 2 E Z k -Zk ≤ t 2 n 3 2 α (k+1) -1 =α (k) m≤ -1 |E[ξ ξ m ]| N n ( ) 2 N n (m) -N n ( ) 2 ≤ t 2 n 3 2 5K √ n L p≥1 |E[ξ 0 ξ p ]|C 1 √ nC 2 n 1 4
1 + p.

The sum over k = (r + 1) 3 , ..., L -1 of these quantities is less than :

t 2 n 1 4 5KC 1 C 2 p≥1 1 + p|E[ξ 0 ξ p ]|,
which goes to zero when n goes to infinity. Hence, there exists some n 0 ≥ L 4 4K 2 such that, for any integer n ≥ n 0 , this sum is less than ε 10 . -Hence we have to estimate :

Gn,k,L,j0,j1 = t 2 2n 3 2 E E (W k ) 2 + 2W k Y k (S p ) p -Zk .
We have :

E (W k ) 2 (S p ) p = α (k+1) -1 =α (k)   E[(ξ ) 2 ](N n ( )) 2 + 2 -1 m=α (k) E[ξ ξ m ]N n ( )N n (m)   .
Hence we have :

E (W k ) 2 + 2W k Y k (S p ) p = α (k+1) -1 =α (k)   E[(ξ ) 2 ](N n ( )) 2 + 2 -1 m=α (k-(r+1) j 0 +1) E[ξ ξ m ]N n ( )N n (m)   .
We get :

Gn,k,L,j0,j1 = t 2 n 3 2 E   α (k+1) -1 =α (k) m≤α (k-(r+1) j 0 +1) -1 E[ξ ξ m ]N n ( )N n (m)   ≤ t 2 n 3 2 5K √ n L m≥r K √ n L |E[ξ 0 ξ m ]|(C 1 ) 2 n.
The sum over k = (r + 1) 3 , ..., L -1 of these quantities is less than :

t 2 5K m≥r K √ n L |E[ξ 0 ξ m ]|(C 1 ) 2 ,
which goes to zero when n goes to infinity. Hence, there exists some n 0 ≥ n 0 such that, for any integer n ≥ n 0 , this sum is less than ε 10 . • Control of the covariance terms.

Let j 0 , j 1 be fixed. Let k = (r + 1) 3 , ..., L -1. We have :

D n,k,L,j0,j1 ≤ E   Cov |(Sp)p   k-(r+1) j 1 m=0 b m,n,L , k m=k-(r+1) j 0 +1 b m,n,L   L m =k+1 a m ,n,L   + + E   Cov |(Sp)p   k-(r+1) j 1 m=0 b m,n,L , k-1 m=k-(r+1) j 0 +1 b m,n,L   L m =k a m ,n,L   .
But we have :

α+β m=α b m,n,L = exp    it n 3 4 -K √ n +(α+β+1) 2 K √ n +1 L -1 =-K √ n +α 2 K √ n +1 L ξ N n ( )    .
Therefore, according to point 4 of the hypothesis of our theorem, we have :

D n,k,L,j0,j1 ≤ 2E   C 1 + |t| n 3 4 ∈Z N n ( ) rK √ n 2L -1 2 sup s≥r K √ n 2L √ sϕ rs,s   .
Hence, we have :

L-1 k=(r+1) 3 D n,k,L,j0,j1 ≤ 2CL √ LC(1 + |t|n 1 4 ) n -1 4 √ 2 √ rK sup s≥r K √ n 2L √ sϕ rs,s .
which goes to zero as n goes to infinity. Hence, there exists some N 0 ≥ n 0 such that, for any integer n ≥ n 0 , this sum is less than ε 10 .

Therefore, there exists N 0 (depending on t and on ε) such that, for any integer n ≥ N 0 , we have :

E exp it n 3 4 ∈Z ξ N n ( ) -E   exp   - t 2 2n 3 2 ,k∈Z E[ξ ξ k ]N n ( ) 2     < ε.
This ends the step 1 of our proof.

Step 2 : Conclusion

In the previous section we proved that :

lim n→+∞ E exp it n 3 4 ∈Z ξ N n ( ) -E   exp   - t 2 2n 3 2 ,k∈Z E[ξ ξ k ]N n ( ) 2     = 0.
According to [START_REF] Kesten | A limit theorem related to a new class of self similar processes[END_REF] lemma 6, we know that :

1 n 3 2 ∈Z N n ( ) 2 n≥1 converges in distribution to Z 1 := R (L 1 (x)) 2 dx.
Hence, we get :

lim n→+∞ E exp it n 3 4 ∈Z ξ N n ( ) = E exp - t 2 2 k∈Z E[ξ 0 ξ k ] R (L 1 (x)) 2 dx .
Let us consider an integer m ≥ 0. We denote by ξ s m the partition of M \ m p=0 T -p (R 0 ∪ S) in connected components. Analogously, we denote by ξ u m the partition of M \ m p=0 T p (R 0 ∪ S) in connected components.

Let us consider the set Γ s of homogeneous stable curves and the set Γ u of homogeneous unstable curves (see [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] page 7 for the definition of these curves). We recall that there exist two constants c 1 > 0 and δ 1 ∈]0; 1[ such that :

• let y and z belonging to the same homogeneous unstable curve. Then, for any integer n ≥ 0, T -n (y)

and T -n (z) belong to a same homogeneous unstable curve and we have : d(T -n (y), T -n (z)) ≤ c 1 δ 1 n . Moreover, for any integer p ≥ 0, y and z belong to the same atom of ξ u p . Moreover, if y and z belong to the same atom of ξ s m , then T m (y) and T m (z) belong to a same homogeneous unstable curve.

• let y and z belonging to the same homogeneous stable curve. Then, for any integer n ≥ 0, T n (y) and T n (z) belong to a same homogeneous stable curve and we have : d(T n (y), T n (z)) ≤ c 1 δ 1 n . Moreover, for any integer p ≥ 0, y and z belong to the same atom of ξ s p . Moreover, if y and z belong to the same atom of ξ u m , then T -m (y) and T -m (z) belong to a same homogeneous stable curve.

In [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF], for any y, z, Chernov defines : s + (x, y) := min{n ≥ 0 : y ∈ ξ s n (x)} and s -(x, y) := min{n ≥ 0 : y ∈ ξ u n (x)}, where ξ s n (x) (resp. ξ u n (x)) is the atom of ξ s n (resp. ξ u n ) containing the point x. Following Chernov in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] (page 15), let us introduce the following quantities :

K(1)

f := sup In the definition of [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF], the suprema are taken over all unstable and stable curves instead of homogeneous unstable and stable curves. However, in the proofs of theorems 4.1, 4.2 and 4.3 of [6], Chernov only uses Hölder continuity on homogeneous stable and unstable curves. We observe that we have :

K(i) f ≤ 2 f ∞ δ 1 -ηm + K (i)
f , with : K

f := sup With these definitions, we have :

K (1)
f ≤ (δ 1 ) -η(m+1) (c 1 ) η C (η,m) f and K

(2)

f ≤ (δ 1 ) -η(m+1) (c 1 ) η C (η,m) f .
Let us prove the first inequality. Let two points y and z belonging to the same homogeneous unstable curve such that s + (y, z) ≥ m + 1. Then y := T s+(y,z)-1 (y) and z := T s+(y,z)-1 (z) belong to the same homogeneous unstable curve. Therefore, for any k = -m, ..., m, we have : (c 1 ) η δ 1 ηs+(y,z) δ 1 -η(m+1) .

The proof of the second inequality is analogous.

Let two points y and z. If y and z belong to the same homogeneous unstable curve, then, for any integer n ≥ 0, we have s + (T -n (y), T -n (z)) = s + (y, z) + n. In the same way, if y and z belong to the same homogeneous stable curve, then for any integer n ≥ 0, we have s -(T n (y), T n (z)) = s -(y, z) + n.

Hence, we get points 2, 3, 4 and 5 of hypothesis ?? with κ n = 1.

Moreover, Chernov establishes the existence of c 3 > 0 and of α 3 ∈]0; 1[ such that, for any integer n ≥ 0, for any bounded C-valued functions f and g, we have :

|Cov(f, g • T n )| ≤ c 3 f ∞ g ∞ + f ∞ K (2)
g + g ∞ K

(1) f (α 3 ) n (cf. theorem 4.3 in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] and the remark after theorem 4.3 in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]). This gives points 1 and 5 of our hypothesis ??,

n 3 4 n 3 4 n

 434 i=1 ξ S k n≥1converges in distribution to the random variable m∈Z E[ξ 0 ξ m ]∆ 1 , where ∆ 1 has the limit distribution of 1 n i=1 ξS k n≥1 obtained byKesten and 

  ) ≤ c 1 |α| and K

  ) ≤ c 1 |α|.

( 1 )

 1 af +b ≤ c 1 |a| and K

  where the scatterers O i are open convex subsets of T 2 , the closures of which are pairwise disjoint and the boundaries of which are C 3 smooth with non-null curvature. Then the system (M, F, ν, T ) is strongly mixing. Proposition 6. If (ξ k ) k∈Z is a stationary sequence of bounded random variables satisfying the following α-mixing condition sup n≥1 n 6 α n < +∞, with α n := sup p≥0; m≥0 sup A∈σ(ξ-p,...,ξ0) sup B∈σ(ξn,...,ξn+m) |P(A ∩ B) -P(A)P(B)| , then points 3, 4 and 5 of theorem 1 hold.

hu ≤ c 2

 2 2p max j=0,...,p |θ j | |u|.

γ

  u ∈Γ u sup y,z∈γ u y =z |f (y) -f (z)| (δ 1 ) ηs+(y,z) and K(2) f := sup γ s ∈Γ s sup y,z∈γ s y =z |f (y) -f (z)| (δ 1 ) ηs-(y,z) .

γ

  u ∈Γ u sup y,z∈γ u ;y =z;s+(y,z)≥m+1 |f (y) -f (z)| (δ 1 ) ηs+(y,z) γ s ∈Γ s sup y,z∈γ s ;y =z;s-(y,z)≥m+1 |f (y) -f (z)| (δ 1 ) ηs-(y,z) .

≤ c 1 δ 1 s+≤ c 1 δ 1

 11 d(T k (y), T k (z)) = d(T -(s+(y,z)-1-k) (y ), T -(s+(y,z)-1-k) (z )) s+(y,z)-(m+1) .Hence, since y and z belong to the same atom of C m , we have :|f (y) -f (z)| ≤ C (η,m) f

  and such that, for all integers n 1 , n 2 , n 3 , n 4 with 0 ≤ n 1 ≤ n 2 < n 3 ≤ n 4 , for all real numbers α n1 , ..., α n2 and β n3 , ..., β n4 , we have :

p+1,s ≤ ϕ p,s and lim s→+∞ √ sϕ rs,s = 0

A Sinai billiard

The billiard domain is D := T 2 \ I i=1 O i , where the scatterers O i are open convex subsets of T 2 , the closures of which are pairwise disjoint and the boundaries of which are C 3 smooth with non-null curvature. In this domain, we consider a point-particle moving with unit speed. with elastic reflections off ∂D. Now, as in [START_REF] Sinai Ya | Dynamical systems with elastic reflections[END_REF], let us define the billiard system (M, F, ν, T ) corresponding at reflection times :

• The set of reflected vectors at a reflection time will be identified with its parametrization given by :

The configuration of a particle at a reflection time is parametrised by (i, r, ϕ) ∈ M if the particle is on the obstacle i, at the point q with curvilinear absciss r and if the reflected vector makes an angle ϕ with the unit vector n(q) normal to ∂D at q directed to the inside of D.

• We endow M with a metric such that :

• We endow M with its Borel σ-algebra F.

• The transformation T : M → M maps a configuration x to the configuration T (x) corresponding to the next reflection time.

• This transformation preserves the probability measure ν on M proportional to cos(ϕ) drdϕ.

We use the parametrisation by (r, ϕ) introduced by Sinai in [START_REF] Sinai Ya | Dynamical systems with elastic reflections[END_REF] and we denote by d the natural corresponding metric. We can define g → K

(1) g and g → K

(2) g such that hypothesis ?? is true and such that, for any bounded g : M → C, K Let us mention that, since the earliest work of Sinai [START_REF] Sinai Ya | Dynamical systems with elastic reflections[END_REF], this billiard system has been studied by many authors ( [START_REF] Bunimovich | Markov partitions for dispersed billiards[END_REF][START_REF] Bunimovich | Statistical properties of Lorentz gas with periodic configuration of scatterers[END_REF][START_REF] Bunimovich | Markov partitions for two-dimensional hyperbolic billiards[END_REF][START_REF] Bunimovich | Statistical properties of two-dimensional hyperbolic billiards[END_REF][START_REF] Gallavotti | Billiards and Bernoulli schemes[END_REF] and others).

The study of this system is complicated by the discontinuities of the transformation T . But it is known that T is C 1 -regular on M \ (R 0 ∪ T -1 (R 0 )), where the set R 0 := {(i, r, ϕ) ∈ M : |ϕ| = π/2} corresponds to tangent vectors.

To prove proposition 5. We will need some results of [START_REF] Chernov | Brownian Brownian Motion -I[END_REF][START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF].

Proof. We will use the notations of Chernov in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF] We take k 0 large enough (as in [START_REF] Chernov | Advanced statistical properties of dispersing billiards[END_REF]). Let us define

Let us recall the definition of homogeneus stable curves and homogeneous unstable curves :

• A homogeneous stable curve is a C 1 curve γ of M contained in M \ m≥0 T -m (R 0 ∪ S) .

• A homogeneous unstable curve is a C 1 curve γ of M contained in M \ m≥0 T m (R 0 ∪ S) .