
HAL Id: hal-00018161
https://hal.science/hal-00018161v1

Preprint submitted on 30 Jan 2006 (v1), last revised 9 Apr 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A limit theorem for a random walk in a stationary
scenery coming from a hyperbolic dynamical system

Françoise Pene

To cite this version:
Françoise Pene. A limit theorem for a random walk in a stationary scenery coming from a hyperbolic
dynamical system. 2006. �hal-00018161v1�

https://hal.science/hal-00018161v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

18
16

1,
 v

er
si

on
 1

 -
 3

0 
Ja

n 
20

06

A limit theorem for a random walk in a stationary scenery

coming from a hyperbolic dynamical system

Franoise Pne
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Abstract. In this paper, we extend a result of Kesten and Spitzer [13]. Let us consider an invertible
probability dynamical system (M,F , ν, T ) and f : M → R some function with null expectation. We
define the stationary sequence (ξk := f ◦ T k)k∈Z. Let (Sn)n≥0 be a simple symmetric random walk on Z

independent of (ξk)k∈Z. We are interested in the study of the sequence of random variables of the form
(
∑n

k=1 ξSk
)
n≥1. We give examples of partially hyperbolic dynamical systems (M,F , ν, T ) and of functions

f such that
(

1

n
3
4

∑n
k=1 ξSk

)

n≥1
converges in distribution.

1 Introduction

In [13], Kesten and Spitzer prove that, if (ξn)n∈Z is a sequence of independent identically distributed
satisfying a central limit theorem and if (Sn)n≥0 is the simple symmetric random walk on Z independent

of (ξk)k∈Z, then
(

1

n
3
4

∑n
i=1 ξSk

)

n≥1
converges in distribution. In this paper, our goal is to establish such a

result when (ξk)k∈Z is a stationary sequence of random variables given by a dynamical system with some
hyperbolic properties. More precisely, we study the cases when (ξk = f ◦ T k)k∈Z, with f a ν-centered
Hölder continuous function and when (M,F , ν, T ) is one of the following dynamical systems :

• the transformation T is an ergodic algebraic automorphism of the torus M = Td0 endowed with its
normalised Haar measure ν (for some d0 ≥ 2);

• the transformation T is a diagonal transformation on a compact quotient M of Sld0(R) by a discrete
subgroup, M being endowed with a natural T -invariant probability measure ν;

• the transformation T is the Sinai billiard transformation.

In these situations, we prove that
(

1

n
3
4

∑n
i=1 ξSk

)

n≥1
converges in distribution to the random variable

√
∑

m∈Z
E[ξ0ξm]∆1, where ∆1 has the limit distribution of

(

1

n
3
4

∑n
i=1 ξ̂Sk

)

n≥1
obtained by Kesten and

Spitzer when (ξ̂m)m is a sequence of independent identically distributed random variables with null
expectation and with variance 1. Let us notice that, in our cases,

∑

m∈Z
E[ξ0ξm] is well defined and is

nonnegative since it is the limit of the variance of 1√
n

∑n−1
l=0 ξl as n goes ti infinity.

We also get the same result of convergence in distribution for the following sequence (ξk)k∈Z. Let us
consider the same examples of dynamical systems (M,F , ν, T ). Instead of taking ξk = f ◦T k, we suppose
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that, conditionally to ω ∈ M , (ξk)k∈Z is an independent sequence of random variables with values in
{−1; 1}. We suppose that, conditionally to ω ∈ M , ξk(ω, ·) is equal to 1 with probability h ◦ T k(ω),
for some nonnegative Hölder continuous function h with expectation 1

2 . This model is envisaged by
Guillotin-Plantard and Le Ny in [8] for other questions and with other hypotheses on (M,F , ν, T ) and
on f .

Moreover we generalize this to the case when ξk takes p values (conditionally to ω ∈ M , (ξk)k∈Z is
an independent sequence of random variables, ξk being equal to θj with probability fj ◦ T k(ω), with
f1 + ... + fp = 1 and with f1, ..., fp are nonnegative Hölder continuous functions).

In section 2, we state a general result under technical hypotheses of decorrelation (our theorem 1).
Section 5 is devoted to the proof of this result (the idea of the proof is inspired by one step of an inductive
method of Jan [9, 11] used in [14]).

In section 3, we give some applications of our abstract theorem 1. We apply our theorem 1 to the
examples mentionned previously (ergodic algebraic automorphisms of the torus, diagonal transformation
of a compact quotient of Sld0(R), billiard transformation). The proofs of the results of section 3 are done
in sections 3 and 4.

2 A technical result

Theorem 1 Let (Sn)n≥1 and (ξk)k∈Z be two sequences of random variables defined on the same proba-
bility space (Ω, T , P) such that :

1. (Sn)n≥0 and (ξk)k∈Z are independent one of the other;

2. (Sn)n≥0 is a simple symmetric random walk on Z;

3. (ξk)k∈Z is a stationary sequence of centered random variables admitting moments of the fourth
order;

4. we have :
∑

p≥0

√

1 + p |E[ξ0ξp]| < +∞

and sup
N≥1

N−2
∑

k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| < +∞.

5. There exists some C > 0, some (ϕp,s)p,s∈N and some integer r ≥ 1 such that :

∀(p, s) ∈ N
2, ϕp+1,s ≤ ϕp,s and lim

s→+∞

√
sϕrs,s = 0

and such that, for all integers n1, n2, n3, n4 with 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4, for all real numbers
αn1 , ..., αn2 and βn3 , ..., βn4 , we have :

∣

∣

∣Cov
(

e
i
∑n2

k=n1
αkξk , e

i
∑n4

k=n3
βkξk

)∣

∣

∣ ≤ C

(

1 +

n2
∑

k=n1

|αk| +
n4
∑

k=n3

|βk|
)

ϕn3−n2,n4−n3 .

Then, the sequence of random variables
(

1

n
3
4

∑n
i=1 ξSk

)

n≥1
converges in distribution to

√

∑

p∈Z
E[ξ0ξp]∆1,

where ∆1 :=
∫

R
L1(x) dBx, where (Bx)x∈R and (bt)t≥0 are two independent standard brownian motions

and (Lt(x))t≥0 is the local time at x of (bt)t≥0, i.e. Lt(x) = limε↓0
1
2ε

∫ t

0
1(x−ε,x+ε)(bs) ds.

Let us notice that the point 5 of our theorem 1 is true if (ξk)k∈Z is a stationary sequence of random
variables satisfying the following α-mixing condition (cf. for example [10], lemma 1.2) :

lim
n→+∞

√
nαn = 0, with αn := sup

p≥0; m≥0
sup

A∈σ(ξ−p,...,ξ0)

sup
B∈σ(ξn,...,ξn+m)

|P(A ∩ B) − P(A)P(B)| .
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3 Applications

Now let us give some examples of stationary sequences (ξk)k satisfying the points 3, 4 and 5 of our
theorem 1. We say that (M,F , ν, T ) is an invertible dynamical system if (M,F , ν) is a probability space
endowed with an invertible bi-measurable transformation T : M → M .

Hypothesis 2 Let us consider an invertible dynamical system (M,F , ν, T ) such that there exists C0 > 0,
there exist two real sequences (ϕn)n≥0 and (κm)m≥0 and, for any function g : M → C, there exist

K
(1)
g ∈ [0; +∞] and K

(2)
g ∈ [0; +∞] such that, for all bounded functions g, g̃, h, h̃ : M → C :

1. for all integer n ≥ 0, we have : |Covν(g, h ◦ T n)| ≤ c0

(

‖g‖∞‖h‖∞ + ‖h‖∞K
(1)
g + ‖g‖∞K

(2)
h

)

ϕn;

2. for all integer m ≥ 0, we have : K
(1)
g◦T−m ≤ c0K

(1)
g ;

3. for all integer m ≥ 0, and all k = 0, ..., m, we have : K
(2)

h◦T k ≤ c0K
(2)
h (1 + κm);

4. we have : K
(1)
g×g̃ ≤ ‖g‖∞K

(1)
g̃ + ‖g̃‖∞K

(1)
g ;

5. we have : K
(2)

h×h̃
≤ ‖h‖∞K

(2)

h̃
+ ‖h̃‖∞K

(2)
h ;

6. the sequence (ϕn)n≥0 is decreasing and there exists an integer r ≥ 1 such that : supn≥1 n6(1 +
κn)ϕnr < +∞.

For some hyperbolic or partially hyperbolic transformations, such properties are satisfied with K
(1)
g some

Hlder constant of g along the unstable manifolds and K
(2)
h some Hlder constant of h along the stable-

central manifolds, with ϕn = αn for some α ∈]0; 1[ and κm = mβ for some β ≥ 0. Let us mention,
for example, the ergodic algebraic automorphisms of the torus as well as the diagonal transformation on
compact quotient of Sld0(R) (cf. [12]). Moreover, in the case of the Sinai billiard transformation, these
properties come from [6, 5]. Since the earliest work of Sinai [15], these billiard systems have been studied
by many authors (let us mention [1, 2, 3, 4, 7]). More precisely, we state :

Proposition 3 Let us consider an integer d0 ≥ 2. Let (M,F , ν, T ) be one of the following dynamical
systems :

(i) M is the d0-dimensional torus Td0 = Rd0/Zd0 endowed with its Borel σ-algebra F and with the
normalised Haar measure ν on Td0 and T is an algebraic automorphism of Td0 given by a matrix
S ∈ Sld0(Z) the eigenvalues of which are not root of the unity. We endow Td0 with the metric d
induced by the natural metric on Rd0 .

(ii) M is a compact quotient of Sld0(R) by a discrete subgroup Γ of Sld0(R) : M := {xΓ; x ∈ Sld0(R)};
endowed with the normalised measure ν induced by the Haar measure on Sld0(R). The transfor-
mation T corresponds to the multiplication on the left by a diagonal matrix S = diag(T1, ..., Td0) ∈
Sld0(R) not equal to the identity and such that, for all i = 1, ..., d0 − 1, Ti ≥ Ti+1 > 0. We endow
M with the metric d induced by a right-translations invariant riemanian metric on SLd0(R).

(iii) (M,F , ν, T ) is the time-discrete dynamical system given by the discrete Sinai billiard (corresponding

to the reflection times on a scatterer). We suppose that the billiard domain is D := T
2 \
(

⋃I
i=1 Oi

)

,

where the scatterers Oi are open convex subsets of T2, the closures of which are pairwise disjoint
and the boundaries of which are C3 smooth with non-null curvature. We use the parametrisation
by (r, ϕ) introduced by Sinai in [15] and we denote by d the natural corresponding metric.

Let η > 0. We can define g 7→ K
(1)
g and g 7→ K

(2)
g such that hypothesis 2 is true and such that, for any

bounded g : M → C, K
(1)
g and K

(2)
g are dominated by the Hölder constant C

(η)
g of g of order η (eventually

multiplied by some constant).
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In the case (iii), this is still true if we replace C
(η)
g by :

C(η,m)
g := sup

C∈Cm

sup
x,y∈C, x 6=y

|g(x) − g(y)|
max(d(T k(x), T k(y)); k = −m, .., m)η

,

for some integer m ≥ 0, with Cm = {A ∩ B; A ∈ ξu
m, B ∈ ξs

m} with ξu
m and ξs

m as in [5] (page 7). (We
recall that, for any k = −m, ..., m, the map T k si C1 on each atom of Cm).

Proof. Let η > 0.

• In the cases (i) and (ii), we denote by Γ(s,e) the set of stable-central manifolds and by Γu the set of
unstable manifolds. In [12], each γu ∈ Γu is endowed with some metric du and each γ(s,e) ∈ Γ(s,e)

is endowed with some metric d(s,e) such that there exist c̃0 > 0, δ0 ∈]0; 1[ and β > 0 such that, for
any integer n ≥ 0, for any γu ∈ Γu and any γ(s,e) ∈ Γ(s,e), we have :

– For any y, z ∈ γu, du(y, z) ≥ d(y, z) and for any y′, z′ ∈ γ(s,e), d(s,e)(y′, z′) ≥ d(y′, z′).

– For any y, z ∈ γu, there exists γu
(n) such that T−n(y) and T−n(z) belong to γu

(n) and we have :

du(T−n(y), T−n(z)) ≤ c̃0(δ0)
ndu(y, z).

– For any y, z ∈ γ(s,e), there exists γ
(s,e)
(n) such that T n(y) and T n(z) belong to γ

(s,e)
(n) and we

have : d(s,e)(T n(y), T n(z)) ≤ c̃0(1 + nβ)d(s,e)(y, z).

Let us define :

K
(1)
f := sup

γu∈Γu

sup
y,z∈γu:y 6=z

|f(y) − f(z)|
(du(y, z))η

and K
(2)
f := sup

γ(s,e)∈Γ(s,e)

sup
y,z∈γ(s,e):y 6=z

|f(y) − f(z)|
(d(s,e)(y, z))η

.

Hence, the points 2, 3, 4 and 5 of hypothesis 2 are satisfied with κn = nβ . Moreover, these two
quantities are less than the Hölder constant of order η of f .

In [12], the point 1 of hypothesis 2 is proved in the particular case (ii). The same proof can be used
in the case (i). We get a sequence (ϕn)n decreasing exponentially fast (cf. lemme 1.3.1 in [12]).

• Let us now consider the case (iii). Let us consider an integer m ≥ 0. Let us cconsider the set Γs of
homogeneous stable curves and the set Γu of homogeneous unstable curves (see [5] page 7 for the
definition of these curves). We recall that there exist two constants c1 > 0 and δ1 ∈]0; 1[ such that :

– let y and z belonging to the same homogeneous unstable curve. Then, for any integer
n ≥ 0, T−n(y) and T−n(z) belong to a same homogeneous unstable curve and we have :
d(T−n(y), T−n(z)) ≤ c1δ1

n. Moreover, for any integer p ≥ 0, y and z belong to the same atom
of ξu

p . Moreover, if y and z belong to the same atom of ξs
m, then T m(y) and T m(z) belong to

a same homogeneous unstable curve.

– let y and z belonging to the same homogeneous stable curve. Then, for any integer n ≥ 0, T n(y)
and T n(z) belong to a same homogeneous stable curve and we have : d(T n(y), T n(z)) ≤ c1δ1

n.
Moreover, for any integer p ≥ 0, y and z belong to the same atom of ξs

p. Moreover, if y and
z belong to the same atom of ξu

m, then T−m(y) and T−m(z) belong to a same homogeneous
stable curve.

In [5], for any y, z, Chernov defines : s+(x, y) := min{n ≥ 0 : y 6∈ ξs
n(x)} and s−(x, y) := min{n ≥

0 : y 6∈ ξu
n(x)}, where ξs

n(x) (resp. ξu
n(x)) is the atom of ξs

n (resp. ξu
n) containing the point x.

Following Chernov in [5] (page 15), let us introduce the following quantities :

K̃
(1)
f := sup

γu∈Γu

sup
y,z∈γuy 6=z

|f(y) − f(z)|
(δ1)ηs+(y,z)

and

K̃
(2)
f := sup

γs∈Γs

sup
y,z∈γsy 6=z

|f(y) − f(z)|
(δ1)ηs−(y,z)

.
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In the definition of [5], the suprema are taken over all unstable and stable curves instead of ho-
mogeneous unstable and stable curves. However, in the proofs of theorems 4.1, 4.2 and 4.3 of [5],
Chernov only uses Hölder continuity on homogeneous stable and unstable curves. We observe that

we have : K̃
(i)
f ≤ 2‖f‖∞δ1

−ηm + K
(i)
f , with :

K
(1)
f := sup

γu∈Γu

sup
y,z∈γu;y 6=z;s+(y,z)≥m+1

|f(y) − f(z)|
(δ1)ηs+(y,z)

and

K̃
(2)
f := sup

γs∈Γs

sup
y,z∈γs;y 6=z;s−(y,z)≥m+1

|f(y) − f(z)|
(δ1)ηs−(y,z)

.

With these definitions, we have :

K
(1)
f ≤ (δ1)

−η(m+1)(c1)
ηC

(η,m)
f and K

(2)
f ≤ (δ1)

−η(m+1)(c1)
ηC

(η,m)
f .

Let us prove the first inequality. Let two points y and z belonging to the same homogeneous
unstable curve such that s+(y, z) ≥ m+1. Then y′ := T s+(y,z)−1(y) and z′ := T s+(y,z)−1(z) belong
to the same homogeneous unstable curve. Therefore, for any k = −m, ..., m, we have :

d(T k(y), T k(z)) = d(T−(s+(y,z)−1−k)(y′), T−(s+(y,z)−1−k)(z′))

≤ c1δ1
s+(y,z)−1−k

≤ c1δ1
s+(y,z)−(m+1).

Hence, since y and z belong to the same atom of Cm, we have :

|f(y) − f(z)| ≤ C
(η,m)
f (c1)

ηδ1
ηs+(y,z)δ1

−η(m+1).

The proof of the second inequality is analogous.

Let two points y and z. If y and z belong to the same homogeneous unstable curve, then, for any
integer n ≥ 0, we have s+(T−n(y), T−n(z)) = s+(y, z)+n. In the same way, if y and z belong to the
same homogeneous stable curve, then for any integer n ≥ 0, we have s−(T n(y), T n(z)) = s−(y, z)+n.

Hence, we get points 2, 3, 4 and 5 of hypothesis 2 with κn = 1.

Moreover, Chernov establishes the existence of c3 > 0 and of α3 ∈]0; 1[ such that, for any integer
n ≥ 0, for any bounded C-valued functions f and g, we have :

|Cov(f, g ◦ T n)| ≤ c3

(

‖f‖∞‖g‖∞ + ‖f‖∞K(2)
g + ‖g‖∞K

(1)
f

)

(α3)
n

(cf. theorem 4.3 in [5] and the remark after theorem 4.3 in [5]). This gives the points 1 and 5 of
our hypothesis 2,

qed.

Theorem 4 Let us suppose hypothesis 2. Let f : M → R be a bounded function.

(a) Let us suppose that f is ν-centered, that K
(1)
f < +∞ and K

(2)
f < +∞. We suppose that there

exists some real number c1 > 0 such that, for any real number α, we have : K
(1)
exp(iαf) ≤ c1|α| and

K
(2)
exp(iαf) ≤ c1|α|. Then (ξk := f ◦ T k)k∈Z satisfies the points 3, 4 and 5 of our theorem.

(b) Let us suppose that f takes its values in [0; 1]. Moreover let us suppose that there exists some c1 > 0

such that, for any a, b ∈ C, we have K
(1)
af+b ≤ c1|a| and K

(2)
af+b ≤ c1|a|.

Let
(

Ω1 :=]0; 1[Z,F1 := (B(]0; 1[))×Z, ν1 := λ⊗Z
)

where λ is the Lebesgue measure on ]0; 1[. We
define (ξk)k∈Z on the product (Ω2 := M × Ω1,F2 := F ⊗ F1, ν2 := ν ⊗ ν1) as follows :

ξk(ω, (zm)m∈Z) := 2.1{zk≤f◦T k(ω)} − 1.

Then (ξk)k∈Z satisfies points 3, 4 and 5 of our theorem.
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(c) Let us fix an integer p ≥ 2. Let us fix p real numbers θ1, ..., θp (and θ0 := 0) and p non-negative
functions f1, ..., fp : M → [0; 1] such that

∫

M
(θ1f1 + ...+ θpfp) dν = 0 and f1 + ...+ fp = 1 and such

that there exists c2 > 0 such that, for all complex numbers a1, ..., ap−1, b, we have

max(K
(1)
a1f1+...+ap−1fp−1+b, K

(2)
a1f1+...+ap−1fp−1+b) ≤ c2(|a1| + ... + |ap−1|).

Let
(

Ω1 :=]0; 1[Z,F1 := (B(]0; 1[))⊗Z, ν1 := λ⊗Z
)

where λ is the Lebesgue measure on ]0; 1[. We
define (ξk)k∈Z on the product (Ω2 := M × Ω1,F2 := F ⊗ F1, ν2 := ν ⊗ ν1) as follows :

ξk(ω, (zm)m∈Z) =

p
∑

l=1

(θl − θl−1)1{zk≤
∑

l
j=1 fj(T k(ω))},

Then (ξk)k∈Z satisfies points 3, 4 and 5 of our theorem.

Let us make some comments on the point (b). Conditionally to ω ∈ M , (ξ̃k(ω, ·))k∈Z is a sequence of
independent random variables with values in {−1; 1} and ξ̃k(ω, ·) is equal to 1 with probability f ◦T k(ω).
This model is envisaged by Guillotin-Plantard and Le Ny in [8].

The case (c) is a generalization of the case (b) to the case when ξ̃k takes p values (conditionally to
ω ∈ M , ξ̃k(ω, ·) is equal to θj with probability fj ◦ T k(ω)).

A direct consequence of proposition 3 and of theorem 4 is :

Theorem 5 Let (M,F , ν, T ) be as in proposition 3. Let η > 0. Let p ≥ 2. Let f, f1, ..., fp : M → R be
(p + 1) bounded Hlder continuous function of order η (or, in the case (iii) of proposition 3, we suppose

that these functions are bounded and such that C
(η,m)
f < +∞ and supi=1,...,p C

(η,m)
fi

< +∞ for some
integer m ≥ 0).

We suppose that f1, ..., fp are non-negative functions satisfying f1 + ... + fp = 1.

(a) Let us suppose that f is ν-centered. Then (ξk := f ◦ T k)k∈Z satisfies points 3, 4 and 5 of our
theorem.

(b) Let us suppose that f takes its values in [0; 1] and that we have
∫

M
f dν = 1

2 .

Let
(

Ω1 :=]0; 1[Z,F1 := (B(]0; 1[))⊗Z, ν1 := λ⊗Z
)

where λ is the Lebesgue measure on ]0; 1[. We
define (ξk)k∈Z on the product (Ω2 := M × Ω1,F2 := F ⊗ F1, ν2 := ν ⊗ ν1) as follows :

ξ̃k(ω, (zm)m∈Z) := 2.1{zk≤f◦T k(ω)} − 1.

Then (ξk)k∈Z satisfies points 3, 4 and 5 of our theorem.

(c) Let us fix p real numbers θ1, ..., θp (and θ0 = 0) such that
∫

M
(θ1f1 + ... + θpfp) dν = 0 and Let

(

Ω1 :=]0; 1[Z,F1 := (B(]0; 1[))×Z, ν1 := λ⊗Z
)

where λ is the Lebesgue measure on ]0; 1[. We define
(ξk)k∈Z on the product (Ω2 := M × Ω1,F2 := F ⊗ F1, ν2 := ν ⊗ ν1) as follows :

ξk(ω, (zm)m∈Z) =

p
∑

l=1

(θl − θl−1)1{zk≤
∑

l
j=1 fj(T k(ω))},

Then (ξk)k∈Z satisfies points 3, 4 and 5 of our theorem.

Let us observe that, in the case (iii) of proposition 3, we can take the function f constant on each atom
of Cm for some integer m ≥ 0. For example f = 1⋃

k≥k0
Hk

− 1⋃
k≥k0

H−k
satisfies the case (a) of theorem

5 for the Sinai billiard (with the notations k0 and Hk of [5] page 5). In the case (c) of theorem 5, we can
take p = 3, θ1 = 1, θ2 = −1, θ3=0, f1 = 1⋃

k≥k0
Hk

, f2 = 1⋃
k≥k0

H−k
, f3 = 1 − f1 − f2 in the case of the

Sinai billiard (with again the notations of [5] page 5).
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4 Proof of theorem 4

In the cases (a), (b) and (c), it is easy to see that (ξk)k is a stationary sequence of bounded random
variables

4.1 Proof of (a)

We have :

∑

p≥0

√

1 + p|E[ξ0ξp]| =
∑

p≥0

√

1 + p|Eν [f.f ◦ T p]|

≤ c0‖f‖∞
(

‖f‖∞ + K
(1)
f + K

(2)
f

)

∑

p≥0

√

1 + pϕp < +∞.

Let us consider an integer N ≥ 1. We have :

1

N2

∑

k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| ≤
24

N2

∑

0≤k1≤k2≤k3≤k4≤N−1

|E[ξk1ξk2ξk3ξk4 ]| .

Let us consider the set E
(1)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N −1 and k4 −k3 ≥ N

1
3

We have :

∑

(k1,k2,k3,k4)∈E
(1)
N

|E[ξk1ξk2ξk3ξk4 ]| =
∑

(k1,k2,k3,k4)∈E
(1)
N

∣

∣Covν

(

f ◦ T k1−k3f ◦ T k2−k3f, f ◦ T k4−k3
)∣

∣

≤ c0N
4
(

‖f‖4
∞ + ‖f‖3

∞(K
(2)
f + 3c0K

(1)
f )
)

ϕ⌈N
1
3 ⌉

≤ c0N
2
(

‖f‖4
∞ + ‖f‖3

∞(K
(2)
f + 3c0K

(1)
f )
)

sup
n≥1

n6ϕn.

Let us consider the set E
(2)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N −1 and k4 −k3 < N

1
3

and k3 − k2 ≥ rN
1
3 . We have :

∑

(k1,k2,k3,k4)∈E
(2)
N

|Cov (ξk1ξk2 , ξk3ξk4)| =
∑

(k1,k2,k3,k4)∈E
(2)
N

∣

∣Covν

(

f ◦ T k1−k2f, (f.f ◦ T k4−k3) ◦ T k3−k2
)∣

∣

≤ c0N
4
(

‖f‖4
∞ + 2c0‖f‖3

∞(K
(2)
f + K

(1)
f )
)

(1 + κ 1
r

⌈

rN
1
3

⌉)ϕ⌈
rN

1
3

⌉

≤ c0N
2
(

‖f‖4
∞ + 2c0‖f‖3

∞(K
(2)
f + K

(1)
f )
)

sup
n≥1

n6(1 + κn)ϕrn.

Moreover, we have :

∑

(k1,k2,k3,k4)∈E
(2)
N

|E[ξk1ξk2 ]E[ξk3ξk4 ]| ≤





∑

0≤k1≤k2≤N−1

|E[ξk1ξk2 ]|





2

≤



N
∑

k≥0

∣

∣Eν [f.f ◦ T k]
∣

∣





2

≤ N2



c0

(

‖f‖2
∞ + ‖f‖∞(K

(1)
f + K

(2)
f )
)

∑

k≥0

ϕk





2

.
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Let us consider the set E
(3)
N of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N −1 and k4 −k3 < N

1
3

and k3 − k2 < rN
1
3 and k2 − k1 ≥ r(1 + r)N

1
3 . By the same method, we get :

∑

(k1,k2,k3,k4)∈E
(3)
N

|E [ξk1ξk2ξk3ξk4 ]| ≤ N2 c0

(1 + r)6

(

‖f‖4
∞ + 3c0‖f‖3

∞(K
(2)
f + K

(1)
f )
)

sup
n≥1

n6(1 + κn)ϕrn.

Since the number of (k1, k2, k3, k4) such that 0 ≤ k1 ≤ k2 ≤ k3 ≤ k4 ≤ N − 1 and that do not belong to

E
(1)
N ∪ E

(2)
N ∪ E

(3)
N is bounded by N22(r + 1)3, we get :

sup
N≥1

1

N2

∑

k1,k2,k3,k4=0,...,N−1

|E[ξk1ξk2ξk3ξk4 ]| < +∞.

Now, let us prove the point 5. Let n1, n2, n3 and n4 be four integers such that 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4.
Let us consider any real numbers αn1 , .., αn2 and βn3 , ..., βn4 . We have :
∣

∣

∣Cov
(

e
i
∑n2

k=n1
αkξk , e

i
∑n4

k=n3
βkξk

)∣

∣

∣ =
∣

∣

∣Covν

(

e
i
∑n2

k=n1
αkf◦T−(n2−k)

,
(

e
i
∑n4

k=n3
βkf◦T k−n3

)

◦ T n3−n2

)∣

∣

∣

≤ c0

(

1 + K
(1)

exp
(

i
∑n2

k=n1
αkf◦T−(n2−k)

) + K
(2)

exp
(

i
∑n4

k=n3
βkf◦T k−n3

)

)

ϕn3−n2

≤ c0

(

1 +

n2
∑

k=n1

K
(1)

exp(iαkf◦T−(n2−k))
+

n4
∑

k=n3

K
(2)

exp(iβkf◦T k−n3)

)

ϕn3−n2

≤ c0

(

1 +

n2
∑

k=n1

c0c1|αk| +
n4
∑

k=n3

c0c1|βk|(1 + κn4−n3)

)

ϕn3−n2 .

We conclude by taking ϕp,s := (1 + κs)ϕp.

4.2 Proof of (b) and of (c)

Let us consider (c) which is an extension of the case (b) (by taking p = 2, θ1 = 1, θ2 = −1, f1 = f and
f2 = 1 − f). Let us define the function g :=

∑p
j=1 θjfj (in the case (b), we have : g = 2f − 1). This

function is ν-centered and satisfies K
(1)
g + K

(2)
g < +∞. We observe that, conditionally to ω ∈ M , the

expectation of ξk(ω, ·) is equal to g ◦ T k(ω). Using the Fubini theorem and starting by integrating over
Ω1, we observe that, for any integers k and l, we have : E[ξkξl] = Eν [g ◦ T k.g ◦ T l] and that, for any

integers k1, k2, k3, k4, we have : E [ξk1ξk2ξk3ξk4 ] = Eν

[

∏4
j=1 g ◦ T kj

]

. Hence, we can prove the point 4 of

theorem 1 as we proved it for (a).

Now, let us prove the point 5 of theorem 1. We observe that, conditionally to ω ∈ M , the expectation
of exp(iuξk(ω, ·)) is hu ◦ T k with (hu :=

∑p
l=1 eiθlufl). This function can be rewritten : hu = eiθpu +

∑p−1
l=1

(

eiθlu − eiθpu
)

fl. The modulus of this function is bounded by 1 and we have :

max
(

K
(1)
hu

, K
(2)
hu

)

≤ c22p max
j=0,...,p

|θj | |u|.

Let n1, n2, n3 and n4 be four integers such that 0 ≤ n1 ≤ n2 ≤ n3 ≤ n4. Let us consider any real
numbers αn1 , .., αn2 and βn3 , ..., βn4 . We have :
∣

∣

∣Cov
(

ei
∑n2

k=n1
αkξk , ei

∑n4
k=n3

βkξk

)∣

∣

∣ =

=

∣

∣

∣

∣

∣

Covν

(

n2
∏

k=n1

hαk
◦ T k,

n4
∏

k=n3

hβk
◦ T k

)∣

∣

∣

∣

∣

≤ c0

(

1 + c0c22p max
j=0,...,p

|θj |
(

n2
∑

k=n1

|αk| +
n4
∑

k=n3

|βk|
))

(1 + κn4−n3)ϕn3−n2 .

8



5 Proof of theorem 1

To prove our result of convergence in distribution, we use characteristic functions. Let us fix some real
number t. We will show that :

lim
n→+∞

E

[

exp

(

it

n
3
4

n
∑

k=1

ξSk

)]

= E



exp



it

√

∑

p∈Z

E[ξ0ξp]∆1







 .

Let us notice that we have (cf [13] lemma 5, for example) :

E [exp (iu∆1)] = E

[

exp

(

−u2

2

∫

R

(L1(x))2 dx

)]

.

Hence, it is enough to prove that :

lim
n→+∞

E

[

exp

(

it

n
3
4

n
∑

k=1

ξSk

)]

= E



exp



− t2

2

∑

p∈Z

E[ξ0ξp]

∫

R

(L1(x))2 dx







 .

In the following, for any integer m ≥ 1 and any integer k, we define :

Nm(k) := Card{j = 1, ..., m : Sj = k}.

We notice that, for any integer n ≥ 1, we have :

n
∑

j=1

ξSj
=
∑

k∈Z

ξkNn(k).

In the step 1 of our proof, we will use the following facts :

C0 := sup
n≥1

sup
K>0

K2n−1
P

(

max
m=1,...,n

|Sm| ≥ K

)

< +∞,

C1 := sup
n≥1

sup
k∈Z

n− 1
2 ‖Nn(k)‖6 < +∞,

C2 := sup
n≥1

sup
k,ℓ∈Z

‖Nn(ℓ) − Nn(k)‖2
√

1 + |ℓ − k|n 1
4

< +∞.

The first fact comes from the Kolmogorov inequality. We refer to [13] lemmas 1, 2, 3 and 4 for the proof
of the other facts.

5.1 Step 1 : Technical part

This is the big part of our proof. In this part, we prove that the following quantity goes to zero as n goes
to +∞ :

∣

∣

∣

∣

∣

∣

E

[

exp

(

it

n
3
4

∑

ℓ∈Z

ξℓNn(ℓ)

)]

− E



exp



− t2

2n
3
2

∑

ℓ,k∈Z

E[ξℓξk]Nn(ℓ)2









∣

∣

∣

∣

∣

∣

.

Let us fix ε > 0. We will prove that, if n is large enough, this quantity is less than ε.

Our proof is inspired by a method used by Jan to establish central limit theorem with rate of conver-
gence (cf. [11], [9], method also used in [14]). More precisely, we adapt the idea of the first step of the
inductive method of Jan.
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• For any K ≥ 1 and any integer n ≥ 1, we have :

P

(

max
m=1,...,n

|Sm| ≥ K
√

n

)

≤ C0n

K2n
=

C0

K2
.

Let us fix K ≥ 1 such that 2 C0

K2 < ε
10 . Then, we have

∣

∣

∣

∣

∣

∣

E

[

exp

(

it

n
3
4

∑

ℓ∈Z

ξℓNn(ℓ)

)]

− E



exp





it

n
3
4

⌈K√
n⌉

∑

ℓ=−⌈K√
n⌉

ξℓNn(ℓ)









∣

∣

∣

∣

∣

∣

≤ 2
C0

K2
<

ε

10
(1)

and :
∣

∣

∣

∣

∣

∣

E



exp



− t2

2n
3
2

∑

ℓ,k∈Z

E[ξℓξk]Nn(ℓ)2







− E



exp



− t2

2n
3
2

⌈K√
n⌉

∑

ℓ=−⌈K√
n⌉

∑

k∈Z

E[ξℓξk]Nn(ℓ)2









∣

∣

∣

∣

∣

∣

<
ε

10
.

(2)
Hence we have to estimate :

An :=

∣

∣

∣

∣

∣

∣

E



exp





it

n
3
4

⌈K√
n⌉

∑

ℓ=−⌈K√
n⌉

ξℓNn(ℓ)







− E



exp



− t2

2n
3
2

⌈K√
n⌉

∑

ℓ=−⌈K√
n⌉

∑

k∈Z

E[ξℓξk]Nn(ℓ)2









∣

∣

∣

∣

∣

∣

. (3)

• In the following, L will be some real number bigger than 8 and large enough and n any integer

bigger than 1 and large enough such that : 2K
√

n

L
≥ L. We will have : K

√
n

L
≤
⌊

2⌈K√
n⌉+1

L

⌋

≤ 5K
√

n

L
.

• We split our sums
∑⌈K√

n⌉
ℓ=−⌈K√

n⌉ in L sums over
⌊

2⌈K√
n⌉+1

L

⌋

terms and one sum over less than L

terms and so over less than
⌊

2⌈K√
n⌉+1

L

⌋

terms.

For any k = 0, ..., L − 1, we define :

ak,n,L = exp






− t2

2n
3
2

−⌈K√
n⌉+(k+1)

⌊

2⌈K
√

n⌉+1
L

⌋

−1
∑

ℓ=−⌈K√
n⌉+k

⌊

2⌈K
√

n⌉+1
L

⌋

∑

k∈Z

E[ξℓξk]Nn(ℓ)2







and

bk,n,L = exp







it

n
3
4

−⌈K√
n⌉+(k+1)

⌊

2⌈K
√

n⌉+1
L

⌋

−1
∑

ℓ=−⌈K√
n⌉+k

⌊

2⌈K
√

n⌉+1
L

⌋

ξℓNn(ℓ)






.

Moreover, we define :

aL,n,L = exp






− t2

2n
3
2

⌈K√
n⌉

∑

ℓ=−⌈K√
n⌉+L

⌊

2⌈K
√

n⌉+1
L

⌋

∑

k∈Z

E[ξℓξk]Nn(ℓ)2







and

bL,n,L = exp







it

n
3
4

⌈K√
n⌉

∑

ℓ=−⌈K√
n⌉+L

⌊

2⌈K
√

n⌉+1
L

⌋

ξℓNn(ℓ)






.

Let us notice that, for any k = 0, ..., L, we have :

|ak,n,L| ≤ 1 and |bk,n,L| ≤ 1.

10



We have :

|An| =

∣

∣

∣

∣

∣

E

[

L
∏

k=0

bk,n,L −
L
∏

k=0

ak,n,L

]∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

L
∑

k=0

E

[(

k−1
∏

m=0

bm,n,L

)

(bk,n,L − ak,n,L)

L
∏

m′=k+1

am′,n,L

]∣

∣

∣

∣

∣

. (4)

• Now we explain how we can restrict our study to the sum over the k such that (r+1)3 ≤ k ≤ L−1.
Indeed, the number of k that do not satisfy this is equal to (r + 1)3 + 1. Let us consider any
k = 0, ..., L. We have :

E [|bk,n,L − 1|] ≤ |t|
n

3
4

E

[∣

∣

∣

∣

∣

···
∑

ℓ=···
ξℓNn(ℓ)

∣

∣

∣

∣

∣

]

and :

E [|ak,n,L − 1|] ≤ t2

2n
3
2

E

[∣

∣

∣

∣

∣

···
∑

ℓ=···

∑

m∈Z

E[ξℓξm]Nn(ℓ)2

∣

∣

∣

∣

∣

]

.

But, for any integers α and β with β ≥ 1, we have :

E





(

α+β
∑

ℓ=α+1

ξℓNn(ℓ)

)2


 ≤
α+β
∑

ℓ=α+1

α+β
∑

m=α+1

|E[ξℓξm]| |E[Nn(ℓ)Nn(m)]|

≤
α+β
∑

ℓ=α+1

α+β
∑

m=α+1

|E[ξℓξm]| ‖Nn(ℓ)‖2‖Nn(m)‖2

≤ (C1)
2nβ

∑

m∈Z

|E[ξ0ξm]|.

From which, we get :

E [|bk,n,L − 1|] ≤ |t|
n

3
4

√

√

√

√(C1)2n
5K

√
n

L

∑

m∈Z

|E[ξ0ξm]|

≤ |t|√
L

C1

√

5K
∑

m∈Z

|E[ξ0ξm]|.

Moreover we have :

E [|ak,n,L − 1|] ≤ t2

2n
3
2

E

[ ···
∑

ℓ=···

∑

m∈Z

E[ξℓξm]Nn(ℓ)2

]

≤ t2

2n
3
2

5K
√

n

L

∑

m∈Z

E[ξ0ξm](C1)
2n

≤ 5t2

2

K(C1)
2

L

∑

m∈Z

E[ξ0ξm].

Let L1 ≥ 8 be such that for all L ≥ L1, we have :

((r + 1)3 + 1)
|t|√
L

C1

√

5K
∑

m∈Z

|E[ξ0ξm]| <
ε

20

and

((r + 1)3 + 1)
5t2

2

K(C1)
2

L

∑

m∈Z

E[ξ0ξm] <
ε

20
.
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Then, if we have L ≥ L1 and n ≥ 1 such that 2K
√

n
L

≥ L, we have :

E [|bL,n,L − aL,n,L|] +

(r+1)3−1
∑

k=0

E [|bk,n,L − ak,n,L|] <
ε

10
. (5)

It remains to estimate :

L−1
∑

k=(r+1)3

∣

∣

∣

∣

∣

E

[(

k−1
∏

m=0

bm,n,L

)

(bk,n,L − ak,n,L)

L
∏

m′=k+1

am′,n,L

]∣

∣

∣

∣

∣

. (6)

• We estimate :

Bn,L :=

L−1
∑

k=(r+1)3

∣

∣

∣

∣

∣

∣

E









k−(r+1)3
∏

m=0

bm,n,L













k−(r+1)2
∏

m=k−(r+1)3+1

bm,n,L



− 1



×

×









k−r−1
∏

m=k−(r+1)2+1

bm,n,L



− 1





(

k−1
∏

m′=k−r

bm′,n,L

)

(bk,n,L − ak,n,L)

L
∏

m′=k+1

am′,n,L





∣

∣

∣

∣

∣

∣

.

We have :

Bn,L ≤
L−1
∑

k=(r+1)3

∥

∥

∥

∥

∥

∥





k−(r+1)2
∏

m=k−(r+1)3+1

bm,n,L



− 1

∥

∥

∥

∥

∥

∥

3

∥

∥

∥

∥

∥

∥





k−r−1
∏

m=k−(r+1)2+1

bm,n,L



− 1

∥

∥

∥

∥

∥

∥

3

‖bk,n,L − ak,n,L‖3 .

– We have :

‖bk,n,L − 1‖3 ≤ |t|
n

3
4

∥

∥

∥

∥

∥

···
∑

ℓ=···
ξℓNn(ℓ)

∥

∥

∥

∥

∥

3

.

For any integers α and β with β ≥ 1, we have :

E





(

α+β
∑

ℓ=α+1

ξℓNn(ℓ)

)4


 ≤
α+β
∑

ℓ1,ℓ2,ℓ3,ℓ4=α+1

|E [ξℓ1ξℓ2ξℓ3ξℓ4 ]| (C1)
4n2

≤ (C1)
4n2C′

2β
2. (7)

with C′
2 := supN≥1 N−2

∑

k1,k2,k3,k4=0,...,N−1 |E[ξk1ξk2ξk3ξk4 ]|. Hence, we have :

‖bk,n,L − 1‖3 ≤ |t|
n

3
4

(

(C1)
4n2C′

2

(

5K
√

n

L

)2
)

1
4

≤ |t|C1 (C′
2)

1
4

√

5K

L
.

– We have :

‖ak,n,L − 1‖3 ≤ t2

2n
3
2

∑

k∈Z

E[ξ0ξk]

∥

∥

∥

∥

∥

···
∑

ℓ=···
Nn(ℓ)2

∥

∥

∥

∥

∥

3

≤ t2

2n
3
2

∑

k∈Z

E[ξ0ξk]
···
∑

ℓ=···
‖Nn(ℓ)‖2

6

≤ t2

2n
3
2

∑

k∈Z

E[ξ0ξk]
5K

√
n

L
(C1)

2n

≤ 5t2

2

∑

k∈Z

E[ξ0ξk]
K

L
(C1)

2.
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– Using formula (7),we get :

∥

∥

∥

∥

∥

∥





k−(r+1)2
∏

m=k−(r+1)3+1

bm,n,L



− 1

∥

∥

∥

∥

∥

∥

3

≤ |t|
n

3
4

∥

∥

∥

∥

∥

∥

∥

−⌈K√
n⌉+(k−(r+1)2+1)

⌊

2⌈K
√

n⌉+1
L

⌋

−1
∑

ℓ=−⌈K√
n⌉+(k−(r+1)3+1)

⌊

2⌈K
√

n⌉+1
L

⌋

ξℓNn(ℓ)

∥

∥

∥

∥

∥

∥

∥

3

≤ |t|
n

3
4

(

(C1)
4n2C′

2(r(r + 1)2)2
(

5K
√

n

L

)2
)

1
4

≤ |t|C1(C
′
2)

1
4
√

r(r + 1)

√

5K

L
.

– Analogously, we get :

∥

∥

∥

∥

∥

∥





k−r−1
∏

m=k−(r+1)2+1

bm,n,L



− 1

∥

∥

∥

∥

∥

∥

3

≤ |t|C1(C
′
2)

1
4
√

r(r + 1)

√

5K

L
.

Hence, we have :

Bn,L ≤ L

(

|t|C1(C
′
2)

1
4
√

r(r + 1)

√

5K

L

)2(

|t|C1 (C′
2)

1
4

√

5K

L
+

5t2

2

∑

k∈Z

E[ξ0ξk]
K

L
(C1)

2

)

≤ |t|2(C1)
2(C′

2)
1
2 r(r + 1)25K

(

|t|C1 (C′
2)

1
4

√

5K

L
+

5t2

2

∑

k∈Z

E[ξ0ξk]
K

L
(C1)

2

)

.

Let L′
1 ≥ L1 be such that, for all L ≥ L1, the right term of this last inequality is less than ε

10 .

Then, for any L ≥ L′
1 and any n ≥ 1 such that 2K

√
n

L
≥ L, we have : Bn,L ≤ ε

10 .

• In the following, we suppose L ≥ L′
1 and 2K

√
n

L
≥ L. It remains to estimate :

L−1
∑

k=(r+1)3+1

Cn,k,L,1,3 + Cn,k,L,1,2 + Cn,k,L,2,3

where Cn,k,L,j0,j1 is the following quantity :

∣

∣

∣

∣

∣

∣

E









k−(r+1)j1
∏

m=0

bm,n,L









k−1
∏

m=k−(r+1)j0+1

bm,n,L



 (bk,n,L − ak,n,L)

L
∏

m′=k+1

am′,n,L





∣

∣

∣

∣

∣

∣

• Let j0, j1 be fixed. We estimate Cn,k,L,j0,j1 . We have :

Cn,k,L,j0,j1 ≤ Dn,k,L,j0,j1 + En,k,L,j0,j1 ,

where :

Dn,k,L,j0,j1 :=

∣

∣

∣

∣

∣

E

[

Cov|(Sp)p
(∆n,k,L,j1 , Γn,k,L,j0)

L
∏

m′=k+1

am′,n,L

]∣

∣

∣

∣

∣

and

En,k,L,j0,j1 :

∣

∣

∣

∣

∣

E

[

E [∆n,k,L,j1 | (Sp)p] E [Γn,k,L,j0 | (Sp)p]

L
∏

m′=k+1

am′,n,L

]∣

∣

∣

∣

∣

.

with ∆n,k,L,j1 :=
∏k−(r+1)j1

m=0 bm,n,L and Γn,k,L,j0 :=
(

∏k−1
m=k−(r+1)j0+1 bm,n,L

)

(bk,n,L − ak,n,L).

13



• Control of the terms with the product of the expectations.

Let j0, j1 be fixed. Let k = (r +1)3, ..., L− 1. We can notice that En,k,L,j0,j1 is bounded from away
by the following quantity :

Fn,k,L,j0,j1 := E





∣

∣

∣

∣

∣

∣

E





k
∏

m=k−(r+1)j0+1

bm,n,L −





k−1
∏

m=k−(r+1)j0+1

bm,n,L



 ak,n,L

∣

∣

∣

∣

∣

∣

(Sp)p





∣

∣

∣

∣

∣

∣



 .

We use the Taylor expansions of the exponential function. To simplify expressions, we will use the
following notation :

∀m ≥ 0, α(m) := −⌈K
√

n⌉ + m

⌊

2⌈K√
n⌉ + 1

L

⌋

.

– Let us show that, in Fn,k,L,j0,j1 , we can replace

k
∏

m=k−(r+1)j0+1

bm,n,L = exp





it

n
3
4

α(k+1)−1
∑

ℓ=α
(k−(r+1)j0 +1)

ξℓNn(ℓ)





by the formula given by the Taylor expansion of the exponential function at the second order :

1 +
it

n
3
4

α(k+1)−1
∑

ℓ=α
(k−(r+1)j0 +1)

ξℓNn(ℓ) − t2

2n
3
2





α(k+1)−1
∑

ℓ=α
(k−(r+1)j0 +1)

ξℓNn(ℓ)





2

. (8)

Indeed the L1-norm of the error between these two quantities is less than :

|t|3
6n

9
4

E







∣

∣

∣

∣

∣

∣

α(k+1)−1
∑

ℓ=α
(k−(r+1)j0 +1)

ξℓNn(ℓ)

∣

∣

∣

∣

∣

∣

3






which, according to formula (7), is less than :

|t|3
6n

9
4

(

(C1)
4n2C′

2

(

((r + 1)j0)
5K

√
n

L

)2
)

3
4

=
|t|3
6

(C1)
3(C′

2)
3
4

(

(r + 1)j0
5K

L

)
3
2

.

Hence, the sum over k = (r + 1)3, ..., L − 1 of the L1-norm of these errors is less than :

1√
L

|t|3
6

(C′
2)

3
4 (C1)

3
(

(r + 1)j05K
)

3
2 .

Let us consider L2 ≥ L′′
1 such that, for all L ≥ L2, this last quantity is less than ε

10 .

– Let us introduce Yk :=
∑α(k)−1

ℓ=α
(k−(r+1)j0 +1)

ξℓNn(ℓ) and Zk :=
∑α(k+1)−1

ℓ=α(k)

∑

m∈Z
E[ξℓξm]Nn(ℓ)2.

We show that, in Fn,k,L,j0,j1 , we can replace




k−1
∏

m=k−(r+1)j0+1

bm,n,L



 ak,n,L = exp

(

it

n
3
4

Yk − t2

2n
3
2

Zk

)

by the formula given by the Taylor expansion of the exponential function at the second order :

1 +
it

n
3
4

Yk − t2

2n
3
2

Zk +
1

2

(

it

n
3
4

Yk − t2

2n
3
2

Zk

)2

, (9)

Indeed, the L1-norm of the error between these two quantities is less than :

1

6
E

[

∣

∣

∣

∣

it

n
3
4

Yk − t2

2n
3
2

Zk

∣

∣

∣

∣

3
]

≤ 4

3
E

[

∣

∣

∣

∣

it

n
3
4

Yk

∣

∣

∣

∣

3

+

∣

∣

∣

∣

t2

2n
3
2

Zk

∣

∣

∣

∣

3
]

.
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According to formula (7), we have :

4

3
E

[

∣

∣

∣

∣

it

n
3
4

Yk

∣

∣

∣

∣

3
]

≤ 4|t|3
3

(C1)
3(C′

2)
3
4

(

(r + 1)j0
5K

L

)
3
2

.

Moreover, we have :

4

3
E

[

∣

∣

∣

∣

t2

2n
3
2

Zk

∣

∣

∣

∣

3
]

=
t6

6n
9
2

(

∑

m∈Z

E[ξ0ξm]

)3

E





α(k+1)−1
∑

ℓ1ℓ2,ℓ3=α(k)

Nn(ℓ1)
2Nn(ℓ2)

2Nn(ℓ3)
2





≤ t6

6n
9
2

(

∑

m∈Z

E[ξ0ξm]

)3
(

5K
√

n

L

)3

(C1)
6n3.

The sum over k = (r + 1)3, ..., L − 1 of the L1-norm of these errors is less than :

1√
L

4|t|3
3

(C′
2)

3
4 (C1)

3
(

(r + 1)j05K
)

3
2 +

1

L2

t6

6

(

∑

m∈Z

E[ξ0ξm]

)3

(5K)3 (C1)
6.

Let us consider L′
2 ≥ L2 such that, for all L ≥ L′

2, this last quantity is less than ε
10 .

– Now we show that, in formula (9), we can ommit the term with (Zk)2. Indeed, we have :

1

2
E

[

(

t2

2n
3
2

Zk

)2
]

≤ t4

8n3

(

∑

m∈Z

E[ξ0ξm]

)2
(

5K
√

n

L

)2

(C1)
4n2.

The sum over k = (r + 1)3, ..., L − 1 of the L1-norm of these errors is less than :

1

L

t4

8

(

∑

m∈Z

E[ξ0ξm]

)2

(5K)2 (C1)
4.

Let us consider L′′
2 ≥ L′

2 such that, for all L ≥ L′′
2 , this last quantity is less than ε

10 .

– From now, we fix L := L′′
2 and we consider an integer n ≥ L4

4K2 .

– Hence, it remains to estimate the following quantity called Gn,k,L,j0,j1 :

E

[∣

∣

∣

∣

E

[

it

n
3
4

(Yk + Wk) − t2

2n
3
2

(Yk + Wk)2 − it

n
3
4

Yk +
t2

2n
3
2

Zk+

+
t2

2n
3
2

(Yk)2 +
it

n
3
4

Yk

t2

2n
3
2

Zk

∣

∣

∣

∣

(Sp)p

]∣

∣

∣

∣

]

with Wk :=
∑α(k+1)−1

ℓ=α(k)
ξℓNn(ℓ). Using the fact that the ξk are centered and independent of

(Sp)p, we get :

Gn,k,L,j0,j1 = E

[∣

∣

∣

∣

E

[

− t2

2n
3
2

(Yk + Wk)2 +
t2

2n
3
2

Zk +
t2

2n
3
2

(Yk)2
∣

∣

∣

∣

(Sp)p

]∣

∣

∣

∣

]

=
t2

2n
3
2

E

[∣

∣

∣E

[

(Wk)
2

+ 2WkYk − Zk

∣

∣

∣ (Sp)p

]∣

∣

∣

]

.

Let us notice that we have :

Zk :=

α(k+1)−1
∑

ℓ=α(k)



E[(ξℓ)
2]Nn(ℓ)2 + 2

∑

m≤ℓ−1

E[ξℓξm]Nn(ℓ)2



 .
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– Let us show that, in the last expression of Gn,k,L,j0,j1 , we can replace Zk by :

Z̃k :=

α(k+1)−1
∑

ℓ=α(k)



E[(ξℓ)
2]Nn(ℓ)2 + 2

∑

m≤ℓ−1

E[ξℓξm]Nn(ℓ)Nn(m)



 .

Indeed, we have :

t2

2n
3
2

E

[∣

∣

∣Zk − Z̃k

∣

∣

∣

]

≤ t2

n
3
2

α(k+1)−1
∑

ℓ=α(k)

∑

m≤ℓ−1

|E[ξℓξm]| ‖Nn(ℓ)‖2‖Nn(m) − Nn(ℓ)‖2

≤ t2

n
3
2

5K
√

n

L

∑

p≥1

|E[ξ0ξp]|C1

√
nC2n

1
4

√

1 + p.

The sum over k = (r + 1)3, ..., L − 1 of these quantities is less than :

t2

n
1
4

5KC1C2

∑

p≥1

√

1 + p|E[ξ0ξp]|,

which goes to zero when n goes to infinity. Hence, there exists some n0 ≥ L4

4K2 such that, for
any integer n ≥ n0, this sum is less than ε

10 .

– Hence we have to estimate :

G̃n,k,L,j0,j1 =
t2

2n
3
2

E

[∣

∣

∣E
[

(Wk)2 + 2WkYk

∣

∣ (Sp)p

]

− Z̃k

∣

∣

∣

]

.

We have :

E
[

(Wk)2
∣

∣ (Sp)p

]

=

α(k+1)−1
∑

ℓ=α(k)



E[(ξℓ)
2](Nn(ℓ))2 + 2

ℓ−1
∑

m=α(k)

E[ξℓξm]Nn(ℓ)Nn(m)



 .

Hence we have :

E
[

(Wk)2 + 2WkYk

∣

∣ (Sp)p

]

=

α(k+1)−1
∑

ℓ=α(k)



E[(ξℓ)
2](Nn(ℓ))2 + 2

ℓ−1
∑

m=α
(k−(r+1)j0+1)

E[ξℓξm]Nn(ℓ)Nn(m)



 .

We get :

G̃n,k,L,j0,j1 =
t2

n
3
2

E





∣

∣

∣

∣

∣

∣

α(k+1)−1
∑

ℓ=α(k)

∑

m≤α
(k−(r+1)j0 +1)

−1

E[ξℓξm]Nn(ℓ)Nn(m)

∣

∣

∣

∣

∣

∣





≤ t2

n
3
2

5K
√

n

L

∑

m≥(r+1)j0
K

√
n

L

|E[ξ0ξm]|(C1)
2n.

The sum over k = (r + 1)3, ..., L − 1 of these quantities is less than :

t25K
∑

m≥(r+1)j0
K

√
n

L

|E[ξ0ξm]|(C1)
2,

which goes to zero when n goes to infinity. Hence, there exists some n′
0 ≥ n0 such that, for any

integer n ≥ n0, this sum is less than ε
10 .
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• Control of the covariance terms.

Let j0, j1 be fixed. Let k = (r + 1)3, ..., L − 1. We have :

Dn,k,L,j0,j1 ≤

∣

∣

∣

∣

∣

∣

E



Cov|(Sp)p





k−(r+1)j1
∏

m=0

bm,n,L,

k
∏

m=k−(r+1)j0+1

bm,n,L





L
∏

m′=k+1

am′,n,L





∣

∣

∣

∣

∣

∣

+

+

∣

∣

∣

∣

∣

∣

E



Cov|(Sp)p





k−(r+1)j1
∏

m=0

bm,n,L,

k−1
∏

m=k−(r+1)j0+1

bm,n,L





L
∏

m′=k

am′,n,L





∣

∣

∣

∣

∣

∣

.

But we have :

α+β
∏

m=α

bm,n,L = exp







it

n
3
4

−⌈K√
n⌉+(α+β+1)

⌊

2⌈K
√

n⌉+1
L

⌋

−1
∑

ℓ=−⌈K√
n⌉+α

⌊

2⌈K
√

n⌉+1
L

⌋

ξℓNn(ℓ)






.

Therefore, according to point 4 of the hypothesis of our theorem, we have :

Dn,k,L,j0,j1 ≤ 2E



C

(

1 +
|t|
n

3
4

∑

ℓ∈Z

Nn(ℓ)

)

(

rK
√

n

2L

)− 1
2

sup
s≥r

K
√

n

2L

√
sϕrs,s



 .

Hence, we have :

L−1
∑

k=(r+1)3

Dn,k,L,j0,j1 ≤ 2CL
√

LC(1 + |t|n 1
4 )

n− 1
4

√
2√

rK
sup

s≥r
K

√
n

2L

√
sϕrs,s.

which goes to zero as n goes to infinity. Hence, there exists some N0 ≥ n′
0 such that, for any integer

n ≥ n0, this sum is less than ε
10 .

Therefore, there exists N0 (depending on t and on ε) such that, for any integer n ≥ N0, we have :

∣

∣

∣

∣

∣

∣

E

[

exp

(

it

n
3
4

∑

ℓ∈Z

ξℓNn(ℓ)

)]

− E



exp



− t2

2n
3
2

∑

ℓ,k∈Z

E[ξℓξk]Nn(ℓ)2









∣

∣

∣

∣

∣

∣

< ε.

This ends the step 1 of our proof.

5.2 Step 2 : Conclusion

In the previous section we proved that :

lim
n→+∞

∣

∣

∣

∣

∣

∣

E

[

exp

(

it

n
3
4

∑

ℓ∈Z

ξℓNn(ℓ)

)]

− E



exp



− t2

2n
3
2

∑

ℓ,k∈Z

E[ξℓξk]Nn(ℓ)2









∣

∣

∣

∣

∣

∣

= 0.

According to [13] lemma 6, we know that :
(

1

n
3
2

∑

ℓ∈Z
Nn(ℓ)2

)

n≥1
converges in distribution to Z1 :=

∫

R
(L1(x))2 dx. Hence, we get :

lim
n→+∞

E

[

exp

(

it

n
3
4

∑

ℓ∈Z

ξℓNn(ℓ)

)]

= E

[

exp

(

− t2

2

∑

k∈Z

E[ξ0ξk]

∫

R

(L1(x))2 dx

)]

.
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