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A unifying framework for seed sensitivity and its applicatito
subset seeds

Gregory Kucherov Laurent No& Mikhail Roytberd®

Abstract

We propose a general approach to compute the seed sewpsitidt can be applied to different
definitions of seeds. It treats separately three comporadrttee seed sensitivity problem — a set of
target alignments, an associated probability distrilbytamd a seed model — that are specified by distinct
finite automata. The approach is then applied to a new cordeqtbset seed®r which we propose
an efficient automaton construction. Experimental restdisfirm that sensitive subset seeds can be
efficiently designed using our approach, and can then beinsédilarity search producing better results
than ordinary spaced seeds.

1 Introduction

In the framework of pattern matching and similarity seantlbiological sequences, seeds specify a class
of short sequence motif which, if shared by two sequencesassumed to witness a potential similarity.
Spaced seeds have been introduced several year§ dgb [Bidl8hee been shown to improve significantly
the efficiency of the search. One of the key problems assatiatth spaced seeds is a precise estimation
of the sensitivity of the associated search method. Thimitant for comparing seeds and for choosing
most appropriate seeds for a sequence comparison probleniven

The problem of seed sensitivity depends on several compmnéiirst, it depends on theeed model
specifying the class of allowed seeds and the way that seatthrhit) potential alignments. In the basic
case, seeds are specified by binary words of certain leagtr( possibly with a constraint on the number
of 1's (weigh). However, different extensions of this basic seed modet theen proposed in the literature,
such as multi-seed (or multi-hit) strategids [2} L[4, 18kdséamilies [1J7[20[ 23] 164, P?] 6], seeds over
non-binary alphabet$][9,119], vector se€ldd]4, 6].

The second parameter is the clasdarfet alignmentghat are alignment fragments that one aims to
detect. Usually, these agaplessalignments of a given length. Gapless alignments are easptl, in the
simplest case they are represented by binary sequencesrimatich/mismatch alphabet. This representation
has been adopted by many authdrg [I8[1LB.]5[]10/] 7, 11]. Theyhiepresentation, however, cannot distin-
guish between different types of matches and mismatchesisariearly insufficient in the case of protein
sequences. I{][4] 6], an alignment is represented by a segwémeal numbers that aseoresof matches
or mismatches at corresponding positions. A related, butiifferent approach is suggested [n][19], where
DNA alignments are represented by sequences on the terirgbat of match/transition/transversion.
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Finally, another generalization of simple binary sequeneas considered i [[L5], where alignments are
required to bdhomogeneoys.e. to contain no sub-alignment with a score larger tharettitire alignment.

The third necessary ingredient for seed sensitivity edtonas the probability distribution on the set of
target alignments. Again, in the simplest case, alignmegtisnces are assumed to obey a Bernoulli model
[L8, [£@]. In more general settings, Markov or Hidden Markoodels are considered][f7, 5]. A different
way of defining probabilities on binary alignments has bedet in [15]: all homogeneous alignments of a
given length are considered equiprobable.

Several algorithms for computing the seed sensitivity fiffecent frameworks have been proposed in
the above-mentioned papers. All of them, however, use a amdynamic programming (DP) approach,
first brought up in[18].

In the present paper, we propose a general approach to dogpoe seed sensitivity. This approach
subsumes the cases considered in the above-mentioned papérallows to deal with new combinations
of the three seed sensitivity parameters. The underlyiag af our approach is to specify each of the three
components — the seed, the set of target alignments, anddbahjlity distribution — by a separate finite
automaton.

A deterministic finite automaton (DFA) that recognizes dijraments matched by given seeds was
already used in[]7] for the case of ordinary spaced seedshidrpaper, we assume that the set of target
alignments is also specified by a DFA and, more importartigt the probabilistic model is specified by a
probability transducer a probability-generating finite automaton equivalent tdM with respect to the
class of generated probability distributions.

We show that once these three automata are set, the sedil/ggresin be computed by a unique gen-
eral algorithm. This algorithm reduces the problem to a astetjon of the total weight over all paths in an
acyclic graph corresponding to the automaton resultingnfiee product of the three automata. This com-
putation can be done by a well-known dynamic programmingrétyn [P],[IR] with the time complexity
proportional to the number of transitions of the resultingoanaton. Interestingly, all above-mentioned
seed sensitivity algorithms considered by different axgloan be reformulated as instances of this general
algorithm.

In the second part of this work, we study a new conceputifset seeds an extension of spaced seeds
that allows to deal with a non-binary alignment alphabet, ardthe other hand, still allows an efficient
hashing method to locate seeds. For this definition of segdsjefine a DFA with a number of states
independent of the size of the alignment alphabet. Redur#tktcase of ordinary spaced seeds, this DFA
construction gives the same worst-case number of statée ashib-Corasick DFA used iff][7]. Moreover,
our DFA has always no more states than the DFAJof [7], and Hastantially less states on average.

Together with the general approach proposed in the first partDFA gives an efficient algorithm for
computing the sensitivity of subset seeds, for differeassés of target alignments and different probability
transducers. In the experimental part of this work, we confitis by running an implementation of our
algorithm in order to design efficient subset seeds for iiffeprobabilistic models, trained on real genomic
data. We also show experimentally that designed subses s#led to find more significant alignments than
ordinary spaced seeds of equivalent selectivity.

2 General Framework

Estimating the seed sensitivity amounts to compute thegtitity for a random word (target alignment),
drawn according to a given probabilistic model, to belong @iven language, namely the language of all
alignments matched by a given seed (or a set of seeds).



2.1 Target Alignments

Target alignments are represented by words over an alignatigimabetA. In the simplest case, consid-
ered most often, the alphabet is binary and expresses a matahmismatch occurring at each align-
ment column. However, it could be useful to consider largphabets, such as the ternary alphabet of
match/transition/transversion for the case of DNA (§eB)[TEhe importance of this extension is even more
evident for the protein casd[[6]), where different typeamiino acid pairs are generally distinguished.

Usually, the set of target alignments is a finite set. In theeazonsidered most oftefi J1[8] 13,[5] 10,
fi, [11], target alignments are all words of a given length This set is trivially a regular language that
can be specified by a deterministic automaton with+ 1) states. However, more complex definitions of
target alignments have been considered (see E.§). [15]pimato capture more adequately properties of
biologically relevant alignments. In general, we assunat tihe set of target alignments is a finite regular
languagel; € A* and thus can be represented by an acyclic OFA< Qr, ¢%, ¢, A, ¥r >.

2.2 Probability Assignment

Once an alignment languader has been set, we have to define a probability distributiorherwtords of
L7. We do this using probability transducers.

A probability transducer is a finite automaton without fintltes in which each transition outputs a
probability.

Definition 1. A probability transducelG over an alphabet is a 4-tuple< Qg, q%, A, pa >, whereQg is
a finite set of statesq% € Q¢ is an initial state, andg : Qg x A x Qg — [0, 1] is a real-valued probability
function such that

\V/q € QG7 Zq/eQG@eA pG(Q7 a, q/) =1

A transition of G is a triplete =< ¢, a,q > such thatp(q,a,q’) > 0. Lettera is called thelabel of e
and denotedabel(e). A probability transduceé is deterministidf for eachqg € Q¢ and each: € A, there
is at most one transitior ¢, a, ¢’ >. For each pattP = (eq, ..., e, ) in G, we define itdabelto be the word
label(P) = label(ey)...label(e,,), and the associated probability to be the progidt) = 1", pc(e;). A
path isinitial, if its start state is the initial statg’, of the transduce€.

Definition 2. Theprobability of a wordw € A* according to a probability transducgr=< Qg¢, q%, A, pa >,
denotedP (w), is the sum of probabilities of all initial paths @ with the labelw. P (w) = 0 if no such
path exists. The probabilitPP; (L) of a finite languagd. C .4* according a probability transducét is

defined byPg (L) = >, c1, Pa(w).

Note that for any: and forL = A™ (all words of lengthn), Po (L) = 1.

Probability transducers can express common probabil#tiyidutions on words (alignments). Bernoulli
sequences with independent probabilities of each synfilgh[Iq,[1L] can be specified with deterministic
one-state probability transducers. In Markov sequencesds & [[7, R3], the probability of each symbol
depends ork previous symbols. They can therefore be specified by a detistio probability transducer
with at most|.A|* states.

A Hidden Markov model (HMM) [[B] corresponds, in general, ta@n-deterministic probability trans-
ducer. The states of this transducer correspond to thedhjdstates of the HMM, plus possibly an ad-
ditional initial state. Inversely, for each probabilityatrsducer, one can construct an HMM generating the
same probability distribution on words. Therefore, notedainistic probability transducers and HMMs
are equivalent with respect to the class of generated pilapatistributions. The proofs are straightforward
and are omitted due to space limitations.



2.3 Seed automata and seed sensitivity

Since the advent of spaced seddi§ [8, 18], different extessibthis idea have been proposed in the literature
(see Introduction). For all of them, the set of possibleratignt fragments matched by a seed (or by a set
of seeds) is a finite set, and therefore the set of matchednadigts is a regular language. For the original
spaced seed model, this observation was used by Buhlef@laho proposed an algorithm for computing
the seed sensitivity based on a DFA defining the languageagrfraénts matched by the seed. In this paper,
we extend this approach to a general one that allows a unifmmputation of seed sensitivity for a wide
class of settings including different probability distritons on target alignments, as well as different seed
definitions.

Consider a seed (or a set of seedsinder a given seed model. We assume that the set of alignihgnts
matched byr is a regular language recognized by a DFA=< Qs ¢2, QE,A,#JS >. Consider a finite
set Ly of target alignments and a probability transdu@erUnder this assumptions, the sensitivityzofs
defined as the conditional probability

PG (LT N Lﬂ) (l)
Pa(Lr)

An automaton recognizing = L N L, can be obtained as the product of autoni&tand S, recog-
nizing L7 and L, respectively. LetX =< Q, ¢%, Qf(,A, i > be this automaton. We now consider the
productiW of K andG, denotedK x G, defined as follows.

Definition 3. Given a DFAK =< Qk, ¢%, @}, A,y x > and a probability transducét =< Q¢, ¢, A, pc: >,
the product ofK” andG is theprobability-weighted automatoW =< Qw, ¢%,, QL. A, pw > (for short,
PW-automatopsuch that

o Qw = Qk X Qa,
o ¢y = (¢%,q2),
o ¢l = {(ax,q0)lax € Q%1

pclaa,a,qz) ik (gk,a) = gk,

o pw((ax,qa),a, (@x-q) = {0 otherwise

W can be viewed as a non-deterministic probability transdwité final statespw ((¢x, 9a) a, (¢ a¢))
is theprobability of the transition< (¢x, gc), a, (¢%, qi;) >. A path inW is calledfull if it goes from the
initial to a final state.

Lemma 4. LetG be a probability transducer. Lét be a finite language anfl” be a deterministic automaton
recognizingL. LetW = G x K. The probabilityPs (L) is equal to sum of probabilities of all full paths in
Ww.

Proof. Since K is a deterministic automaton, each warde L corresponds to a single accepting path in
K and the paths i labeledw (see Definitiod]1) are in one-to-one correspondence witliuhpath in 1
acceptingw. By definition, Ps(w) is equal to the sum of probabilities of all pathsGhlabeledw. Each
such path corresponds to a unique patlilinwith the same probability. Therefore, the probabilityuofs
the sum of probabilities of corresponding pathdlin Each such path is a full path, and paths for distinct
wordsw are disjoint. The lemma follows. O



2.4 Computing Seed Sensitivity

Lemma[# reduces the computation of seed sensitivity to a atatipn of the sum of probabilities of paths
in a PW-automaton.

Lemma 5. Consider an alignment alphabet, a finite setL; C A* of target alignments, and a sét, C
A* of all alignments matched by a given seedLet K =< Qx,q¢?,Q%, A, g > be an acyclic DFA
recognizing the languagé = Lt N L. Let furtherG =< Qg¢, ¢%, A, p > be a probability transducer
defining a probability distribution on the sét-. ThenP (L) can be computed in time

O(1Qcl* - 1Qx| - |Al) )

and space

O(|Qcl - [Qx|)- 3)

Proof. By Lemma[4, the probability of. with respect taG can be computed as the sum of probabilities of
all full paths inW. SinceK is an acyclic automaton, soi%. Therefore, the sum of probabilities of all full
paths inWV leading to final stateg/;, can be computed by a classical DP algoritjn] [21] applied yolac
directed graphs [[12] presents a survey of applicationisftéchnique to different bioinformatic problems).
The time complexity of the algorithm is proportional to thewber of transitions iWV. W has|Q¢| - |Q k|
states, and for each letter &f each state has at mad€)| outgoing transitions. The bounds follow. [

Lemma[b provides a general approach to compute the seedivignsTo apply the approach, one has
to define three automata:

¢ adeterministic acyclic DFA" specifying a set of target alignments over an alphabgt.g. all words
of a given length, possibly verifying some additional pndigs),

¢ a(generally non-deterministic) probability transdu€especifying a probability distribution on target
alignments (e.g. Bernoulli model, Markov sequence of okdétMM),

e a deterministic DFAS,; specifying the seed model via a set of matched alignments.

As soon as these three automata are defined, Lefjima 5 can b esedpute probabilitie®q(Lr N L)
andPg(Lr) in order to estimate the seed sensitivity according]to (1).

Note that if the probability transducét is deterministic (as it is the case for Bernoulli models orkba
sequences), then the time complexfly (20§Q¢|-|Qx|-|.A|). In general, the complexity of the algorithm
can be improved by reducing the involved automata. Buhlel.ef[f] introduced the idea of using the
Aho-Corasick automatorj][1] as the seed automatpfor a spaced seed. The authors[bf [7] considered all
binary alignments of a fixed length distributed according to a Markov model of order In this setting,
the obtained complexity wa8(w2°~*2*n), wheres andw are seed’s span and weight respectively. Given
that the size of the Aho-Corasick automatonQéw2°~"), this complexity is automatically implied by
Lemma[}, as the size of the probability transduceP{g”), and that of the target alignment automaton is
O(n). Compared to[]7], our approach explicitly distinguishes diescriptions of matched alignments and
their probabilities, which allows us to automatically exdehe algorithm to more general cases.

Note that the idea of using the Aho-Corasick automaton cappbted to more general seed models than
individual spaced seeds (e.g. to multiple spaced seedsjrteg out in [}]). In fact, all currently proposed
seed models can be described by a finite set of matched aligrfragments, for which the Aho-Corasick
automaton can be constructed. We will use this remark im taetions.



The sensitivity of a spaced seed with respect to an HMM-$ipegprobability distribution over binary
target alighments of a given lengthwas studied by Brejova et al[][5]. The DP algorithm ff [5] has a
lot in common with the algorithm implied by Lemnj& 5. In padiiar, the states of the algorithm di [5]
are triples< w,¢,m >, wherew is a prefix of the seed, ¢ is a state of the HMM, andn € [0..n].
The states therefore correspond to the construction ishiyeLemma]s. However, the authors pff [5] do
not consider any automata, which does not allow to optimieepgreprocessing step (counterpart of the
automaton construction) and, on the other hand, does et il extend the algorithm to more general seed
models and/or different sets of target alignments.

A key to an efficient solution of the sensitivity problem ransathe definition of the seed. It should be
expressive enough to be able to take into account propefie®logical sequences. On the other hand, it
should be simple enough to be able to locate seeds fast ared &m @fficient algorithm for computing seed
sensitivity. According to the approach presented in thitige, the latter is directly related to the size of a
DFA specifying the seed.

3 Subset seeds

3.1 Definition

Ordinary spaced seeds use the simplest possible binarghamgitmatch” alignment model that allows an
efficient implementation by hashing all occurring comhbimag of matching positions. A powerful gener-
alization of spaced seeds, callegctor seedshas been introduced if] [4]. Vector seeds allow one to use an
arbitrary alignment alphabet and, on the other hand, peocaifiexible definition of a hit based on a coopera-
tive contribution of seed positions. A much higher expressss of vector seeds lead to more complicated
algorithms and, in particular, prevents the applicatiodiofct hashing methods at the seed location stage.

In this section, we considexubset seedhat have an intermediate expressiveness between spaged an
vector seeds. It allows an arbitrary alignment alphabet andhe other hand, still allows using a direct
hashing for locating seed, which maps each string to a uregtry of the hash table. We also propose a
construction of a seed automaton for subset seeds, diffieoen the Aho-Corasick automaton. The automa-
ton hasO(w2°~") statesregardless of the size of the alignment alphalvgteres andw are respectively
the span of the seed and the number of “must-match” positibBnsm the general algorithmic framework
presented in the previous section (Lemfha 5), this implies the seed sensitivity can be computed for
subset seeds with same complexity as for ordinary spacat$.séote also that for the binary alignment
alphabet, this bound is the same as the one implied by theQéhtasick automaton. However, for larger
alphabets, the Aho-Corasick construction lead9ta|.4|°~") states. In the experimental part of this paper
(section[4]1) we will show that even for the binary alphalbei, automaton construction yields a smaller
number of states in practice.

Consider an alignment alphabgt. We always assume thad contains a symbol, interpreted as
“match”. A subset seei$ defined as a word overseed alphabeB, such that

e letters of 3 denote subsets of the alignment alphalietontainingt (B8 C {1} U 24),
e 3 contains a letteyt that denotes subsét },

e a subset seebh b, ...b,, € B™ matches an alignment fragmentas ... a,, € A™ if Vi € [1..m],
a; € b;.

The #-weightof a subset seed is the number of# in = and thespanof « is its length.



Examplel. [[[9] considered the alignment alphabét= {1,h,0} representing respectively a match, a
transition mismatch, or a transversion mismatch in a DNAusege alignment. The seed alphabet is
B = {#,@Q, _} denoting respectively subsefs}, {1,h}, and{1,h,0}. Thus, seedr = #Q_# matches
alignments = 10h1h1101 at positionst and6. The span ofr is 4, and the#-weight of r is 2.

Note that unlike the weight of ordinary spaced seeds#ths&eight cannot serve as a measure of seed
selectivity. In the above example, symhioishould be assigned weights, so that the weight of is equal

to 2.5 (see [IP)).

3.2 Subset Seed Automaton

Let us fix an alignment alphabet, a seed alphabé, and a seed = mmy ... 7w, € B* of spanm and
#-weightw. Let R, be the set of all nosg# positions inr, |R,| = r = m—w. We now define an automaton
Sr=<Q,q,Qs, A v :Q x A— Q > that recognizes the set of all alignments matched by

The stateg) of S, are pairs< X,¢ > such thatX C R,t € [0,...,m], with the following invariant
condition. Suppose th&t, has read a prefix; ... s, of an alignment and has come to a state X, ¢ >.
Thent is the length of the longest suffix &f ... s, of the form1¢, i < m, and X contains all positions

x; € Ry such that prefixr - - - 7., of # matches a suffix of; - - - s,;. s t
@ ( 111h1011h11. ..
YVon—#@ ##_ ### ) ri s #h
(b) T4 =H@H_
s=111h1011h11... T2 =#@

Figure 1: lllustration to Examplg 2

Example2. In the framework of Examplf 1, consider a seednd an alignment prefix of lengthp = 11
given on Figurg]l(a) and (b) respectively. The lengtf the last run oft’s of s is 2. The last mismatch
position of s is sy = h. The setR, of non-# positions ofr is {2,4,7} andw has 3 prefixes ending at
positions ofR,. (Figure[l(c)). Prefixes; » andm; 7 do match suffixes of; s, . .. sg, and prefixr;. 4 does
not. Thus, the state of the automaton after reading . .. s11 is < {2,7},2 >.

The initial stateg, of S is the state< (),0 >. The final stateg); of S, are all stateg =< X,t >,
wheremaz{X} + t = m. All final states are merged into one state.

The transition function)(q, a) is defined as follows: If is a final state, thela € A, 1(q,a) = ¢. If
q =< X,t > is a non-final state, then

o if a =1theny(q,a) =< X,t+1>,
e otherwisey(q,a) =< Xy U Xy, 0 > with

— Xy = {z|r <t+ 1 and a matches 7, }
- Xy ={x+t+ 1|z € X and a matches 71411}

Lemma 6. The automatord,. accepts the set of all alignments matchedrby

Proof. It can be verified by induction that the invariant conditiontbe statesc X, ¢t >€ @ is preserved by
the transition function). The final states verifynax{X} + ¢ = m, which implies thatr matches a suffix
of 51...5,. O



Lemma 7. The number of states of the automatgnis no more thar{w + 1)2".

Proof. Assume that?, = {z1,x9,...,2,} andx; < z9--- < z,. Let Q; be the set of non-final states
< X,t > withmaz{X} = x;,i € [1..r]. For stateg =< X,t >€ Q; there ar'~! possible values ok

andm — x; possible values of, asmax{X} +t <m — 1.
Thus,

Qi < 27 (m —a;) < 277Y(m —1i), and 4)
SRl < Y2 m—i) = (m-r+1)2 —m—1 )
i=1 i=1
Besides state§);, @ containsm states< (,¢ > (¢ € [0..m — 1]) and one final state. Thu$Q| <
(m—r+1)2"=(w+1)2". O

Note that if r starts with#, which is always the case for ordinary spaced seeds, e i + 1,
i € [1..r], and the bound of[4) rewrites &~ !(m — i — 1). This results in the same number of stateX
as for the Aho-Corasick automatd [7]. The constructionutbmatonS,, is optimal, in the sense that no
two states can be merged in general, as the following Lematesst

Lemma 8. Consider a spaced seedwhich consists of two “must-match” symbe#sseparated by jokers.
Then the automatof; is reduced, that is any non-final state is reachable from tiitéai stateqy, and any
two non-final stateg, ¢’ are non-equivalent.

Proof. See appendik]A. O

A straightforward generation of the transition table of #wtomatonsS,. can be performed in timé(r -
w-2"-|Al). Amore complicated algorithm allows one to reduce the bdor@(w - 2" - |.A|). This algorithm
is described in full details in Append[{ B. Here we summaitae the following Lemma.

Lemma 9. The transition table of automataosi, can be constructed in time proportional to its size, which
isO(w - 2" - |A|).

In the next section, we demonstrate experimentally thatverege, our construction yields a very com-
pact automaton, close to the minimal one. Together with #reegal approach of sectigh 2, this provides
a fast algorithm for computing the sensitivity of subsetdseand, in turn, allows to perform an efficient
design of spaced seeds well-adapted to the similarity sgaoblem under interest.

4 Experiments

Several types of experiments have been performed to tegirétical applicability of the results of sec-
tions [P[B. We focused on DNA similarity search, and set tiignaient alphabet to {1,h,0} (match,
transition, transversion). For subset seeds, the seedlmpB was set to{ #, @, _}, where# = {1},@Q =
{1,h},_= {1,h, 0} (see Examplf]1). The weight of a subset seed is computed igynassweightsl, 0.5
and0 to symbols#, @ and_ respectively.



4.1 Size of the automaton

We compared the size of the automafndefined in sectiof] 3 and the Aho-Corasick automagpn [1], fasth
ordinary spaced seeds (binary seed alphabet) and for sdexit. The Aho-Corasick automaton for spaced
seeds was constructed as defined]in [7]. For subset seedsightforward generalization was considered:
the Aho-Corasick construction was applied to the set ohatignt fragments matched by the seed.

Tables[lL(a) anf] 1(b) present the results for spaced seedsubret seeds respectively. For each seed
weightw, we computed the average number of stateg (size) of the Aho-Corasick automaton and our
automatonS;;, and reported the corresponding ra# With respect to the average number of states of the
minimized automaton. The average was computed over alssafezspan up tav + 8 for spaced seeds and
all seeds of span up 0+ 5 with two @’s for subset seeds. Interestingly, our automaton turngodog more

Spaced Aho-Corasick Sr Minimized Subset Aho-Corasick Sr Minimized
w avg. size é avg. size 1 avg. size w avg. size é avg. size é avg. size
9 345.94 3.06| 146.28 1.29| 11321 9 1900.65 15.97| 167.63 141 119,00
10 380.90 3.16] 155.11 1.29| 120.61 10 2103.99 16.50| 177.92 140 127.49
11 415.37 3.25| 163.81 1.28| 127.62 11 2306.32 16.96/ 188.05 1.38 135.95
12 449.47 3.33] 172.38 1.28| 134.91 12 2507.85 17.42| 198.12 1.38 144.00
13 483,27 3.41| 180.89 1.28| 141.84 13 2709.01 17.78| 208.10 1.37 152.29

(a) (b)

Table 1: Comparison of the average number of states of Aho-Corasitthi@aton, automatof;. of sectior{3
and minimized automaton

compact than the Aho-Corasick automaton not only on noasialphabets (which was expected), but also
on the binary alphabet (cf Tale 1(a)). Note that for a givesds one can define a surjective mapping from
the states of the Aho-Corasick automaton onto the stategrafuidomaton. This implies that our automaton
hasalwaysno more states than the Aho-Corasick automaton.

4.2 Seed Design

In this part, we considered several probability transdsiderdesign spaced or subset seeds. The target
alignments included all alignments of lendith on alphabet{1,h,0}. Four probability transducers have
been studied (analogous to those introduced]in [3]):

e B: Bernoulli model

e DT'1: deterministic probability transducer specifying proitiibs of {1,h, 0} at each codon position
(extension of the\/®) model of [3] to the three-letter alphabet),

e DT2: deterministic probability transducer specifying proititibs of each of the 27 codon instances
{1,h,0}? (extension of the\/®) model of [3] to the three-letter alphabet),

e NT': non-deterministic probability transducer combiningrfoapies ofDT'2 specifying four distinct
codon conservation levels (called HMM model fh [3]).

Models DT'1, DT2 and NT have been trained on alignments resulting from a pairwisepasison of40
bacteria genomes. Details of the training procedure asasdlhe resulting parameter values are given in
Appendix[¢.

For each of the four probability transducers, we computedtst seed of weight (w = 9,10, 11, 12)
among two categories: ordinary spaced seeds of weigid subset seeds of weightwith two @. Ordi-
nary spaced seeds were enumerated exhaustively up to asgiganand for each seed, the sensitivity was
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computed using the algorithmic approach of secfipn 2 andséieel automaton construction of sectfpn 3.
Each such computation took between 10 and 500ms on a PentiddGHz computer depending on the
seed weight/span and the model used. In each experimema$tesensitive seed found has been kept. The
results are presented in Tab[gf 2-5.

w | spaced seeds Sens. subset seeds, two Sens.

BiH___H # HH BB 0.4183| ### #_#0h @ 0.4443
10 | #H# HH___HH # H#HHH 0.2876 | ###_ @t @ # #HH## 0.3077
11 | ### HH#H #_# #H# 0.1906 | ##@¥_## # # @##  0.2056
12 | ### # ## #_ H# ### 0.1375| ##@ # ##_HQ@Q####  0.1481

©

Table 2: Best seeds and their sensitivity for probability transduBe

w | spaced seeds Sers. subset seeds, two Sens.
O | #HH#___HH HH HH 0.4350 | ##@__## _## #HH#@ 0.4456
10 | ## _##____## _HH _H# 0.3106 | ## ##___@# HHOH 0.3173

11 | #H_BH____HH HHE HHH 0.2126 | ## @ @Q## H#t_H#H#t# 0.2173
12 | ## ##____## ## #### 01418 | ##_@##H_## ##@H#  0.1477

Table 3: Best seeds and their sensitivity for probability transdubd'1

w | spaced seeds Senis. subset seeds, twa Sens.

#HB____HH HHHH 0.5121| # #Q##_@Q-## H#H# 0.5323
10 | ##_## #HH#____#H# #H# 0.3847 | ##_@ ##__QH#H #H# 0.4011
11 | #A #H#_##__# ## ## 02813 ## ## @ #H__H#H HQH## 0.2931
12 | ## ## ## #H__# ## ## 01972 ## ## HQHH#_Q-## H## 0.2047

©

Table 4: Best seeds and their sensitivity for probability transdubd 2

In all cases, subset seeds yield a better sensitivity thdinany spaced seeds. The sensitivity increment
varies up to 0.04 which is a notable increase. As showi ih, [it@] gain in using subset seeds increases
substantially when the transition probability is greatent the inversion probability, which is very often the
case in related genomes.

4.3 Comparative performance of spaced and subset seeds

We performed a series of whole genome comparisons in ordeortipare the performance of designed
spaced and subset seeds. Eight complete bacterial gehba@sbeen processed against each other using
the YASS software[[19]. Each comparison was done twice: dtieasspaced seed and another with a subset
seed of the same weight.

The threshold E-value for the output alignments was sé0t@nd for each comparison, the number of
alignments with E-value smaller thaf—3 found by each seed, and the number of exclusive alignmemts we
reported. By “exclusive alignment” we mean any alignmenEeofalue less tham0~3 that does not share a

INC_000907.fna, NOD02662.fna, NOD03317.fna, NOD03454.fna, NCD04113.fna, NOD01263.fna, NOD03112.fna obtained
from NCBI

10



w | spaced seeds Sens. subset seeds, two Sens.

BH_HH BH____HH# 0.5253| ##_QQ##___##t ## 0.5420
10 | ##_##____#H# #H# #H# 0.4123| ## ##____##_QO#H#H # 0.4190
11 | ## 44 __## ## ## # 03112 ## ##____##_QQH# ## 0.3219
12 | ## ##____##t ## ## ##  0.2349| ## ##____##_QOQ#H# ## # 0.2412

©

Table 5: Best seeds and their sensitivity for probability transaubd’

common part (do not overlap in both compared sequences)anmittalignment found by another seed. To
take into account a possible bias caused by splitting al@nminto smaller ones (X-drop effect), we also
computed the total length of exclusive alignments. Tfblarfiraarizes these experiments for weights 9 and
10 and theDT'2 and N'T probabilistic models. Each line corresponds to a seed giv@able[} or Tablé]5,
depending on the indicated probabilistic model. In all sabest subset seeds detect from 1% to 8% more

seed

time  #align  #ex.align ex. align length

DT2,w =9, spaced seed 15:14 19101 1583 130512
DT2,w =9, subset seed, tw@ 14:01 20127 1686 141560
DT2,w = 10, spaced seed 8:45 18284 1105 10174
DT2,w = 10, subset seed, tw@ | 8:27 18521 1351 12213
NT,w =9, spaced seed 42:23 20490 1212 136049
NT,w =9, subset seed, tw@ 41:58 21305 1497 150127
NT,w = 10, spaced seed 11:45 19750 942 85208
NT,w = 10, subset seed, w@ | 10:31 21652 1167 91240

Table 6: Comparative test of subset seeds vs spaced seeds. Repa@tetian times (min:sec) were ob-
tained on a Pentium IV 2.4GHz computer.

significant alignments compared to best spaced seeds ofigainlet.

5 Discussion

We introduced a general framework for computing the seesitdaty for various similarity search settings.
The approach can be seen as a generalization of methofls Bif ifY that it allows to obtain algorithms
with the same worst-case complexity bounds as those prdpgoghese papers, but also allows to obtain
efficient algorithms for new formulations of the seed sévigit problem. This versatility is achieved by
distinguishing and treating separately the three ingredief the seed sensitivity problem: a set of target
alignments, an associated probability distributions, asded model.

We then studied a new conceptsafbset seedshich represents an interesting compromise between the
efficiency of spaced seeds and the flexibility of vector seEdsthis type of seeds, we defined an automaton
with O(w2") states regardless of the size of the alignment alphabetstawed that its transition table can
be constructed in tim&(w2"|.A|). Projected to the case of spaced seeds, this constructies tjie same
worst-case bound as the Aho-Corasick automatofi of [7],dsutlts in a smaller number of states in practice.
Different experiments we have done confirm the practicatiefficy of the whole method, both at the level
of computing sensitivity for designing good seeds, as welising those seeds for DNA similarity search.

As far as the future work is concerned, it would be intergstm study the design of efficient spaced
seeds for protein sequence search (See [6]), as well as toimerspaced seeds with other techniques such
as seed familieg [1T,12P,]16] or the group hit criteripr [19].
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A Proof of Lemmafg

Letm™ = # —" # be a spaced seed of spant 2 and weight2. We prove that the automatdsi. (see
Lemma[p) is reduced, i.e.

(i) all its non-final states are reachable from the initiatst (),0 >;

(i) any two non-final stateg, ¢’ are non-equivalent, i.e. there is a ward= w(q, ¢’) such that exactly
one of the stateg(q, w), ¥ (¢’ , w) is a final state.

() Let ¢ =< X,t > be a state of the automataty, and letX = {zy,...,zr} andzy < -+ < .
Obviously, z, +t < r + 2. Lets € {0,1}* be an alignment word of length; such that for alli
1,z], s; = 1iff 35 € [1,k], i = x, —x; + 1. Note, thatr; = #, thereforel ¢ X ands,, = 0.
Finally, (< ¢,0 >,s- 1%) = q.

(i) Let 1 =< X3,t1 > andga =< Xo,t2 > be non-final states of.. Let X7 = {y1,...,4.}, X2 =
{z1,...,zpfandy; < -+ < yq, 21 < -+ < 2.

Assume thatnaz{X;} + t1 > maz{Xa} + t2 and letd = (r + 2) — (maz{X;} + t1). Obviously,
¥(q1,1%) is a final state, and(g2, 1¢) is not. Now assume thataxz{X,} + t; = maxz{Xs} + t,. Fora
setX C {1,...,r+ 1} and a numbet, define a sei {t} by X{t} = {v+t|jv € X andv +t < r + 2}.
Letg = max{v|(v+1t; € X1 andv+1ts ¢ Xo)or (v+ty € Xoandv+t; ¢ Xy)}andletd=r+1—g
. Theny(q1,0¢ - 1) is a final state ang)(go, 0% - 1) is not or vice versa. This completes the proof.

B Subset seed automaton

Let w be a subset seed gf-weightw and spars, andr = s — w be the number of nogt positions. We
define a DFAS,. recognizing all words of4* matched byr (see definition of sectioh 3.1). The transition
table of S, is stored in an array such that each element describes astéte > of S.. Now we define

1. how to compute the array indéxd(q) of a statey =< X, ¢ >,

2. how to compute valueg(q, a) given a state and a letten € A.

B.1 Encoding state indexes

We will need some notation. Lét = {/1,...,[,} be a set of all nos# positions inw (I; <la < -+ <1,).
For a subsefX C L, letv(X) = v;...v, € {0,1}" be a binary vector such that = 1iff [; € X. Let
furthern(X) be the integer corresponding to the binary representaiian (read from left to right):

T
n(X) = 221171 - ;.
j=1

Definep(t) = max{p | I, < m — t}. Informally, for a given non-final state X,¢ >, X can only be a
subset of{l1, .. ., L, }- This implies thatn(X) < 2¢(). Then, the index of a given stafec X, ¢ >} inthe
array is defined by

Ind(< X,t >) =n(X) + 2°®).

This implies that the worst-case size of the array is no mugie ©2" (the proof is similar to the proof of

Lemmalf).
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B.2 Computing transition function (g, a)

We compute values (< X,t¢ >, a) based on already computed valugs< X', ¢t >,a). Letq =< Xt >
be a non-final and reachable stateSaf whereX = {ly,..., Iy} withly < lo--- < [ andk < r. Let
X' =X \{lg}={l,...,lk-1} and¢’ =< X', ¢t >. Then the following lemma holds.

Lemma 10. If ¢ =< X, t > is reachable, thep’ =< X', t > is reachable and has been processed before.

Proof. First prove thatc X’ ¢ > is reachable. Ik X,t > is reachable, thert X,0 > is reachable due
to the definition of transition function far > 0. Thus, one can find at least one sequefice A% such
thatvi € [1..r], l; € X iff 71 ---m, matchesS;, ;41 --- 5, . For such a sequencs one can find a word
S" = Sy —1,_,+1 - S, which reaches state X’,0 >. To conclude, if there exists a woisi - 1t that
reaches the state X, ¢ >, there also exists a worg! - 1 that reachesc X' t >.

Note that agS’ - 1¢| < |S - 1¢|, then a breadth-first computation of statesSpfalways processes state
< X' t > before< X, t >. O

Now we present how to compute values< X, ¢ >, a) from valuesy(< X', ¢ >, a). This is done by
Algorithm shown below, that we comment on now. Due to ienpéntation choices, we represent a state
q as tripleq = (X, kx,t), wherekx = max{i|l; € X}. Note first that ifa = 1, the transition function
(g, a) can be computed in constant time due to its definition (paof Algorithm B.2). If a # 1, we have

to
1. retrieve the index of giveng = (X, kx, t) (part c. of Algorithm[B-P),

2. compute)((X, kx,t),a # 1) giveny((X' kx:,t),a # 1) value. (part d. of Algorithnj B]2)

1. Note first thatind((X, kx,t)) = Ind((X', kx:,t)) — 2¥x, which can be computed in constant time
sinceky is explicitly stored in the current state.

2. Let
l; ifl;=1I;+t+1and amatches m,
() otherwise

Vx(k,t,a #1) = {

and
i ifly=1y+t+1and amatches m,

Vi(k, t,a#1) = .
k #1) {0 otherwise
TablesVx (k,t,a) andV;(k, t, a) can be precomputed in time and spétigA|-m?). Lety((X, kx,t),a) =
(Y, ky,0) andyp((X', kx/,t),a) = (Y', kys,0). The setY differs from Y’ at most with one element.
This element can be computed in constant time using tabled,. NamelyY = Y’ U Vx (kx,t,a) and
ky = max(ky:, Vi(kx,t,a)).
Note that a final situation arises whéh= (). (part b. of Algorithm[B]). One also has to compute two
tablesUx, U, defined as:
Ux(t,a #1) = U{z|r <t+1anda matches m,}
Ur(t,a #1) = max{z|x <t+1and a matches m,}

Lemma 11. The transition function)(q, a) can be computed in constant time for every reachable gtate
and everyn € A.
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Algorithm 1: S, computation

Data :a seedr of spanm, '#’-weightw, and number of jokers = m — w
Result : an automatorb, =< Q, qo, qr, A, 1 >
Q.add(qr);
Gg— (X=0,k=0,t=0);
Q-add(qo);
queue.push(qo);
while queue # 0 do
(X, kx,tx) = queue.pop();
for a € Ado
I* computey(< X, tx >,a) = (Y, ky,ty) */
if @ = 1then
ty —tx +1;
a k‘y — k‘X;
Y — X;
else
if X =0 then
b Y — Ux(tx,a);
ky «— Uk(tx,a);
else
I* use already processed(< X' tx: >,a)...*
c X' — X\ {l, };
<YI, ky/,ty/> — ¢(< X/,t >,a);
[*...to compute)(< X, tx >,a)*
d kyHmax(ky/,Vk(kx,tx,a));
B Y «~Y'U Vx(kx,tx,a);
L iy < 0;
if L[k‘y] + ty > mthen
[* <Y, ty >is afinal state */
Y(< X, tx >,a) < qr;
else
if <Y, ky, ty> ¢ Q then
L Q.add((Y, ky ,ty));
queue.push({Y, ky ,ty));

L 1/}(< X7tX >7a) — <Ya kY7tY>;
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C Training probability transducers

We selected 40 bacterial complete genomes from NE8&000117.fna, NQ000907.fna, NGD00909.fna, NCD00922.fna,
NC_000962.fna, N0D01263.fna, NQD01318.fna, N0D02162.fna, N0D02488.fna, N0D02505.fna, NOD02516.fna, NCD02662.fna,
NC_002678.fna, NAD02696.fna, NQ002737.fna, NG)02927.fna, NQ003037.fna, NQD03062.fna, NCD03112.fna, NAD03210.fna,
NC_003295.fna, NQD03317.fna, NQD03454.fna, NOD03551.fna, NOD03869.fna, NOD03995.fna, NQD04113.fna, NCD04307.fna,
NC_004342.fna, NQD04551.fna, NQD04631.fna, NQ)04668.fna, NQD04757.fna, NQD05027.fna, NCD05061.fna, NCD05085.fna,
NC_005125.fna, NOD05213.fna, NQD05303.fna, NCD05363.fna

YASS [19] has been run on each pair of genomes to detect atigtfnwith E-value at most0—3.
Resulting ungapped regions of lengthor more have been used to train modBIE1, D12 andNT by the
maximal likelihood criterion. Tablg 7 gives thefunction of the probability transducd?7'1, that specifies
the probabilities of matcht], transition ) and transversionoj at each codon position.

a: | 0 h
p(qo,a,q1) | 0.2398 0.2945  0.4657 ﬁ'”‘a“‘) v\"(qz‘””)
plar,a,q2) | 01351 0.1526 0.7123
p(q2,a,q0) | 0.1362 0.1489 0.7150 \J@

p(ch.a,q2)

Table 7; Parameters of thé71'1 model

Table[$ specifies the probability of each codon instamgeas € A3, used to define the probability
transducerDT2.

ai\agasz : | 00 Oh 01 ho hh hi 10 ih 11
0 0.01089 0.01329 0.01311 0.01107 0.00924 0.01144 0.018801946 0.03106
h 0.01022 0.00984 0.01093 0.00956 0.01025 0.01294 0.0215325852 0.03983
1 0.02083 0.02158 0.02554 0.02537 0.02604 0.03776 0.112986165 0.27915

Table 8: Probability of each codon instance specified by g2 model

Finally, Table[P specifies the probability transducéf” by specifying the fourDT2 models together
with transition probabilities between the initial staté®ach of these models.

Pr(g; —»q;) | j=0 1 2 3
1=0 0.9053 0.0947 O 0
1 0.1799 0.6963 0.1238 0
2 0 0.2131 0.6959 0.0910
3 0.0699 0.0413 0.1287 0.7601
ai\agasz : | 00 Oh 01 ho hh hi 10 ih 11
0 0.01577 0.01742 0.01440 0.01511 0.01215 0.01135 0.025002383 0.02786
go:h 0.01478  0.01365 0.01266 0.01348 0.01324 0.01346 0.028132981 0.03442
1 0.02701  0.02838 0.02600 0.03429 0.03158 0.03406 0.129737461 0.17809
0 0.00962 0.01241 0.01501 0.00891 0.00753 0.01247 0.0179D1841 0.03530
qi:h 0.00818 0.00766 0.01115 0.00738 0.00952 0.01353 0.018282978  0.04405
1 0.01946 0.01682 0.02344 0.02456 0.02668 0.03890 0.121138170 0.26020
0 0.00406 0.00692 0.00954 0.00501 0.00372 0.00841 0.0103491129 0.03430
g2:h 0.00391 0.00396 0.00758 0.00364 0.00707 0.01473 0.01288197T5 0.05058
1 0.01250 0.01627 0.02416 0.01419 0.02071 0.04427 0.1001453D1  0.39698
0 0.00302 0.00267 0.00560 0.00289 0.00249 0.00807 0.0074@O07L0 0.03195
g3:h 0.00297 0.00261 0.00355 0.00299 0.00271 0.00935 0.0092D1148 0.04296
1 0.01035 0.01125 0.02204 0.00930 0.01289 0.04235 0.0530408163 0.59810

Table 9: Probabilities specified by th&T" model
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