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Abstract. We propose a general approach to compute the seed sensi-
tivity, that can be applied to different definitions of seeds. It treats sepa-
rately three components of the seed sensitivity problem – a set of target
alignments, an associated probability distribution, and a seed model –
that are specified by distinct finite automata. The approach is then ap-
plied to a new concept of subset seeds for which we propose an efficient
automaton construction. Experimental results confirm that sensitive sub-
set seeds can be efficiently designed using our approach, and can then be
used in similarity search producing better results than ordinary spaced
seeds.

1 Introduction

In the framework of pattern matching and similarity search in biological se-
quences, seeds specify a class of short sequence motif which, if shared by two
sequences, are assumed to witness a potential similarity. Spaced seeds have been
introduced several years ago [1,2] and have been shown to improve significantly
the efficiency of the search. One of the key problems associated with spaced seeds
is a precise estimation of the sensitivity of the associated search method. This
is important for comparing seeds and for choosing most appropriate seeds for a
sequence comparison problem to solve.

The problem of seed sensitivity depends on several components. First, it
depends on the seed model specifying the class of allowed seeds and the way that
seeds match (hit) potential alignments. In the basic case, seeds are specified by
binary words of certain length (span), possibly with a constraint on the number
of 1’s (weight). However, different extensions of this basic seed model have been
proposed in the literature, such as multi-seed (or multi-hit) strategies [3,4,2],
seed families [5,6,7,8,9,10], seeds over non-binary alphabets [11,12], vector seeds
[13,10].

The second parameter is the class of target alignments that are alignment
fragments that one aims to detect. Usually, these are gapless alignments of a
given length. Gapless alignments are easy to model, in the simplest case they
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are represented by binary sequences in the match/mismatch alphabet. This rep-
resentation has been adopted by many authors [2,14,15,16,17,18]. The binary
representation, however, cannot distinguish between different types of matches
and mismatches, and is clearly insufficient in the case of protein sequences. In
[13,10], an alignment is represented by a sequence of real numbers that are
scores of matches or mismatches at corresponding positions. A related, but yet
different approach is suggested in [12], where DNA alignments are represented
by sequences on the ternary alphabet of match/transition/transversion. Finally,
another generalization of simple binary sequences was considered in [19], where
alignments are required to be homogeneous, i.e. to contain no sub-alignment with
a score larger than the entire alignment.

The third necessary ingredient for seed sensitivity estimation is the proba-
bility distribution on the set of target alignments. Again, in the simplest case,
alignment sequences are assumed to obey a Bernoulli model [2,16]. In more
general settings, Markov or Hidden Markov models are considered [17,15]. A
different way of defining probabilities on binary alignments has been taken in
[19]: all homogeneous alignments of a given length are considered equiprobable.

Several algorithms for computing the seed sensitivity for different frameworks
have been proposed in the above-mentioned papers. All of them, however, use a
common dynamic programming (DP) approach, first brought up in [14].

In the present paper, we propose a general approach to computing the seed
sensitivity. This approach subsumes the cases considered in the above-mentioned
papers, and allows to deal with new combinations of the three seed sensitivity
parameters. The underlying idea of our approach is to specify each of the three
components – the seed, the set of target alignments, and the probability distri-
bution – by a separate finite automaton.

A deterministic finite automaton (DFA) that recognizes all alignments matched
by given seeds was already used in [17] for the case of ordinary spaced seeds. In
this paper, we assume that the set of target alignments is also specified by a DFA
and, more importantly, that the probabilistic model is specified by a probability
transducer – a probability-generating finite automaton equivalent to HMM with
respect to the class of generated probability distributions.

We show that once these three automata are set, the seed sensitivity can be
computed by a unique general algorithm. This algorithm reduces the problem to
a computation of the total weight over all paths in an acyclic graph corresponding
to the automaton resulting from the product of the three automata. This com-
putation can be done by a well-known dynamic programming algorithm [20,21]
with the time complexity proportional to the number of transitions of the re-
sulting automaton. Interestingly, all above-mentioned seed sensitivity algorithms
considered by different authors can be reformulated as instances of this general
algorithm.

In the second part of this work, we study a new concept of subset seeds –
an extension of spaced seeds that allows to deal with a non-binary alignment
alphabet and, on the other hand, still allows an efficient hashing method to
locate seeds. For this definition of seeds, we define a DFA with a number of
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states independent of the size of the alignment alphabet. Reduced to the case of
ordinary spaced seeds, this DFA construction gives the same worst-case number
of states as the Aho-Corasick DFA used in [17]. Moreover, our DFA has always
no more states than the DFA of [17], and has substantially less states on average.

Together with the general approach proposed in the first part, our DFA
gives an efficient algorithm for computing the sensitivity of subset seeds, for
different classes of target alignments and different probability transducers. In the
experimental part of this work, we confirm this by running an implementation of
our algorithm in order to design efficient subset seeds for different probabilistic
models, trained on real genomic data. We also show experimentally that designed
subset seeds allow to find more significant alignments than ordinary spaced seeds
of equivalent selectivity.

2 General Framework

Estimating the seed sensitivity amounts to compute the probability for a random
word (target alignment), drawn according to a given probabilistic model, to
belong to a given language, namely the language of all alignments matched by
a given seed (or a set of seeds).

2.1 Target Alignments

Target alignments are represented by words over an alignment alphabet A.
In the simplest case, considered most often, the alphabet is binary and ex-
presses a match or a mismatch occurring at each alignment column. However,
it could be useful to consider larger alphabets, such as the ternary alphabet of
match/transition/transversion for the case of DNA (see [12]). The importance
of this extension is even more evident for the protein case ([10]), where different
types of amino acid pairs are generally distinguished.

Usually, the set of target alignments is a finite set. In the case considered
most often [2,14,15,16,17,18], target alignments are all words of a given length
n. This set is trivially a regular language that can be specified by a determinis-
tic automaton with (n+ 1) states. However, more complex definitions of target
alignments have been considered (see e.g. [19]) that aim to capture more ade-
quately properties of biologically relevant alignments. In general, we assume that
the set of target alignments is a finite regular language LT ∈ A∗ and thus can
be represented by an acyclic DFA T =< QT , q

0
T , q

F
T ,A, ψT >.

2.2 Probability Assignment

Once an alignment language LT has been set, we have to define a probability
distribution on the words of LT . We do this using probability transducers.

A probability transducer is a finite automaton without final states in which
each transition outputs a probability.
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Definition 1. A probability transducer G over an alphabet A is a 4-tuple <
QG, q

0
G,A, ρG >, where QG is a finite set of states, q0G ∈ QG is an initial state,

and ρG : QG ×A×QG → [0, 1] is a real-valued probability function such that
∀q ∈ QG,

∑
q′∈QG,a∈A

ρG(q, a, q′) = 1.

A transition of G is a triplet e =< q, a, q′ > such that ρ(q, a, q′) > 0. Letter
a is called the label of e and denoted label (e). A probability transducer G is
deterministic if for each q ∈ QG and each a ∈ A, there is at most one transition
< q, a, q′ >. For each path P = (e1, ..., en) in G, we define its label to be the word
label (P ) = label(e1)...label (en), and the associated probability to be the product
ρ(P ) =

∏n

i=1 ρG(ei). A path is initial, if its start state is the initial state q0G of
the transducer G.

Definition 2. The probability of a word w ∈ A∗ according to a probability
transducer G =< QG, q

0
G,A, ρG >, denoted PG(w), is the sum of probabilities

of all initial paths in G with the label w. PG(w) = 0 if no such path exists. The
probability PG(L) of a finite language L ⊆ A∗ according a probability transducer
G is defined by PG(L) =

∑
w∈L PG(w).

Note that for any n and for L = An (all words of length n), PG(L) = 1.
Probability transducers can express common probability distributions on

words (alignments). Bernoulli sequences with independent probabilities of each
symbol [2,16,18] can be specified with deterministic one-state probability trans-
ducers. In Markov sequences of order k [17,6], the probability of each symbol
depends on k previous symbols. They can therefore be specified by a determin-
istic probability transducer with at most |A|k states.

A Hidden Markov model (HMM) [15] corresponds, in general, to a non-
deterministic probability transducer. The states of this transducer correspond
to the (hidden) states of the HMM, plus possibly an additional initial state. In-
versely, for each probability transducer, one can construct an HMM generating
the same probability distribution on words. Therefore, non-deterministic proba-
bility transducers and HMMs are equivalent with respect to the class of generated
probability distributions. The proofs are straightforward and are omitted due to
space limitations.

2.3 Seed automata and seed sensitivity

Since the advent of spaced seeds [1,2], different extensions of this idea have
been proposed in the literature (see Introduction). For all of them, the set of
possible alignment fragments matched by a seed (or by a set of seeds) is a
finite set, and therefore the set of matched alignments is a regular language. For
the original spaced seed model, this observation was used by Buhler et al. [17]
who proposed an algorithm for computing the seed sensitivity based on a DFA
defining the language of alignments matched by the seed. In this paper, we
extend this approach to a general one that allows a uniform computation of seed
sensitivity for a wide class of settings including different probability distributions
on target alignments, as well as different seed definitions.
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Consider a seed (or a set of seeds) π under a given seed model. We assume
that the set of alignments Lπ matched by π is a regular language recognized by
a DFA Sπ =< QS , q

0
S , Q

F
S ,A, ψS >. Consider a finite set LT of target alignments

and a probability transducer G. Under this assumptions, the sensitivity of π is
defined as the conditional probability

PG(LT ∩ Lπ)

PG(LT )
. (1)

An automaton recognizing L = LT ∩ Lπ can be obtained as the product of au-
tomata T and Sπ recognizing LT and Lπ respectively. Let K =< QK , q

0
K , Q

F
K ,A,

ψK > be this automaton. We now consider the product W of K and G, denoted
K ×G, defined as follows.

Definition 3. Given a DFA K =< QK , q
0
K , Q

F
K ,A, ψK > and a probability

transducer G =< QG, q
0
G,A, ρG >, the product of K and G is the probability-

weighted automaton W =< QW , q0W , QF
W ,A, ρW > (for short, PW-automaton)

such that QW = QK × QG, q0W = (q0K , q
0
G), qF

W = {(qK , qG)|qK ∈ QF
K},

ρW ((qK , qG), a, (q′K , q
′
G)) = ρG(qG, a, q

′
G) if ψK(qK , a) = q′K , and 0 otherwise.

W can be viewed as a non-deterministic probability transducer with final states.
ρW ((qK , qG), a, (q′K , q

′
G)) is the probability of the < (qK , qG), a, (q′K , q

′
G) > tran-

sition. A path in W is called full if it goes from the initial to a final state.

Lemma 1. Let G be a probability transducer. Let L be a finite language and K
be a deterministic automaton recognizing L. Let W = G × K. The probability
PG(L) is equal to sum of probabilities of all full paths in W .

Proof. Since K is a deterministic automaton, each word w ∈ L corresponds to a
single accepting path in K and the paths in G labeled w (see Definition 1) are in
one-to-one correspondence with the full path in W accepting w. By definition,
PG(w) is equal to the sum of probabilities of all paths in G labeled w. Each such
path corresponds to a unique path in W , with the same probability. Therefore,
the probability of w is the sum of probabilities of corresponding paths in W .
Each such path is a full path, and paths for distinct words w are disjoint. The
lemma follows.

2.4 Computing Seed Sensitivity

Lemma 1 reduces the computation of seed sensitivity to a computation of the
sum of probabilities of paths in a PW-automaton.

Lemma 2. Consider an alignment alphabet A, a finite set LT ⊆ A∗ of target
alignments, and a set Lπ ⊆ A∗ of all alignments matched by a given seed π.
Let K =< QK , q

0
t , Q

F
K ,A, ψQ > be an acyclic DFA recognizing the language

L = LT ∩ Lπ. Let further G =< QG, q
0
G,A, ρ > be a probability transducer

defining a probability distribution on the set LT . Then PG(L) can be computed
in time O(|QG|2 · |QK | · |A|) and space O(|QG| · |QK |).
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Proof. By Lemma 1, the probability of L with respect to G can be computed as
the sum of probabilities of all full paths in W . Since K is an acyclic automaton,
so is W . Therefore, the sum of probabilities of all full paths in W leading to final
states qF

W can be computed by a classical DP algorithm [20] applied to acyclic
directed graphs ([21] presents a survey of application of this technique to different
bioinformatic problems). The time complexity of the algorithm is proportional
to the number of transitions in W . W has |QG| · |QK | states, and for each letter
of A, each state has at most |QG| outgoing transitions. The bounds follow.

Lemma 2 provides a general approach to compute the seed sensitivity. To
apply the approach, one has to define three automata:

– a deterministic acyclic DFA T specifying a set of target alignments over
an alphabet A (e.g. all words of a given length, possibly verifying some
additional properties),

– a (generally non-deterministic) probability transducer G specifying a prob-
ability distribution on target alignments (e.g. Bernoulli model, Markov se-
quence of order k, HMM),

– a deterministic DFA Sπ specifying the seed model via a set of matched
alignments.

As soon as these three automata are defined, Lemma 2 can be used to compute
probabilities PG(LT ∩Lπ) and PG(LT ) in order to estimate the seed sensitivity
according to equation (1).

Note that if the probability transducer G is deterministic (as it is the case
for Bernoulli models or Markov sequences), then the time complexity is O(|QG| ·
|QK | · |A|). In general, the complexity of the algorithm can be improved by re-
ducing the involved automata. Buhler et al. [17] introduced the idea of using the
Aho-Corasick automaton [22] as the seed automaton Sπ for a spaced seed. The
authors of [17] considered all binary alignments of a fixed length n distributed
according to a Markov model of order k. In this setting, the obtained complex-
ity was O(w2s−w2kn), where s and w are seed’s span and weight respectively.
Given that the size of the Aho-Corasick automaton is O(w2s−w), this complexity
is automatically implied by Lemma 2, as the size of the probability transducer is
O(2k), and that of the target alignment automaton is O(n). Compared to [17],
our approach explicitly distinguishes the descriptions of matched alignments
and their probabilities, which allows us to automatically extend the algorithm
to more general cases.

Note that the idea of using the Aho-Corasick automaton can be applied to
more general seed models than individual spaced seeds (e.g. to multiple spaced
seeds, as pointed out in [17]). In fact, all currently proposed seed models can be
described by a finite set of matched alignment fragments, for which the Aho-
Corasick automaton can be constructed. We will use this remark in later sections.

The sensitivity of a spaced seed with respect to an HMM-specified probability
distribution over binary target alignments of a given length n was studied by
Brejova et al. [15]. The DP algorithm of [15] has a lot in common with the
algorithm implied by Lemma 2. In particular, the states of the algorithm of [15]
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are triples < w, q,m >, where w is a prefix of the seed π, q is a state of the HMM,
and m ∈ [0..n]. The states therefore correspond to the construction implied by
Lemma 2. However, the authors of [15] do not consider any automata, which
does not allow to optimize the preprocessing step (counterpart of the automaton
construction) and, on the other hand, does not allow to extend the algorithm to
more general seed models and/or different sets of target alignments.

A key to an efficient solution of the sensitivity problem remains the definition
of the seed. It should be expressive enough to be able to take into account
properties of biological sequences. On the other hand, it should be simple enough
to be able to locate seeds fast and to get an efficient algorithm for computing
seed sensitivity. According to the approach presented in this section, the latter
is directly related to the size of a DFA specifying the seed.

3 Subset seeds

3.1 Definition

Ordinary spaced seeds use the simplest possible binary “match-mismatch” align-
ment model that allows an efficient implementation by hashing all occurring
combinations of matching positions. A powerful generalization of spaced seeds,
called vector seeds, has been introduced in [13]. Vector seeds allow one to use
an arbitrary alignment alphabet and, on the other hand, provide a flexible def-
inition of a hit based on a cooperative contribution of seed positions. A much
higher expressiveness of vector seeds lead to more complicated algorithms and,
in particular, prevents the application of direct hashing methods at the seed
location stage.

In this section, we consider subset seeds that have an intermediate expressive-
ness between spaced and vector seeds. It allows an arbitrary alignment alphabet
and, on the other hand, still allows using a direct hashing for locating seed, which
maps each string to a unique entry of the hash table. We also propose a con-
struction of a seed automaton for subset seeds, different from the Aho-Corasick
automaton. The automaton has O(w2s−w) states regardless of the size of the
alignment alphabet, where s and w are respectively the span of the seed and
the number of “must-match” positions. From the general algorithmic framework
presented in the previous section (Lemma 2), this implies that the seed sensi-
tivity can be computed for subset seeds with same complexity as for ordinary
spaced seeds. Note also that for the binary alignment alphabet, this bound is the
same as the one implied by the Aho-Corasick automaton. However, for larger
alphabets, the Aho-Corasick construction leads to O(w|A|s−w) states. In the
experimental part of this paper (section 4.1) we will show that even for the bi-
nary alphabet, our automaton construction yields a smaller number of states in
practice.

Consider an alignment alphabet A. We always assume that A contains a
symbol 1, interpreted as “match”. A subset seed is defined as a word over a seed
alphabet B, such that
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– letters of B denote subsets of the alignment alphabet A containing 1 (B ⊆
{1} ∪ 2A),

– B contains a letter # that denotes subset {1},
– a subset seed b1b2 . . . bm ∈ Bm matches an alignment fragment a1a2 . . . am ∈

Am if ∀i ∈ [1..m], ai ∈ bi.

The #-weight of a subset seed π is the number of # in π and the span of π is
its length.

Example 1. [12] considered the alignment alphabet A = {1, h, 0} representing
respectively a match, a transition mismatch, or a transversion mismatch in a
DNA sequence alignment. The seed alphabet is B = {#,@, } denoting respec-
tively subsets {1}, {1, h}, and {1, h, 0}. Thus, seed π = #@ # matches alignment
s = 10h1h1101 at positions 4 and 6. The span of π is 4, and the #-weight of π
is 2.

Note that unlike the weight of ordinary spaced seeds, the #-weight cannot serve
as a measure of seed selectivity. In the above example, symbol @ should be
assigned weight 0.5, so that the weight of π is equal to 2.5 (see [12]).

3.2 Subset Seed Automaton

Let us fix an alignment alphabet A, a seed alphabet B, and a seed π = π1π2 . . . πm ∈
B∗ of span m and #-weight w. Let Rπ be the set of all non-# positions in π,
|Rπ| = r = m−w. We now define an automaton Sπ =< Q, q0, Qf ,A, ψ : Q×A →
Q > that recognizes the set of all alignments matched by π.

The states Q of Sπ are pairs < X, t > such that X ⊆ Rπ, t ∈ [0, . . . ,m], with
the following invariant condition. Suppose that Sπ has read a prefix s1 . . . sp of
an alignment s and has come to a state < X, t >. Then t is the length of the
longest suffix of s1 . . . sp of the form 1

i, i ≤ m, and X contains all positions
xi ∈ Rπ such that prefix π1 · · ·πxi

of π matches a suffix of s1 · · · sp−t.

(a) π = #@# ## ###

(b) s = 111h1011h11...

(c)

s9 t

111h1011h11...

π1..7 =#@# ##
π1..4 =#@#

π1..2 =#@

Fig. 1. Illustration to Example 2

Example 2. In the framework of Example 1, consider a seed π and an alignment
prefix s of length p = 11 given on Figure 1(a) and 1(b) respectively. The length t
of the last run of 1’s of s is 2. The last mismatch position of s is s9 = h. The set
Rπ of non-# positions of π is {2, 4, 7} and π has 3 prefixes ending at positions
of Rπ (Figure 1(c)). Prefixes π1..2 and π1..7 do match suffixes of s1s2 . . . s9, and
prefix π1..4 does not. Thus, the state of the automaton after reading s1s2 . . . s11
is < {2, 7}, 2 >.
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The initial state q0 of Sπ is the state < ∅, 0 >. The final states Qf of Sπ are
all states q =< X, t >, where max{X}+ t = m. All final states are merged into
one state.

The transition function ψ(q, a) is defined as follows: If q is a final state, then
∀a ∈ A, ψ(q, a) = q. If q =< X, t > is a non-final state, then

– if a = 1 then ψ(q, a) =< X, t+ 1 >,
– otherwise ψ(q, a) =< XU ∪XV , 0 > with

• XU = {x|x ≤ t+ 1 and a ∈ πx}
• XV = {x+ t+ 1|x ∈ X and a ∈ πx+t+1}

Lemma 3. The automaton Sπ accepts the set of all alignments matched by π.

Proof. It can be verified by induction that the invariant condition on the states
< X, t >∈ Q is preserved by the transition function ψ. The final states verify
max{X} + t = m, which implies that π matches a suffix of s1 . . . sp.

Lemma 4. The number of states of the automaton Sπ is no more than (w+1)2r.

Proof. Assume that Rπ = {x1, x2, . . . , xr} and x1 < x2 · · · < xr. Let Qi be
the set of non-final states < X, t > with max{X} = xi, i ∈ [1..r]. For states
q =< X, t >∈ Qi there are 2i−1 possible values of X and m− xi possible values
of t, as max{X} + t ≤ m − 1. Thus, |Qi| ≤ 2i−1(m − xi) ≤ 2i−1(m − i)
and

∑r

i=1 |Qi| ≤
∑r

i=1 2i−1(m − i) = (m − r + 1)2r −m − 1. Besides states
Qi, Q contains m states < ∅, t > (t ∈ [0..m − 1]) and one final state. Thus,
|Q| ≤ (m− r + 1)2r = (w + 1)2r.

Note that if π starts with #, which is always the case for ordinary spaced
seeds, then Xi ≥ i+1, i ∈ [1..r], and previous bound rewrites to 2i−1(m− i−1).
This results in the same number of states w2r as for the Aho-Corasick automaton
[17]. The construction of automaton Sπ is optimal, in the sense that no two
states can be merged in general. A straightforward generation of the transition
table of the automaton Sπ can be performed in time O(r · w · 2r · |A|). A more
complicated algorithm allows one to reduce the bound to O(w · 2r · |A|). In the
next section, we demonstrate experimentally that on average, our construction
yields a very compact automaton, close to the minimal one. Together with the
general approach of section 2, this provides a fast algorithm for computing the
sensitivity of subset seeds and, in turn, allows to perform an efficient design of
spaced seeds well-adapted to the similarity search problem under interest.

4 Experiments

Several types of experiments have been performed to test the practical applica-
bility of the results of sections 2,3. We focused on DNA similarity search, and
set the alignment alphabet A to {1, h, 0} (match, transition, transversion). For
subset seeds, the seed alphabet B was set to {#,@, }, where # = {1},@ =
{1, h}, = {1, h, 0} (see Example 1). The weight of a subset seed is computed by
assigning weights 1, 0.5 and 0 to symbols #, @ and respectively.
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4.1 Size of the automaton

We compared the size of the automaton Sπ defined in section 3 and the Aho-
Corasick automaton [22], both for ordinary spaced seeds (binary seed alphabet)
and for subset seeds (ternary seed alphabet). The Aho-Corasick automaton for
spaced seeds was constructed as defined in [17]. For subset seeds, a straightfor-
ward generalization was considered: the Aho-Corasick construction was applied
to the set of alignment fragments matched by the seed.

Tables 1(a) and 1(b) present the results for spaced seeds and subset seeds
respectively. For each seed weight w, we computed the average number of states
(avg. s.) of the Aho-Corasick automaton and our automaton Sπ, and reported
the corresponding ratio (δ) with respect to the average number of states of the
minimized automaton. The average was computed over all seeds of span up to
w+ 8 for spaced seeds and all seeds of span up to w+ 5 with two @’s for subset
seeds. Interestingly, our automaton turns out to be more compact than the Aho-

Spaced Aho-Corasick Sπ Minimized
w avg. s. δ avg. s. δ avg. s.

9 345.94 3.06 146.28 1.29 113.21
10 380.90 3.16 155.11 1.29 120.61
11 415.37 3.25 163.81 1.28 127.62
12 449.47 3.33 172.38 1.28 134.91
13 483.27 3.41 180.89 1.28 141.84

Subset Aho-Corasick Sπ Minimized
w avg. s. δ avg. s. δ avg. s.

9 1900.65 15.97 167.63 1.41 119.00
10 2103.99 16.50 177.92 1.40 127.49
11 2306.32 16.96 188.05 1.38 135.95
12 2507.85 17.42 198.12 1.38 144.00
13 2709.01 17.78 208.10 1.37 152.29

(a) (b)

Table 1. Comparison of the average number of states of Aho-Corasick automa-
ton, automaton Sπ of section 3 and minimized automaton

Corasick automaton not only on non-binary alphabets (which was expected), but
also on the binary alphabet (cf Table 1(a)). Note that for a given seed, one can
define a surjective mapping from the states of the Aho-Corasick automaton onto
the states of our automaton. This implies that our automaton has always no
more states than the Aho-Corasick automaton.

4.2 Seed Design

In this part, we considered several probability transducers to design spaced or
subset seeds. The target alignments included all alignments of length 64 on
alphabet {1, h, 0}. Four probability transducers have been studied (analogous to
those introduced in [23]):

– B: Bernoulli model
– DT 1: deterministic probability transducer specifying probabilities of {1, h, 0}

at each codon position (extension of theM (3) model of [23] to the three-letter
alphabet),

– DT 2: deterministic probability transducer specifying probabilities of each of
the 27 codon instances {1, h, 0}3 (extension of the M (8) model of [23]),

– NT : non-deterministic probability transducer combining four copies of DT 2
specifying four distinct codon conservation levels (called HMM model in
[23]).
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Models DT 1, DT 2 and NT have been trained on alignments resulting from a
pairwise comparison of 40 bacteria genomes. For each of the four probability

w spaced seeds Sens. subset seeds, two @ Sens.

9 ### # # ## ## 0.4183 ### # #@# @## 0.4443
10 ## ## ## # ### 0.2876 ### @# @# # ### 0.3077
11 ### ### # # ### 0.1906 ##@# ## # # @### 0.2056
12 ### # ## # ## ### 0.1375 ##@# # ## #@ #### 0.1481

Table 2. Best seeds and their sensitivity for probability transducer B

w spaced seeds Sens. subset seeds, two @ Sens.

9 ### ## ## ## 0.4350 ##@ ## ## ##@ 0.4456
10 ## ## ## ## ## 0.3106 ## ## @## ##@# 0.3173
11 ## ## ## ## ### 0.2126 ##@#@ ## ## ### 0.2173
12 ## ## ## ## #### 0.1418 ## @### ## ##@## 0.1477

Table 3. Best seeds and their sensitivity for probability transducer DT 1

w spaced seeds Sens. subset seeds, two @ Sens.

9 # ## ## ## ## 0.5121 # #@ ## @ ## ## 0.5323
10 ## ## ## ## ## 0.3847 ## @# ## @ ## ## 0.4011
11 ## ## # # # ## ## 0.2813 ## ## @# # # #@ ## 0.2931
12 ## ## ## # # ## ## 0.1972 ## ## #@ ## @ ## ## 0.2047

Table 4. Best seeds and their sensitivity for probability transducer DT 2

transducers, we computed the best seed of weight w (w = 9, 10, 11, 12) among
two categories: ordinary spaced seeds of weight w and subset seeds of weight w
with two @. Ordinary spaced seeds were enumerated exhaustively up to a given
span, and for each seed, the sensitivity was computed using the algorithmic
approach of section 2 and the seed automaton construction of section 3. Each
such computation took between 10 and 500ms on a Pentium IV 2.4GHz computer
depending on the seed weight/span and the model used. In each experiment, the
most sensitive seed found has been kept. The results are presented in Tables 2-5.

In all cases, subset seeds yield a better sensitivity than ordinary spaced seeds.
The sensitivity increment varies up to 0.04 which is a notable increase. As shown
in [12], the gain in using subset seeds increases substantially when the transition
probability is greater than the transversion probability, which is very often the
case in related genomes.
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w spaced seeds Sens. subset seeds, two @ Sens.

9 ## ## ## ## # 0.5253 ## @@ ## ## ## 0.5420
10 ## ## ## ## ## 0.4123 ## ## ## @@ ## # 0.4190
11 ## ## ## ## ## # 0.3112 ## ## ## @@ ## ## 0.3219
12 ## ## ## ## ## ## 0.2349 ## ## ## @@ ## ## # 0.2412

Table 5. Best seeds and their sensitivity for probability transducer NT

5 Discussion

We introduced a general framework for computing the seed sensitivity for various
similarity search settings. The approach can be seen as a generalization of meth-
ods of [17,15] in that it allows to obtain algorithms with the same worst-case
complexity bounds as those proposed in these papers, but also allows to obtain
efficient algorithms for new formulations of the seed sensitivity problem. This
versatility is achieved by distinguishing and treating separately the three ingre-
dients of the seed sensitivity problem: a set of target alignments, an associated
probability distributions, and a seed model.

We then studied a new concept of subset seeds which represents an inter-
esting compromise between the efficiency of spaced seeds and the flexibility of
vector seeds. For this type of seeds, we defined an automaton with O(w2r) states
regardless of the size of the alignment alphabet, and showed that its transition
table can be constructed in time O(w2r |A|). Projected to the case of spaced
seeds, this construction gives the same worst-case bound as the Aho-Corasick
automaton of [17], but results in a smaller number of states in practice. Different
experiments we have done confirm the practical efficiency of the whole method,
both at the level of computing sensitivity for designing good seeds, as well as
using those seeds for DNA similarity search.

As far as the future work is concerned, it would be interesting to study the
design of efficient spaced seeds for protein sequence search (see [10]), as well as
to combine spaced seeds with other techniques such as seed families [5,6,8] or
the group hit criterion [12].
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