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Abstract—The first aim of this work is to propose the design

of a System on Chip (SoC) platform dedicated to digital image
and signal processing, which is tuned to implement efficiently
multiply-and-accumulate (MAC) matrix/vector operations. The
second aim of this work is to implement a recent promising
neural network method, namely the Support Vector Machine
(SVM) used for real-time object recognition, in order to build a
vision machine. With such a reconfigurable and programmable
SoC platform, it is possible to implement any SVM function
dedicated to any object recognition problem. The final aim is to
obtain an automatic reconfiguration of the SoC platform, based
on the results of the learning phase on an objects’ database,
which makes it possible to recognize practically any object
without manual programming. Recognition can be of any kind
that is from image to signal data. Such a system is a general-
purpose automatic classifier. Many applications can be
considered as a classification problem, but are usually treated
specifically in order to optimize the cost of the implemented
solution. The cost of our approach is more important than a
dedicated one, but in a near future, hundreds of millions of
gates will be common and affordable compared to the design
cost. What we are proposing here is a general-purpose
classification neural network implemented on a reconfigurable
SoC platform. The first version presented here is limited in size
and thus in object recognition performances, but can be easily
upgraded according to technology improvements.

Index Terms— Parallel Architecture, Pattern Recognition,
Support Vector Machines, Hardware Design Language,
Systems on Programmable Chips and System on Chip
Platforms.

I. INTRODUCTION

his work relates to machine vision but considered under
the angle of the hardware design and integration. This

work will be centered on specific signal processing circuits.
We have chosen the SVM neural network algorithm as our
data classification algorithm.

Artificial neural networks became a very powerful tool
and are used for feature extraction and for high-level
decisions. They are founded on experimental data analysis
and processing. They are the basis of expert systems and
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thus used when there is an insufficient knowledge of the
studied process. It will be also possible, as mentioned in the
abstract, to use them when the design time is shortened as it
is the case with time to market constraints. The neural
networks by themselves represent a significant research
subject in the scientific and technological world since a few
tens of years. Theoretical bases, performances, architectures,
applications, hardware implementations, are some of the
studied axis [1].

A machine vision design relates also to the hardware part
of a system. For some particular applications, hardware
design goes from the study and the design of image sensors
and optics to computing units. This work is rather centered
on the computing units dedicated to application algorithms,
using a standard camera for image acquisition. In
commercial systems we frequently find architectures using
traditional processors, which provide the necessary
performances to applications. We also can find architectures
with specialized digital signal processing circuits (DSP),
which have suitable arithmetic units for the necessary
precision. Nevertheless, the regularity of image processing
and neural network algorithms cannot be completely
exploited by these types of architectures. Parallel
architectures are best adapted for hardware implementation
of vision systems and neural calculations due to their ability
to exploit the parallel nature of algorithms.

The growing scale of integration has allowed designers to
include in the same chip several parts of a system and even
the entire system. Systems-on-Chip is one of the latest ideas
on system integration. Circuits cannot be designed in a
classical way because they are more complex and different
functions (subsystems) are being integrated. Technology
allows more flexible architectures: a larger number of
integrated gates, less power consumption, higher speeds,
bigger and faster integrated memories, processors cores,
communications interfaces, etc. Object recognition system-
on-chip is a natural perspective in the machine perception
domain.

In section II of this paper we present the basic idea of the
support vector machine, in particular for classification. In
section III we explain the algorithm complexity and the
software performances of the SVM method. We briefly
present neural architectures on section V and some
application results in section VI. From section VII to section
VIII we will give the details of our proposed architecture of
the SoC platform solution and we will end our paper with
the conclusion and perspectives.
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II. THE SUPPORT VECTOR MACHINES

Twenty years ago, the neural networks knew a very
significant importance in scientific and engineering worlds.
Nowadays, industrial products are offered on the market
with real success even if we do not have the associated
physical model within the automation or the diagnosis. It is
necessary to consider the neural networks as a tool for
building an empirical model with what that supposes of
inaccuracy and risk for the application. The theory of the
statistical learning became more interesting with new results
in generalization and with the proposal of the SVM model.
Vapnik in the AT&T Bell laboratories proposed the theory
of the statistical learning [2][3]. We will very briefly present
this theory in order to introduce the generalization function.
The details of the theory can be consulted in [3].

The Theory of the SVM
The Support Vector Machines model is the most recent

proposition on neural network structures. This model is
based on the statistical learning Theory. The Support Vector
Machine model consists on a transformation of the input
vectors X in a space of higher dimension Z through a
nonlinear transformation, selected a priori. It is in this new
space Z that we can build an optimal hyperplane [3]. For the
particular case of pattern recognition, the SVM make a
distinction of two classes by finding a decision surface
constructed from certain points of the entire learning
database, called Support Vectors [4].

Vapnik proposes a representation of a SVM in the form of
one-hidden layer neural network whose number of cells is
equal to the number of "support vectors", and not to the
dimension of the space of the internal representations, as we
could have supposed it initially. In this manner the number
of neurons is obtained in an automatic way with the
resolution of a quadratic problem. The support vectors are
the input vectors xi for which equality yi((w0xi+b0)=1 holds.
Concretely, they are the closest points to the optimal
hyperplane. For all the other examples, there is thus a factor
α=0 that eliminates them from the solution. We thus know
that the decision function is calculated from the examples
that are on the margin. In the non-linear case, it is enough to
replace the scalar products (x⋅xi) by kernels k(x,xi). The
kernel functions were proposed to build nonlinear algorithms
from linear algorithms by calculating the inner product not
in the input space but in the feature space. Figure 1 shows
this transformation.

The three most common options for the selection of the
kernel function of the SVM method are the polynomial, RBF
and sigmoid neural networks. The sigmoid neural network
kernel function option was rejected in this work because of
the difficulty of hardware implementation. Moreover in the
literature the performances obtained with this kernel
function are less interesting than those obtained with the two
others. The results on the applications (cf. section IV)
showed that, with the polynomial kernel function we obtain a
solution, for different databases, with the minimum number
of support vectors. In terms of generalization we observed,
particularly in the first application, that the best
performances were also obtained with the polynomial kernel.

III. COMPLEXITY AND PERFORMANCES

The general equation of the SVM generalization function
for classification is:
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Where:
yiαi=wi, are the network weights,
xi, are the support vectors of the solution,
b, is the threshold of the function, and
k(x,xi).is the kernel function.

As we can see, the solution is the sign of the sum, which is
the generalization function for two-class’s classification.
In our case, the kernel function is the polynomial function of
degree d:

dcyxyxk )(),( +⋅= (2)

The principal parameter of the polynomial kernel function
is the polynomial degree. We take as a priori choice a
polynomial of degree 2 (a higher degree implied the use of
wider data buses in the hardware implementation).

A. Complexity
Let us suppose that the image size is tm x tm and that tb x tb

is the detection window size. tb
2 is thus the number of pixels

to be processed by the window of classification. Here we
consider a decision function of SVM with a polynomial
kernel of degree d:
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If we write 
iii yw α= we have:
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To make the classification of all the windows of pixels of
one 512x512 image, with no sweeping, and a 8x8 detection
window, we have 64x64 (tm/tb)2 windows to process. Each
window (or input vector) requires tb

2 operations (operation =
multiplication + addition) for the scalar product of the kernel
function (x•xi) and d multiplications for power operation,
which we also consider as one operation for simplicity, we
have then:

12 ++ dtb  operations per support vector.
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Fig. 1.  Kernel functions are used to transform the input space into
feature space where the optimal hyperplane is constructed.
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The additional operation is due to the multiplication
between the weight wi and the result of the polynomial and
the addition of the threshold b. Let N be the number of
support vectors obtained during learning, we will then have:

( )12 ++× dtN b
 operations per block.

For (tm/tb)2 windows per image we obtain:
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By making a simplification and knowing that in general
12 +>> dtb
, we thus have, 2

mtN × operations per image.

That means that the number of operations to be calculated
depends on the image size and on the number of support
vectors. The size of the window thus does not have a
significant influence on the complexity of the algorithm.
Nevertheless, this size will represent a fundamental factor
during the material implementation because it will be used to
dimension part of the circuit.

Now, if we use a sweeping classification window over the
image, we will classify pixels several times. In this case,
there will be more windows to analyze per image: (tm/p)2;
where p is the number of sweeping pixels (can also be seen
as the classification resolution). For example for p=2, i.e. we
move in the image with a step of 2 pixels at a time,
horizontally and vertically. We then get:
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In the case of a 8x8 detection window and a sweeping step
of 2 pixels, we will make 16 times more calculations than
without sweeping. The advantage of using sweeping would
be to increase the image sampling and to classify several
times each pixel or window of pixels and thus to obtain a
more robust decision, and also to increase at the same time
the localization precision. The complexity for a traditional
image processing algorithm like filtering by a convolution
direct method, depends on the size of the convolution mask
(MxM for example) and on the size of the processed image,
therefore the number of operations is given by:

22
mtM ×  operations by image.

Table 1 summarizes the algorithm complexity analysis.
Applying a convolution mask to an image is less expensive
in computing requirements than the other algorithms if the
size of the mask M is higher than 9. Nevertheless, applying
the convolution mask is only the first step to solve the
problem of object detection and localization.

In general, if we use a classical method for object
recognition, the complexity of the system will be the

addition of the complexity of each subsystem. It will also
depend on different parameters of the processed image, for
example: edges density, line density and the ratio between
the object and the image size. For the SVM method, the
complexity depends only on a priori chosen parameters.

B. Performances
We carried out some measurements of execution times.

As we have shown, the number of operations and the
computing time increases proportionally to the number of
support vectors. We thus find the main disadvantage of the
Support Vector Machine method: the number of support
vectors. This number is automatically obtained during
learning; we cannot control this parameter without
modifying the generalization performances.

These measurements of execution times were made on a
Sun Microsystems ultra 5 workstation.

For the estimation of the computing time, we obtained that
a multiplication-addition operation is executed in 470ns. We
obtained this time from a program carrying out a loop of 106

iterations. In this loop as in the software implementation of
the function of generalization of the SVM we used the
mathematical function pow(). Estimated times are slightly
larger than measured times. This is due to the use of the
indices in the estimation program. Table II shows some
results.

C. Learning Performances
The learning algorithm uses a decomposition method to

increase the learning performance and to reduce the
necessary resources of the machine on which we execute the
learning algorithm, in particular memory resources. This
algorithm calls the generalization function and supposes that
we can define a working set (vectors or examples) B such as
|B|≤L (L is equal to the number of examples or vectors of all
the learning database, and |B| the number of B elements).
This set is sufficiently large to contain all the support vectors
(αi>0), but sufficiently small so that the hardware platform
(PC, workstation, etc.) can handle them and optimize them
by using the quadratic optimization algorithm.

The decomposition technique can be written in the
following manner:
1. Choose in a random way |B| points of the database.
2. Resolve the sub-problem defined by the elements in B.
3. Repeat the 3 steps while there exist a j ∈ N, such as

g(xj).yj<1 (which corresponds to a bad classification),
where

( ) ( )∑
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TABLE I
SUMMARY OF ALGORITHM COMPLEXITY

Algorithm Number of operations

SVM 2
mtN ×

SVM Sweeping window
2

2
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Convolution 22
mtM ×

TABLE II
EXECUTION TIMES FOR DIFERENT IMAGE SIZES. 16X16 WINDOW SIZE, 88

SUPPORT VECTORS

Image Size Execution Time Execution Time
Sweeping Window

Estimated Measured Estimated Measured
128x128 0.7s 0.6s 2.2s 2.7s
256x256 2.5s 2.7s 9.2s 10.8s
512x512 10.2s 11.0s 37.0s 43.9s
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The algorithm, at each iteration, improves the objective
(optimization) function and is not, in this sense, recursive.
Since the objective function is limited, the algorithm
converges towards the optimal solution in a finite number of
iteration [5].

The function g(xj) is in fact the SVM generalization
function. And for instance, if we are able to reduce of two
orders of magnitude the execution time of this part of the
algorithm will improve the learning performances and we
could have a real-time learning algorithm.

We can observe the experimental results of the execution
time of the learning algorithm according to the size of the
working subset B in Fig. 2. The learning process is clearly
accelerated with this decomposition method. According to
these simulation results, for a real-time learning system and
for subsets of average sizes, it would be necessary to
increase the performances of the execution of the quadratic
optimization algorithm. We can also observe in Fig. 2 that
the execution time of the SVM generalization function is
practically constant, that is approximately 100 seconds. This
is because the calculation of g(xj) is made for all j of the
database and thus does not depend on B. For B lower than
200, the execution time of the learning algorithm is
practically dominated by the generalization subroutine.

As we also can see, the software execution times are
prohibited for real-time applications. This is the reason of
the hardware implementation. We are now presenting some
of the results on one of the three tested applications and then
we are going to detail the architecture at different levels.

IV. APPLICATIONS

The excellent performances of the SVM for classification
problems were very attractive from the beginning of their
proposal. This is true especially if we consider that the
method can be applied directly on pixel values, and it does
not need to take into account any other a priori problem
knowledge and “a permutation of the images by a fixed
transformation does not modify the SVM classifier
performances” [6].

The performance analysis of the SVM methods on
databases used as «benchmarks» by the scientific community

were already reported in literature [3][7]. Other evaluations
were made on synthetic databases [8]. The principal interest
of our contribution is to study this method for real-life
applications (matrix bar codes detection, face detection in an
automobile cockpit and the white lines detection). We have
found that the SVM method makes possible to build very
powerful classifiers (polynomial, RBF or perceptron).

A. Detection and localization of matrix barcodes.
Bar codes are essential as product identification, either

during manufacturing or marketing. The market
requirements made very important the fine resolution of
questions like reading robustness under very diverse
conditions. The effectiveness of barcodes is so interesting
that the vendors would wish to be able to put more
information on them. A linear bar code, for example EAN13
code, can code 11 characters (numerical 0-9), this code is
generally used like reference for a product index. The aim of
matrix barcodes is to be able to code more than 2000
alphanumeric characters, and to thus be able to have product
information like its price and its principal features. That
supposes to evolve from a one-dimensional code to a two-
dimensional code. And two-dimensional codes suppose
image processing and recognition.

This study was made with the collaboration of
INTERMEC Company. INTERMEC provided a base of 78
images with different types of matrix barcodes and various
image sizes. The study was based on the DATAMATRIX
code. We have also shown results of generalization on other
types of codes. Each pixel value is coded on eight bits, i.e. in
256-gray levels from 0 to 255.

The images show different scenarios like projective
deformations, different image backgrounds, different scales,
etc. For this application we find the object by segmenting the
image and not by finding directly the whole object, i.e. we
benefit from the texture regularity of matrix bar codes to
locate them. In [9], the author proposes, for the localization
and the automatic reading of matrix bar codes, to use the
texture to validate the different zones found by the
localization algorithm. The objective thus for this first
application is to learn texture from a matrix barcode
DATAMATRIX, and to make a localization of these codes
in new images through image segmentation.

Databases creation is a delicate task for the methods that
use supervised learning algorithms. The solution of the
neural network will depend exclusively on the examples of

Fig. 2.  Execution time of the learning program, the optimization and
generalization subroutines of the SVM method. Obtained by using a
database of 4096 examples of dimension 64.

Class +1

Class -1

Fig. 3.  Definition of the two classes for matrix bar codes detection.
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the learning database. Since the SVM method is also based
on learning from examples, a given "optimal" learning
database provides an “optimal” solution.

In this application, we feed the learning algorithm with
examples of the “positives” parts of the image (a matrix
barcode), and with other textures (text, images, etc.) as
“negative” examples. Two classes are thus defined (see Fig.
3): a block of pixels with the texture of the matrix barcode
(class +1), and a block of pixels with a different texture
(class –1). Two detection window sizes were tested: 8x8
pixels and 16x16 pixels.

We present the learning results over one database and the
respective result in generalization. The first database was
created from the image shown in Fig. 3. In the following
table, we show learning results with a database of 4096 input
vectors of dimension 64 (8x8 pixels), with 240 positive
examples. The number of support vectors is indicated in
Table III for different kernel functions and different values
of the penalization parameter C.

We created a test database from three different images.
This test database consists of 12288 examples, including
10% of positive examples. In generalization we obtained
91,8% of good classifications (positive or negative), 3,8% of
not-detection (when the example is positive and the result of
generalization is negative), and 4,2% of false detection
(when the example is negative and the result of
generalization is positive).

For a second test database with 10465 examples,
including 25% positive, we had 85% of success or good
classifications, 11% of not-detection and 4% of false alarm.
The fact of having a relatively small percentage of false
alarms compared to the number of not-detection led us to
define a post-processing module based on a morphological
processing for this particular application. In the images of
Fig. 4, we show some qualitative results of detection, i.e., we
show two examples of the output binary images.

We seek to use the best solution with a minimal number
of support vectors. These results were obtained with the
second-degree polynomial kernel function solution and with
the penalization parameter C=200. The first image shows the
result of the test since the learning database was created
using this image. More detailed information can be found in
[10].

V. PARALLEL NEURAL ARCHITECTURES

The regularity of image processing and neural network
algorithms encourages the use of parallel VLSI circuits.
Parallelism is an intrinsic notion of the neural networks,
which are regarded as massively parallel systems [13]. In
spite of the enormous computing power obtained with new
sequential processors, it is possible that these types of
processors are not sufficient for real time applications. There
are some solutions with neural networks, which use classical
sequential processors. For example, the optical character
recognition algorithms (OCR), whose performances are
acceptable for applications that do not require a real time
operation.

A significant number of analog implementations were
proposed, exploiting the biological origin of neural
networks, which illustrates the use of individual simple cells
but interconnected by a network and functioning in a
massively parallel way. In the particular case of the
integrated artificial retinas, the use of analog circuits is a
choice impossible to avoid. Because we want to be able to
bring processing as near as possible to the photosensitive
circuit and to be able to manage the interconnections more
easily (each pixel interacts with its closer neighbors)
[14][15].

Many neural implementations in numerical integrated
circuits have been proposed. The finality of these circuits is
to be used within traditional workstations like neural
coprocessors, in acquisition and signal processing cards, in
order to make more intelligent sensors, or to be used as
specialized parallel-processing machines. They are generally
dedicated to a single neural model, and all do not propose a
learning integrated procedure [16]. There are thus several
types of neural systems:
Application Specific Architecture implement a model, a
topology and a set of weights, mostly by analog means.
Problem Specific Architecture implement a model and a
given topology; the weights of the network are
programmable. The learning is done most of the time off-
line.
With Algorithm Specific Architectures, the model is selected
a priori. Topology can be modified, and the learning is
carried out by the system itself.
Neural Processor Architectures are also called multi-model

TABLE III
NUMBER OF SUPPORT VECTORS FOUND DURING LEARNING FOR DIFFERENT

KERNELS AND VALUES OF PARAMETER C
Kernel Degree Value of C

10 200 500 5000
Linear 491 547 620 1320

Polynomial 2 316 310 321 320
Polynomial 3 333 343 325 311
Polynomial 4 341 310 311 311

RBF 2 385 333 312 304

Fig. 4.  Image segmentation results using the SVM as detection
system. The window size is 8x8 pixels. A post-processing algorithm
is used in order to erase the bad classifications of the SVM.



> x < 6

accelerators. They are much closer to a generic processor
[16][17].
VLIW Digital Signal Processors (DSP) can also be used to
implement neural networks, but they are more generic
processors. Many DSP chips are available, like EQUATOR
MAP-CA BSP, NEC SPXK5 or Analog TigerSHARC that
include a small degree of parallelism. Some are built around
a large parallel processor structure (VLIW) linked to a scalar
RISC processor, in a single core structure. For example, the
SIROYAN SRA328 [19], which is much more a real
multiprocessor. The CHIPWRIGHTS CWv8 processor core
[20] is much more a SIMD processor. The RC MODULE
NeuroMatrix NM6403 core [18], which is a real full
vector/matrix parallel processor provides scalable
performances and a programmable operand width of 1 to 64
bits. This flexibility allows designers to trade precision for
performance to suit their applications. The NM6403
processor includes a 32/64-bit RISC processor and a 1- to
64-bit vector coprocessor that supports vector operations
with elements of variable bit lengths. The vector
coprocessor, with SIMD (single-instruction-multiple-data)
architecture, works on packed integer-data comprising 64-bit
blocks in the form of variable 1- to 64-bit words. The device
is limited to vector-matrix or matrix-matrix multiplications.
The Vector coprocessor’s core looks like an array of
multipliers comprising cells that include a 1-bit memory
(flip-flop) surrounded by several logical elements. Designers
can combine the cells into several macrocells with two 64-
bit programmable registers. These registers define the
borders between rows and columns with macrocells. Each
macrocell performs the multiplication on variable-input
words using preloaded coefficients and accumulates the
result from the macrocells in the column above it. The
columns simultaneously calculate the results in one
processor cycle. For 8-bit data and coefficients, the vector
coprocessor performs 24 MAC (multiply-accumulate)
operations with 21-bit results in one processor cycle. The
number of MAC operations depends on the length and
number of words packed into a 64-bit block. The engine’s
configuration can change dynamically during calculations.
An application can start with maximum precision and
minimum performance and dynamically increase
performance by reducing the data-word lengths.

VI. THE OBJECT RECOGNITION SYSTEM

If we take the classical and simplified architecture of an
object recognition system, we have the following modules:
image sensor, detection, localization and diagnosis. For our
implementation we propose a PC-based recognition system,
and use a standard camera as image sensor. Therefore, it is
the detection module that we will hardware-implement using
the SVM as its core. In order to be able to integrate the
detection module in the PC-based system we will use the
PCI interface.

VII. THE SOC PLATFORM ARCHITECTURE

A particular SoC category concerns the SoC platforms
[21], an emerging technology which main purpose is to
provide a reusable silicon platform for many applications,

either for several versions of a single application or even for
several different applications in the same field. This is due to
the growing design and fabrication costs of ASICs, which
thus impose large amounts of chips. The only solution is to
have more general reusable chips. The Xilinx VirtexPro II
can be considered as a general purpose SoC platform, which
associates dedicated blocks such as PowerPC processors,
RAM and multipliers, and a classic FPGA part that can be
dynamically reconfigured.

The platform we are proposing here is dedicated to fixed-
point vector/matrix operations, which are the basic
operations of many signal and image processing functions.
We have concentrated our effort on neural network
applications.

Figure 5 depicts the general architecture of our proposed
SoC platform. This platform is built around a RISC 32-bit
processor linked to a parallel vector coprocessor. Both are
connected to a Network-on-Chip (NoC) [22] that controls
communications between the different parts of the system.
Here the NoC is a PCI-X On Chip Bus (OCB) version. We
have simplified the LEON-2 SPARC processor (1) in order
to communicate directly from its cache memory (2) to the
dual-ported RAM (3) used to store LEON-2’s binary code
and data. A second data RAM (4) is accessible in the
memory address space of both the LEON-2 processor and
the external I/O subsystem (5), which is here a simple On
Chip Bus with its wrappers (light-gray boxes). This dual-
ported RAM is the storage unit of the CP CoProcessing
vector/matrix unit (6) which performs ALU/MAC operations
loops on vector/matrix fixed-point data from the RAM,
according to the instruction register (7) which provides the
configuration of the processing units. This register is
detailed in figure 6. The ALU allows any kind of operations
to be executed, leading to a richer instruction set than the
simple MAC operations of most similar approaches such as
the NeuroMatrix chip [18].

This is a double register operating in ping-pong mode.
This register is reconfigured for each new matrix operation.
The configuration that is provided to the vector processing
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unit is, the size, step and addresses of the loops, the
precision of data and the operations performed with or
without accumulation.

Here it is an example of matrix/vector operation with
accumulation:

For (J=start2; J<size2; J+=step2) {
For (I=start1; I<size1; I+=step1) {

Res[J] = Res[J] op2 (RAM1[I] op1 RAM2[I]); } }

Fig. 7. General parallel loop pattern

The (8) and (9) registers are used to shift input and output
data in and out of the vector RAM. These registers can also
broadcast input and output data in the case of vector/matrix
operations to be treated as matrix/matrix operations.

 The multi-precision unit is presented on figure 8. This is
a version with only two different input precisions (8-bit and
16-bit), in order to simplify the presentation. The first OP1
operator is either a 8x8 multiply or a 8-bit ALU. The 16-bit
result can be accumulated with the 32-bit OP2 operator. The
two 8-bit multiply operators (OP1) can also be combined to
perform a 16-bit multiply in two clock cycles, using the
accumulation operator (OP2) to perform the two additions.
A 16-bit MAC is thus performed in four clock cycles, that is
two for the four multiply operations, one for the last addition
of the 16-bit multiply results and one for the final
accumulation. The accumulation is pipelined with the
preceding operation, which is thus treated every clock cycle
for an 8-bit MAC. Every 3 cycles for a 16-bit MAC and
every 5 cycles for a 32-bit MAC, that is every N+2 cycles
with N the number of bytes of data precision. The main
limitation of our proposed architecture is the vector data
precision which must be a multiple of 8 bits, which however
is often the case in image processing. The counterpart is the
lower complexity of the logic which lead to higher clock
frequencies, compared to the Neuromatrix solution which is
a 1-bit multiple with a lower clock frequency.

The last part of the system is the I/O subsystem, which has
to feed the processor with data. The OCB is used as the
central communication subsystem between the

processor/coprocessor and the external analog (10) and
digital (12) ports. Other components can also be integrated
on the OCB (11), like other processor/coprocessor couples
in order to build a complex system. A single large
coprocessor with many processing units would be difficult to
manage due to the limited available data and instruction
parallelism as well as the long distances between units which
would affect their communications and the clock frequency.
Here it is figure 9 an example of configuration obtained
from the original and adapted C SVM source codes of figure
10 and 11. The CoProcessor here executes only the two
internal loops. These internal loops are packed in a function.

The Acquisition() function start a DMA with the
CoProcessor RAM, and the Sync() function waits the end of
the CoProcessor treatment and switch the configuration
register and RAM banks to prepare the next treatment. The
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Fig. 8. Multi-precision Processing Unit
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Fig. 6. Configuration Instruction Register

int CP_Recognition(int nb_sensors, int nb_supports)
  { int k,j;

for(j=0; j<nb_supports; j++) 
for(k=0; k<nb_sensors, k++) 

oo[j] += support_vectors[nb_sensors*j+k]*sample[k]; }

Support_vector sample nb_sensors oo +8nb_supports acc.x no

Fig. 9. CP_Recognition() function and equivalent configuration.

/** RECONNAISSANCE ******************************************************/
/**************************************************************************/
void
recognition(sample, nb_samples, nb_sensors, std, support_vectors,

support_weights, support_threshold, nb_supports, kernel,
classe, gausse, var_thresh)

int               *sample; int          nb_samples;
int           nb_sensors; float    std;
int *support_vectors; float *support_weights;
float support_threshold; int          nb_supports;
char       *kernel; int        *classe;
double   var_thresh;

{
double   out;
double    oo;
int            i,j,k;
struct timeb debut,final;
FILE      *fichier;

for(i=0; i<nb_samples; i++){
out = 0.0;
for(j=0; j<nb_supports; j++){

oo = 0.0;
if (kernel[0] == 'p') {

for(k=0; k<nb_sensors; k++)
oo += (support_vectors[nb_sensors*j+k]*sample[nb_sensors*i+k]);

out += support_weights[j]*pow(oo+1.0, std);
}

}
out += support_threshold;

if(out>=var_thresh)
classe[i]=1;

else
classe[i]=-1;

}
}

Fig. 10.  Original C-code of the SVM generalization function. The part
of the code that is executed on the co-processor is underlined

for(i=0; i<nb_samples; i++) { out =0; 
for (j=0;j<nb_supports;j++) oo[j]=0;
CP_Recognition(nb_sensors,nb_supports);  // non blocking 
Acquisition(sample);  //  non blocking
Sync();  // blocking
for (j=0; j<nb_supports;j++) out+=support_weights[j]*pow(oo[j]+1);
out+=support_threshold;
if (out>=var_thread) classe[i]=1; else classe[i]=0;  }

Fig. 11.  Adapted C-code loops of the SVM generalization function



> x < 8

reconfiguration is performed by program (LEON-2 C code),
with dynamically constructed vector instructions
(configurations). We have developed a preprocessing C
parser which analyzes CP_name() functions, which have to
comply with the pattern of figure 7. This preprocessing links
the parameters of the loops to the dedicated C library
function which will dynamically, that is at run-time, fill the
fields of a configuration instruction register which will then
be launched to the CP core (CoProcessor). Those
configurations represent the nature of the processing, that is
the SVM processing. This vector coprocessor architecture is
a good compromise between a fully hardwired solution and a
fully programmable general-purpose solution. A first small
C library has been designed for our SVM experiments. This
approach can be compared to the Neuromatrix one [18],
which is the only comparable product on the market. Their
approach is based on a static compile-time generation of
configurations, which is most of the time sufficient and as
easy to program as our solution, but dynamicity becomes
more and more important. This is particularly important
when the reconfiguration needs to be dependent of the
previous results of a processing, in a non-predictable way.
The heart of our learning procedure is based on the

classification procedure, which is evaluated here. The
dynamic nature of the parameters is used here in the learning
phase, which calculates the interesting support vectors, their
number, and their size according to the quality of the
classification. These results can be re-injected in the
classifier treatment in order to size the final classifier
parameters. Thus, this non-supervised approach leads to an
automatic parameterization of the classification treatment.
This SVM solution, which is optimal in terms of database
classification, can thus be used as an automatic solution to
many treatments, which can be adapted and solved by means
of classification. This kind of approach is only possible if a
large size hardware is available, that is in a near future.

This application could be also implemented on the
Neuromatrix chip, but with lower execution time (or higher

costs). The scalability of the application, which is linear for
matrix operations can be dealt in two ways. First, when the
size of the loops is higher than the size of the CoProcessor, a
second internal level of loop is performed in the coprocessor
structure by means of RAM address management, that is
with a circular data mapping in the RAM array. Second,
when the data size is higher than the RAM size, the
treatment has to be divided in smaller parts manually at
compile-time, either on the same CoProcessor by
serialization, or on several different CoProcessors linked
together through the Network on Chip, that is here the PCI-
X On Chip Bus. A future data cache RAM array architecture
is under study in order to mask this limitation to the
programmer. Both solutions lead to performances or cost
impact due to serialization of operations.

VIII. RESULTS

A. The choice on SVM parameters.
The retained kernel function of the SVM machine is the

polynomial. Because of the obtained performances and also
because its hardware implementation is relatively easier. The
principal parameter of the polynomial kernel function is the
degree of the polynomial. Although it is possible to make an
implementation with a variable polynomial degree, we took
as basic choice a polynomial of degree 2 (a higher degree
would impose the use of wider data buses). Considering that
our principal application is the matrix bar codes detection,
we took 16x16 pixels as the detection window size for the
hardware implementation. This size is not important to the
application level. Table VI summarizes the behavioral
specification of the SVM classifier.

B. The choice of the hardware parameters.
We have chosen to implement the SVM classifier on a

SoC platform in order to exploit the parallel nature of the
SVM algorithm. The active logical blocks and the
interconnection buses normally consume the surface of
silicon of an ASIC or FPGA circuit. For a few years,
interconnection busses became the main consumers of
silicon surface, due to the complexity of algorithms and
circuits.
Input Data: the values of pixels are coded in 256-gray
levels, therefore all memories with pixel values will be used
as a multiple of 8 bits. So each element of the support
vectors will correspond to an 8-bit value.
Weight Data: It is the only data whose size is not defined by
the specification. It is significant to define its size precisely,
in order not to modify the recognition performances
significantly. Although the values in the software
implementation are float values, in the hardware

TABLE VI
SVM CORE BEHAVIORAL SPECIFICATION

Kernel Function Polynomial
Degree of the Kernel function 2/3/4
Number of support vectors 128
Input Dimension 64 or 256

TABLE IV
HARDWARE PARAMETERS SUMMARY

Parameters Memory Size

Input Dimension 256 pixels 32x32 bytes
Input precision 8 bits
Kernel Polynomial
Degree 2-4
Number of SV 128 128x256 bytes
Weights precision 24 bits 128x3 bytes

TABLE V
VHDL XC2V3000 SYNTHESIS SUMMARY

blocs Size frequency

32-bit LEON2-light 14 % 50 MHz
64-bit OCB interface 6 % 133 MHz
64 8-bit coprocessors 60 % 166 MHz
LEON2 RAM 32 Kbytes -
Coproc. RAM 128 Kbytes -
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implementation we use fixed-point to avoid the use of the
floating-point operators. The results of weights precision
analysis were obtained from the same database used for
testing the SVM algorithm. We vary the precision (number
of bits) of the weights and we obtain the percentage of good
detection and of bad classifications, the rest corresponding
to false alarms.

In opposition to the results obtained by A. Bermak [11]
and those shown in literature [12] where the average is 8
bits, the necessary precision to have the same success rate
that we obtained by software is near 16 bits. It is a relatively
high precision compared to the implementations shown in
literature. Different factors can explain this result: for off-
line learning we have in general a more significant precision
[12]. Afterwards, the weights obtained during this learning
process must be approximated to their hardware precision.
In our case, the learning precision is maximal. Other models
have fewer neurons than the SVM: this requires less
precision for a hardware implementation. And finally, let us
recall that the hyperplane of separation in the case of the
SVM is in a dimension, which is much higher than the input
dimension, and that the solution is built up using the support
vectors. The 32 bits of the processor outputs are sufficient to
provide the result to the generalization function, which
operates on the data weights. The LEON processor performs
this last function, which is limited in complexity,
sequentially and in pipeline with the matrix product.

C. Prototyping Platform.
We have designed a general rapid prototyping platform

dedicated to SoC emulation. The central board connects a
CAN/CNA module with a Xilinx XC2V3000 FPGA and a
PCI-X controller. This general-purpose board is presented
on figure 12. A more complex system can be built with
several boards on the PCI-X bus, which corresponds, to the
OCB of our final SoC. We have implemented and validated
the presented application on this single board. The synthesis
results obtained are presented on table V. The vector
coprocessor RAM is organized in two 1Kbytes RAM per
processing unit. The peak performances of 10 Giga
MAC/sec have been reached with this application. As a
comparison, the number of gates of our chip is nearly the
double compared to the Neuromatrix core. Also, the main
vector/matrix product consists of 256*88 8-bit multiplies,
that is 256*88/64=352 clock cycles compared to the

16*88=1408 clock cycles with the evaluated Neuromatrix
chip. We have thus obtained an efficient solution, easy to
program. A large SoC will be studied on CMOS 0.13µm
technology ASIC in order to obtain real-time execution with
more important applications.

IX. CONCLUSION

Platform Based Design (PBD) is the best-validated
industrial approach for achieving high reuse in SoC design,
and incurs the lowest risk in derivative creation via user
programmability. Although these platforms already exist in
some application domains, their design process is largely ad
hoc. Furthermore, despite high development costs, such
platforms tend to be difficult to program, and very little
software support is available. Our proposition attempts to fill
this gap. Our approach is to provide a general-purpose
neural network application customized by a learning phase
instead of explicit programming which avoid tedious
designing effort. Such a solution is only possible with large
hardware platforms. We have proposed in this paper a
sizeable SoC platform dedicated to regular image and signal
processing involving matrix operations. We have illustrated
its implementation capabilities with the SVM neural network
application, which performs object recognition of any kind
(image or signal). A user-friendly interface is under
construction. Also a future ASIC SoC implementation will
demonstrate the feasibility of our approach on realistic
objects recognition. With such a system, it is possible to
obtain an automatic object recognition/classification based
on a learning phase, which automatically configures the
recognition engine, and then obtain a real-time toolbox for
any object classification.
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