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Stochastic approach for the subordination in

Bochner sense

Nicolas Bouleau
Ecole des Ponts, Paris

It is possible to construct (cf [1] and [2]) a positive process (Yψ,t) indexed by Bern-
stein functions and time which, for fixed t, is Markovian with respect to the composition
of Bernstein functions, and for fixed ψ, is the subordinator associated with the Bern-
stein function ψ. In the same manner a realization (XYψ,t) can be obtained of all the
subordinated processes of a Markov process (Xt).

This probabilistic interpretation of the initial idea of Bochner allows to construct
martingales and to apply stochastic calculus to questions related to symbolic calculus
for operators semi-groups.

We study here a particular branch of the subordination process : The homographic
branch which has the advantage of being connected with some works on positive in-
finitely divisible diffusions and brings on them a different point of view. Nevertheles,
what follows would apply, except technical difficulties, to any branch of the subordi-
nation process.

It is easy to see that the functions

fa(x) =
xea

1 + x(ea − 1)
, a ≥ 0, x ≥ 0

satisfy fa ◦ fb = fa+b and are Bernstein functions (cf [3]) associated with the subordi-
nators

Y a
t = (ea − 1)

Nt/(1−ea)
∑

k=1

Ek(1)

where (Nt) is a standard Poisson process and the Ek’s are i.i.d. exponential random
variables independent of N . The Lévy measure of (Ya,t) is therefore

νa(dy) =
1

(ea − 1)2
e−y/(e

a−1) dy on R+.

The relation Pau(x) = E[u(Y a
x )] for u : R+ 7→ R+ defines a Markovian semi-group

(Pa)a≥0 with generator Au(x) = xu′(x) + xu′′(x) which is the transition semi-group of
the diffusion (Za)a≥0 solution to the sde

dZa =
√

2ZadBa + Zada, Z0 = z ≥ 0.(2)

We now define a two parameters process (Ya,t)a≥0,t≥0 by chosing for a1 < a2 · · · < an
the joint law of the processes

(Ya1,t)t≥0, . . . , (Yan,t)t≥0
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to be that of the process






Y a1
t , Y a2−a1

Y
a1
t

, . . . , Y
an−an−1

Y
an−1−an−2

...Y a1t







t≥0

where (Y a1
t )t≥0, (Y

a2−a1
t )t≥0, . . . , (Y

an−an−1

t )t≥0 are independent subordinators of type
(1).

A version of the process (Ya,t) may be chosen such that Yt = Y.,t be right continuous
and increasing with values in C(R+,R+) and with independent stationary increments,
and for fixed t (Ya,t)a≥0 has the same law as (Za) for Z0 = t.

Because of the formula νaPb = νa+b, we can construct the process (Za)a>0 with the
entrance rule (νa) what defines a positive σ-finite measure m on the space C(R∗

+,R+)
as the ‘law’ of the process (Za) under the entrance law (νa).

This measure m is the Lévy measure of the process (Yt)t≥0. This can be seen in the
following way. Let µ be a positive measure with compact support on R+, let us put
< Yt, µ >=

∫

Ya,t µ(da). The relation

Ee−<Yt,µ> = exp

∫

(e
R

Zαµ(dα) − 1) dm(3)

is easy to prove when µ is a weighted sum of Dirac masses by the computation

Ee−<Yt,λεa> = Ee−λYa,t = e−tfa(λ) = et
R

(e−λy−1) νa(dy)

noting that νa is the law of Za under m. And for general µ (3) is obtained by weak
limit.

The law of the subordinators < Yt, µ >, may be studied by using the fact that if
we decompose µ into

µ = 1[0,x].µ+ 1(x,∞).µ = µ1 + µ2

the following representation holds

< Yt, µ >=< Yt, µ1 > +

∫

Y b−x
Yx,t

µ2(db)

where (Y β
t )β≥0,t≥0 is independent of (Ya,t, a ≤ x, t ≥ 0).

One obtains for λ ≥ 0,

E exp{−λ < Yt, µ >} = exp{−t(
1

2
− g′x(0, λ))}

where g is the positive solution decreasing in x of

{

g′′x2 = g.(1
4

+ λ.µ)
g(0, λ) = 1
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and if we put ξ(x, λ) = 1
2
− g′x(x,λ)

g(x,λ)
, the process

Ma,t = exp{−ξ(a, λ)Ya,t + ξ(a, λ)t− λ

∫ a

0

Yα,t µ(dα)}

is a two parameters martingale for the filtration of (Ya,t).
A similar study may be performed with the family ga(x) = x

1+ax
which corresponds

to the diffusion

Za = z +

∫ a

0

√

2Zb dBb.(4)

wich is the square of a Bessel process of exponent 0, cf [4].
These results were obtained by Pitman and Yor [5], [6], by interpretating the pro-

cess Ya,t of the case (4) as ℓaτt where ℓat is the family of brownian local times and
τt = inf{s : ℓ0s = t}, and using the Ray-Knight theorems. In this framework the mea-
sure m appears to be the image of the Ito measure of the Brownian excursions.
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