Algèbre des structures de Dirichlet
Nicolas Bouleau, Franci Hirsch

To cite this version:

HAL Id: hal-00018054
https://hal.science/hal-00018054
Submitted on 27 Jan 2006

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THE ALGEBRA OF DIRICHLET STRUCTURES

Nicolas BOULEAU and Francis HIRSCH

I. Some notations and definitions
I.1. Dirichlet Structures

\((\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D})\)

\((\Omega, \mathcal{F}, m)\) : measured space with \(m\) σ-finite and positive \n\mathcal{E} : Dirichlet form with domain \(\mathbb{D}\)
i.e. Quadratic positive form with dense domain \(\mathbb{D}\) in \(L^2(m)\) which is
. closed : \(\mathbb{D}\) is a Hilbert space under the norm
\[
\|f\|_\mathbb{D} = [\|f\|_{L^2(m)}^2 + \mathcal{E}(f, f)]^{1/2}
\]
. and s.t. \(f \in \mathbb{D} \implies (f \wedge 1) \in \mathbb{D}\) and \(\mathcal{E}(f \wedge 1, f \wedge 1) \leq \mathcal{E}(f, f)\).

Notations for different hypotheses:
(P) (Probability) \(m(\Omega) = 1\)
(M) (Markovianity) \(1 \in \mathbb{D}\) and \(\mathcal{E}(1, 1) = 0\)
(Γ) (Existence of a Carré du Champ Operator):
\[
\forall f \in \mathbb{D} \cap L^\infty, \exists \tilde{f} \in L^1, \forall h \in \mathbb{D} \cap L^\infty,
2\mathcal{E}(fh, f) - \mathcal{E}(h, f^2) = \int \tilde{f}h \, dm
\]
(L) (Locality)
\[
\forall f \in \mathbb{D}, \forall F, G \in \mathcal{D}(\mathbb{R})\]
\[
\text{supp} F \cap \text{supp} G = \emptyset \implies \mathcal{E}(F(f) - F(0), G(f) - G(0)) = 0
\]
(W) (Wiener space)
\[
\Omega = \{\omega \in C(\mathbb{R}_+, \mathbb{R}^d), \omega(0) = 0\}
\]
\(\mathcal{F} = \) borelian σ-field of \(\Omega\) with compact convergence
\(m = \) Wiener measure
\((\mathcal{E}, \mathbb{D}) = \) form associated with the Ornstein-Uhlenbeck semi-group.
I.2. Basic properties

There is a sub-Markov semigroup associated with a Dirichlet structure.

Theorem 1. Let a Dirichlet structure $(\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D})$ be given. There exists a strongly continuous contraction semi-group $(P_t)_{t \geq 0}$ symmetric on $L^2(m)$ and unique such that

\[
\begin{aligned}
\{ \mathbb{D} &= \{ f \in L^2(m) : \lim_{t \to 0} (\frac{f-P_t f}{t})_{L^2(m)} \text{exists} \} \\
\forall f \in \mathbb{D} &\quad \mathcal{E}(f, f) = \lim_{t \to 0} (\frac{f-P_t f}{t})_{L^2(m)}
\end{aligned}
\]

this semi-group is sub-Markov.

Conversely, if (P_t) is a symmetric strongly continuous contraction semi-group on $L^2(m)$, and sub-Markov, the positive quadratic form associated with (P_t) by (\ast) is a Dirichlet form.

Definition 2. A function F from \mathbb{R}^n into \mathbb{R} is a contraction [resp. a normal contraction] if

\[
\forall x, y \quad |F(x) - F(y)| \leq \sum_{i=1}^{n} |x_i - y_i|
\]

[resp. and $F(0) = 0$]

Theorem 3. $\forall f \in \mathbb{D}$, if F is a normal contraction from \mathbb{R}^n to \mathbb{R} then

\[
F \circ f \in \mathbb{D} \quad \text{and} \quad (\mathcal{E}(F \circ f, F \circ f))^{1/2} \leq \sum_{i=1}^{n} (\mathcal{E}(f_i, f_i))^{1/2}.
\]

Under (\mathcal{P}) the word normal can be cancelled.

The hypothesis (Γ) gives rise to a carré du champ operator:

Theorem 4. Under (Γ) there exists a unique continuous symmetric positive bilinear map from $\mathbb{D} \times \mathbb{D}$ into $L^1(m)$, denoted by Γ such that

\[
\forall f, g, h \in \mathbb{D} \cap L^\infty \\
\mathcal{E}(fh, g) + \mathcal{E}(gh, f) - \mathcal{E}(h, fg) = \int h \Gamma(f, g) \, dm
\]

Γ is the Carré du Champ Operator (CCO) associated with \mathcal{E}, if F is a normal contraction from \mathbb{R} to \mathbb{R}

\[
\forall f \in \mathbb{D} \quad \Gamma(F \circ f, F \circ f) \leq \Gamma(f, f) \quad m - \text{a.e.}
\]
I.3. About hypothesis (Γ)

Equivalent hypotheses:

Theorem 5.

a) Let $P_t^{(1)}$ be the extension of $P_t \big|_{L^1 \cap L^\infty}$ to $L^1(m)$. $(P_t^{(1)})_{t \geq 0}$ is a strongly continuous contraction semi-group in $L^1(m)$ with generator $(A^{(1)}, \mathcal{D}A^{(1)})$. It is the smallest closed extension of the restriction of the generator A of P_t to the set $\{f \in \mathcal{D}A \cap L^1 : Af \in L^1\}$

b) $(\Gamma) \iff (\Gamma') \iff (\Gamma'')$

$(\Gamma') \forall f \in \mathcal{D}A \ f^2 \in \mathcal{D}A^{(1)}$

(Γ'') There is a sub-space H of $\mathcal{D}A$, dense in \mathbb{D} such that $\forall f \in H \ f^2 \in \mathcal{D}A^{(1)}$

c) Under (Γ) it holds

$$\forall f, g \in \mathcal{D}A \quad \Gamma(f, g) = A^{(1)}(fg) - fA(g) - gA(f) \quad m - a.e.$$

About the relationship between hypothesis (Γ) and the existence of a C.C.O. for Markov processes, we have:

Theorem 6. Suppose Ω be l.c.d., \mathcal{F} its borelian σ-field. Let (Q_t) be a Feller semi-group which is symmetric on $C_c(\Omega)$ with respect to a Radon positive measure m, and (P_t) the symmetric associated semi-group on $L^2(m)$.

1) If (Q_t) has a C.C.O. in the sense of Meyer, then the Dirichlet structure associated to (P_t) satisfies (Γ).

2) Conversely, if the Dirichlet structure associated to (P_t) satisfies (Γ) and if the sets of zero potential are m-negligible, then (Q_t) has a C.C.O. in the sense of Meyer.
I.4. The locality hypothesis, the functional calculi
and the absolute continuity criterion for image measures

Theorem 7. $\mathbf{(L)} \iff (\mathbf{L}') \iff (\mathbf{L}'')$

(\mathbf{L}') $\mathcal{E}(|f + 1| - 1, |f + 1| - 1) = \mathcal{E}(f, f)$

(\mathbf{L}'') $\forall f, g \in \mathbb{D}, \forall a \in \mathbb{R} \quad (f + a)g = 0 \implies \mathcal{E}(f, g) = 0$

and under (\mathbf{P}) it is enough to take $a = 0$

Theorem 8. Suppose $(\mathbf{\Gamma})(\mathbf{L})$:

a) $\forall f \in \mathbb{D} \quad \mathcal{E}(f, f) = \frac{1}{2} \int \Gamma(f, f) \, dm$

b) $\forall f \in \mathbb{D}^m, g \in \mathbb{D}^n, \forall F, G \text{ Lipschitz } C^1\text{-maps from } \mathbb{R}^m[\mathbb{R}^n] \text{ into } \mathbb{R}$:

$$\Gamma(F(f) - F(0), G(g) - G(0)) = \sum_{i=1}^{m} \sum_{j=1}^{n} F_i'(f)G_j'(g)\Gamma(f_i, g_j) \quad m - \text{a.e.}$$

There is a stronger result in one dimension: the Lipschitz functional calculus:

Theorem 9. Suppose $(\mathbf{\Gamma})(\mathbf{L})$

a) $\forall f \in \mathbb{D} \quad f_*(\Gamma(f, f).m) \ll \lambda_1$ (λ_1 = Lebesgue measure on \mathbb{R})

b) Let be $f, g \in \mathbb{D}$ and F, G Lipschitz map from \mathbb{R} to \mathbb{R} and let F', G' be versions of their derivatives:

$$\Gamma(F(f) - F(0), G(g) - G(0)) = F'(f)G'(g)\Gamma(f, g) \quad m - \text{a.e.}$$

There is also a criterion of absolute continuity of image laws in the multivariate case:

Theorem 10. Suppose $(\mathbf{\Gamma})(\mathbf{L})$, if $f \in \mathbb{D}^n$ and if $\forall 1 \leq i, j \leq n$

$$\Gamma(f_i, f_j) \in \mathbb{D} \text{ then } f_*[\det \Gamma(f, f^*).m] \ll \lambda_n$$ (λ_n = Lebesgue measure on \mathbb{R}^n)

Theorem 11. Suppose (\mathbf{W})

if $f \in \mathbb{D}^n$

$$f_*[\det \Gamma(f, f^*).m] \ll \lambda_n$$

This result can be extended to \mathbb{D}_{loc} with a suitable definition.
II. Image structures

II.A. Finite dimensional images.

II.A.1. Definition and basic properties.

Proposition 12. Let \(S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D}) \) be a Dirichlet structure satisfying (P), and \(1 \in \mathbb{D} \).

For \(U \in \mathbb{D}^d \), let us define

\[
\widetilde{\mathcal{D}}_U = \{ f \in L^2(U, m) : f \circ U \in \mathbb{D} \}
\]

\[
\mathcal{E}_U(f, f) = \mathcal{E}(f \circ U, f \circ U)
\]

then \((\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), U, m, \mathcal{E}_U, \widetilde{\mathcal{D}}_U)\) is a Dirichlet structure and the set \(\mathcal{L}_d \) of Lipschitz functions from \(\mathbb{R}^d \) into \(\mathbb{R} \) is in \(\widetilde{\mathcal{D}}_U \).

Let \(\mathcal{D}_U \) be the closure of \(\mathcal{L}_d \) in \(\widetilde{\mathcal{D}}_U \) and \(\mathcal{E}_U = \mathcal{E}_U \big|_{\mathcal{D}_U \times \mathcal{D}_U} \)
then \((\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), U, m, \mathcal{E}_U, \mathcal{D}_U)\) is a regular Dirichlet structure (satisfying again (P), and \(1 \in \mathcal{D}_U \)).

Definition 13. The structure \((\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), U, m, \mathcal{E}_U, \mathcal{D}_U)\) will be called the image structure of \(S \) and will be denoted by \(U_S \).

Notations. For \(\phi \in L^1(m) \) we set

\[
\mathcal{E}_m[\phi|U = x] := \frac{dU_S(\phi, m)}{dU_S m}(x) \quad U_S m - \text{a.e.}
\]

then we have

Proposition 14.

1) If \(S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D}) \) possesses a C.C.O. \(\Gamma \), the same holds for \(U_S \) and \(U_S \) and their C.C.O. is given by

\[
\Gamma_U(f, f)(x) = \mathcal{E}_m[\Gamma(f \circ U, f \circ U)|U = x] \quad \forall f \in \mathcal{D}_U
\]

2) If \(S \) is local, so are \(U_S \) and \(U_S \) and if \(S \) satisfies both (L) and (F), \(\forall f \in \mathcal{L}_1 \cap C^1(\mathbb{R}^d) \) it holds

\[
\Gamma_U(f, f)(x) = \sum_{i,j} \mathcal{E}_m[\Gamma(U_i, U_j)|U = x] \frac{\partial f}{\partial x_i}(x) \frac{\partial f}{\partial x_j}(x)
\]
Remark. There are explicit examples in which

$$\bar{U}_* S \neq U_* S.$$
II.A.2 The Energy Image Density Property.

Definition 15. A Dirichlet structure \(S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathcal{D}) \) satisfying \((P), 1 \in \mathcal{D}, (\Gamma), (L)\) is said to satisfy the \((EID)\) property if \(\forall n \in \mathbb{N}^*, \forall F \in \mathcal{D}^n, \)

\[
F_n (\det[\Gamma(F, F^*)].m) << \lambda_n.
\]

A natural question is whether the \((EID)\) property is preserved by image.

Proposition 16. Let \(S \) satisfying \((P), 1 \in \mathcal{D}, (\Gamma), (L)\) and \((EID)\). Let \(U \in \mathbb{D}^d \) such that one of the following hypotheses holds:

a) the matrix \(\Gamma(U, U^*) \) is \(\sigma(U) \)-measurable

b) \(\det[\Gamma(U, U^*)] > 0 \) \(m \)-a.e.

then the image structure \(U_* S \) satisfies \((P), 1 \in \mathcal{D}, (\Gamma), (L)\) and \((EID)\).

With hypothesis a) the proof comes straightforward from the definitions. With hypothesis b) the result is a consequence of the following two lemmas:

Lemma 17. Let \(M \) be a random matrix which is symmetric and non-negative definite, then

\[
\{ \det[\mathbb{E}(M|\mathcal{F})] = 0 \} \subset \{ \det[M] = 0 \}
\]

Lemma 18. If \(\det[\Gamma(U, U^*)] > 0 \), for all \(\phi \in (\mathbb{D}_U)^n \) there exists an \(n \times d \)-matrix \(J \) which is \(\sigma(U) \)-measurable (up to \(m \)-negligible sets) such that

\[
\Gamma(\phi \circ U, \phi \circ U^*) = J\Gamma(U, U^*)J^* \quad m \text{ a.e.}
\]
II.A.2 The Image Generator.

There is in general no simple relationship between the initial semi-group and the semi-group of the image structure. Not better for the associated Markov process.

Nevertheless, the generator \((A_U, DA_U)\) of the image structure can be put in relation with the generator \((A, DA)\) of the initial structure:

If \(f, g \in \mathbb{D}_U\), and \(f \circ U \in DA\), we have

\[
\mathcal{E}_U(f, g) = \mathcal{E}(f \circ U, g \circ U) = -(A(f \circ U), g \circ U)_{L^2(m)}
\]

\[
= -\int \mathbb{E}_m[A(f \circ U) | U = x] g(x) \, dU_* m(x)
\]

hence \(f \in DA_U\) and \(A_U f = \mathbb{E}_m[A(f \circ U) | U = x]\).

But, hypotheses are needed to ensure the space \(\mathbb{D}_U \cap \{ f : f \circ U \in DA \}\) contains other functions than constants:

Proposition 19. Suppose \(S\) satisfies \((\mathbf{P})\), \(1 \in \mathbb{D}\), \((\Gamma)\), \((\mathbf{L})\). Let \(U \in (DA)^d\) such that \(\Gamma(U_i, U_j) \in L^2(m) \ \forall i, j = 1, \ldots, d\) then

\[
DA_U \supset \{ f \in C^2(\mathbb{R}^d) : \frac{\partial f}{\partial x_i}, \frac{\partial^2 f}{\partial x_i \partial x_j} \text{- bounded} \}
\]

and for such an \(f\)

\[
A_U f(x) = \mathbb{E}_m[A(f \circ U) | U = x]
\]

\[
= \frac{1}{2} \sum_{i,j} \alpha_{ij}(x) \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_i \beta_i \frac{\partial f}{\partial x_i}
\]

with \(\alpha_{ij}(x) = \mathbb{E}[\Gamma(U_i, U_j) | U = x] \ (\in L^2(U, m))\)

and \(\beta_i(x) = \mathbb{E}[AU_i | U = x] \ (\in L^2(U, m))\)

If further, \(\det[\Gamma(U, U^*)] > 0 \ \text{m-a.e.}\) then the function \(k = \frac{dU_* m}{d\lambda_n}\) satisfies

\[
2\beta_i k - \sum_j \frac{\partial}{\partial x_j} (\alpha_{ij} k) = 0 \quad \forall i = 1, \ldots, n
\]

in the sense of distributions.
H. Airault and P. Malliavin have studied the case of Wiener space with
\[U \in W_\infty = \cap_{p,n} D_{p,n} \]
and
\[[\det \Gamma(U, U^*)]^{1/2} \in W_\infty \]
and they show in this case that
\[A_U = \Delta + \nabla \tilde{u} \]
where \(\Delta \) is the Laplace-Beltrami operator associated to the Riemannian metric with matrix \([(\alpha_{ij})]^{-1} \) and where \(\tilde{u} = \frac{1}{2} \nabla \log \rho \) with \(\rho = \frac{dU_* m}{dv} \) and where \(dv = \sqrt{\det(\alpha_{ij})} \). \(\lambda_n \) is the associated area measure.
II.B. General Images.

II.B.1. U does not need to be supposed in \mathbb{D} or \mathbb{D}^d for defining an image structure, whenever there is enough functions $f \circ U$ in \mathbb{D}.

Let $S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D})$ satisfy (P) and $1 \in \mathbb{D}$, let (X, \mathcal{G}) be a measurable space and let U be a measurable map from (Ω, \mathcal{F}) into (X, \mathcal{G}). Let us suppose that there exists a set \mathcal{A} of measurable applications from X into \mathbb{R} such that

. \mathcal{A} is a vector space containing the constants
. $\forall f \in \mathcal{A}, \ f \circ U \in \mathbb{D}$
. \mathcal{A} is dense in $L^2(U,m)$

then the form $(\mathcal{E}_A, \mathcal{A})$ defined by $\mathcal{E}_A(f, f) = \mathcal{E}(f \circ U, f \circ U)$ is closable in $L^2(U,m)$, let $(\mathcal{E}_U, \mathbb{D}_U)$ its closure, we put

$$U_s S = (X, \mathcal{G}, U_s m, \mathcal{E}_U, \mathbb{D}_U).$$

II.B.2. Example.

Let $S = (\mathbb{R}^N, \mathcal{B}(\mathbb{R}^N), \nu^\otimes N, \mathbb{D}, \mathcal{E})$ be a Dirichlet structure such that

. $\nu = N(0, 1)$ is the standard Gaussian measure on \mathbb{R}
. $(\mathbb{D}, \mathcal{E})$ is any Dirichlet form on $L^2(\nu^\otimes N)$ such that the coordinates χ_n belong to \mathbb{D}.

Let be $X = C[0, 1]$ and \mathcal{G} be its borelian σ-field. Let (\hat{h}_n) be a C.O.N.S. of $L^2([0, 1])$ and put

$$h_n(t) = \int_0^t \hat{h}_n(s) \, ds$$

Let us consider the map U from \mathbb{R}^N into X defined by

$$(\star) \quad U(x) = \sum_{n=0}^{\infty} \chi_n(x) h_n$$

if the serie converges in $C[0, 1]$,

$$U(x) = 0$$

elsewhere.

A vector valued martingale argument shows that

Lemma 20. The serie (\star) converges almost surely and in $L^p_C([0, 1], \nu^\otimes N)$ ($1 < p < \infty$), and the law of its sum is the Wiener measure $\mu : \mu = U_s(\nu^\otimes N)$.
Let us denote by \((B_t)\) the brownian motion defined by this Wiener measure on \(\mathcal{C}[0,1]\), and let be

\[
\tilde{h}_n = \int_0^1 \dot{h}_n(s) \, dB_s
\]

then it can be shown that

\[
\tilde{h}_n \circ U(x) = \chi_n(x) \quad \text{for } \nu^{\otimes \mathbb{N}} - \text{a.e. } x.
\]

Hence by hypothesis \(\tilde{h}_n \circ U \in \mathcal{D}\), therefore if \(f = F(\tilde{h}_1, \ldots, \tilde{h}_n)\) with \(F\) Lipschitz, we have \(f \circ U \in \mathcal{D}\). But \(F(\chi_1, \ldots, \chi_n)\) is dense in \(L^2(\nu^{\otimes \mathbb{N}})\) hence \(F(\tilde{h}_1, \ldots, \tilde{h}_n)\) is dense in \(L^2(\mu)\).

So, the image structure

\[
(X, \mathcal{G}, \mu, \mathcal{E}_U, \mathcal{D}_U)
\]

is well defined and contains \(\{F(\tilde{h}_1, \ldots, \tilde{h}_n)\}\) for Lipschitz \(F\).
III. Tensor products and projective limits.

III.A. Finite products. Let $S_1 = (\Omega_1, \mathcal{F}_1, m_1, \mathcal{E}_1, \mathbb{D}_1)$ and $S_2 = (\Omega_2, \mathcal{F}_2, m_2, \mathcal{E}_2, \mathbb{D}_2)$ be Dirichlet structures.

Definition 21.

\[S_1 \otimes S_2 = (\Omega_1 \times \Omega_2, \mathcal{F}_1 \otimes \mathcal{F}_2, m_1 \times m_2, \mathcal{E}, \mathbb{D}) \]

with

\[\mathbb{D} = \{ f \in L^2(m_1 \times m_2) : \text{ for } m_2-\text{a.e. } y \quad f(., y) \in \mathbb{D}_1 \]

\[\text{for } m_1-\text{a.e. } x \quad f(x, .) \in \mathbb{D}_2 \]

and \[\int \mathcal{E}_1(f(., y), f(., y)) \, dm_1(y) + \int \mathcal{E}_2(f(x, .), f(x, .)) \, dm_2(x) < \infty \]

and \(\forall f \in \mathbb{D} \),

\[\mathcal{E}(f, f) = \int \mathcal{E}_1(f(., y), f(., y)) \, dm_1(y) + \int \mathcal{E}_2(f(x, .), f(x, .)) \, dm_2(x). \]

It is indeed easy to see that this form is closed and that contractions operate.

If S_1 and S_2 satisfy (P) and (M) the same holds for $S_1 \otimes S_2$.

If S_1 and S_2 are local, $S_1 \otimes S_2$ is local.

If S_1 and S_2 satisfy (T), the same holds for $S_1 \otimes S_2$ and its OCC is given by

\[\Gamma(f, f) = \Gamma_1(f(., y), f(., y))(x) + \Gamma_2(f(x, .), f(x, .))(y) \]

Concerning the associated semi-group we have the following:

Let $(P^1_t), (P^2_t)$ be the semi-groups associated with S_1 and S_2, and let \(\overline{P}^1_t \) and \(\overline{P}^2_t \) be the semi-groups on $L^2(m_1 \times m_2)$ defined by

\[\overline{P}^1_t f(x, y) = P^1_t(f(., y))(x) \]

\[\overline{P}^2_t f(x, y) = P^2_t(f(., .))(y) \]

which are symmetric, strongly continuous and sub-Markov.
Proposition 22. a) The semi-group associated with $S_1 \otimes S_2$ is

\[P_t = \hat{P}_t^1 \hat{P}_t^2 = \hat{P}_t^2 \hat{P}_t^1 \]

b) its generator is the smallest closed extension of the operator defined on $DA_1 \otimes DA_2$ by $A(\phi \otimes \psi) = A_1 \phi \otimes \psi + \phi \otimes A_2 \psi$

c) $\mathcal{D}_1 \otimes \mathcal{D}_2$ is dense in \mathcal{D}.
III.B. Infinite tensor products.

The preceding construction extends without any problem to the infinite tensor products (countable or not):

$$\bigotimes_{i \in I} (E_i, \mathcal{F}_i, \mu_i, \mathcal{E}_i, \mathbb{D}_i)$$

where the factors are supposed to satisfy (P).

That comes mainly from the fact that the limit of an increasing sequence of Dirichlet forms is a Dirichlet form:

Lemma 23. Let (Ω, \mathcal{F}, m) be a measured space equipped with Dirichlet forms $\mathcal{E}^{(n)}$, $\mathbb{D}^{(n)}$ such that

1. $\mathbb{D}^{(n)} \downarrow$ as $n \uparrow$
2. $\mathcal{E}^{(n)} \uparrow$ as $n \uparrow$: $\forall f \in \mathbb{D}^{(n)}$, $\mathcal{E}^{(n+1)}(f, f) \geq \mathcal{E}^{(n)}(f, f)$

then $\mathbb{D} = \cap \mathbb{D}^{(n)}$, $\mathcal{E}(f, f) = \lim \mathcal{E}^{(n)}(f, f)$ is a Dirichlet form.

If the S_i's are local, so is $\bigotimes_i S_i$.

if each S_i possesses a CCO, the same holds for $\bigotimes_i S_i$.

Suppose now that the family S_i is countable and that each finite product

$$\bigotimes_{i=0}^{n} S_i$$

satisfies the (EID) property, then $S = \bigotimes_{i=0}^{\infty} S_i$ satisfies (EID).

That comes directly from the definitions.

As an example let us take

$$S_i = (\mathbb{R}, \mathcal{B}(\mathbb{R}), h_i(x)dx, \int \nabla^2 h_i(x)dx, \mathbb{D}_i)$$

where h_i satisfies the Hamza condition and $\int h_i(x)dx = 1$.

Then by the coarea formula of Federer, the finite products satisfy (EID) and therefore the infinite product structure (which is in general non Gaussian) satisfies (EID).

Remark. In this example, putting

$$\mu^i = \bigotimes_{j \in \mathbb{N}, j \neq i} (h_idx)$$
and
\[\mathcal{E}_i(f, f) = \int_{\mathbb{R}} (\nabla f)^2 h_i \, dx \]
we have
\[\mathbb{D} = \{ f \in L^2(m) : \forall i \in \mathbb{N} \quad f(., y) \in \mathbb{D}_i \text{ for } \mu^i \text{ - a.e. } y \]
and
\[\sum_{i=0}^{\infty} \int \mathcal{E}_i(f(., y), f(., y)) \, d\mu^i(y) < \infty \]
and for \(f \in \mathbb{D} \)
\[\Gamma(f, f) = \sum_{i=0}^{\infty} \Gamma_i(f, f) = \sum_{i=0}^{\infty} f_i^2 \]
where \(\Gamma_i \) acts only on the \(i \)-th variable.

Therefore if for \(f \in \mathbb{D} \) we put
\[Df = (f_i^i)_{i \in \mathbb{N}} \]
this defines a continuous operator from \(\mathbb{D} \) into \(L^2(m, \ell^2) \) and we have
\[\Gamma(f, f) = \langle Df, Df \rangle_{\ell^2} \]

We shall see later that this allows to develop a conditional Dirichlet calculus. These product structures are examples of Classical Dirichlet forms in the sense of Albeverio-Röckner.
III.C. Projective limits.

1. General projective system of Dirichlet structures can be defined in an obvious way.

But there is a difficulty for passing to the limit unless some uniform closability property is known (which is the case for products). Here is an example of projective system without limit:

Example

Let μ be the Gauss measure on \mathbb{R}. Let us consider the structures

$$S^{(n)} = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \mu^\otimes n, \mathcal{E}^{(n)}, \mathbb{D}^n)$$

with

$$\mathbb{D}^{(n)} = \{ f \in L^2(\mu^\otimes n) : \frac{\partial f}{\partial x_i} \in L^{1}_{loc}(\mathbb{R}^n) \text{ and } \int (\sum_{i=0}^{n} \frac{1}{a_i} \frac{\partial f}{\partial x_i})^2 \, d\mu^\otimes n < \infty \}$$

and

$$\mathcal{E}^{(n)}(f, f) = \int (\sum_{i=0}^{n} \frac{1}{a_i} \frac{\partial f}{\partial x_i})^2 \, d\mu^\otimes n$$

where the numbers a_i are chosen such that

$$a_i > 0, \quad \lim_{i \to \infty} a_i = 0$$

The $S^{(n)}$’s define a compatible system of Dirichlet structures, but if $h_n(x) = a_n x_n$ we have $\|h_n\|_{L^2(\mu^\otimes \mathbb{N})} \to 0$ and the candidate $\tilde{\mathcal{E}}$ satisfies

$$\tilde{\mathcal{E}}(h_n - h_m, h_n - h_m) = \int (\frac{1}{a_n} - \frac{1}{a_m})^2 \, d\mu^\otimes \mathbb{N} = 0$$

and $\tilde{\mathcal{E}}(h_n, h_n) = 1$ therefore $\tilde{\mathcal{E}}$ is not closable.
2. An important special case where the limit exists
Consider a Dirichlet structure \(S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{I}) \) and a family \((U_n)\) of applications such that
\[
U_n : \Omega \rightarrow \mathbb{R}^d \quad \text{and} \quad U_n \in \mathbb{I}^{d_n} \quad \forall n
\]
then the image structure of \(S \) by \((U_0, \ldots, U_n)\) defines a Dirichlet structure \(S^{(n)} \) with state space
\[
\prod_{i=0}^{n} \mathbb{R}^{d_i}
\]
These structures \(S^{(n)} \) define a projective system which always possesses a limit. This comes easily from the fact that the initial form \((\mathcal{E}, \mathbb{I})\) is closed.

The limit can be called the image structure by the process \((U_n)_{n \in \mathbb{N}}\).

The same would be true, mutatis mutandis, for uncountable families.
IV. D-independence.

IV.A. Definition and examples.

Let $S = (\Omega, F, m, \mathcal{E}, D)$ be a Dirichlet structure satisfying (P) and $1 \in D$.

If $U \in D^p$ the image structure $U_\ast S$ will be called the D-law of U.

Definition 24. If $U \in D^p$, $V \in D^q$, U and V will be said to be D-independent if the D-law of (U, V) is the product of the D-laws of U and V.

Proposition 25. A necessary and sufficient condition for independent U and V to be D-independent is

\[
\forall f_1, f_2 \in C_\nu^1(\mathbb{R}^p), \forall g_1, g_2 \in C_\nu^1(\mathbb{R}^q)
\]

\[
\mathcal{E}(f_1 \circ U, g_1 \circ V, f_2 \circ U, g_2 \circ V)
\]

\[
= \mathcal{E}(f_1 \circ U, f_2 \circ U, g_1 \circ V, g_2 \circ V)_{L^2(m)} + \mathcal{E}(g_1 \circ V, g_2 \circ V)(f_1 \circ U, f_2 \circ U)_{L^2(m)}
\]

If E is local and possesses a CCO we have the more explicit result

Proposition 26. If S satisfies (P), $1 \in D, (L), (\Gamma)$, for $U \in D^p$ and $V \in D^q$ to be D-independent it is necessary and sufficient that

1) U and V are independent,

2) $\forall i, k \quad \mathbb{E}[\Gamma(U_i, V_k) | U, V] = 0$ m-a.e.

3) $\forall i, j \quad \mathbb{E}[\Gamma(U_i, U_j) | U, V] = \mathbb{E}[\Gamma(U_i, U_j) | U]$ m-a.e.

4) $\forall l, k \quad \mathbb{E}[\Gamma(V_l, V_i) | U, V] = \mathbb{E}[\Gamma(V_l, V_i) | V]$ m-a.e.

Remark. These conditions are fulfilled as soon as

- $\Gamma(U_i, V_k) = 0$ for all i, k
- $(U, \Gamma(U_i, U_j))$ is independent of V for all i, j
- $(V, \Gamma(V_k, V_l))$ is independent of V for all k, l.

Examples.

1) If U and V are random variables in the first chaos on the Wiener space, they are D-independent as soon as they are independent i.e. orthogonal.
2) Let $f \in L^2_{sym}(\mathbb{R}^p_+)$ and $g \in L^2_{sym}(\mathbb{R}^q_+)$. By a result of Ustunel and Zakaï if the multiple Wiener integrals $I_p(f)$ and $I_q(g)$ are independent so are the σ-fields

$$\sigma(I_p(f), <DI_p(f), h_{1,1}>, \ldots, <D^{p-1}I_p(f), h_{p-1,1} \otimes \ldots \otimes h_{p-1,p-1}>)$$

and

$$\sigma(I_q(g), <DI_q(g), k_{1,1}>, \ldots, <D^{q-1}I_q(g), k_{q-1,1} \otimes \ldots \otimes k_{q-1,q-1}>)$$

Therefore $I_p(f)$ and $I_q(g)$ are D-independent as soon as they are independent and $\Gamma(I_p(f), I_q(g)) = 0$.

3) This extends to the case of multivariate random variables whose components are multiple Wiener integrals.
IV.B. Convergence in D-law.

Let as before $S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D})$ be a Dirichlet structure satisfying (P) and $1 \in \mathbb{D}$.

Definition 27. Let (U_n) be a sequence in \mathbb{D}^d and $V \in \mathbb{D}^d$. The sequence (U_n) is said to converge in D-law to V

$$U_n \overset{D-l}{\to} V$$

if

1. $U_{n \to m}$ converges to the law of V in the narrow sense
2. $\forall f \in \mathcal{L} \cap C^1(\mathbb{R}^d)$, $\mathcal{E}(f \circ U_n, f \circ U_n) \longrightarrow \mathcal{E}(f \circ V, f \circ V)$

in other words that means convergence of the D-laws on bounded continuous functions for the measures, on C^1-Lipschitz functions for the forms.

The central limit theorem becomes the following:

Theorem 28. Let us suppose S satisfies (P), $1 \in \mathbb{D}$, (L), (P). Let (U_n) be a sequence of functions in \mathbb{D}^d which are centered, with the same D-law, and D-independent, then

$$V_n = \frac{1}{\sqrt{n}}(U_1 + \ldots + U_n)$$

converges in D-law and the limit Dirichlet structure is

$$(\mathbb{R}^d, \mathcal{B}(\mathbb{R}^d), \nu, \hat{\mathcal{E}}, \hat{\mathbb{D}})$$

with

$$\nu = N_d(0, \Sigma)$$

$$\forall f \in \mathcal{L} \cap C^1(\mathbb{R}^d), \hat{\mathcal{E}}(f, f) = \sum_{i,j} \int \frac{\partial f}{\partial x_i} \frac{\partial f}{\partial x_j} a_{ij} \, d\nu$$

where $\Sigma_{ij} = \int x_i x_j \, d\mu$ (μ being the common law of the U_n’s)

and $a_{ij} = \mathcal{E}(U_n,i, U_n,j) = \mathcal{E}_{U_n}(x_i, x_j)$ (which does not depend on n).

The main step of the proof is the following lemma
Lemma 29. Let U_1, \ldots, U_n be in \mathbb{D}^d and D-independent then $\forall f \in \mathcal{L} \cap C^1(\mathbb{R}^d)$

$$
\mathcal{E}(f(U_1 + \ldots + U_n), f(U_1 + \ldots + U_n))
$$

$$
= \frac{1}{2} \sum_{ij} \int \frac{\partial f}{\partial x_i}(y_1+\ldots+y_n) \frac{\partial f}{\partial x_j}(y_1+\ldots+y_n) \left(\sum_{\ell=1}^n a_{ij}^\ell(y_\ell) \right) d\mu_1(y_1) \ldots d\mu_n(y_n)
$$

where $\mu_n = U_n \ast m$ is the law of U_n and

$$
a_{ij}^\ell(y_\ell) = \mathbb{E}[\Gamma(U_{\ell,i}, U_{\ell,j})|U_\ell = y_\ell] \quad (= \Gamma_{U_\ell}(x_i, x_j)(y_\ell)).
$$
Let \((Z^{(n)})_{n \in \mathbb{N}} \) be a sequence of discrete time processes
\[
Z^{(n)} = (Z_1^{(n)}, \ldots, Z_k^{(n)}, \ldots)
\]
defined on a Dirichlet structure \(S \), we shall say that \((Z^{(n)}) \) converges in D-law to the process \(Z \), if the marginal D-laws of \(Z^{(n)} \) converge to those of \(Z \).

Example. Let us take \(S = (\mathbb{IR}, \mathcal{B}(\mathbb{IR}), \mu, f \sqrt{\nabla^2 d\mu}, H^1(\mathbb{IR}, \mu)) \) with \(\mu = \mathcal{N}(0, 1) \) and let us consider the “standard Gaussian product space”
\[
S^{\otimes \mathbb{N}} = (\mathbb{IR}^\mathbb{N}, \mathcal{B}(\mathbb{IR}^\mathbb{N}), \mu^{\otimes \mathbb{N}}, \mathcal{E}, \mathbb{ID}).
\]

Let \(X_i \) be the coordinates and let us put
\[
Y_k^{(n)} = \frac{X_k \sqrt{n}}{\sqrt{X_1^2 + \ldots + X_n^2}}
\]
then the process
\[
Z^{(n)} = (Y_1^{(n)}, \ldots, Y_n^{(n)}, 0, 0, \ldots)
\]
converges in D-law toward
\[
X = (X_1, \ldots, X_n, \ldots)
\]

That is an extension of the Gateaux-Lévy theorem which states the same result with only probability structures.
V. Dirichlet sub-spaces and conditioning.

V.A. Dirichlet sub-spaces.

Definition 30. Let \(S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D}) \) be a Dirichlet structure satisfying (P) and \(1 \in \mathbb{D} \), a sub-vector space \(\mathbb{D} \) of \(\mathbb{D} \) will be called a Dirichlet sub-space if it is closed in \(\mathbb{D} \) and stable under composition by Lipschitz functions on \(\mathbb{R} \).

Proposition 31. If \(\mathbb{D} \) is a Dirichlet sub-space, it holds

\[
\overline{\mathbb{D}}^{L^2(m)} = L^2(m, \sigma(\mathbb{D}))
\]

and so \(S_{\mathbb{D}} = (\Omega, \sigma(\mathbb{D}), m, \mathcal{E}|_{\mathbb{D} \times \mathbb{D}}, \mathbb{D}) \) is a Dirichlet structure.

In particular, \(\mathbb{D} \) is stable by composition by Lipschitz functions of several variables.

For example if \(X_i \in \mathbb{D}, \ \forall i \in I \), the space

\[
\mathbb{D}(X_i, i \in I) = \{G(X_i, \ldots, X_{i_k}) \ i_k \in I, \ G \in C^1(\mathbb{R}^n)\}^{\mathbb{D}}
\]

is a Dirichlet sub-space which will be called the Dirichlet sub-space generated by the family \((X_i)_{i \in I} \).

Remark. If \(S \) satisfies (T), \(S_{\mathbb{D}} \) satisfies (T) and its CCO is given by

\[
\Gamma_{\mathbb{D}}(v, v) = \mathbb{E}[\Gamma(v, v)|\sigma(\mathbb{D})] \ \forall v \in \mathbb{D}
\]

Example. It is easily seen that the kernel of the form

\[
K = \{f \in \mathbb{D} : \mathcal{E}(f, f) = 0\}
\]

is a Dirichlet sub-space.
V.B. Conditional calculus.
We consider a D-structure $S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D})$ satisfying (P), (M), (L), (Γ).

Hypothesis (G). We shall say that S admits a gradient if there exists a separable Hilbert space and a linear map D from \mathbb{D} into $L^2(m, H)$ such that

$$< Du, Du >_H = \Gamma(u, u) \quad \forall u \in \mathbb{D}.$$

This is the case for the Wiener space, for some product spaces and some Classical Dirichlet space in the sense of Albeverio-Röckner.

From the functional calculus for Γ we deduce

Proposition 32. D is continuous and satisfies

a) $D(f \circ U) = f' \circ U.DU$, $f \in \mathcal{L}(\mathbb{R})$, $U \in \mathbb{D}$

b) $D(F \circ \tilde{U}) = \sum_i F_i \circ \tilde{U}.DU_i$, $F \in \mathcal{L} \cap \mathcal{C}^1(\mathbb{R}^d)$, $\tilde{U} \in \mathbb{D}^d$

Most of the features of the conditional calculus of Nualart-Zakaï extends to this situation:

Let $(X_i, i \in \mathbb{N})$ be a countable family in \mathbb{D} nad let \mathcal{H} be the following measurable field of sub-spaces of H

$$\mathcal{H} = (\mathcal{L}(DX_i, i \in \mathbb{N}))^\perp$$

For $F \in \mathbb{D}$, let us define

$$D^X(F) = \mathcal{P}^\mathcal{H}(DF)$$

$$\Gamma^X(F, F) = < \mathcal{P}^\mathcal{H}(DF), \mathcal{P}^\mathcal{H}(DF) >_H$$

$$\mathcal{E}^X(F, F) = \mathbb{E}[\Gamma^X(F, F)]$$

Proposition 33. a) (D^X, \mathbb{D}) is a closable operator in $L^2(m, H)$ iff the form $(\mathcal{E}^X, \mathbb{D})$ is closable.

b) This is the case if $P^\mathcal{H}h \in \mathbb{D}$ for all $h \in H$.

c) In this case the D-structure associated with $\mathcal{E} : (\Omega, \mathcal{F}, m, \mathcal{E}^X, \mathbb{D}^X)$ satisfies (P), (M), (L), (Γ) and (G) with gradient operator D^X and will be called the conditional structure knowing X.

The main result in this theory is then:
Theorem 34. Suppose the conditional structure knowing $X = (X_i, i \in \mathbb{N})$ exists. Let $\tau_X = \sigma(X_i, i \in \mathbb{N})$.

a) Let $F : \mathbb{R} \times \Omega \to \mathbb{R}$, $\mathcal{B}(\mathbb{R}) \otimes \tau_X$-measurable, s.t. $F(x, \omega)$ is Lipschitz in x, bounded as well as F_x' then for all $U \in \mathcal{D}$ (even for $U \in \mathcal{D}_X^X$)

$$(\omega \to F(U(\omega), \omega)) \in \mathcal{D}_X^X$$

and

$$\Gamma^X(F(U(.,.), F(U(.,.)))(\omega) = F'^2_x(U(\omega), \omega)\Gamma^X(U, U)(\omega) \text{ m-a.e.}$$

b) For all $U \in \mathcal{D}$ (even for $U \in \mathcal{D}_X^X$), the image of the measure $\Gamma^X(U, U).m$ by the map $\omega \to (U(\omega), \omega)$ from (Ω, \mathcal{F}) into $(\mathbb{R}\times\Omega, \mathcal{B}(\mathbb{R}) \otimes \tau_X)$ is absolutely continuous w.r. to $dx \times m$.

In particular if $\Gamma^X(U, U) > 0$ a.e., U possesses a conditional law knowing the σ-field $\tau_X = \sigma(X_i, i \in \mathbb{N})$.

There are two limitations for applying this theory in practice

1) The verification of the closability condition.

2) Most examples, especially from filtration problems, do allow a direct treatment because the conditional law is absolutely continuous with respect to the Wiener measure: The ordinary criterion applies.

Example. Let $(\eta_t(w))_{t \in \mathbb{R}_+}$ and $(\xi_t(w))_{t \in \mathbb{R}_+}$ be two processes defined on a probability space $(\mathcal{W}, \mathcal{A}, \mathbb{P})$.

If the law of ξ knowing η (i.e. knowing $\tau = \sigma(\eta_s, s \in \mathbb{R}_+)$) is absolutely continuous w.r. to the Wiener measure, then a sufficient condition for a random variable $F : \Omega \to \mathbb{R}^d$ of the form

$$F = f(\eta, \xi)$$

to possess a conditional density knowing τ is that for \mathbb{P}-a.e. w, setting $F_w(\omega) = f(\eta(w), \omega)$,

1) $F_w \in \mathcal{D}$ (= $D_{2,1}$ here)

2) $\det \Gamma(F_w, F_w^*)(\omega) > 0 \quad dm(\omega)$-a.e.
V.C. A glance to stationary processes.

Let $S = (\Omega, \mathcal{F}, m, \mathcal{E}, \mathbb{D})$ be a D-structure satisfying \((P)\), \((M)\), \((L)\), \((\Gamma)\).

A map $X : t \to X_t$ from \mathbb{R} into \mathbb{D} will be called a D-stationary process if its marginal D-laws are invariant under translations of time.

Let $F \in \mathcal{L} \cap \mathcal{C} [\mathbb{R}^n]$, the relation

$$
\mathcal{T}_t[F(X_{t_1}, \ldots, X_{t_n})] = F(X_{t_1+t}, \ldots, X_{t_n+t})
$$

defines a group of isometries which extends to the Dirichlet sub-space generated by X : \(\mathbb{D}_X = D(X_t, t \in \mathbb{R})\).

It is easy to see that \mathcal{T}_t is strongly continuous on \mathbb{D}_X if and only if $t \to X_t$ is continuous from \mathbb{R} into \mathbb{D}.

If this is satisfied, we get a spectral representation : $\mathcal{T}_t = e^{itA}$, \(A\) self-adjoint on \mathbb{D}_X and if $E(d\lambda)$ is the resolution of the identity associated with A:

$$
X_t = \int e^{i\lambda t} E(d\lambda) X_0 \quad \text{in } \mathbb{D}_X
$$

Let Γ_X be the CCO of the sub-structure $(\Omega, \sigma(X), m, \mathcal{E}_X, \mathbb{D}_X)$ which is given by

$$
\Gamma_X(U, V) = \mathbb{E} [\Gamma(U, V) | \sigma(X)].
$$

Let us suppose moreover that $\Gamma(X_s, X_t)$ be deterministic $\forall s, t$.

(This happens often without any Gaussian hypothesis : for example for product spaces

$$
\bigotimes_{n=0}^{\infty} (\mathbb{R}, \mathcal{B}(\mathbb{R}), h_n dx, \int \nabla^2 h_n dx, \mathbb{D}_n)
$$

the h_n’s satisfying the Hamza condition and $\int x^2 h_n(x) dx < \infty$ if for all \(t\), X_t belongs to the closure in \mathbb{D} of linear combinations of coordinates.)

Then $\Gamma(X_s, X_t) = \Gamma(X_0, X_{t-s})$ hence by Bochner theorem

$$
\Gamma(X_{t+h}, X_t) = \gamma(h) = \int e^{i\lambda h} d\mu(\lambda)
$$

for a finite positive measure μ since γ is continuous.
It follows that
. X_t has a density as soon as $\mu \neq 0$
. $(X_{t_1}, \ldots, X_{t_n})$ has a density if the functions
$$e^{it_1}, \ldots, e^{it_n}$$
are linearly independent in $L^2(\mathbb{R}, \mu)$.

Let ν be the usual spectral measure of X, from the two spectral representations it follows that the space $\overline{\mathcal{L}(X_t, t \in \mathbb{R})}^{D_x}$ is isomorphic to $L^2(\sigma(X), \mu + \nu)$.

Hence if $\nu << \mu$ with $\frac{d\nu}{d\mu}$ bounded, $\Gamma(Y, Y)^{1/2}$ is on $\mathcal{L}(X_t, t \in \mathbb{R})$ a norm equivalent to $\|Y\|_{D_x}$.

If we project X_{t+h} on $\overline{\mathcal{L}(X_s, s \leq t)}^{D_x}$ for this Hilbert scalar product we get
$$\overline{X_{t+h}} \in \overline{\mathcal{L}(X_s, s \leq t)}^{D_x}$$
and $\overline{X_{t+h}}$ is also the best estimate of X_{t+h} in the whole space $\mathbb{D}(X_s, s \leq t)$ in the sense of the Dirichlet form \mathcal{E}, because

$$\mathcal{E}(X_{t+h} - \overline{X_{t+h}}, X_s) = 0 \quad \forall s \leq t$$
$$\implies \mathcal{E}(X_{t+h} - \overline{X_{t+h}}, F(X_{s_1}, \ldots, X_{s_n})) = 0 \quad \forall F \in \mathcal{L} \cap \mathcal{C}^1(\mathbb{R}^n) \quad s_i \leq t \quad i = 1, \ldots, n$$

This situation is similar to the Gaussian case for the filtration of Wiener.