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Abstract

Let R be a real closed field. The Pierce-Birkhoff conjecture says that any piecewise
polynomial function f on Rn can be obtained from the polynomial ring R[x1, . . . , xn] by
iterating the operations of maximum and minimum. The purpose of this paper is twofold.
First, we state a new conjecture, called the Connectedness conjecture, which asserts the
existence of connected sets in the real spectrum of R[x1, . . . , xn] satisfying certain conditions.
We prove that the Connectedness conjecture implies the Pierce-Birkhoff conjecture.

Secondly, we construct a class of connected sets in the real spectrum which, though not in
itself enough for the proof of the Pierce-Birkhoff conjecture, is the first and simplest example
of the sort of connected sets we really need, and which constitutes a crucial step on the
way to a proof of the Pierce-Birkhoff conjecture in dimension greater than 2, to appear in a
subsequent paper.

1 Introduction

All the rings in this paper will be commutative with 1.
Throughout this paper, R will denote a real closed field and A the polynomial ring

R[x1, . . . , xn], unless otherwise specified.
The Pierce-Birkhoff conjecture asserts that any piecewise-polynomial function f : Rn → R

can be expressed as a maximum of minima of a finite family of polynomials (see below for the
definitions and a precise statement of the conjecture). This is the first in a series of three papers
whose purpose is to prove the Pierce-Birkhoff conjecture in its full generality (the best result up
to now is due to Louis Mahé [11], who proved the conjecture for n = 2).

We start by stating the Pierce–Birkhoff conjecture in its original form as it first appeared in
the 1962 paper [5] by M. Henriksen and H. Isbell.

Definition 1.1 A function f : Rn → R is said to be piecewise polynomial if Rn can be covered
by a finite collection of closed semi-algebraic sets Pi such that for all i there exists a polynomial
fi ∈ A satisfying f |Pi

= fi|Pi
.
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Clearly, such a function is continuous. Piecewise polynomial functions form a ring, containing
A, which is denoted by PW (A).

On the other hand, one can consider the (lattice-ordered) ring of all the functions obtained
from A by iterating the operations of sup and inf. Since applying the operations of sup and
inf to polynomials produces functions which are piecewise polynomial, this ring is contained in
PW (A) (this latter ring is closed under sup and inf). It is natural to ask whether the two rings
coincide. The precise statement of the conjecture is:

Conjecture 1 (Pierce-Birkhoff) If f : Rn → R is in PW (A), then there exists a finite
family of polynomials gij ∈ A such that f = sup

i
inf
j

(gij) (in other words, for all x ∈ Rn,

f(x) = sup
i

inf
j

(gij(x))).

In 1989 J.J. Madden [9] reformulated this conjecture in terms of the real spectrum of A and
separating ideals. We will now recall Madden’s formulation together with the relevant definitions.

Let B be a ring. A point α in the real spectrum of B is, by definition, the data of a prime
ideal p of B, and a total ordering ≤ of the quotient ring B/p, or, equivalently, of the field of
fractions of B/p. Another way of defining the point α is as a homomorphism from B to a real
closed field, where two homomorphisms are identified if they have the same kernel p and induce
the same total ordering on B/p.

The ideal p is called the support of α and denoted by pα, the quotient ring B/pα by B[α],
its field of fractions by B(α) and the real closure of B(α) by k(α). The total ordering of B(α)
is denoted by ≤α. Sometimes we write α = (pα,≤α).

Definition 1.2 The real spectrum of B, denoted by Sper B, is the collection of all pairs α =
(pα,≤α), where pα is a prime ideal of B and ≤α is a total ordering of B/pα.

The real spectrum Sper B is endowed with two natural topologies. The first one, called the
spectral (or Harrisson) topology, has basic open sets of the form

U(f1, . . . , fn) = {α | f1(α) > 0, . . . , fn(α) > 0}

with f1, ..., fn ∈ B. Here and below, we commit the following standard abuse of notation: for
an element f ∈ B, f(α) stands for the natural image of f in B[α] and the inequality f(α) > 0
really means f(α) >α 0.

The second is the constructible topology whose basic open sets are of the form

V (f1, . . . , fn, g) = {α | f1(α) > 0, . . . , fn(α) > 0, g(α) = 0},

where f1, ..., fn, g ∈ B. Sets of the form V (f1, . . . , fn, g) are called constructible sets of Sper B.
In what follows, it will be important to distinguish between two types of points in Sper B:

Definition 1.3 Let B be an R-algebra and α a point of Sper B. We say that α is bounded if
for any y ∈ B[α] there exists N ∈ R such that |y| < N . Otherwise, we say that α is unbounded.

Notation: The subspace of Sper B consisting of all the bounded points will be denoted by
Sper∗B.

Next, we recall the notion of separating ideal, introduced by Madden in [9].

Definition 1.4 Let B be a ring. For γ, δ ∈ Sper B, the separating ideal of γ and δ, denoted
by < γ, δ >, is the ideal of B generated by all the elements f ∈ B which change sign between γ
et δ, that is, all the f such that f(γ) ≥ 0 and f(δ) ≤ 0.
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Let f be a piecewise polynomial function on Rn and α ∈ Sper A. Let the notation be as in
Definition 1.1. The covering Rn =

⋃

i

Pi induces a corresponding covering Sper A =
⋃

i

P̃i of the

real spectrum. Pick and fix an i such that α ∈ P̃i. We set fα := fi. We refer to fα as a local
polynomial representative of f at α. In general, the choice of i is not uniquely determined
by α. Implicit in the notation fα is the fact that one such choice has been made.

In [9], Madden reduced the Pierce–Birkhoff conjecture to a purely local statement about
separating ideals and the real spectrum. Namely, he showed that the Pierce-Birkhoff conjecture
is equivalent to

Conjecture 2 (Pierce-Birkhoff conjecture, the abstract version) Let f be a piecewise
polynomial function and α, β points in Sper A. Let fα ∈ A be a local representative of f at α
and fβ ∈ A a local representative of f at β. Then fα − fβ ∈< α, β >.

The following statement, nominally weaker than the Pierce-Birkhoff conjecture, has proved to
be an extremely useful stepping stone on the way to its proof (we give the contrapositive of
Madden’s original statement, since it is better adapted to our needs).

Conjecture 3 (the separation conjecture) Let g ∈ A and let α, β ∈ Sper A be two points
such that g∈/ < α, β >. Then α and β lie in the same connected component of the set Sper A\{g =
0}.

(this statement follows from Conjecture 2: it suffices to let f be the piecewise polynomial
function which is equal to g on the connected component of Sper A \ {g = 0} containing α and
f = 0 elsewhere).

We now state

Conjecture 4 (the Connectedness conjecture) Let α, β ∈ Sper A and let g1, . . . , gs be a
finite collection of elements of A, not belonging to < α, β >. Then there exists a connected set
C ⊂ Sper A such that α, β ∈ C and C ∩ {gi = 0} = ∅ for i ∈ {1, . . . , s} (in other words, α and
β belong to the same connected component of the set Sper A \ {g1 . . . gs = 0}).

The advantage of the Connectedness conjecture is that it is a statement about polynomials
which makes no mention of piecewise polynomial functions.

The purpose of this paper is twofold. First, we prove (§2) that the Connectedness con-
jecture implies the Pierce-Birkhoff conjecture. This reduces the Pierce-Birkhoff conjecture to
constructing, for each α, β ∈ Sper A, connected sets in Sper A having certain properties.

Secondly, we construct a class of connected subsets of Sper A which, though not in itself
enough for the proof of the Pierce-Birkhoff conjecture, is the first and simplest example of the
sort of connected sets we really need, and which constitutes a crucial step in our proof of the
Pierce-Birkhoff conjecture in dimension greater than 2, the subject of the forthcoming paper [8].
The precise relation of the main connectedness theorem of the present paper (Theorem 1.1) to
the Pierce-Birkhoff conjecture, that is, the part of the proof of the conjecture relegated to [8],
is explained in more detail later in this introduction.

The rest of this paper is organized as follows. In §3 we define the valuation να associated to
a point α of the real spectrum. We also explain the geometric interpretation of a point of the
real spectrum as a semi-curvette.

In §4 we study the behaviour of certain subsets of the real spectrum under blowing up.
In §5 we recall and adapt to our context some known results on resolution of singularities

of a purely combinatorial nature. These results can be considered as a special case of the
desingularization of toric varieties or Hironaka’s game [14]. Since they are easy to prove, we
chose to include complete proofs. The conclusion of this section is an algorithm for resolving
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singularities of any binomial by iterating combinatorial (toric) blowings up along non-singular
centers.

Finally, §6 is devoted to the proof of the main theorem. Let A = R[x1, . . . , xn] be a polyno-
mial ring and let ωij, θil ∈ Q, i ∈ {1, . . . , n}, j ∈ {1, . . . , q}, l ∈ {1, . . . , u}. Let

hj(νδ(x)) =
n∑

i=1

ωijνδ(xi) for j ∈ {1, . . . , q},

and

zl(νδ(x)) =

n∑

i=1

θilνδ(xi) for l ∈ {1, . . . , u}.

Let νδ be the valuation associated to the point δ ∈ Sper(A), defined in §3.

Theorem 1.1 The sets

S = {δ ∈ Sper(A) | xi > 0, i ∈ {1, . . . , n}, hj(νδ(x)) > 0, j ∈ {1, . . . , q},

zl(νδ(x)) = 0, l ∈ {1, . . . , u}}

and
S∗ = S ∩ Sper∗A (1)

are connected in the spectral topology.

In other words, subsets of Sper A and Sper∗A defined by finitely many Q-linear equations and
strict inequalities on ν(x1), . . . , ν(xn) are connected.

In the forthcoming paper [8] we develop the theory of approximate roots of a valuation. Given
a ring A and a valuation ν, non-negative on A, a family of approximate roots is a collection
{Qi}, finite or countable, of elements of A. A generalized monomial (with respect to a given
collection {Qi} of approximate roots) is, by definition, an element of A of the form

∏

j

Q
γj

j ,

γj ∈ N. The main defining properties of the approximate roots are the fact that every ν-ideal
I in A is generated by generalized monomials contained in it, that is, generalized monomials
∏

j

Q
γj

j satisfying

∑

j

γjν(Qj) ≥ ν(I),

and the fact that for each i, Qi is described by an explicit formula in terms of Q1, ..., Qi−1. In
particular, the valuation ν is completely determined by the set {Qi} and the values ν(Qi). In [8]
we give an explicit description of the set of generalized monomials which generate the separating
ideal < α, β > for a pair of points α, β ∈ Sper Am, where Am is the localization of A at the
common center m of the valuations να and νβ .

We then show that every element g ∈ A can be written as a finite sum of the form

g = cQθ +
N∑

j=1

cjQ
δj , (2)

where c and cj are units of Am and Qθ and Qδj are generalized monomials such that

ν
(

Qθ
)

< ν
(

Qδj

)

for 1 ≤ j ≤ N. (3)
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Then the sign of g is determined by the sign of its leading coefficient c. In particular, if the
inequalities (3) hold on a certain set C ⊂ Sper A and c does not change sign on C then g does
not change sign on C. Saying that g∈/ < α, β > is equivalent to saying that

ν
(

Qθ
)

< ν (Qγ) (4)

for any generalized monomial Qγ ∈< α, β >. Both types of inequalities (3) and (4) can be
viewed as linear inequalities on ν(Q1), . . . , ν(Qt) with integer coefficients.

In [8] we construct the connected set C required in the Connectedness conjecture; this set
has the form

C =

{

δ ∈ Sper(A)

∣
∣
∣
∣
∣
Qi > 0, i ∈ {1, . . . , t},

n∑

i=1

ωijνδ(Qi) > 0, j ∈ {1, . . . , q}

}

,

where ωij are certain explicitly given integers and {Q1, . . . , Qt} is an (also explicitly given) finite

subset of the set of approximate roots. The inequalities
n∑

i=1
ωijνδ(Qi) > 0 are nothing but the

inequalities of the form (3) and (4), applied to each of the elements g1, . . . , gs, appearing in the
statement of the Connectedness conjecture.

The only delicate part of the proof is proving the connectedness of C. The connectedness
theorem of the present paper is the special case of the desired result in which the finite set
{Q1, . . . , Qt} is a subset of the set of variables {x1, . . . , xn}. In [8] we reduce the general case
to the special one using sequences of blowings up of the form described in §5: we construct a
sequence π of blowings up such that the total transform of each Qi, i ∈ {1, . . . , t} is a usual
monomial with respect to new coordinates times a unit. The preimage of C under π has the
form (1) in the new coordinates. This will reduce the connectedness of C to that of sets of the
form S∗ proved in this paper, completing our proof of the Connectedness and the Pierce-Birkhoff
conjectures.

We thank the CNRS and the University of Angers for supporting J. Madden’s stay in Angers
during a crucial stage of our work on this paper.

2 The Connectedness conjecture implies the Pierce-Birkhoff

conjecture

Theorem 2.1 The Connectedness conjecture implies the Pierce-Birkhoff conjecture.

....

α

β

fi
s−1

fis

fi2

fi1

Proof: We will assume the Connectedness conjecture and deduce the Pierce–Birkhoff conjecture
in the form of Conjecture 2. Let f ∈ PW (A) and let {fi}

r
i=1 denote the elements of A which
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represent f on the various closed semi-algebraic subsets Pi ⊂ Sper A. Let α, β ∈ Sper A and let

T = {{i, j} ⊂ {1, . . . , r} | fi − fj∈/ < α, β >}. (5)

We apply the Connectedness conjecture to the finite collection {fi − fj | (i, j) ∈ T} of elements
of A. By the Connectedness conjecture, there exists a connected subset C ⊂ Sper A such that
α, β ∈ C and

C ∩ {fi − fj = 0} = ∅ for all (i, j) ∈ T. (6)

Let J ⊂ {1, . . . , r} be the set of all indices j having the following property: there exist
i1, . . . , is ∈ {1, . . . , r} such that

fα = fi1 , (7)

fj = fis (8)

and for each q ∈ {1, ..., s − 1}, we have

C ∩ {fiq − fiq+1 = 0} 6= ∅. (9)

Let F =
⋃

j∈J

(Pj ∩ C). We have α ∈ F by definition.

Claim: F = C; in particular, β ∈ F .
Proof of Claim. Let Jc = {1, . . . , r} \ J and G =

⋃

j∈Jc

(Pj ∩ C). Clearly

C = F ∪ G (10)

and both sets F and G are closed in the induced topology of C (since all the Pj are closed).
Moreover, F ∩ G = ∅, so the union in (10) is a disjoint union. Indeed, if δ ∈ F ∩ G then there
exist j ∈ J and j′ ∈ Jc such that δ ∈ Pj ∩Pj′ . But then fj(δ) = fj′(δ), so δ ∈ C ∩{fj −fj′ = 0},
hence j′ ∈ J , a contradiction.

Now, since C is connected and F 6= ∅ (since α ∈ F ), the expression (10) of C as a disjoint
union of closed sets implies that G = ∅. Hence β ∈ F , which completes the proof of the Claim.

Let j ∈ J be such that β ∈ Pj , so that fj = fβ. Let i1, . . . , is be as in (7)–(9), expressing the
fact that j ∈ J . Together, (5), (6) and (9) imply that fiq−fiq+1 ∈< α, β > for all q ∈ {1, ..., s−1}.
In view of (7) and (8), we obtain fα − fβ ∈< α, β >, as desired. �

3 The valuation associated to a point in the real spectrum

Let B be a ring and α a point in Sper B. In this section we define the valuation να of B(α),
associated to α. We also give a geometric interpretation of points in Sper B as semi-curvettes.

First, we define the valuation ring Rα by

Rα = {x ∈ B(α) | ∃z ∈ B[α], |x| ≤α z}.

That Rα is, in fact, a valuation ring, follows because for any x ∈ B(α), either x ∈ Rα or 1
x
∈ Rα.

The maximal ideal of Rα is Mα =
{
x

∣
∣ |x| < 1

z
∀z ∈ B[α]

}
; its residue field kνα comes equipped

with a total ordering, induced by ≤α. By definition, we have a natural ring homomorphism

B → Rα (11)

whose kernel is pα.
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Remark: Conversely, the point α can be reconstructed from the ring Rα by specifying a certain
number of sign conditions (finitely many conditions when B is noetherian), as we now explain.

Take a prime ideal p ⊂ B and a valuation ν of κ(p) :=
Bp

pBp
, with value group Γ. Let

r = dimF2(Γ/2Γ)

(if B is not noetherian, it may happen that r = ∞). Let x1, . . . , xr be elements of κ(p) such
that ν(x1), . . . , ν(xr) induce a basis of the F2-vector space Γ/2Γ. Then for every x ∈ B(α),
there exists f ∈ B(α), and a unit u of Rα such that x = uxǫ1

1 · · · xǫr
r f2 with ǫi ∈ {0, 1} (to see

this, note that for a suitable choice of f and ǫj the value of the quotient u of x by the product
xǫ1

1 · · · xǫr
r f2 is 0, hence u is invertible in Rα). Now, specifying a point α ∈ Sper B supported at

p amounts to specifying a valuation ν of B
p
, whose residue field kν comes equipped with a total

ordering, and the sign data sgn x1, . . . , sgn xr. For x∈/p, the sign of x is given by the product
sgn(x1)

ǫ1 · · · sgn(xr)
ǫrsgn(u), where sgn(u) is determined by the ordering of kν .

Remark: Assume that α ∈ Sper∗B (Definition 1.3). Then

Rα = {x ∈ B(α) | ∃N ∈ R, |x| ≤α N}. (12)

Thus for points in Sper∗B the valuation να of B(α) depends on the ordering ≤α but not on the
ring B[α] (this is precisely the reason why bounded points of Sper A will be important in this
paper).

Points of Sper B admit the following geometric interpretation.

Definition 3.1 Let k be a field and Γ an ordered abelian group. The generalized formal power
series ring k

[[
tΓ

]]
is the ring formed by elements of the form

∑

γ
aγtγ, aγ ∈ k such that the set

{γ | aγ 6= 0} is well ordered.

The ring k
[[

tΓ
]]

is equipped with the natural t-adic valuation v with values in Γ, defined by
v(f) = inf{aγ | aγ 6= 0} for f =

∑

γ
aγtγ ∈ k

[[
tΓ

]]
. Specifying a total ordering on k and

dimF2(Γ/2Γ) sign conditions defines a total ordering on k
[[

tΓ
]]

. In this ordering |t| is smaller
than any element of k. For example, if tγ > 0 for any γ ∈ Γ then f > 0 if and only if av(f) > 0.

For an ordered field k, let k̄ denote the real closure of k. The following result is a slight
variation on a theorem of Kaplansky for valued fields equipped with a total ordering, whose
proof carries over almost verbatim from Kaplansky’s original proof.

Theorem 3.1 (Kaplansky, [6]) Let K be a real valued field, with residue field k and value
group Γ. There exists an injection K →֒ k̄

((
tΓ

))
of real valued fields.

Let α ∈ Sper B and let Γ be the value group of να. In view of (11) and the Remark above,
specifying a point α ∈ Sper B is equivalent to specifying a morphism

B[α] → k̄να

[[
tΓ

]]
,

and dimF2(Γ/2Γ) sign conditions as above.

We may pass to usual spectra to obtain a morphism

Spec
(
k̄να

[[
tΓ

]])
→ Spec B[α] → Spec B.

In particular, if Γ = Z, we obtain a formal curve in Spec B (an analytic curve if the series are
convergent). This motivates the following definition:

7



Definition 3.2 A k-curvette in A is a morphism α : B → k
[[

tΓ
]]

(where Γ is an ordered
group). A k-semi-curvette is a k-curvette α together with a choice of the sign data sgn x1,...,
sgn xr, where x1, ..., xr are elements of B whose t-adic values induce an F2-basis of Γ/2Γ.

We have thus shown how to associate to a point α of Sper B a κ(pα)-semi-curvette. Conversely,
given an ordered field k, a k-semi-curvette α determines a prime ideal pα (the ideal of all
the elements of B which vanish identically on α) and a total ordering on B/pα induced by
the ordering of the ring k

[[
tΓ

]]
of formal power series. These two operations are inverse to

each other. This establishes a one-to-one correspondence between semi-curvettes and points of
Sper B.

Below, we will often describe points in the real spectrum by specifying corresponding
curvettes.
Example: Consider the curvette R[x, y] → R[[t]] defined by x 7→ t2, y 7→ t3, and the semi-
curvette given by declaring, in addition, that t is positive. We obtain the upper branch of the
cusp.

4 Affine monomial blowings up

In this section we define one of our main technical tools — affine monomial blowing up — and
show that bounded points of the real spectrum behave particularly well under such blowings
up, more precisely, that the valuation να is preserved under blowing up whenever α ∈ Sper∗A.

Notation. For a subset J ⊂ {1, . . . , n}, xJ will stand for the set {xq | q ∈ J}.
Let G be an ordered group. For an n-tuple a = (a1, . . . , an) ∈ Gn of elements of G, we define

rat.rk a = dimQ

n∑

j=1

Qaj ⊂ G ⊗Z Q.

Consider a set J ⊂ {1, . . . , n}. Fix an element j ∈ J . Let

x′
q = xq if q = j or q∈/J (13)

=
xq

xj
if q ∈ J \ {j}. (14)

Let x = (x1, . . . , xn), x′ = (x′
1, . . . , x

′
n) and A′ = R[x′]. We have a natural ring homomorphism

π : A → A′ and the corresponding maps of real spectra π∗ : Sper A′ → Sper A.

Remark: Since the variables x are monomials in the x′ and vice versa, we have

rat.rk(ν(x1), . . . , ν(xn)) = rat.rk(ν(x′
1), . . . , ν(x′

n)). (15)

Definition 4.1 The map π is called an affine monomial blowing up of Sper A (along the
ideal (xJ )). The choice of j ∈ J is referred to as the choice of a coordinate chart. Finally,
let p be a prime ideal of A, not containing any of x1, . . . , xn. Let ν be a valuation of A

p
. We say

that π is affine monomial blowing up with respect to ν if

ν(xj mod p) = min{ν(xq mod p) | q ∈ J}. (16)
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Condition (16) is equivalent to saying that ν is non-negative on A′

p′
, where p′ is the strict transform

of p in Spec A.
We consider the coordinates x′ as part of the data of the affine monomial blowing up π. An

affine monomial blowing up is completely determined by the choice of J and j as above.

Let OGM be the following category. An object in OGM is an ordered abelian group G
together with n fixed generators a1, . . . , an (such an object will be denoted by (G, a1, . . . , an)).
A morphism from (G, a1, . . . , an) to (G′, a′1, . . . , a

′
n) is a homomorphism G → G′ of ordered

group sending aj to a′j for each j.

Notation: Let us denote by Γ the ordered group Rn
lex. The reason for this definition is that by

Abhyankar’s inequality we have rank να ≤ dim A = n for all α ∈ Sper A, so the value group Γα

can be embedded into Γ as an ordered subgroup (of course, this embedding is far from being
unique). Let Γ+ be the semigroup of non-negative elements of Γ.

Take an element
a = (a1, . . . , an) ∈ Γn

+.

Let G ⊂ Γ be the ordered group generated by (a1, . . . , an). Then (G, a1, . . . , an) ∈ Ob(OGM).
For each δ ∈ Sper(A), let Γδ denote the value group of the associated valuation νδ and Γ∗

δ

the subgroup of Γδ generated by νδ(x1), . . . , νδ(xn). In this way, we associate to δ the object
(Γ∗

δ , νδ(x1), . . . , νδ(xn)) ∈ Ob(OGM).
We will use the following notation. For a set E ⊂ Γn

+, let

SE = {δ ∈ Sper(A) | xi >δ 0, i ∈ {1, . . . , n},∃a = (a1, . . . , an) ∈ E such that

(Γ∗
δ , νδ(x1), . . . , νδ(x1)) ∼= (G, a1, . . . , an)}.

and
S∗

E = {δ ∈ Sper∗(A) | xi >δ 0, i ∈ {1, . . . , n},∃a = (a1, . . . , an) ∈ E such that

(Γ∗
δ , νδ(x1), . . . , νδ(x1)) ∼= (G, a1, . . . , an)}

In particular, for a ∈ Γn
+ we will write

Sa := {δ ∈ Sper(A) | xi >δ 0, i ∈ {1, . . . , n}, (Γ∗
δ , νδ(x1), . . . , νδ(x1)) ∼= (G, a1, . . . , an)}

and

S∗
a = {δ ∈ Sper∗(A) | xi >δ 0, i ∈ {1, . . . , n}, (Γ∗

δ , νδ(x1), . . . , νδ(x1)) ∼= (G, a1, . . . , an)}.

We will need the following comparison result which says that blowing up induces a homeomor-
phism on sets of the form S∗

E.
Let E be a subset of Γn

+. Take a subset J ⊂ {1, . . . , n}. Pick a j ∈ J and consider the affine
monomial blowing up

π : A → A′ = R[x′],

determined by J and j. Assume that π is an affine monomial blowing up with respect to all
νδ, δ ∈ S∗

E (in other words, νδ(xj) = min{νδ(xq)}q∈J for all δ ∈ S∗
E; we have νδ(x

′
i) ≥ 0 for all

δ ∈ S∗
E and i ∈ {1, . . . , n}).

For a ∈ Γn
+, let a′ be the element of Γn

+ defined by

a′q = aq if q∈/J or q = j (17)

a′q = aq − aj if q ∈ J \ {j}. (18)
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Let E′ = {a′ | a ∈ E} and let S∗
E′ denote the corresponding subset of Sper∗A′. Let

π∗ : Sper A′ → Sper A

be the map of real spectra induced by π. It is well known and easy to see that π∗ is a homeo-
morphism away from the zero set V (xJ) of the ideal (xJ). Since S∗

E is disjoint from V (xJ), π∗

induces a homeomorphism π∗|S∗
E

: (π∗)−1(S∗
E)

∼
→ S∗

E. For δ ∈ Sper A \ V (xJ), let δ′ denote the
unique preimage of δ in Sper A′.

Proposition 4.1 Take a ∈ Γn
+ and δ ∈ Sper∗A. Then

νδ = νδ′ (19)

and
δ′ ∈ S∗

a′ ⇐⇒ δ ∈ S∗
a. (20)

Proof: Since δ is bounded, (19) follows immeadiately from (12): in fact, (12) characterizes νδ

(resp. νδ′) purely in terms of the ordering ≤δ, which is the same as ≤δ′ , without any reference
to the rings A or A′. (20) follows from the equations (13)–(14) and (17)–(19). �

Corollary 4.1 We have π∗(S∗
E′) = S∗

E and the restriction of π∗ to S∗
E′ is a homeomorphism.

Definition 4.2 The point δ′ is called the transform of δ. Similarly, a′, E′ and S∗
E′ are called

transforms of a, E and S∗
E, respectively.

For future reference, we will also define the transform of a Q-linear relation on νδ(x1), . . . , νδ(xn).
Consider a Q-linear equality of the form

n∑

i=1

θiai = 0. (21)

Definition 4.3 The transform of (21) under π is the equality
n∑

i=1
θ′ia

′
i = 0, where

θ′i = θi if i 6= j (22)

=
∑

q∈J

θq if i = j. (23)

The transforms of all the above objects under sequences of blowings up are defined in the obvious
way (that is, as iterated transforms) by induction on the length of the blowing up sequence.

Example: This example shows that Proposition 4.1 and Corollary 4.1 are false for unbounded
points of Sper A. Let n = 2 and a = (1, 1), where we view 1 as an element of Γ via the
embedding R →֒ (0)⊕R = Γ. Consider the points α, δ ∈ Sper A given by the curvettes δ = (t, t)
and α =

(
t(1,0), t(0,1)

)
. Let J = {1, 2}, j = 1, x′

1 = x1, x′
2 = x2

x1
. Since νδ(x1) = νδ(x2), the

corresponding blowing up A → A′ is a blowing up with respect to νδ (but not with respect to
να). The point α′ is defined by the ordering of R(x1, x2) in which 0 < x′

1 < c < x′
2 for any

positive real constant c. We have Rα′ = R(x′
2)[x1](x1), να′(x′

2) = 0, να′(x′
1) = 1, so να′ 6= να. We

have α′ ∈ Sa′ but α∈/Sa, so the analogues of (20) and Corollary 4.1 do not hold for unbounded
points.
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5 Desingularization of binomials by monomial blowings up

In this section, we recall and adapt to our context a result from the theory of resolution of
singularities.

Proposition 5.1 Consider two n-tuples α, γ ∈ Nn and the corresponding monomials xα and
xγ . Then there exist finitely many sequences πi : A → A′

i, 1 ≤ i ≤ s, of affine monomial blowings
up, having the following properties:

(1) for each i ∈ {1, . . . , s}, one of xα and xγ divides each other in A′
i

(2) for any prime ideal p of A not containing x1, . . . , xn, and any valuation ν of A
p
, there

exists i ∈ {1, . . . , s} such that πi is a sequence of affine monomial blowings up with respect to ν.

Remarks: (1) Proposition 5.1 is a special case of [14]. We give a proof here since it is much
simpler than that of [14].

(2) Let ν be a valuation as in Proposition 5.1, and i ∈ {1, . . . , s} and index satisfying the
conclusion (2) of the Proposition for ν. Then ν is non-negative on A′

i. If ν(xα) < ν (xγ), we
know which of xα, xγ divides the other in A′

i, namely, xα | xγ (and not the other way around).
Proof of Proposition 5.1: We will define a numerical character τ(α, γ), associated to the
unordered pair (α, γ) and consisting of a pair of non-negative integers. If one of xα, xγ divides
the other, there is nothing to prove. Assume that neither of xα, xγ divides the other. We will
describe a subset J ⊂ {1, . . . , n}, such that for any choice of j ∈ J and the corresponding affine

monomial blowing up A → A′, writing xα = x′α
′

, xγ = x′γ
′

in the new coordinates, we have

τ
(
α′, γ′

)
< τ(α, γ) (24)

in the lexicographical ordering. Proposition 5.1 will follow immediately by iterating the above
procedure.

We start by defining the numerical character τ(α, γ). Let

α = (α1, . . . , αn) and (25)

γ = (γ1, . . . , γn). (26)

Let δq = min{αq, γq}, 1 ≤ q ≤ n; let δ := (δ1, . . . , δn). Let α̃ := α − δ, γ̃ = γ − δ. Interchanging
α and γ, if necessary, we may assume that |α̃| ≤ |γ̃| (here and below, | | stands for the sum of
the components). Put

τ(α, γ) := (|α̃|, |γ̃|) .

Note that if α̃ = (0, . . . , 0) ( ⇐⇒ |α̃| = 0) then xα | xγ in A. Assume that |α̃| > 0. We will
now describe a subset J ⊂ {1, . . . , n}, such that for any choice of j ∈ J and the corresponding
affine monomial blowing up π : A → A′ along (xJ), the inequality (24) holds.

Write α̃ = (α̃1, . . . , α̃n), γ̃ = (γ̃1, . . . , γ̃n). Renumbering the variables, we may assume that
there exists a, 1 ≤ a < n, such that α̃j = 0 for a < j ≤ n and γ̃j = 0 for 1 ≤ j ≤ a. In other
words,

α̃ = (α̃1, . . . , α̃a, 0, . . . , 0
︸ ︷︷ ︸

n−a zeroes

) (27)

γ̃ = (0, . . . , 0
︸ ︷︷ ︸

a zeroes

, γ̃a+1, . . . , γ̃n). (28)

We may also assume that
α̃i > 0 for 1 ≤ i ≤ a. (29)
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Let J denote a minimal subset of {1, . . . , n} (in the sense of inclusion), having the following
properties:

{1, . . . , a} ⊂ J and (30)
∑

q∈J

γ̃q ≥ |α̃| (31)

Remark: (31) means that the numerical character |α̃| is constant on the subscheme

YJ ⊂ Spec A,

defined by (xJ). This is equivalent to saying that the hypersurface of Spec A, defined by the
binomial xα − xγ , is normally flat along YJ (we will not need this in the sequel).

Pick a j ∈ J subject to condition (16). Let π : A → A′ be the affine monomial blowing up
along (xJ ), associated to j and J . We will now write out the monomials xα and xγ in the new
coordinates and observe that the numerical character τ has decreased. Define the non-negative
integers α̃′

q and γ̃′
q, 1 ≤ q ≤ n, as follows:

α̃′
q = α̃q if q 6= j (32)

= 0 if q = j (33)

γ̃′
q = γ̃q if q 6= j (34)

=
∑

q∈J

γ̃q − |α̃| if q = j. (35)

Put α̃′ = (α̃′
1, . . . , α̃

′
n), γ̃′ = (γ̃′

1, . . . , γ̃
′
n). Let δ′ denote the n-vector obtained from δ by adding

|α̃| to the j-th component; that is,

δ′ = (δ1, . . . , δj−1, δj + |α̃|, δj+1, . . . , δn).

With these definitions, we have

xα = (x′)δ
′+α̃′

(36)

xγ = (x′)δ
′+γ̃′

. (37)

Put α′ = δ′ + α̃′, γ′ = δ′ + γ̃′.

Lemma 5.1 We have τ(α′, γ′) < τ(α, γ) in the lexicographical ordering.

Proof: There are two possibilities: either j ∈ {1, . . . , a} or j ∈ {a + 1, . . . , n}. If j ∈ {1, . . . , a}
then (29), (32) and (33) imply that

∣
∣α̃′

∣
∣ = |α̃| − α̃j < |α̃|. (38)

Suppose that j ∈ {a + 1, . . . , n}. Then by (32),

∣
∣α̃′

∣
∣ = |α̃|. (39)

We will prove that |γ̃′| < |γ̃|. Indeed, by the minimality of J ,

∑

q∈J\{j}

γ̃q < |α̃| (40)
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(otherwise we could replace J by J \ {j}). Now, by (34), (35) and (40),

∣
∣γ̃′

∣
∣ ≡

n∑

q = a + 1
q 6= j

γ̃′
q + γ̃′

j =

n∑

q = a + 1
q 6= j

γ̃q +
∑

q∈J

γ̃q − |α̃|

=

n∑

q=a+1

γ̃q +




∑

q∈J\{j}

γ̃q − |α̃|



 <

n∑

q=a+1

γ̃q ≡ |γ̃|. (41)

To summarize, (38), (39) and (41) say that

(|α̃′|, |γ̃′|) < (|α̃|, |γ̃|) ≡ τ(α, γ) (42)

in the lexicographical ordering. If |α̃′| ≤ |γ̃′| then according to our definitions

τ(α′, γ′) = (|α̃′|, |γ̃′|),

and the Lemma follows from (42). If |γ̃′| < |α̃′| then τ(α′, γ′) = (|γ̃′|, |α̃′|) < (|α̃′|, |γ̃′|), and,
again, the Lemma follows from (42). This completes the proof of Lemma 5.1. �

Unless one of xα, xγ divides the other, we can iterate the construction of Lemma 5.1. Since
τ cannot decrease indefinitely, this process must stop after finitely many steps. Therefore after
a finite number of steps we will arrive at the situation when one of x′α

′

, x′γ
′

divides the other.
In other words, one of xα, xγ divides the other in A′.

Of course, the above construction is not unique: at each step we made an arbitrary choice of
a coordinate chart. The inequality (24) and hence the final conclusion that one of xα, xγ divides
the other hold for all the possible choices of j. Now let {πi : A → A′

i}1≤i≤s be the totality of
all the blowing up sequences constructed above for all the possible choices of coordinate charts,
such that one of xα, xγ divides the other in A′

i for all i ∈ {1, . . . , s} (since the number of choices
of coordinate charts is finite at each step and each sequence stops after finitely many steps,
the overall set is finite). Since for each valuation ν there always exists a choice of coordinate
chart satisfying (16) at each step, the set {πi : A → A′

i}1≤i≤s satisfies the conclusion of the
Proposition. �

Let E be a subset of Sper A, such that all δ ∈ E satisfy u Q-linearly independent equations
of the form

n∑

i=1

θilνδ(xi) = 0, l ∈ {1, . . . , u}, (43)

where θil ∈ Q. Let r := n − u.

Corollary 5.1 There exist finitely many sequences πi : A → A′
i = k[xi1, . . . , xin], 1 ≤ i ≤ s, of

affine monomial blowings up, such that for each δ ∈ E the following conditions hold:
(1) for each i ∈ {1, . . . , s}, we have

νδ (xi,r+1) = · · · = νδ (xin) = 0. (44)

(2) there exists i ∈ {1, . . . , s} such that πi is a sequence of affine monomial blowings up with
respect to νδ.
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Proof: If r = n, there is nothing to prove. Assume that r < n. Then the existence of a
non-trivial Q-linear relation

n∑

i=1

θi1νδ(xi) = 0, (45)

implies that there exist two monomials xα and xγ with non-negative integer exponents such that
νδ (xα) = νδ(x

γ) for all δ ∈ E. Let A → A′ = k[x′
1, . . . , x

′
n] be one of the sequences of affine

monomial blowings up, appearing in the conclusion of Proposition 5.1 for xα and xγ . We have
either xα

xγ ∈ A′ or xγ

xα ∈ A′. Since xα

xγ is a monomial in the x′ and since

νδ

(
xα

xγ

)

= νδ

(
xγ

xα

)

= 0,

one of the νδ

(
x′

q

)
is equal to zero. Renumbering the x′

q, if necessary, we may assume that
νδ(x

′
n) = 0 for all δ ∈ E. Moreover, νδ (x′

1) , . . . νδ

(
x′

n−1

)
satisfy u − 1 linearly independent

relations Q-linear relations (namely, the transforms of the relations (43)). Next, repeat the
above procedure with the ring A replaced by k[x′

1, . . . , x
′
n−1]. After u repetitions, we arrive at

the situation where (44) holds. �

Corollary 5.2 Let the notation be as in Corollary 5.1. Take δ ∈ E such that

r = rat.rk(νδ(x1), . . . , νδ(xn)) (46)

and an index i ∈ {1, . . . , s}. Then νδ(xi1), . . . , νδ(xir) are Q-linearly independent.

Proof: This follows immediately from (15) and (46).

6 A connectedness theorem

As usual, let us denote by Γ the ordered group Rn
lex and by Γ+ the semigroup of non-negative

elements of Γ. Let ωij, θil ∈ Q, i ∈ {1, . . . , n}, j ∈ {1, . . . , q}, l ∈ {1, . . . , u} and consider the
subset E of Γn

+ defined by

E =

{

(a1, . . . , an) ∈ Γn
+

∣
∣
∣
∣
∣

n∑

i=1

ωijai > 0, j ∈ {1, . . . , q},
n∑

i=1

θilai = 0, l ∈ {1, . . . , u}

}

. (47)

Theorem 6.1 Let A = R[x1, . . . , xn] be a polynomial ring. Then the sets SE and S∗
E are

connected for the spectral topology of Sper(A).

A proof of Theorem 6.1 will be given after a few lemmas.

Lemma 6.1 Let X be a topological space, normal and compact (not necessarily Hausdorff)
and let F be a filter of non-empty closed connected sets. Then the intersection C =

⋂

F∈F
F is

non-empty, closed and connected.

Proof: That C is non-empty and closed is well known and easy to see. To prove connectedness,
suppose C = X1

∐
X2, X1,X2 closed. By normality, there are two open sets U1 ⊃ X1, U2 ⊃ X2,

U1 ∩ U2 = ∅. For any F ∈ F , Let G = F \ (U1 ∪ U2). We have G 6= ∅ because F is connected.
By the compactness of X, we have

⋂

F∈F
G 6= ∅. Take an element x ∈

⋂

F∈F
G. Then

x ∈
⋂

F∈F

G ⊂
⋂

F∈F

F = X1

∐

X2,

but x∈/U1 ∪ U2 ⊃ X1
∐

X2, which is a contradiction. �
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Lemma 6.2 Let B be any ring and S a closed connected subset of Sper(B). Then S is the
intersection of a filter of closed connected constructible sets.

Proof: Consider the filter F of all the closed connected constructible sets containing S. We
want to show that S =

⋂

F∈F

F . Suppose that S $
⋂

F∈F

F and take a point α ∈
⋂

F∈F

F \ S. Then

there exists a basic open set U ∋ α and such that U ∩ S = ∅. Then the connected component
C of the complement of U , containing S, is a constructible closed connected set containing S,
hence a member of F . But α∈/C, contradicting α ∈

⋂

F∈F
F . �

Lemma 6.3 (the Projection lemma) Let 1 ≤ s ≤ n − 1 and let

p : Sper R[x1, . . . , xn]x1...xn → Sper R[x1, . . . , xs]x1...xs

be the canonical projection. Fix a strictly positive constant N ∈ R. If C̃0 is a closed connected
subset of Sper R[x1, . . . , xs]x1...xs, then the sets

C̃N :=
{

δ ∈ p−1(C̃0)
∣
∣
∣ 0 < xi(δ) ≤ N, i ∈ {1, . . . , n}

}

,

and
C̃ := p−1(C̃0) ∩ Sper∗R[x1, . . . , xn]x1...xn

are connected in Sper R[x1, . . . , xn]x1...xn.

Remark: We will see later that the set p−1(C̃0) is also connected. However, from the point of
view of the Pierce-Birkhoff conjecture, p−1(C̃0) ∩ Sper∗R[x1, . . . , xn]x1...xn is the more natural
object of the two.

Proof of Lemma 6.3: Let C0 denote the preimage of C̃0 in the maximal spectrum Rs \ {x1 =
· · · = xs = 0}. According to the previous Lemma, we can write C̃0 as the intersection of a filter
of closed connected constructible sets F̃ ∈ F . Take an F̃ ∈ F . Since F̃ is connected in the real
spectrum, its preimage F in the maximal spectrum Rs\{x1 = · · · = xs = 0} is semi-algebraically
connected ([3], Proposition 7.5.1, p. 130). By abuse of notation, we will denote the restriction
of p to maximal spectra also by p. Let

CN := {(y1, . . . , yn) ∈ Rn | (y1, . . . , ys) ∈ C0, 0 < yi ≤ N, i ∈ {1, . . . , n}}, (48)

D̃N := {δ ∈ Sper R[x1, . . . , xn]x1...xn | 0 < xi ≤ N, i ∈ {1, . . . , n}}, (49)

and let DN denote the preimage of D̃N in the maximal spectrum Rn \ {x1 = · · · = xn = 0}. Let
pN be the restriction of p to both D̃N and DN .

We claim that the closed semi-algebraic subset p−1
N (F ) ⊂ DN is semi-algebraically con-

nected. Indeed, pN |DN
has semi-algebraically connected fibers (in fact, each fiber of pN |DN

is
the cube defined by the inequalities 0 < xj ≤ N , j ∈ {1, . . . , n}). Suppose p−1

N (F ) were not
semi-algebraically connected. Then there would exist open semi-algebraic sets U, V such that
p−1

N (F ) = U
∐

V . Since pN |DN
has connected fibers, U and V can be written as U = p−1

N (U0),
V = p−1

N (V0), where U0, V0 are disjoint open sets in Rs \ {x1 = · · · = xn = 0}, such that
F = U0

∐
V0. Then F̃ = Ũ0

∐
Ṽ0 which contradicts the connectedness of F̃ .

Since p−1
N (F ) is closed in DN , semi-algebraic and semi-algebraically connected, p−1

N (F̃ ) is
also connected for the spectral topology (applying Proposition 7.5.1 of [3] once again). Since

C̃N =
⋂

F̃∈F

p−1
N (F̃ ),
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C̃N is connected by Lemma 6.1. The set C̃ can be written as a nested union C̃ =
∞⋃

N=1
C̃N , hence

it, too, is connected. �

Lemma 6.4 (the fiber connectedness lemma) Fix an element a = (a1, . . . , an) ∈ Γn
+. The

set S∗
a is connected in Sper(A).

Remark: We will see later that Sa is also connected. Again, S∗
a is the more important object

of the two for the Pierce-Birkhoff conjecture.

Proof of Lemma 6.4: Let r = rat.rk a. Take a subset J ⊂ {1, . . . , n} and let

xJ = {xq | q ∈ J}.

Let j ∈ J be such that aj = min{aq}q∈J and consider the affine monomial blowing up

π : A → A′ = R[x′],

determined by J and j:
x′

q = xq, a′q = aq if q∈/J or q = j

x′
q =

xq

xj
, a′q = aq − aj if q ∈ J \ {j}.

(here and below, we will sometimes say that π is an affine monomial blowing up with respect to
a).

Let (G′, a′1, . . . , a
′
n) be the ordered group generated by the a′i (actually G′ = G) and let Sa′

be the corresponding subset of Sper(A′). Then S∗
a
∼= S∗

a′ by Proposition 4.1 and Corollary 4.1.
We now iterate the above procedure. By Corollaries 5.1 and 5.2 (where we take E = {a}),

after a succession of such transformations we may assume (after passing to the new coordinates)
that a1, . . . , ar are Q-linearly independent and ar+1 = · · · = an = 0. As a1, . . . , ar are Q-linearly
independent, there exists a unique point

α = (ta1 , . . . , tar ) ∈ Sper R[x1, . . . , xr]x1...xr

such that xi >α 0 and να(xi) = ai for i ∈ {1, . . . , r}: because of the linear independence, the
support of α is the zero ideal of R[x1, . . . , xr] and the ordering ≤α of R(x1, . . . , xr) is completely
described by the inequalities

xγ < xδ ⇐⇒
∑

γjaj >
∑

δjaj . (50)

The fact that a1, . . . , ar are Q-linearly independent implies that (50) imposes a total ordering on
the set of monomials and hence on R(x1, . . . , xr). This point α is closed in the relative topology
of Sper R[x1, . . . , xr]x1...xr because α has no non-trivial specializations. We have

S∗
a = p−1({α}),

where p is the projection Sper∗R[x1, . . . , xn]x1...xn → Sper∗R[x1, . . . , xr]x1...xr . Then S∗
a is con-

nected by the Projection lemma. �

Corollary 6.1 Let S† be a connected component of S∗
E and a an element of Γn

+. Then either
S∗

a ⊂ S† or S∗
a ∩ S† = ∅. There exists a subset E† ⊂ E such that S† = S∗

E†.
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The main idea of the proof of Theorem 6.1 is the following. Taking two points α and β in S, let
a = (a1, . . . , an) := (να(x1), . . . , να(xn)) and b = (b1, . . . , bn) := (νβ(x1), . . . , νβ(xn)). We join α
and β by a “staircase” in Γn where each stair lies completely in a connected component. Two
examples at the end of the paper show that we have to do this with some care.

First, we reduce the Theorem to the case when u = 0, that is, when E is defined by strict
inequalities (and no equalities). Indeed, without loss of generality, we may assume that the
equalities

n∑

i=1

θilai = 0, l ∈ {1, . . . , u} (51)

are linearly independent.

Lemma 6.5 If Theorem 6.1 is true for u = 0 (that is, no equalities in the definition of E) then
it is true in general.

Proof: Assume the Theorem for u = 0. Apply Corollary 5.1 to the set E. For each i ∈ {1, . . . , s},
let Ei = {a ∈ E | πi is a sequence of blowings up with respect to a}. By Corollary 5.1 (2),

E =
s⋃

i=1
Ei. Let E′

i denote the transform of Ei under πi (by the choice of Ei, E′
i is well

defined). By construction, E′
i is contained in the plane ai,r+1 = · · · = ain = 0, and is defined

in Γn
+ ∩ {ai,r+1 = · · · = ain = 0} by finitely many strict Q-linear inequalities — the transforms

of the inequalities
n∑

i=1
ωijai > 0. Let ι : Γr → Γn denote the natural inclusion of the plane

ai,r+1 = · · · = ain = 0 in Γn. Let E†
i = ι−1(E′

i). The set S∗
E′

i
is the preimage of S∗

E
†
i

under

the natural projection Sper R[xi1, . . . , xin]xi1...xin
→ Sper R[xi1, . . . , xir]xi1...xir

. Now, S∗
E

†
i

is

connected by the u = 0 case of Theorem 6.1. Its preimage S∗
E′

i
is connected by the projection

Lemma. Hence S∗
Ei

is connected by Corollary 4.1.
Let Ni denote the number of affine monomial blowings up composing πi and let

N = max
1≤i≤s

{Ni}.

To complete the proof of Lemma 6.5, we will now show that E is connected by induction on N .
Let J ⊂ {1, . . . , n} be such that the first blowing up in each of the sequences πi is a blowing
up along J . There are #J possible choices of coordinate charts, one for each element j ∈ J .
Let π0j : A → Aj denote the affine monomial blowing up, defined by J and j. Let E0j ⊂ E
be defined by E0j = {a ∈ E | π0j is a blowing up with respect to a} and let E′

0j denote the
transform of E0j under π. By the induction assumption, S∗

E′
0j

is connected.

Take two indices j, j̃ ∈ J . Assume that both E0j and E0j̃ are not empty. This means that
there exist a, ã ∈ E such that

aj ≤ aj̃ and (52)

ãj̃ ≤ ãj. (53)

(52) and (53) imply that there exists b ∈ E such that bj = bj̃. Then both π0j and π0j̃ are blowings
up with respect to b, so b ∈ E0j ∩ E0j̃ ; in particular, S∗

E0j
∩ S∗

E0j̃
6= ∅. To summarize, each S∗

E0j

is connected and whenever two such sets are non-empty, they have a non-empty intersection.
This implies that

⋃

j∈J

S∗
E0j

is connected, as desired. This completes the proof of Lemma 6.5. �

From now on, we will assume that u = 0 in Theorem 6.1.
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The next two Lemmas are the basic building blocks of all the connectedness results of this
paper.

Consider an element b ∈ Γn
+ such that b1, . . . , bn are Q-linearly independent. Then S∗

b consists
of a single point δ(b).

Lemma 6.6 Let U be a basic open set for the spectral topology of Sper A, containing δ(b).
There exists a subset V ⊂ Γn

+, defined by strict Q-linear inequalities, such that b ∈ V and for
any a ∈ V , we have S∗

a ⊂ U .

Proof: Let U = {α | f1(α) > 0, . . . , fs(α) > 0}. Write

fj =
∑

γ∈Nn

cjγxγ (54)

Let M(j) = cj,γ(j)x
γ(j) be the monomial of fj of smallest valuation (which exists because

b1, . . . , bn are Q-linearly independent).
For any j, 1 ≤ j ≤ s,

νδ(b)

(

xγ(j)
)

< νδ(b) (xγ) (55)

for all γ such that cjγ 6= 0. Writing γ = (γ1, . . . , γn), γ(j) = (γ1(j), . . . , γn(j)), (55) is equivalent

to saying that
n∑

q=1
(γq − γq(j))bq > 0. Let V be the subset of Γn

+, defined by the inequalities

n∑

q=1
(γq − γq(j))aq > 0 for all γ with cjγ 6= 0. Take an element a ∈ V and a point δ ∈ S∗

a. By

construction, each fj has the same dominant monomial at δ as at δ(b). Then S∗
a ⊂ U , as desired.

�

Let r ∈ {1, . . . , n − 1}. Consider an element b ∈ Γn
+ such that br+1 = · · · = bn = 0 and

b1, . . . , br are Q-linearly independent. For 1 ≤ j ≤ r, write bj = (bj1, . . . , bjn) with bjq ∈ R.

Consider the (r × n)-matrix (bjq)
1≤j≤r
1≤q≤n. If this matrix contains a column

→
v consisting entirely

of zeroes, permuting the columns so as to move
→
v to the right of the matrix does not change

the set S∗
b . Moving all such zero columns to the right, if necessary, we will assume, in addition,

that the (r × r) matrix (bjq)
1≤j≤r
1≤q≤r is non-singular.

Define b• = (b•1, . . . , b
•
n) by b•i = bi, i 6= r + 1 and b•r+1 = (0, . . . , 0

︸ ︷︷ ︸

r

, 1, 0, . . . , 0). We have

b ∈ E =⇒ b• ∈ E (56)

because, by the non-singularity of the matrix (bjq)
1≤j≤r
1≤q≤r, the presence of b•r+1 does not affect

the strict inequalities defining E: any integer multiple of b•r+1 is infinitesimal in absolute value
compared to any Z-linear combination of b1, . . . , br.

Lemma 6.7 We have S∗
b ∩S∗

b• 6= ∅. In particular, if b (and hence b•) belongs to E then S∗
b and

S∗
b• lie in the same connected component of S∗

E.

Proof: Pick a point in Sb• , for example,

α• =
(

tb1, . . . , tbr , tb
•
r+1, 1, . . . , 1

)

(here we are representing α• by a parametrized semi-curvette in Rn - see §3). Let

U = {α | f1(α) > 0, . . . , fs(α) > 0}
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be a basic open set such that U ∋ α•. It remains to prove that U ∩ S∗
b 6= ∅. Write

fj =
∑

γ=(γ,γr+1)

cjγ(x)xγx
γr+1

r+1 (57)

where x = (x1, . . . , xr) and x = (xr+2, . . . , xn). Let M(j) = cj,γ(j)x
γ(j)x

γr+1(j)
r+1 be the monomial

of fj of smallest valuation (which exists because b•1, . . . , b
•
r+1 are Q-linearly independent).

To say that M(j) is the monomial of fj of smallest valuation means that for any j, 1 ≤ j ≤ s,

ν
(

xγ(j)
)

≤ ν
(
xγ

)
(58)

for all γ = (γ, γr+1) such that cjγ 6= 0 and if equality holds in (58) then

γr+1(j) < γr+1. (59)

Take ǫ ∈ R sufficiently small so that for all j ∈ {1, . . . , s} we have
∣
∣
∣cj,γ(j)(1, . . . , 1)ǫ

γr+1(j)
∣
∣
∣ >

∑

γ
γr+1 > γr+1(j)

∣
∣cj,(γ(j),γr+1)(1, . . . , 1)ǫ

γr+1
∣
∣ .

Now let α = (tb1 , . . . , tbr , ǫ, 1, . . . , 1), then α ∈ U ∩ S∗
b , as desired. �

Lemma 6.8 For any connected component S∗
E† of S∗

E, there exists b ∈ E† such that

rat.rk(b) = n.

Proof: Take b ∈ E† such that rat.rk(b) = max
{
rat.rk(b†)

∣
∣ b† ∈ E†

}
. Suppose

rat.rk(b) = r < n.

We will now construct b• ∈ Γn
+ such that

S∗
b• ∩ S∗

b 6= ∅ (60)

and
rat.rk(b•) = r + 1. (61)

This will contradict the maximality of r.
Let A → A′ be a sequence of affine monomial blowings up, constructed in §5, such that,

denoting by b′ the transform of b by π, b′1, . . . , b
′
r are Q-linearly independent and

b′r+1 = · · · = b′n = 0.

Since the natural map π∗ : Sper A → A′ is continuous and preserves rational rank, we may
replace A by A′ and b by b′: if the conditions (60) and (61) are satisfied in Sper A′, they will
still be satisfied after applying π∗ to everything in sight. From now on, we drop the primes and
assume that b1, . . . , br are Q-linearly independent and br+1 = · · · = bn = 0.

Now, in view of (56), b• of Lemma 6.7 satisfies (60). This completes the proof of the Lemma.
�

For a = (a1, . . . , an), write aj = (aj1, . . . , ajn). Take a ∈ E such that (a11, . . . , an1) are
Q-linearly independent, in particular, rat.rk a = dimQ(Γ∗

a ⊗ Q) = n (such an a exists because
the n-tuples (a11, . . . , an1) such that a11, . . . , an1 are Q-linearly independent are dense in Rn).

Now suppose that S∗
E is not connected and let S(1), S(2) be two open and closed sets such

that S∗
E = S(1)

∐
S(2) with S(1) containing S∗

a. Let E(1), E(2) be the subsets of E such that
S(1) = S∗

E(1) and S(1) = S∗
E(1) ; E(1) and E(2) exist by Corollary 6.1.
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Lemma 6.9 There exists b• ∈ E(2) such that a11, . . . , an1, b
•
11, . . . , b

•
n1 are Q-linearly indepen-

dent.

Proof: According to the preceding lemma, we can find b ∈ E(2) such that rat.rk(b) = n. Then
S∗

b consists of a single point. Let U be a basic open set containing S∗
b and such that

U ∩ S(1) = ∅. (62)

Let V ⊂ Γn
+ be a set satisfying the conclusion of Lemma 6.6. Since the n-tuples (b•11, . . . , b

•
n1)

such that (a11, . . . , an1, b
•
11, . . . , b

•
n1) are Q-linearly independent are dense in Rn, there exists

b• ∈ E ∩ V such that (a11, . . . , an1, b
•
11, . . . , b

•
n1) are Q-linearly independent. By Lemma 6.6,

S∗
b• ⊂ U . By (62), b• ∈ E(2), as desired. �

Let a ∈ E(1), b ∈ E(2) be such that a11, . . . , an1, b11, . . . , bn1 are Q-linearly independent.

Remark: If λ, µ ∈ Q, λ 6= µ, then λa11 + (1 − λ)b11, . . . , λan1 + (1 − λ)bn1, µa11 + (1 −
µ)b11, . . . , µan1 + (1 − µ)bn1 are Q-linearly independent.

In the sequel, let N be a large natural number and λ =
i

N
, µ =

i + 1

N
.

Lemma 6.10 For N ∈ N sufficiently large we have













(
i
N

a11 +
(
1 − i

N

)
b11, 0, . . . , 0

)

...
(

i
N

aj−1,1 +
(
1 − i

N

)
bj−1,1, 0, . . . , 0

)

(
i+1
N

aj1 +
(
1 − i+1

N

)
bj1, 0, . . . , 0

)

...
(

i+1
N

an1 +
(
1 − i+1

N

)
bn1, 0, . . . , 0

)













∈ E.

for all i ∈ {0, . . . , N − 1} and all j ∈ {1, . . . , n}.

Proof: Since a11, . . . , an1 are Q-linearly independent, saying that
n∑

i=1
ωilai > 0, l ∈ {1, . . . , q} is

equivalent to saying that
n∑

i=1

ωilai1 > 0, l ∈ {1, . . . , q}.

Similarly, we have
n∑

i=1

ωilbi1 > 0, l ∈ {1, . . . , q}.

The set of n-tuples (c11, . . . , cn1) ∈ Rn such that
n∑

i=1
ωilci1 > 0, l ∈ {1, . . . , q}, is open and convex

and contains both (a11, . . . , an1) and (b11, . . . , bn1). Then for N sufficiently large we have

j−1
∑

i=1

ωil

(
i

N
ai1 +

(

1 −
i

N

)

bi1

)

+

n∑

i=j

ωil

(
i + 1

N
ai1 +

(

1 −
i + 1

N

)

bi1

)

=

n∑

i=1

ωil

(
i

N
ai1 +

(

1 −
i

N

)

bi1

)

+

n∑

i=j

ωil

(
1

N
ai1 −

1

N
bi1

)

> 0,

l ∈ {1, . . . , q}. This completes the proof of the Lemma. �
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For each i ∈ {0, . . . , N − 1} and j ∈ {1, . . . , n}, consider the pair

a(i, j − 1) :=













(
i
N

a11 +
(
1 − i

N

)
b11, 0, . . . , 0

)

...
(

i
N

aj−1,1 +
(
1 − i

N

)
bj−1,1, 0, . . . , 0

)

(
i+1
N

aj1 +
(
1 − i+1

N

)
bj1, 0, . . . , 0

)

...
(

i+1
N

an1 +
(
1 − i+1

N

)
bn1, 0, . . . , 0

)













, (63)

a(i, j) :=













(
i
N

a11 +
(
1 − i

N

)
b11, 0, . . . , 0

)

...
(

i
N

aj,1 +
(
1 − i

N

)
bj,1, 0, . . . , 0

)

(
i+1
N

aj+1,1 +
(
1 − i+1

N

)
bj+1,1, 0, . . . , 0

)

...
(

i+1
N

an1 +
(
1 − i+1

N

)
bn1, 0, . . . , 0

)













. (64)

of elements of Γn
+. The point of the next Proposition is to show that for each i ∈ {0, . . . , N − 1}

and j ∈ {1, . . . , n} these 2 points belong to the same set E(s).
Take c = (c1, . . . , cn), d = (d1, . . . , dn) ∈ E such that cj = dj for j ∈ {1, . . . , n − 1}. We

define the segment [c, d] as [c, d] = {








c1
...

cn−1

en








| cn ≤ en ≤ dn}. Let

S∗
[c,d] =

{

α ∈ S∗
(c1,...,cn−1,en)

∣
∣
∣ (c1, . . . , cn−1, en) ∈ [c, d]

}

.

Proposition 6.1 Take c, d ∈ E such that :
(1) cj = dj for j ∈ {1, . . . , n − 1}
(2) cn1 < dn1

(3) cnl = dnl = 0 for l ∈ {2, . . . , n}.
(4) c11, . . . , cn1, dn1 are Q-linearly independent.

Then S∗
[c,d] is connected.

For the moment, let us assume Proposition 6.1 and finish proving the connectedness of S∗
E .

Take i ∈ {0, . . . , N − 1} and j ∈ {1, . . . , n}. Up to renumbering the components c1, . . . , cn, the
pair of points c = a(i, j − 1) and d = a(i, j) satisfy the hypotheses of Proposition 6.1. Then
Proposition 6.1 says that S∗

a(i,j−1) and S∗
a(i,j) are contained in the same connected component

of S∗
E, so a(i, j − 1) and a(i, j) belong to the same set E(s), s = 1, 2.
Since b ∈ E(2) and S∗

b = S∗
btrunc

by linear independence of b11, . . . , bn1, we must have

btrunc :=






(b11, 0, . . . , 0)
...

(bn1, 0, . . . , 0)




 ∈ E(2).

Since btrunc = a(0, n) and a(i, j − 1) and a(i, j) belong to the same set E(s) for all i, j, we have
a(i, j) ∈ E(2) for all i, j by induction on (i, n − j) in the lexicographical ordering (note that
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a(i, 0) = a(i + 1, n)). Then

a(N − 1, 0) = atrunc :=






(a11, 0, . . . , 0)
...

(an1, 0, . . . , 0)




 ∈ E(2)

so, finally, a ∈ E(2) which contradicts the fact that a was chosen in E(1). Thus, the connectedness
of S∗

E is reduced to proving Proposition 6.1.

Proof of Proposition 6.1: Suppose S∗
[c,d] is not connected. By Corollary 6.1 we can write

[c, d] = B1

∐

B2 (65)

and
S∗

[c,d] = X1

∐

X2, (66)

such that X1 = S∗
B1

and X2 = S∗
B2

are open and closed in the relative topology of S∗
[c,d].

In view of assumption (1) of Proposition 6.1, (65) induces a decomposition of the segment
[cn, dn] = B1n

∐
B2n.

Consider the segment [cn1, dn1] of the real line.

Lemma 6.11 Every point en1 ∈ [cn1, dn1] can be covered by a set V (1), open in the topology
induced on [cn1, dn1] by the Euclidean topology of R, having the following property. Let V be the
subset of Γn

+ defined by
V = {e ∈ [c, d] | en1 ∈ V (1)}. (67)

Then all of S∗
e , e ∈ V are contained in the same set Xs, s = 1, 2.

Lemma 6.11 implies Proposition 6.1 and with it the connectedness of S∗
E . Indeed, assume

Lemma 6.11 and consider the decomposition (66). By Lemma 6.11, (66) induces a decomposition
[cn1, dn1] = W1

∐
W2 into two disjoint open sets in the Euclidean topology of R, which gives the

desired contradiction since [cn1, dn1] is connected.
It remains to prove Lemma 6.11.

Proof of Lemma 6.11:

Case 1 : en1∈/
n−1∑

j=1
Qcj1. Let en = (en1, 0, . . . , 0) and e = (c1, . . . , cn−1, en). Without loss of

generality, we may assume that S∗
e ⊂ X1 (the set S∗

E consists of a single point). Take a basic
open set U of Sper A, containing S∗

e and disjoint from X2. The existence of V (1) with the
desired properties follows immediately from Lemma 6.6.

Case 2 : en1 ∈
n−1∑

j=1
Qcj1.

Let π : A → A′ be a sequence of affine monomial blowings up, constructed in §5, such that,
denoting by e′ the transform of e by π, e′11, . . . , e

′
1,n−1 are Q-linearly independent and

e′n1 = 0.

Moreover, assuming en 6= dn, we can choose π to be a sequence of blowings up with respect to a
small half-open interval of the form I = [e, h) ⊂ [c, d]; in other words, for any b ∈ [e, h), and any
α ∈ S∗

b , we have that να is non-negative on A′. For any such b, we have S∗
b′
∼= S∗

b by Proposition
4.1.

Since the natural map π∗ : Sper A → Sper A′ is continuous and preserves rational rank, we
will work with A′, c′, d′, e′ instead of A, c, d, e.
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The decomposition (65) induces a decomposition of I and hence also a decomposition

I ′ = B′
1

∐

B′
2,

such that S∗
B′

1
and S∗

B′
2

are open and closed in the induced topology of S∗
I′ .

Let e•n = (0, 1, 0, . . . , 0), e• = (e′1, . . . , e
′
n−1, e

•
n). Without loss of generality, assume that

e• ∈ B′
1. Let U be a basic open set of Sper A having non-empty intersection with S∗

e• and
disjoint from S∗

B′
2
. Now Lemma 6.7 shows that S∗

e• ∩ Se′ 6= ∅ and Lemma 6.6 shows that for a

sufficiently small interval V †(1) = (0, ǫ) of the real line, ǫ > 0, if b′n1 ∈ V †(1) then S∗
b′ ⊂ U . Let

V+(1) = [0, ǫ) and let V+ = {e′ ∈ [c′, d′] | e′n1 ∈ V+(1)}. This proves that
⋃

b′∈V+

S∗
b′ ⊂ S∗

B′
1
.

Coming back to the original interval [cn1, dn1] (that is, before doing the blowing up sequence
π), we have shown that all the S∗

b for b ∈ [e, h) lie in the same connected component of S∗
E ,

provided we take hn1 sufficiently close and to the right of en1. Now, assuming en 6= cn, let
J be a small half-open interval of the form (v, e] with v < e. Repeating the above reasoning
with I replaced by J , we obtain that for V = (v, h),

⋃

b′∈V

S∗
b′ ⊂ S∗

B′
1
, so the open interval

V (1) = (vn1, hn1) satisfies the conclusion of the Lemma.
This completes the proof of Lemma 6.11, Proposition 6.1 and the connectedness of S∗

E. �

To complete the proof of Theorem 6.1, it remains to prove the connectedness of SE. Since the
connectedness of S∗

E is already known, it is sufficient to prove the connectedness of Sa. If aj > 0
for all j ∈ {1, . . . , n} then S∗

a = Sa and there is nothing to prove. Assume that some of the aj

are 0. Without loss of generality, we may assume that for some p, 1 ≤ p ≤ n, a1 = · · · = ap = 0
and ap+1 > 0, . . . , an > 0. Let

yj = xj for j ∈ {p + 1, . . . , n}, (68)

= 1
xj

for j ∈ {1, . . . , p}. (69)

Let B = R[y1, . . . , yn]. For a ∈ Γn
+, let

S∗
a,B = {δ ∈ Sper∗(B) | yi >δ 0, i ∈ {1, . . . , n}, (Γ∗

δ , νδ(x1), . . . , νδ(x1)) ∼= (G, a1, . . . , an)},

where νδ is the valuation associated to δ in Sper B. Consider the set Sa ∩ Sper B. For any
δ ∈ Sa ∩ Sper B, all of the yi are bounded by some real constant, hence Sa ∩ Sper B = S∗

a,B ,
which we already know to be connected. Since both S∗

a and Sa ∩ Sper B are connected,

Sa = S∗
a ∪ (Sa ∩ Sper B)

and since the union is not disjoint (it contains, for example, the curvette (1, . . . , 1
︸ ︷︷ ︸

l ones

, tap+1 , . . . , tan)),

the connectedness of Sa follows. This completes the proof of Theorem 6.1. �

The next two examples show that the intuition that “convex sets in Γn
+ give rise to connected

sets in Sper A” is not completely accurate.
Example 1: Let n = 2. Let c = (0, 0), d = (0, 1) ∈ R2

lex. Then S∗
[c,d] is not connected: we

have S∗
[c,d] = S∗

c

∐
S∗

]c,d] and both S∗
c and S∗

]c,d] are open and closed. In particular, Lemma 6.1
is false without the assumption that c11, . . . , cn1, dn1 are linearly independent. Another way of
interpreting this example is that intervals consisting only of rank 1 valuations do not give rise
to connected sets in Sper A.
Example 2: In this example, higher rank valuations appear, but, again, c11, . . . , cn1, dn1 are
Q-linearly independent. Let n = 3 and take c1 = d1 = e1 = (1, 0, 0), c2 = d2 = e2 = (0, 1, 0),
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c3 = (0, 0, 0), d3 = (1, 0, 0), e3 = (e31, e32, e33), c3 ≤ e3 ≤ d3. Then c11, c21, c31, d31 are Q-linearly
dependent and the segment [c31, d31] is a disjoint union of V (1) = {e31 = 0} and V (2) = {e31 > 0}.
The decomposition [c31, d31] = V (1)

∐
V (2) induces a decomposition S∗

[c,d] = S∗
V (1)

∐
S∗

V (2) into
two disjoint sets which are both open and closed in the induced topology. To see this, note that
S∗

V (1) may be written as the union of basic open sets {f > 0} where f is of the form x3 − xq
2,

q ∈ Q+, while S∗
V (2) is the union of basic open sets {f > 0} where f is of the form f = x1 − xq

3,
q ∈ Q+.
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