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Summary. We consider a Langevin process with white noise random forcing. We suppose that the

energy of the particle is instantaneously absorbed when it hits some fixed obstacle. We show that

nonetheless, the particle can be instantaneously reflected, and study some properties of this reflecting

solution.
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1 Introduction

Langevin [8] introduced a probabilistic model to describe the evolution of a particle under
random external forcing. Langevin’s motion has smooth trajectories, in the sense that if Yt

stands for the position of the particle at time t, then the velocity Ẏt := dYt/dt is well-defined
and finite everywhere. We assume that the external force (i.e. the derivative of the velocity) is
a white noise, so that

Ẏt = Ẏ0 + Wt ,

where W = (Wt, t ≥ 0) is a standard Wiener process1, and Yt can then be expressed in terms
of the integral of the latter. Plainly the Langevin process Y = (Yt, t ≥ 0) is not Markovian,
however the pair (Y, Ẏ ), which is often called Kolmogorov’s process, is Markov. We refer to
Lachal [7] for an interesting introduction to this field, historical comments, and a long list of
references.

Recently, Maury [9] has considered the situation when the particle may hit an obstacle and

1We mention that Langevin considered more generally the case when the velocity is given by an Ornstein-

Uhlenbeck process.
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then its velocity is instantaneously absorbed. Roughly, this arises in a model for the motion
of individuals during the formation of a crowd. For the sake of simplicity, we shall work
in dimension 1 and assume that the particle evolves in the half-line [0,∞[. As long as the
particle remains in ]0,∞[, its dynamics are those described above. When the particle reaches
the boundary point 0, we suppose that its energy is absorbed, in the sense that the velocity
instantaneously drops to 0.

There is an obvious way to construct a process that fulfills these requirements. Namely,
given an initial position x ≥ 0 and an initial velocity v ∈ R, if we consider the free Langevin
process (i.e. when there is no obstacle) started from x with velocity v

Yt = x +

∫ t

0

(v + Ws)ds

and define
ζ = inf{t ≥ 0 : Yt = 0} ,

then we can take (Yt∧ζ , t ≥ 0). In the sequel, we shall refer to this solution as the Langevin
process stopped at 0.

It is easy to show that when x = v = 0, the free Langevin process Y = (Yt, t ≥ 0) returns
to 0 at arbitrarily small times, and that its velocity at such return times is never 0. In the
presence of an obstacle, this suggests that reseting the velocity to 0 at every hitting time of the
boundary might impede the particle to ever exit 0, so that the Langevin process stopped at 0
might be the unique solution.

The purpose of this work is to point at the rather surprising fact (at least for the author)
that there exists a remarkable reflecting solution which exits instantaneously from the boundary
point 0. Constructing recurrent extensions of a given Markov process killed when it reaches
some boundary is a classical problem in the theory of Markov processes; see in particular Itô [4],
Rogers [11, 12], Salisbury [14], Blumenthal [2] and references therein (note that in these works,
the boundary is reduced to a single point whereas here, the Markov process (Y, Ẏ ) is killed
when it reaches {0} × R). However it does not seem easy to apply directly this theory in our
setting, as technically, it would require the construction of a so-called entrance law from (0, 0)
for the killed Kolmogorov process. Some explicit information about the transitions of latter are
available in the literature, see in particular Lachal [5, 7] and references therein. Unfortunately,
the expressions are quite intricate and tedious to manipulate.

We shall first construct a reflecting solution by combining the classical idea of Skorohod with
techniques of time substitution. Then, we shall establish uniqueness in distribution. In this
direction, we have to obtain a priori information about the measure of the excursions away
from 0 for any reflected solution. More precisely, we will first observe that the velocity of a
reflecting Langevin process does not remain strictly positive immediately after the beginning
of an excursion away from 0, which may be a rather surprising fact. Then, combining a
fundamental connection between the Langevin process and the symmetric stable process of
index 1/3 with a result of Rogozin [13] on the two-sided exit problem for stable Lévy processes,
we shall compute explicitly certain distributions under the excursion measure of any reflecting
solution. This will enable us to characterize the excursion measure and hence to establish
uniqueness in law. Finally, we turn our attention to statistical self-similarity properties of the
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reflected Langevin process; in particular we shall establish that the Hausdorff dimension of the
set of times at which the particle reaches the boundary is 1/4 a.s.

2 Construction of the reflecting process

The purpose of this section is to provide an explicit construction of a Langevin process with
white noise external forcing, such that the energy of the particle is absorbed each time it hits the
boundary point 0, and which is nonetheless instantaneously reflected at 0. In order to focus on
the most interesting situation, we shall suppose thereafter that the initial location and velocity
are both zero, although the construction obviously extends to arbitrary initial conditions.

By this, we mean that we are looking for a càdlàg process (X, V ) = ((Xt, Vt), t ≥ 0) with
values in [0,∞[×R, which starts from X0 = V0 = 0 and fulfills the following five requirements.
First, V is the velocity process of X, that is

Xt =

∫ t

0

Vsds . (1)

Second, we require that the energy of the particle is absorbed at the boundary, viz.

Vt = 0 for every t ≥ 0 such that Xt = 0, a.s., (2)

and, third, that the process X spends zero time at 0 :
∫ ∞

0

1{Xt=0}dt = 0 a.s. (3)

Fourth, the process X evolves in ]0,∞[ as a free Langevin process, that is if we define for every
t ≥ 0 the first return time to the boundary after t,

ζt = inf{s ≥ t : Xs = 0} ,

then for every stopping time S in the natural filtration (after the usual completions) (Ft)t≥0 of
X :

conditionally on XS = x > 0 and VS = v, the process (X(S+t)∧ζS
, t ≥ 0)

is independent of FS, and has the distribution of a Langevin process

started with velocity v from the location x and stopped at 0. (4)

Roughly, the final condition is a natural requirement of regeneration at return times to the
boundary. Specifically, for every stopping time S such that XS = 0 a.s., we have that

the process (XS+t, t ≥ 0) has the same law as (Xt, t ≥ 0) and is independent of FS. (5)

Conditions (4) and (5) entail that (X, V ) enjoys the strong Markov property; note however
the latter has jumps at predictable stopping times and thus is not a Hunt process. Note also
that, since a free Langevin process started from an arbitrary position with an arbitrary velocity
eventually reaches the boundary point 0 a.s., (0, 0) is necessarily a recurrent point for (X, V ).
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Let W = (Wt, t ≥ 0) be a standard Wiener process started from W0 = 0. Recall that W
possesses a local time at 0 which is defined by

Lt := lim
ε→0+

1

ε

∫ t

0

1{0<Ws<ε}ds , t ≥ 0 .

The process L = (Lt, t ≥ 0) has continuous paths and the support of the Stieltjes measure dLt

coincides with the set of times t at which Wt = 0, a.s. We write

τt := inf{s ≥ 0 : Ls > t} , t ≥ 0

for the right-continuous inverse of L.

Next, we define the free Langevin process

Yt =

∫ t

0

Wsds , t ≥ 0 .

The scaling and strong Markov properties of the Wiener process readily entail the following
lemma which will be crucial for our analysis.

Lemma 1 The time-changed process

σt := Yτt , t ≥ 0

is a symmetric stable Lévy process with index 1/3. Moreover, Ys lies between σt and σt− for
every s ∈ [τt−, τt].

We refer to Biane and Yor [1] for the first claim. The second follows from the fact that Y is
monotone on every time-interval [τt−, τt] on which the Wiener process W makes an excursion
away from 0. It will play an important part in our study as it enables us to relate exit properties
of the Langevin process to that of the symmetric stable process σ, and useful information on
the latter can be gleaned from the literature.

We also consider the non-increasing infimum process

It = inf{Ys : 0 ≤ s ≤ t} .

Plainly, I is absolutely continuous (because so is Y ) and dIt = 0 whenever Yt > It. We observe
that Wt ≤ 0 for every t such that Yt = It. Indeed, if we had Wt > 0 for such a time t,
then Y would be strictly increasing on some neighborhood of t, which is incompatible with the
requirement that Yt = It. Now for every t ≥ 0 such that Yt = It and Wt < 0, Y is strictly
decreasing on some interval [t, t′] with t′ > t, and thus Y = I on [t, t′]. Since the total time
that W spends at 0 is zero, we conclude that

It =

∫ t

0

1{Ys=Is}Wsds .

Next, consider the process X̃t = Yt − It which can thus be expressed in the form

X̃t =

∫ t

0

Ṽsds ,
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where
Ṽt = 1{Yt>It}Wt = 1{X̃t>0}Wt .

We observe that the velocity process Ṽ = (Ṽt, t ≥ 0) has càdlàg paths a.s. Indeed, if Ṽt 6= 0,
then X̃t > 0, so the indicator function s → 1{X̃s>0} remains equal to 1 on some neighborhood
of t and s → 1{X̃s>0}Ws is thus continuous at t. Plainly, s → 1{X̃s>0}Ws is also continuous at

t when Wt = 0. Suppose now that Ṽt = 0 and Wt 6= 0, and recall that necessarily Wt < 0.
Then, Y is strictly decreasing on some neighborhood of t, say ]t − ε, t + ε[. As Yt = It, either
1{X̃s>0} = 1 for t−ε < s < t and 1{X̃s>0} = 0 for t ≤ s < t+ε, or the indicator function 1{X̃s>0}

remains equal to 0 on some neighborhood of t. In both cases, this implies that s → 1{X̃s>0}Ws

is càdlàg at t.

In conclusion, (X̃, Ṽ ) is a càdlàg process which fulfills the requirements (1) and (2), and an
immediate application of the Markov property shows that (4) also holds. However, (3) clearly
fails, as the closed set

I := {t ≥ 0 : X̃t = 0}

has a strictly positive (as a matter of fact, infinite) Lebesgue measure. This incites us to study
I in further details, and in this direction, the following notion appears naturally. For every
t ≥ 0, we define the random set

J :=
{

t ≥ 0 : Wt < 0, X̃t = 0 and X̃t−ε > 0 for all ǫ > 0 sufficiently small
}

.

In other words, J is the set of times at which Y reaches its infimum for the first time during
a negative excursion of W . Observe that each point s ∈ J is necessarily isolated in J , and in
particular J is countable. Further, we introduce the notation

dt := inf{s > t : Ws = 0}

for the first return time of the Wiener process W to 0 after time t. We may now state the
following lemma.

Lemma 2 The canonical decomposition of the interior Io of I as the union of disjoint open
intervals is given by

Io =
⋃

s∈J

]s, ds[ .

Moreover, the boundary ∂I = I\Io has zero Lebesgue measure.

Proof: We start by recalling that the free Langevin process Y oscillates at the initial time,
in the sense that

inf{t > 0 : Yt > 0} = inf{t > 0 : Yt < 0} = 0 a.s.

Indeed, for every t > 0, Yt is a centered Gaussian variable, so P(Yt > 0) = P(Yt < 0) = 1/2,
and the claim follows from Blumenthal’s 0-1 law for the Wiener process.

Now pick an arbitrary rational number a > 0 and work conditionally on a ∈ Io. Then we
know that Wa ≤ 0, and as P(Wa = 0) = 0, we may thus assume that Wa < 0. Recall that
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da = inf{s > a : Ws = 0} denotes the first hitting time of 0 by W after time a. Plainly Y
decreases on [a, da], and thus ]a, da[⊆ Io. An application of the strong Markov property of
the Wiener process W at the stopping time da, combined with the oscillation property of the
free Langevin process mentioned above, shows that da is the right extremity of the interval
component of Io which contains a.

Next, consider ga = sup{t < a : Wt = 0}, the left-extremity of the interval containing a
on which W makes an excursion away from 0. We shall show that ]ga, da[ intersects J at a
single point s. Recall that L = (Lt, t ≥ 0) denotes the process of the local time of W at 0 and
τt = inf{s ≥ 0 : Ls > t} its right-continuous inverse, and that the compound process σ := Y ◦ τ
is a symmetric stable Lévy process with index 1/3 (see Lemma 1). We write ιt := inf0≤s≤t σs for
the infimum process of σ. The excursion interval ]ga, da[ corresponds to a jump of the inverse
local time, that is ]ga, da[=]τt−, τt[ for some t > 0. Because Y is monotone on every excursion
interval of W , the identities

ιv = I(τv) and ιv− = I(τv−)

hold for every v, a.s. Since Yda = Ida , the stable process σ reaches a new infimum at time t.
On the other hand, we know that a symmetric stable process never jumps at times v such that
σv− = ιv−, see for instance Rogers [10], so

Iτt− = ιt− < σt− = Yτt− .

That is Iga < Yga, and as the Langevin process Y decreases on ]ga, da[ and Ya = Ia, this implies
that s := inf{u > ga : Yu = Iu} ∈ J . More precisely, we have that ]ga, da[∩J = {s}, and it
should now be plain that the interval component of Io which contains a is ]s, da[=]s, ds[ a.s.
Taking the union over the set of rational a’s with a ∈ Io establishes the inclusion

Io ⊆
⋃

s∈J

]s, ds[ a.s.,

and the converse inclusion is obvious.

Finally, we turn our attention to the second assertion. Pick any s ∈ ∂I; we then know that
Ws ≤ 0. Note that if Ws < 0, then s ∈ J . Since the set of times at which the Wiener process
is 0 has zero Lebesgue measure and J is countable, this shows the second claim. �

We are now able to complete the construction. Introduce

Tt := inf

{

s ≥ 0 :

∫ s

0

1{X̃u>0}du > t

}

, t ≥ 0 ,

and set
Xt = X̃ ◦ Tt and Vt = Ṽ ◦ Tt for every t ≥ 0 .

Informally, the time-substitution amounts to suppressing the pieces of the paths on which
the free Langevin process is at its minimum, and this makes the following statement rather
intuitive. Observe that the process t → Tt is increasing and right-continuous, so the sample
paths of ((Xt, Vt), t ≥ 0) are càdlàg a.s.
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Theorem 1 The process (X, V ) constructed above fulfills the requirements (1), (2), (3), (4)
and (5).

Proof: The argument relies essentially on a change of variables formula for the increasing
process T that we shall first justify with details.

For every t ≥ 0, we consider the partition of the interval [0, Tt] into three Borel sets

B1(t) := [0, Tt] ∩ Ic , B2(t) := [0, Tt] ∩ ∂I , B3(t) := [0, Tt] ∩ Io

where Ic = {s ≥ 0 : X̃s > 0}. Recall Lemma 2, and in particular that ∂I has zero Lebesgue
measure. We deduce that the canonical decomposition of the increasing process T into its
continuous component and its jump component is

Tt =

∫ Tt

0

1{X̃s>0}ds +
∑

s∈J ,s≤Tt

(ds − s) = t +
∑

s∈J ,s≤Tt

(ds − s) ,

where the second equality stems from the very definition of the time-substitution.

The classical change of variables formula gives

f(Tt) = f(0) +

∫ t

0

f ′(Ts)ds +
∑

s∈J ,s≤Tt

(f(ds) − f(s)) , (6)

where f : R+ → R stands for a generic function which is continuously differentiable. A standard
argument using the monotone class theorem shows that (6) extends to the case when f has
a derivative f ′ in Lebesgue’s sense which is locally bounded. Apply the change of variables
formula for

f(s) = X̃s =

∫ s

0

Ṽudu , f ′(s) = Ṽs .

Since f(ds) − f(s) = 0 for every s ∈ J , this gives

Xt = f(Tt) =

∫ t

0

ṼTsds =

∫ t

0

Vsds ,

which proves (1).

Next, as the pair of processes (X̃, Ṽ ) fulfills (2), the time-substitution shows that the same
holds for (X, V ). Then, we apply the change of variables formula (6) to f ′(s) = gn(X̃s), where
gn(x) = nx for 0 ≤ x ≤ 1/n and gN(x) = 1 for x > 1/n. Since gn(X̃u) = 0 for every u ∈]s, ds[
when s ∈ J , we get

∫ Tt

0

gn(X̃u)du =

∫ t

0

gn(Xu)du .

Letting n tend to ∞, we deduce by monotone convergence that

∫ Tt

0

1{X̃u>0}du =

∫ t

0

1{Xu>0}du .

Since the left-hand side equals t, this shows that (3) holds.
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Finally, note that for every t ≥ 0, there is the identity

ζt − t := inf{u ≥ 0 : Xt+u = 0} = inf{u ≥ 0 : X̃Tt+u = 0} .

More precisely, either Xt = 0 and then the two quantities above must be zero, or Xt = X̃Tt > 0
and then it is immediately seen that Tt+u = Tt +u for every 0 ≤ u < ζt− t. That (X, V ) verifies
the requirement (4) now readily stems from the fact that if S is an (Ft)-stopping time, then
TS is a stopping time in the natural filtration of the Wiener process W and the strong Markov
property of W applied at time TS, as Xt+S = X̃TS+t for every 0 ≤ t < ζS − S.

We then observe the identity

Vt = W ◦ Tt , for all t ≥ 0, a.s. (7)

Indeed, in the case when Xt > 0, we have Vt = ṼTt = WTt . In the case when Xt = 0, since by
(3), X cannot stay at 0 in any neighborhood of t, V must take strictly positive values at some
times arbitrarily closed to t. Because W is continuous and the time-change T right-continuous,
this forces WTt = 0. By (2), we conclude that (7) also holds in that case.

The regeneration property (5) follows from an argument similar to that for (4). Let S be
a stopping time in the natural filtration of X with XS = 0 a.s. It is easily seen that TS is a
stopping time for the Wiener process W , and by (2) and (7), VS = WTS

= 0. By the strong
Markov property, W ′ = (W ′

t := WTS+t, t ≥ 0) is thus a standard Wiener process, which is
independent of the stopped Wiener process (Wu∧TS

, u ≥ 0). Let Y ′ denote the free Langevin
process started from the location 0 with zero velocity and driven by W ′, and by I ′ its infimum
process. As the free Langevin process Y coincides with its infimum I at time TS, we have the
identities

Y ′
t = YTS+t

− YTS
, I ′

t = ITS+t
− YTS

for every t ≥ 0. It should now be plain that X ′ = (X ′
t := XS+t, t ≥ 0) is the reflected Langevin

process constructed from W ′, which establishes the regeneration property (5). �

We now conclude this section by pointing at an interesting connection between the reflecting
Langevin process and a reflecting stable process, which completes Lemma 1. Recall that L
denotes the local time at 0 of the Wiener process and introduce

λt := L ◦ Tt , t ≥ 0 .

Proposition 1 (i) The process λ = (λt, t ≥ 0) serves as a local time at 0 for the velocity V of
the reflecting Langevin process X, in the sense that

λt = lim
ε→0+

1

ε

∫ t

0

1{0<Vs<ε}ds , t ≥ 0 .

Moreover the non-decreasing process λ = (λt, t ≥ 0) has continuous paths and the support of
the Stieltjes measure dλt coincides with {t ≥ 0 : Vt = 0} a.s.

(ii) Introduce the right-continuous inverse

λ−1
t := inf{s ≥ 0 : λs > t} , t ≥ 0 .

The time-changed process X◦λ−1 can be expressed as X◦λ−1
t = σt−ιt, where σ is the symmetric

stable process which appears in Lemma 1 and ιt = inf0≤s≤t σs. In other words, X ◦ λ−1 is a
symmetric stable process with index 1/3 reflected at its infimum.
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Proof: (i) Introduce for every ε > 0 and t ≥ 0

L
(ε)
t :=

1

ε

∫ t

0

1{0<Ws<ε}ds .

The change of variables formula (6) yields

L
(ε)
Tt

:=
1

ε

∫ t

0

1{0<WTs<ε}ds .

Then recall from (7) that WTs = Vs for all s ≥ 0, so taking the limit as ε → 0+ establishes

the first assertion. Further, as L
(ε)
· converges to L· uniformly on every compact time-interval

(this follows from the fact that the occupation densities of the Wiener process are jointly
continuous), we see that t → LTt is continuous a.s. The last assertion can then be proved by a
routine argument.

(ii) Introduce At =
∫ t

0
1{X̃s>0}ds, so that T· is the right-continuous inverse of A·. Then λ−1

t =

A◦ τt and thus X ◦λ−1 = X̃ ◦T ◦A◦ τ . It is easily checked from the strong Markov property of
W at τt that T ◦ A ◦ τt = τt a.s. for each t ≥ 0, and as both processes are càdlàg, the identity
holds simultaneously for all t ≥ 0, a.s. We conclude that X ◦ λ−1

t = Y ◦ τt − I ◦ τt = σt − ιt. �

3 Uniqueness in distribution

The purpose of this section is to show that the requirements (1-5) characterize the law of the
reflecting Langevin process. Our approach is based on excursion theory for Markov processes
(see e.g. Blumenthal [2] for details and references); let us now explain roughly the main steps.

We shall denote here by (X, V ) any càdlàg process which fulfills the conditions (1-5) of
Section 2; recall from (4) and (5) that the latter has the strong Markov property, and is
regenerated at every stopping time S at which XS = 0 a.s. It is easy to deduce from the
right-continuity of the sample paths and elementary properties of the free Langevin process
that X returns to 0 at arbitrarily small times a.s. (recall from (2) that necessarily V = 0 at
such times); one says that the point (0, 0) is regular for (X, V ). This enables us to construct a
local time process ℓ = (ℓt, t ≥ 0), that is a continuous non-decreasing additive functional which
increases exactly on the set of times at which X visits 0, in the sense that the support of the
random measure dℓt coincides with Z := {t ≥ 0 : Xt = 0} a.s. The local time process is unique
up to some deterministic factor; the choice of this multiplicative constant is unimportant and
just a matter of convention. In the sequel, we shall denote generically by c or c′ a

positive finite constant whose value may be different in different expressions.

Next, introduce the (right-continuous) inverse local time

ℓ−1
t := inf{s ≥ 0 : ℓs > t} , t ≥ 0 .

The jumps of ℓ−1 correspond to the time-intervals on which X makes an excursion away from
0, in the sense that the canonical decomposition of the random open set Zc on which X > 0
into interval components, is given by

Zc =
⋃

]ℓ−1
t− , ℓ−1

t [ ,
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where the union is taken over the set of times t at which ℓ−1 jumps. The point process

t →
(

X(ℓ−1

t−+s)∧ℓ−1
t

, s ≥ 0
)

, t jump time of ℓ−1 ,

is a Poisson point process. It takes values in the space of excursions, viz. continuous paths in
[0,∞[ which start from 0, immediately leave 0, and are absorbed at 0 after their first return.
Its intensity n is called the excursion measure (of X away from 0). The measure n does not
need to be finite; however it always assigns a finite mass to the set of excursion with height
greater than η, for any η > 0. As, by (3), X spends no time at 0, one can reconstruct X from
the excursion process (this is known as Itô’s program), and thus the law of X is determined by
the excursion measure n. The latter is only defined up to a multiplicative constant depending
on the normalization of the local time. Thus, in order to establish that the requirements (1-
5) characterize the law of X, it suffices to show that these conditions specify n up to some
deterministic factor, which is the main goal of this section.

In this direction, we shall denote by e = (et, t ≥ 0) a generic excursion of X away from 0,
by ζ = inf{t > 0 : et = 0} the lifetime of the excursion, and by v = (vt, t ≥ 0) its velocity, so

et =

∫ t

0

vsds , t ≥ 0 .

The first step in the analysis of the excursion measure n concerns the behavior of the velocity
immediately after the initial time. More precisely, we are interested in the first instant at which
the velocity v is 0 again, viz

d := inf{t > 0 : vt = 0} .

The requirements v0 = 0 and et > 0 for every 0 < t < ζ might suggest that the velocity could
remain strictly positive immediately after the initial time, that is that d > 0. However we shall
see that this intuition is actually wrong.

Lemma 3 We have n(d > 0) = 0.

Proof: Roughly, the reason why the velocity cannot remain strictly positive immediately after
the initial time under the excursion measure n, is that otherwise the duration ζ of the excursion
e would be too long to allow the reconstruction of the process X from its excursions; in other
words the conditions for Itô’s program would fail. More precisely, recall that the distribution
of the duration ζ of the generic excursion must fulfill

∫ ∞

0

(t ∧ 1)n(ζ ∈ dt) < ∞ ; (8)

see e.g. Condition (iii) on page 133 in [2]. We shall show that (8) can only hold if n(d > 0) = 0.

We suppose hereafter that n(d > 0) > 0. It is well-known that the strong Markov property
of (X, V ) can be shifted to (e, v) under the excursion measure n. It follows from (4) that under
the truncated measure 1{d>0}n, the process (vt∧d, t > 0) is Markovian with semigroup given
by that of the Wiener process in [0,∞[ stopped at its first hitting time of 0. As under n, the
velocity process v = (vt, t ≥ 0) is right-continuous (in fact, continuous on [0, ζ [) with v0 = 0,
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it is well-known that this entails that the distribution of (vt∧d, t ≥ 0) under 1{d>0}n must be
proportional to the Itô measure of positive Brownian excursions.

It then follows from the scaling property of Itô measure that for some constant c > 0,

n(ed ∈ dx) = cx−4/3dx , x > 0 , (9)

see Biane and Yor [1]. Further, as d is a stopping time, the strong Markov property entails
that conditionally on ed = x > 0, the evolution of e after time d is given by that of the
Langevin process Y (x) started from x with zero velocity and stopped at 0, that is at time
ζ (x) := inf{t ≥ 0 : Y

(x)
t = 0}.

It is easily seen from the scaling property of the Wiener process that there is the identity in
distribution

(Y
(x)
t , t ≥ 0)

L
= (xY

(1)

x−2/3t
, t ≥ 0) ,

and as a consequence

ζ (x) L
= x2/3ζ (1) .

Using (9), we now see that

∫ ∞

0

(t ∧ 1)n(ζ ∈ dt) ≥ c

∫ ∞

0

x−4/3
E(ζ (x) ∧ 1)dx

= c

∫ ∞

0

x−2/3
E(ζ (1) ∧ x−2/3)dx .

The exact distribution of ζ (1) has been determined by Goldman [3], see also Lachal [5]. We
recall that the asymptotic behavior of its tail distribution is given by

P(ζ (1) > t) ∼ c′t−1/4 , t → ∞ ,

where c′ > 0 is some constant, see Proposition 2 in [3]. As a consequence, we have

E(ζ (1) ∧ x−2/3) ≥

∫ x−2/3

0

P(ζ (1) > t)dt ∼ c′
∫ x−2/3

0

t−1/4dt =
4

3
c′x−1/2 , x → 0 + .

This shows that (8) fails and thus n(d > 0) must be zero. �

The next step of our analysis is provided by Rogozin’s solution of the two-sided exit problem
for stable Lévy processes, that we now specify for the symmetric stable process with index 1/3
σ which arises in Lemma 1. Recall that single points are polar for σ, so the latter always exits
from an interval by a jump.

Lemma 4 (Rogozin [13]) For every ε > 0 and x ∈]0, ε[, write

̺x,ε := inf{t ≥ 0 : x + σt 6∈ [0, ε]} .

Then the following identity between sub-probability measures on [ε,∞[, holds :

P(x + σ̺x,ε ∈ dy) =
1

2π
x1/6(ε − x)1/6(y − ε)−1/6y−1/6(y − x)−1dy .
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In particular

P (x + σ exits from [0, ε] at the upper boundary) ≥ c−1(x/ε)1/6 ,

where c > 0 is some constant.

The result of Rogozin combined with Lemma 1 enables us to determine a key distribution
under the excursion measure n. Introduce for every η > 0 the passage time

ρη := inf{t ≥ 0 : et ≥ η and vt = 0} ,

with the usual convention that inf ∅ = 0. It should be plain that

ρη < ∞ ⇔ max
0≤t≤ζ

et ≥ η ,

and in this case, ρη is simply the first instant after the first passage time of e at η at which the
velocity v vanishes. Observe that η → ρη is non-decreasing, and also from Lemma 3 that

n(ρ0+ > 0) = 0 , where ρ0+ = lim
η→0+

ρη . (10)

Corollary 1 There is a finite constant c > 0 such that for every ε > 0,

n(eρε ∈ dy, ρε < ∞) = cε1/6(y − ε)−1/6y−7/6dy , y ≥ ε .

Proof: For the sake of simplicity, we shall assume that ε < 1. Fix η > 0. By standard
excursion theory, the condition (4) implies that the distribution of the shifted process (eρη+t, t ≥
0) under the conditional law n(· | eρη = x, ρη < ∞) is that of a Langevin process started from
the location x with zero velocity and stopped at 0. It follows from Lemmas 1 and 4 that for
every x > 0,

n(ρ1 < ∞ | eρη = x, ρη < ∞) ≥ c−1(1 ∧ x)1/6 ,

and therefore
∫

]0,∞[

(1 ∧ x)1/6n(eρη ∈ dx, ρη < ∞) ≤ c′ .

Thus
µη(dx) := (1 ∧ x)1/6n(eρη ∈ dx, ρη < ∞) , η > 0

is a family of bounded measures on R+, and we deduce from (10) that the following limit holds
in the sense of weak convergence of finite measures on R+ as η tends to 0 along some sequence,
say (ηk, k ∈ N) :

lim
k→∞

µηk
(dx) = aδ0(dx), (11)

where a ≥ 0 is some constant.

Next, we observe from the strong Markov property (and again Lemma 1) that the measure
n(eρǫ ∈ dy, ρǫ < ∞) on ]ε,∞[ can be expressed in the form

1{y≥ε}n(eρη ∈ dy, ρη < ∞) +

∫

]0,ε[

n(eρη ∈ dx, ρη < ∞)P(x + σ̺x,ε ∈ dy) .
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On the one hand, (10) entails that the first term in the sum converges to 0 as η → 0+. On
the other hand, we may rewrite the second term in the form

∫

]0,ε[

µη(dx)x−1/6
P(x + σ̺x,ε ∈ dy)

=
1

2π
(y − ε)−1/6y−1/6

(
∫

]0,ε[

µη(dx)(ε − x)1/6(y − x)−1

)

dy ,

where the equality stems from Lemma 4. Taking the limit as η → 0+, we conclude from (11)
that

n(eρǫ ∈ dy, ρǫ < ∞) =
a

2π
ε1/6(y − ε)−1/6y−7/6dy , y > ε ,

which is our claim. �

Roughly speaking, Corollary 1 provides a substitute for the entrance law under the excursion
measure. We are now able to establish the uniqueness in distribution for the reflecting Langevin
process.

Theorem 2 Any càdlàg process which fulfills the conditions (1-5) is distributed as the process
constructed in Section 2.

Proof: Recall that all that is needed is to check that the conditions (1-5) characterize the
excursion measure n up to some deterministic factor.

In this direction, it is convenient to introduce the space Cb of bounded continuous paths
ω : R+ → R endowed with the supremum norm, and to denote by θt : Cb → Cb the usual
shift operator. We write P

∂
x for the probability measure on Cb induced by the Langevin process

started from x > 0 with zero velocity and stopped at 0. For every η > 0 and every path ω, set

̺η := inf{t ≥ 0 : ω̄(t) > η, and ω̄(t) > ω(t)} ,

where ω̄(t) := max0≤s≤t ω(s). Observe that for n-almost every paths, ρη = ̺η. Recall also (10)

Consider a continuous bounded functional F : Cb → R which is identically 0 on some
neighborhood of the degenerate path ω ≡ 0. Then for n-almost every paths ω, we have

lim
η→0+

1{̺η<∞}F (θ̺η(ω)) = F (ω) ,

and by dominated convergence

n(F (ω)) = lim
η→0+

n(F (θ̺η(ω)), ̺η < ∞) .

Since, by the strong Markov property and Corollary 1,

n(F (θ̺η(ω)), ̺η < ∞) = cη1/6

∫ ∞

η

E
∂
x(F (ω))(x− η)−1/6x−7/6dx ,

this determines n up to a multiplicative constant. �

We point out that a slight variation of the argument in the proof of Theorem 2 shows that for
every continuous bounded functional F : Cb → R which is identically 0 on some neighborhood
of ω ≡ 0, there is the approximation

n(F (e)) = lim
x→0+

cx−1/6
E

∂
x(F (ω)) . (12)
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4 Scaling exponents

We now conclude this paper by answering some natural questions about the scaling exponents
of the reflecting Langevin process.

Proposition 2 (i) For every a > 0, there is the identity in distribution

(a−3/2Xat, a
−1/2Vat)t≥0

L
= (Xt, Vt)t≥0 .

(ii) For every a > 0, the distribution of (a−3/2eat)t≥0 under the excursion measure n is a−1/4n.

Proof: (i) It is immediately seen from the scaling property of the Wiener process that the
free Langevin process Y started from 0 with zero initial velocity fulfills

(a−3/2Yat, a
−1/2Ẏat)t≥0

L
= (Yt, Ẏt)t≥0 .

The first assertion now follows readily, as the time substitution (Tt)t≥0 does not affect the
scaling property.

(ii) Standard arguments of excursion theory combined with the scaling property (i) show that
the distribution of (a−3/2eat)t≥0 under the excursion measure n must be proportional to n. The
value of the factor can be determined using Corollary 1. Indeed, if we denote by h := maxt≥0 et

the height of the excursion, then we see that

n(h > x) = cx−1/6 , x > 0 . (13)

Thus n(a−3/2h > x) = a−1/4n(h > x), which entails our claim. �

In the proof of the scaling property of the excursion measure, we have determined the law of
the height of the excursion; cf. (13). More generally, the scaling property enables us to specify
the law under the excursion measure of any variable which enjoys the self-similarity property.
Here is an example of application.

Corollary 2 (i) The tail-distribution of the lifetime ζ of an excursion is given by

n(ζ > t) = ct−1/4 , t > 0 .

As a consequence, the inverse local time process ℓ−1 is a stable subordinator with index 1/4, and
in particular the exact Hausdorff function of the zero set Z = {t ≥ 0 : Xt = 0} of the reflecting
Langevin process of is H(ε) = ε1/4(ln ln 1/ε)3/4 a.s.

(ii) The tail-distribution of the velocity of the excursion immediately before its lifetime is given
by

n(vζ− < −x) = c′x−1/2 , x > 0 .

Proof: The formulas for the tail-distributions follow immediately from Proposition 2. In
particular, the first one entails that the inverse local time ℓ−1 of the reflecting Langevin process
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is a stable subordinator with index 1/4. The assertion about the exact Hausdorff measure then
derives from a well-known result due to Taylor and Wendel [15]. �

It may be interesting to compare Corollary 2(i) with the case when the boundary is reflecting,
in the sense that a particle arriving at 0 with incoming velocity −v < 0 bounces back with
velocity v. It is straightforward to check that if Y is a free Langevin process, then |Y | describes
the process that bounces at the boundary. The set of times {t ≥ 0 : |Yt| = 0} at which the
particle hits the obstacle is then countable a.s., and its only accumulation point is t = 0. We
refer to Lachal [6] for much more on this topic.

To conclude, we also point out that Corollary 2(ii) entails that the total energy absorbed by
the obstacle at time t,

Et :=
1

2

∑

s∈Z∩[0,t]

V 2
s− ,

is finite a.s. More precisely, the time-changed process E ◦ℓ−1 is a stable subordinator with index
1/4.

Acknowledgment : This paper has been motivated by a lecture and a series of questions by
Bertrand Maury. In particular, Bertrand raised the key problem of the existence of a reflecting
Langevin process with an absorbing boundary, which he observed in numerical simulations.
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