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Discrete logistic branching populations

and the canonical diffusion of adaptive dynamics

By Nicolas Champagnat∗and Amaury Lambert†

Abstract

The biological theory of adaptive dynamics proposes a description of the long-time evolution
of an asexual population, based on the assumptions of large population, rare mutations
and small mutation steps, that lead to a deterministic ODE, called ‘canonical equation
of adaptive dynamics’. However, in order to include the effect of genetic drift in this
description, we have to apply a limit of weak selection to a finite stochastically fluctuating
discrete population subject to competition in the logistic branching fashion. We start with
the study of the particular case of two competing subpopulations (resident and mutant)
and seek explicit first-order formulae for the probability of fixation of the mutant, also
interpreted as the mutant’s fitness, in the vicinity of neutrality. In particular, the first-
order term is a linear combination of products of functions of the initial mutant frequency
times functions of the initial total population size, called invasibility coefficients (fertility,
defence, aggressiveness, isolation, survival). Then we apply a limit of rare mutations to
a population subject to mutation, birth and competition where the number of coexisting
types may fluctuate, while keeping the population size finite. This leads to a jump process,
the so-called ‘trait substitution sequence’, where evolution proceeds by successive invasions
and fixations of mutant types. Finally, we apply a limit of weak selection (small mutation
steps) to this jump process, that leads to a diffusion process of evolution, called ‘canonical
diffusion of adaptive dynamics’, in which genetic drift is combined with directional selection
driven by the fitness gradient.

Running head. Adaptive dynamics for finite populations.1

1 Introduction

The three main forces in evolutionary biology are mutation, selection and drift. Mutations
allow the number of coexisting types in a structured population to increase; on the other
hand, Darwinian selection eliminates the deleterious types, thus ‘fixing’ the most beneficial
one; however, in finite populations (but they all are in the real world), deleterious types can
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sometimes be fixed by chance, which is then called genetic drift. When selection is weak (types
differ only slightly), its action can be counteracted by genetic drift, whereas strong selection
triggers almost certain fixation of beneficial types, known as selective sweep.

The field where these three forces are studied with taking into account the complexity of
the genetic substrate is called population genetics [6, 21, 15, 12]. The (recent) field where they
are studied with taking into account the structure of ecological interactions is called adaptive
dynamics [17, 26, 27]. The link between both is still unclear, but see [22, 30].

One of the fundamental models of adaptive dynamics is the ‘trait substitution sequence’
(TSS) [28, 3], which is based on the following biological heuristics. Sufficient time is given to
selection to eliminate unlucky types between two mutations, so that, on the mutation timescale,
only one type survives at a time. In this model, evolution proceeds by successive invasions of
mutant types replacing the resident one (selective sweeps [9, 10]), and can be described as a
stochastic jump process over the space of types, also called traits (e.g. size, age at maturity or
rate of food intake).

The TSS has revealed a powerful tool for understanding various evolutionary phenomena,
such as evolutionary branching (evolution from a monomorphic population to a polymorphic
one [28] that may lead to speciation [7]) and is the basis for other biological models, such as the
‘canonical equation of adaptive dynamics’ [8, 4]. The TSS is based on a combination of a limit
of rare mutations and a limit of large populations, leading to a timescale separation between
the mutation events and the birth and death events [3].

Most mathematical models for population dynamics used in the study of evolution assume
either constant population sizes (population genetics) or infinite populations (adaptive dynam-
ics). This has two shortcomings: in population genetics, fluctuations of population sizes are
neglected, which is rather unrealistic, especially as new types get fixed; in adaptive dynamics,
(even slightly) deleterious types are never fixed, impeding the modelling of genetic drift. As
a consequence, the direction of evolution is partly deterministic, and a small jump renormal-
ization of the TSS model [8, 4] leads to a totally deterministic ODE, the one known as the
canonical equation of adaptive dynamics.

Here, we want to use the bottom-up approach of adaptive dynamics, that is, model (macro-
scopic) evolution from (microscopic) populations [5], but we also want to keep the two main
ingredients of genetic drift, that is, population finiteness and weak selection [20] and to al-
low the population size to fluctuate randomly through time. Thus, we consider the minimal
model of population dynamics featuring stochastic birth and death as well as regulatory com-
petition, that is, the (multitype) logistic branching process [23]. More precisely, we consider
a finite population with n types, where individuals of type j give birth at constant rate bj ,
die a constant rate dj, and kill each individual of type i at constant rate cij . This quadratic
density-dependence prevents the process from going to infinity. Then, the first time T when
the population is monotype is finite a.s., and the remaining type is then said to have under-
gone fixation. If in addition all natural death rates vanish (di = 0 for any i), then the logistic
branching process never dies out, and we are left with a positive-recurrent process with a nice
stationary probability (see next section).

We start with the particular case of two interacting types, one resident (wild type) and
one mutant, and study the behaviour of the fixation probability of a mutant type in a resident
population when its dynamical characteristics deviate slightly from those of the wild type (weak
selection, see also [24]). In Section 2, this model and some of its properties are displayed, other
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quantities are defined and a rather precise outline of the paper is given. Fixation probabilities
are characterized in Section 3. In Section 4, we seek for explicit first-order formulae for the
fixation probability of the mutant in the vicinity of neutrality. Specifically, a pure-resident
population is characterized by the dynamical parameters (b1, c11, d1), and when the mutant
type is present, we can write b2 = b1 + λ, d2 = d1 − σ, c12 = c11 + α − ε, c21 = c11 − δ − ε
and c22 = c11 − δ+α, where λ, δ, α, ε, σ are the selection coefficients of the mutant respectively
associated to fertility, defence, aggressiveness, isolation and survival. Then, we prove that
each partial derivative of the fixation probability w.r.t. any selection coefficient factorizes as a
function of the initial mutant frequency p (either p(1− p) or p(1− p)(1− 2p)) times a function
of the initial total population size, called an invasibility coefficient of the resident.

In Section 5, we consider the multitype logistic branching process described above and add
mutations to the model. Each individual, upon giving birth, begets a mutant daughter with a
(small) probability, whose type is chosen according to some mutation kernel. First, our goal is
to apply to this process a limit of rare mutations and to describe the evolutionary process on
the mutation timescale, in order to obtain the equivalent of the TSS in this finite population
setting. In particular, this jump process over the trait space allows evolution in any direction.
Then, we apply to this process a limit of small mutation steps. Because of the population
finiteness, genetic drift carries over to the limit, which gives rise to a diffusion process over the
trait space that we call the ‘canonical diffusion of adaptive dynamics’.

These results are proved in Section 6.

2 Model, outline and preliminary results

From now on, N
⋆ denotes the set of positive integers, and N denotes N

⋆ ∪ {0}.
In this section, we consider a two-type discrete population undergoing binary birth-death-

competition events, in the logistic branching fashion [23], where the first type (1) is called
resident (or wild type) and the second type (2) mutant.

For i, j ∈ {1, 2}, bi (resp. di) is the birth (resp. death) rate of type i, and cij is the
competition rate felt by an individual of type i from an individual of type j. More precisely,
individuals of type j give birth independently to a single individual of type j at rate bj, die at
rate dj , or kill any other fixed individual of type i at rate cij.

More formally, we consider a bivariate integer-valued continuous-time Markov process
(Xt, Yt; t ≥ 0) with rate matrix Q = (qkl; k ∈ N

2, l ∈ N
2), where

qkl =































b1n if k = (n,m) and l = (n+ 1,m)
b2m if k = (n,m) and l = (n,m+ 1)

c11n(n− 1) + c12nm+ d1n if k = (n,m) and l = (n− 1,m)
c21mn+ c22m(m− 1) + d2m if k = (n,m) and l = (n,m− 1)

−rnm if k = (n,m) and l = (n,m)
0 otherwise,

and where the jumping rate rnm is

rnm = n(b1 + c11(n− 1) + c12m+ d1) +m(b2 + c21n+ c22(m− 1) + d2). (1)

The law of this process conditioned on fixed initial state (n,m) will be denoted by Pn,m. Let
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B denote the birth vector, C the competition matrix, and D the death vector

B =

(

b1
b2

)

, C =

(

c11 c12
c21 c22

)

, D =

(

d1

d2

)

.

This definition of the two-type logistic process with dynamical characteristics (B,C,D) could
readily be extended to n-type populations, by considering a n-dimensional birth (resp. death)
vector and a n× n-dimensional competition matrix. However, in this paper, our ultimate goal
is to model the sequential arrivals of mutants and their subsequent extinction or fixation, on
different time scales, so that the simultaneous occurrence of three or more distinct morphs will
be shown to have negligible probability.

Notice that (X,Y ) is dominated by (Z1, Z2), where Zi, i = 1, 2, is a scalar logistic branch-
ing process with dynamical characteristics (bi, cii, di), and Z1, Z2 are independent. Since we
will always assume that c11c22 6= 0, the total population size X + Y cannot go to infinity [23].
As a remark, we point out that we only consider binary splittings for the sake of simplicity
and the interest for explicit formulae. Apart from explicit formulae, the last statement and all
others in the present paper remain true even if assuming that, when giving birth, an individual
of any of the two types can give birth to a random number of offspring, where their (common)
distribution Z merely has to satisfy E(log(Z)) <∞.

Now the union of the axes

Ω1 := N × {0} and Ω2 := {0} × N

is accessible, except in the case when d1 = d2 = c12 = c21 = 0, and absorbing. Since we will
always assume below that d1 + d2 + c12 + c21 6= 0, N

⋆ × N
⋆ is transient, and

P(T <∞) = 1,

where
T := TΩ1 ∧ TΩ2 ,

and for any subset Γ of N
2, TΓ denotes the first hitting time of Γ by (X,Y ). Also notice that

the origin is not accessible from N
⋆ ×N

⋆, so that for any (n,m) 6= (0, 0), Pn,m(TΩ1 = TΩ2) = 0.
Then we call fixation (of the mutant) the event {TΩ2 < TΩ1}, and extinction (of the mutant)
the event {TΩ1 < TΩ2}.
The probability of fixation will be denoted by u, and the initial frequency of the mutant by p

u := P(TΩ2 < TΩ1), p :=
m

m+ n
.

If d2 = 0, then (0, 0) is not accessible from Ω2, and a straightforward application of the strong
Markov property at TΩ2 and Theorem 2.2 in [23] show that, on the event {TΩ2 < TΩ1}, Y is
positive-recurrent and converges in distribution to ξ, where ξ is a Poisson variable of parameter
θ := b2/c22 conditioned on being nonzero

P(ξ = i) =
e−θ

1 − e−θ

θi

i!
i ≥ 1.
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Notice that E(ξ) = θ/(1 − exp(−θ)), so that θ can roughly be taken as the mean population
size (‘carrying capacity’) of the stationary logistic branching process.
Since a similar statement for X holds on the extinction of the mutant if d1 = 0, a nice feature of
the case when d1 and d2 both equal 0 is that (X,Y ) converges in distribution towards (0, ξ(2))
with probability u and towards (ξ(1), 0) with probability 1− u, where ξ(i) is a Poisson variable
of parameter bi/cii conditioned on being nonzero.

We refer to selective neutrality as the case of exchangeability between individuals of both
types, that is,

B = b1, C = c1, D = d1,

where 1 is a matrix with all components equal to 1 and dimensions ad hoc. Assuming that
the presence of a mutant form does not modify the dynamical characteristics (b1, c11, d1) of
the resident, we may focus on deviations from the neutral case so as to express the two-type
characteristics as

B = b1 +

(

0
λ

)

, C = c1−

(

0 0
δ δ

)

+

(

0 α
0 α

)

−

(

0 ε
ε 0

)

, D = d1 −

(

0
σ

)

.

In words, deviations from the neutral case are a linear combination of five fundamental
(additive) selection coefficients λ, δ, α, ε, σ, that are chosen to be positive when they confer
an advantage to the mutant. In the sequel, we will see that it is indeed convenient to assess
deviations to the neutral case with the help of selection coefficients in terms of

1. fertility (λ, as the usual letter standing for growth rate in discrete-time deterministic
models) : positive λ means increased mutant birth rate

2. defence capacity (δ, as in defence) : positive δ means reduced competition sensitivity of
mutant individuals w.r.t. the total population size

3. aggressiveness (α, as in aggressive, or attack) : positive α means raised competition
pressure exerted from any mutant individual onto the rest of the population

4. isolation (ε, as in exclusion) : positive ε means lighter cross-competition between differ-
ent morphs, that would lead, if harsher, to the exclusion of the less abundant one

5. survival (σ, as in survival) : positive σ means reduced mutant death rate.

Under neutrality, an elementary martingale argument shows that the fixation probability
equals the initial mutant frequency, that is,

u = p.

The first goal of this paper is to unveil the dependence of u upon λ, δ, α, ε, σ, when they
deviate from 0.

In Section 3, we study the fixation probability u as a function of the parameters of the
model and the initial condition (n,m). We prove that u is differentiable with respect to the
components of B, C and D, and that (n+m)−1∇un,m, is bounded (for each given triple B, C,
D). The Kolmogorov forward equations translate into a discrete harmonic equation of the type
∆u(n,m) = 0 outside Ω1∪Ω2, with boundary condition 0 on Ω1, and 1 on Ω2, where ∆ is a linear
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operator on doubly indexed sequences. Then, a uniqueness result allows us to characterize the
partial derivatives of u (in the dynamical parameters) in the vicinity of neutrality, as the only
sublinear solutions v of harmonic equations of the type ∆v(n,m) = f(n,m) outside Ω1 ∪ Ω2,
where f is sublinear, and has zero boundary condition on Ω1 ∪ Ω2.
These derivatives are interesting to study, as they provide insight as to how does the fixation
probability deviate from p as the selection coefficients of the mutant deviate from 0. The vicinity
of neutrality is called weak selection, as opposed to strong selection, in which case fixation events
are called selective sweeps (rapid fixation). In Section 4, entitled ‘Weak selection’, we thus write

u = p+ v′.s + o(s), (2)

where s is the multidimensional selection coefficient (fertility, defence, aggressiveness, isolation,
survival) and v is the corresponding gradient of the fixation probability

s :=













λ
δ
α
ε
σ













, v :=













vλ

vδ

vα

vε

vσ













.

In particular, v only depends on b, c, d, and n,m. It is then proved that for ι = λ, α, δ, σ, the
gradient coefficient vι is of the form

vι =
nm

(n+m)2
gι
n+m = p (1 − p) gι

n+m,

and that vε is of the form

vε =
nm(n−m)

(n+m)3
gε
n+m = p (1 − p) (1 − 2p) gε

n+m,

where the g’s only depend on the resident’s characteristics b, c, d, and on the total initial
population size n + m. For that reason, and because they are multipliers of the mutant’s
selection coefficients, we call them the invasibility coefficients of the resident, as in [24]. The
remainder of Section 4 is devoted to the study of the invasibility coefficients.
Finally, Section 5 implements these results in models of adaptive dynamics where mutants ap-
pear on large timescales and are either fixed or eliminated on shorter timescales, until the next
mutant arises. This allows to follow the value of the resident trait (b, c, d) as evolutionary time
goes by in two fashions. First, we consider the process on the mutation timescale in the limit
of rare mutations (Subsection 5.2). On this new timescale, if d was positive, extinction would
occur with high probability before any mutation event, so we will assume that populations have
zero natural death rate (d = 0). The limiting process is a Markov jump process over the trait
space, the so-called trait substitution sequence (TSS). Second, we apply a limit of small jumps
to the TSS by rescaling the mutation kernel and time accordingly (Subsection 5.3). This yields
a diffusion process over the trait space, where the deterministic term accounts for directional
selection driven by the gradient of the fixation probability, and the diffusion term accounts for
genetic drift. In reference to the so-called ‘canonical equation of adaptive dynamics’, we give
it the name of canonical diffusion of adaptive dynamics.

We end this section by stating and proving a technical proposition.
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Proposition 2.1 The bivariate logistic branching process (Xt, Yt; t ≥ 0) satisfies the following
properties

(a) If, for some p ≥ 1, E(Xp
0 + Y p

0 ) < +∞, then supt≥0 E(Xp
t + Y p

t ) < +∞

(b) Let (X̂n, Ŷn;n ∈ N) denote the discrete-time Markov chain associated with (Xt, Yt; t ≥ 0),
and T̂ denote the first hitting time of Ω1 ∪ Ω2 by (X̂, Ŷ ). There is some positive a such
that

En,m(T̂ ) < a(n +m) and En,m(T̂ 2) < a(n+m)2. (3)

Moreover, for fixed b̄, c, d > 0, (3) holds for some a that can be chosen uniformly for all
parameters such that b1 ∨ b2 ≤ b̄, c11 ∧ c22 ≥ c and max(d1, d2, c12, c21) ≥ d.

(c) For any p ∈ [1, 2] and n,m ∈ N, En,m(Xp
T +Y p

T ) < K, where the constant K can be chosen
uniformly for all parameters such that b1∨b2 ≤ b̄, c11∧c22 ≥ c and max(d1, d2, c12, c21) ≥ d
for fixed b̄, c, d > 0.

Proof. (a) Since (X,Y ) is dominated by (Z,Z ′), where Z and Z ′ are independent scalar
logistic branching processes with common dynamical characteristics (b, c, 0) where b := b1 ∨ b2
and c := c11 ∧ c22, it suffices to show that supt≥0 E(Zp

t ) < +∞.
Let us define pk

t = P(Zt = k). The backward Kolmogorov equation reads

d

dt
E(Zp

t ) =
∑

k≥1

kp dp
k
t

dt
=
∑

k≥1

kp[b(k − 1)pk−1
t + c(k + 1)kpk+1

t − k(b+ c(k − 1))pk
t ]

=
∑

k≥1

[

b

((

1 +
1

k

)p

− 1

)

+ c(k − 1)

((

1 −
1

k

)p

− 1

)]

kp+1pk
t .

Now, for any k > k0, where k0 := [2b/c] + 1, c(k − 1) ≥ 2b. Therefore, for k > k0,

b((1 + 1/k)p − 1) + c(k − 1)((1 − 1/k)p − 1) ≤ −b[3 − 2(1 − 1/k)p − (1 + 1/k)p]

which is equivalent to −bp/k. Then, enlarging k0 if necessary, we obtain

d

dt
E(Zp

t ) ≤

k0
∑

k=1

b(2p − 1)kp
0 −

∑

k≥k0+1

bp

2
kppk

t

≤ K −
bp

2
E(Zp

t ),

where the constant K depends solely on k0. This differential inequality yields

E(Zp
t ) ≤

2K

bp
+

(

E(Zp
0 ) −

2K

bp

)

e−bpt/2,

which gives the required uniform bound.
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(b) Let Π = (πij)i,j∈N2 denote the transition matrix of (X̂, Ŷ ):

πij =



































b1n/rnm if i = (n,m) and j = (n+ 1,m)
b2m/rnm if i = (n,m) and j = (n,m+ 1)

n(c11(n− 1) + c12m+ d1)

rnm
if i = (n,m) and j = (n− 1,m)

m(c21n+ c22(m− 1) + d2)

rnm
if i = (n,m) and j = (n,m− 1)

0 otherwise,

(4)

where rnm has been defined in (1).
Since d1 + d2 + c12 + c21 6= 0, it follows from the facts that n(n − 1) + m(m − 1) ≥

(n+m)2/2−(n+m) for any n,m ≥ 0 and π(2,0),(1,0), π(1,1),(0,1), π(1,1),(1,0), π(0,2),(0,1) ≥ d/(2b+d)

where d := max(d1, d2, c12, c21) ∧ c, that the process (X̂n + Ŷn;n ∈ N) is dominated by the
Markov chain (Ẑn;n ∈ N) in N

∗ with initial state k = X0 + Y0 and transition probabilities

pij =























b/[b+ c(i/2 − 1)] if i ≥ 3 and j = i+ 1
c(i/2 − 1)/[b+ c(i/2 − 1)] if i ≥ 3 and j = i− 1
2b/(2b + d) if i = 2 and j = 3
d/(2b + d) if i = 2 and j = 1
0 otherwise.

Let us denote by Pk its law. Therefore, T̂ is dominated by Ŝ := inf{n ≥ 0, Ẑn = 1} and it
suffices to prove that Ek(Ŝ) ≤ ak and Ek(Ŝ

2) ≤ ak2 for some a > 0.
Let (Ũn;n ≥ 0) be the discrete-time random walk on Z with right transition probability

1/3 and left transition probability 2/3. The law of Ũ conditional on Ũ0 = k is denoted by P̃k.
Let τ be the first hitting time of 0 by Ũ . For any k ≥ 0, one can compute explicitly (see e.g.
Norris [29]) that

Ẽk(τ) = 3k and Ẽk(τ
2) = 3k(3k + 8).

Now, let k0 be large enough to have c(k0/2 − 1) > 2b. Then observe that any excursion of Ẑ
above k0 + 1 is stochastically dominated by an excursion of the random walk Ũ above k0 + 1.
On the one hand, it is a simple exercise to check that this domination entails Ek0(Ŝ

2) < +∞
(and Ek0(Ŝ) < +∞). On the other hand, this domination also implies that for any k ≥ k0,

Ek(Ŝ) ≤ Ek0(Ŝ) + Ẽk−k0(τ) = Ek0(Ŝ) + 3(k − k0).

and
Ek(Ŝ

2) ≤ 2Ek0(Ŝ
2) + 2Ẽk−k0(τ

2) = 2Ek0(Ŝ
2) + 3(k − k0)(3(k − k0) + 8),

which ends the proof of (3).
(c) With the same notation as above, since T̂ is the number of jumps of the process

(X,Y ) that occurred on the time interval [0, T ], XT ≤ X0 + T̂ and YT ≤ Y0 + T̂ . Hence
En,m(Xp

T + Y p
T ) ≤ 2En,m((n+m+ T̂ )p) which is finite by (3). 2
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3 Fixation probability

3.1 A discrete harmonic equation

Recall that the fixation probability is the probability that the bivariate logistic branching
process hits axis Ω1 before axis Ω2. Here, we characterize it thanks to a discrete harmonic
equation (corresponding to Kolmogorov forward equations).

Proposition 3.1 The fixation probability un,m is the unique bounded solution to







(∆u)n,m = 0 for (n,m) 6∈ Ω1 ∪ Ω2

un,m = 0 for (n,m) ∈ Ω1

un,m = 1 for (n,m) ∈ Ω2,
(5)

where ∆ is the harmonic (its coefficients sum to zero) operator defined for any doubly indexed
sequence w as

(∆w)n,m =
[

b1n+ b2m+ n
(

c11(n− 1) + c12m+ d1

)

+m
(

c21n+ c22(m− 1) + d2

)]

wn,m

− b1nwn+1,m − b2mwn,m+1 − n
(

c11(n − 1) + c12m+ d1

)

wn−1,m

−m
(

c21n+ c22(m− 1) + d2

)

wn,m−1. (6)

Note that in the previously displayed equation, whenever a term is not defined, the multiplying
coefficient is zero.

The fact that un,m satisfies (5) follows from the Markov property at the first jump time of
(X,Y ), and the uniqueness relies on Lemma 3.2 below.

Lemma 3.2 Fix p ≥ 1 and consider a subset Γ of N
2 such that TΓ < +∞ Pn,m-a.s. for any

n,m ≥ 0. Then, for any function f : Γ → R such that, |f(n,m)|/(n+m+ 1) is bounded on Γ,
the equation

{

(∆h)n,m = 0 for (n,m) 6∈ Γ
h(n,m) = f(n,m) for (n,m) ∈ Γ

(7)

admits at most one solution h such that |h(n,m)|/(n +m+ 1) is bounded.

Proof. It suffices to prove that (7) with f ≡ 0 admit h ≡ 0 as unique sublinear solution. Let
h be such a function and fix n,m ≥ 0. Then (h(Xt∧TΓ

, Yt∧TΓ
); t ≥ 0) is a Pn,m-semi-martingale

for t ≤ TΓ. Since, by Proposition 2.1 (a), supt≥0 En,m(Xt + Yt)) < +∞, (h(Xt, Yt))t≥0 is
actually a uniformly integrable martingale. Applying the stopping theorem at time TΓ, we get

0 = En,m(h(XTΓ
, YTΓ

)1TΓ<+∞) = En,m(h(X0, Y0)) = h(n,m),

which completes the proof. 2

3.2 Differentiability of the fixation probability

Here, we prove the existence of the partial derivatives of the fixation probability with respect
to the components of B, C and D, and show that these derivatives are always sublinear in
the initial condition. We also give some bounds for the higher-order derivatives of the fixation
probability, which will be useful in Section 5.3.

9



Theorem 3.3 (a) The fixation probability un,m, as a function of bi, cij , di (i, j = 1, 2), is
differentiable on the set {c11c22 6= 0, c12 + c21 + d1 + d2 6= 0}, and its differential vn,m

satisfies

sup
(n,m)∈N∗×N∗

‖vn,m‖

n+m
< +∞. (8)

Moreover, for any b̄, c, d > 0, (8) holds uniformly on the set of dynamical parameters
{b1 ∨ b2 ≤ b̄, c11 ∧ c22 ≥ c, max(d1, d2, c12, c21) ≥ d}.

(b) In addition, un,m is C2 on {c11c22 6= 0, c12 +c21 +d1 +d2 6= 0}, and its second-order deriva-
tives are bounded by some constant times (n +m)2 uniformly on any set of parameters
of the form given above.

Proof. Since vn,m ≡ 0 on Ω1 ∪ Ω2, we will always assume n,m ≥ 1.
Recall the expression (4) for the transition probabilities of the discrete-time Markov chain

(X̂, Ŷ ) associated with (X,Y ). It is then elementary to get

∂πij

∂b1
=







n(1 − πij)/rnm if i = (n,m) and j = (n+ 1,m)
−nπij/rnm if i = (n,m) and j = (n,m+ 1), (n− 1,m) or (n,m− 1)
0 otherwise,

(9)

as well as similar results for b2, d1, d2. Now for c11

∂πij

∂c11
=







n(n− 1)(1 − πij)/rnm if i = (n,m) and j = (n− 1,m)
−n(n− 1)πij/rnm if i = (n,m) and j = (n,m+ 1), (n+ 1,m) or (n,m− 1)
0 otherwise,

(10)
and a similar result for c22. Finally for c12

∂πij

∂c12
=







nm(1 − πij)/rnm if i = (n,m) and j = (n− 1,m)
−nmπij/rnm if i = (n,m) and j = (n,m+ 1), (n+ 1,m) or (n,m− 1)
0 otherwise,

(11)
along with a similar result for c21. As a consequence, for any i, j and any parameter β ∈
{bh, chl, dh : h, l = 1, 2},

∣

∣

∣

∣

∂πij

∂β

∣

∣

∣

∣

≤
max(n2,m2)

rnm
.

Next notice that r11 ≥ c12 + c21 + d1 + d2 and rnm ≥ c11n(n − 1) + c22m(m − 1), so that
rnm ≥ c11n(n− 1) and rnm ≥ c22m(m− 1). Combine these observations to the last displayed
equation, and get the existence of some K such that for any i, j and any β in the set of
parameters such that c11 ∧ c22 ≥ c and max(d1, d2, c12, c21) ≥ d,

∣

∣

∣

∣

∂πij

∂β

∣

∣

∣

∣

≤ K ≤ 2(c ∧ d)−1.

We will use the notation πi1,...,ik for the product πi1i2πi2i3 . . . πik−1ik and S(n,m)→Γ for the set
of paths linking (n,m) to a subset Γ of N

2 without hitting Ω1 ∪ Ω2 before Γ, i.e. the set of all
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k-tuples (i1, i2, . . . , ik) for all k ≥ 1 such that i1 = (n,m), i2, . . . , ik−1 ∈ N
2 \ (Ω1 ∪ Ω2) and

ik ∈ Γ. Now,

un,m =
∑

k≥2,(i1,...,ik)∈S(n,m)→Ω1

πi1,...,ik ,

so if we prove that for any parameter β,

Rn,m :=
∑

k≥2,(i1,...,ik)∈S(n,m)→Ω1

∣

∣

∣

∣

∂πi1,...,ik

∂β

∣

∣

∣

∣

is finite, we get the differentiability of un,m and the inequality |∂un,m/∂β| ≤ Rn,m. Observe
that

Rn,m ≤ K
∑

k≥2,(i1,...,ik)∈S(n,m)→Ω1

k−1
∑

l=1

πi1,...,ilπil+1,...,ik ,

where πi,i = 1 by convention. Next, with ‖ · ‖ denoting the L1-norm in Z
2,

Rn,m ≤ K
∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′ ,m′)

πi1,...,il

∑

‖ε‖=1

∑

k′≥0,(j1,...,jk′)∈S(n′,m′)+ε→Ω1

πj1,...,jk′

with the convention that k′ = 0 if (n′,m′) + ε ∈ Ω1, so that

Rn,m ≤ K
∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′,m′)

πi1,...,il

∑

‖ε‖=1

P(n′,m′)+ε(T̂Ω1 < T̂Ω2)

≤ 4K
∑

l≥1

Pn,m(T̂ > l)

= 4KEn,m(T̂ − 1),

The proof of (8) is completed thanks to Proposition 2.1 (b). The uniformity with respect to
the dynamical parameters follows trivially from the uniformity in Proposition 2.1 (b), and the
uniform choice of K.

(b) Following exactly the same method as above, we obtain for any parameters β and γ,

∑

(i1,...,ik)∈S(n,m)→Ω1

∣

∣

∣

∣

∂2πi1,...,ik

∂β∂γ

∣

∣

∣

∣

≤ 4K2
∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′ ,m′)

πi1,...,il

∑

‖ε‖=1

E(n′,m′)+ε(T̂ − 1)

≤ 16aK2
∑

l≥1

∑

(n′,m′)∈(N∗)2

∑

(i1,...,il)∈S(n,m)→(n′,m′)

πi1,...,il(n
′ +m′)

≤ 16aK2
∑

l≥1

(n+m+ l)Pn,m(T̂ > l)

≤ 16aK2
En,m

(

(T̂ − 1)(n +m+ T̂ /2)
)

,

and the result again follows from Proposition 2.1 (b). 2
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4 Weak selection

4.1 Definition of the invasibility coefficients

From Section 2 recall the definition of selective neutrality, and that under neutrality, the fixa-
tion probability u of the mutant is equal to its initial frequency p in the population. Now u is
a function of the resident’s characteristics b, c, d (resp. birth, competition and death rates), the
additive selection coefficients of the mutant (deviations from neutrality) λ, δ, α, ε, σ (resp. fer-
tility, defence, aggressiveness, isolation, survival), and the initial composition of the population
n,m (resp. numbers of residents and mutants). As stated in the previous section (Theorem
3.3), u is differentiable in all non-integer parameters, so that in particular, u is differentiable
in s := (λ, δ, α, ε, σ)′ on a neighbourhood of the origin, that is, in the vicinity of neutrality.
Vicinity of neutrality is usually referred to as weak selection.

Theorem 4.1 As a function of the multidimensional selection coefficient s = (λ, δ, α, ε, σ)′,
the probability u is differentiable, and in a neighbourhood of s = 0 (selective neutrality),

u = p+ v′.s + o(s), (12)

where the (weak) selection gradient v = (vλ, vδ, vα, vε, vσ)′ can be expressed as

vι
n,m = p (1 − p) gι

n+m ι 6= ε,

vε
n,m = p (1 − p) (1 − 2p) gε

n+m

And the g’s depend solely on the resident’s characteristics b, c, d, and on the total initial popu-
lation size n+m. They are called invasibility coefficients.

We prove this theorem herafter. As seen in Proposition 3.1, the Kolmogorov forward equations
translate into a discrete harmonic equation satisfied by u with boundary condition 1 on Ω1,
and 0 on Ω2, written as (∆u)n,m = 0, where ∆ is defined in (6). Combining (12) and (6), and
identifying second-order terms, we get

(∆0v
ι)n,m =































































nm

(n+m)(n+m+ 1)
if ι = λ

nm

n+m
if ι = δ

nm

(n+m)(n+m− 1)
if ι = α, σ

nm (n−m)

(n+m)(n+m− 1)
if ι = ε,

(13)

where ∆0 corresponds to the neutral case of ∆: for any doubly indexed w,

(∆0w)n,m = (n+m)
[

b+ c(n+m− 1) + d
]

wn,m − bnwn+1,m − bmwn,m+1

− n
[

c(n+m− 1) + d
]

wn−1,m −m
[

c(n +m− 1) + d
]

wn,m−1 n,m ≥ 0. (14)

12



We know from Theorem 3.3 that the vector v = (vλ, vδ , vα, vε, vσ)′ is sublinear in (n,m), that
is, (‖vn,m‖/(n + m))n,m is bounded. Since the r.h.s. in (13) are all sublinear, Lemma
3.2 ensures that v is the unique sublinear vector in (n,m) solving (13) (if two such sequences
existed, apply Lemma 3.2 to their difference).
Thanks to this uniqueness result, it is sufficient to show that there are solutions of (13) of the
following form

vι
n,m =



















nm

n+m
uι

n+m if ι = λ, δ, α, σ

nm (n−m)

n+m
uι

n+m if ι = ε,

(15)

where for ι 6= ε, uι is a bounded real sequence indexed by N − {0, 1} (uι
1 has no effect on the

values of vι
1,0 and vι

0,1), and uε is a real sequence indexed by N − {0, 1, 2} (uε
1 and uε

2 have no
effect on the corresponding values of vε

n,m) such that (nuε
n)n is bounded. The proof will then

end up by writing

gι
n =







nuι
n if ι = λ, δ, α, σ, n ≥ 2

n2 uι
n if ι = ε, n ≥ 3.

(16)

In this setting, (13) holds iff











































(Luλ)n =
1

n(n+ 1)
and (Luδ)n =

1

n
n ≥ 2,

(Luα)n = (Luσ)n =
1

n(n− 1)
n ≥ 2,

(L′uε)n =
1

n(n− 1)
n ≥ 3,

(17)

where L (resp. L′) is the endomorphism of the vector space L2 (resp. L3) of real sequences
indexed by N − {0, 1} (resp. by N − {0, 1, 2}) defined as























(Lw)n = −b
n+ 2

n+ 1
wn+1 +

[

b+ c(n − 1) + d
]

wn − (n− 2)

(

c+
d

n− 1

)

wn−1 n ≥ 2

(L′w)n = −b
n+ 3

n+ 1
wn+1 +

[

b+ c(n − 1) + d
]

wn − (n− 3)

(

c+
d

n− 1

)

wn−1 n ≥ 3.

(18)
The following lemma ends the proof.

Lemma 4.2 (existence) There are solutions uλ, uδ, uα, uε, uσ of (17) such that uλ, uδ, uα, uσ

and (nuε
n)n are bounded.

This lemma will be proved in the following subsection, by actually displaying explicit expres-
sions for these solutions.
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4.2 Properties of invasibility coefficients

4.2.1 Preliminary results

For k ≥ −2, let e(k) be the sequence defined for n ≥ 2 (3 if k = −2) by

e(k)
n =

1

n+ k
,

and for k = 2, 3, let δ(k) denote the Dirac mass at k

δ(k)
n =

{

1 if n = k
0 otherwise.

Then it is elementary to check (but has to be done carefully) that for k ≥ 1,

Le(k) = −
b

k
e(1) +

d

k
e(−1) − b

k − 1

k
e(k+1) + (b− (k + 1)c + d)e(k) + (k + 1)(c −

d

k
)e(k−1), (19)

and that
Le(−1) = −2be(0) + be(1) + be(−1) + (c+ d)δ(2). (20)

Likewise, for any k ≥ 1 and for k = −1,

L′e(k) = −
2b

k
e(1) +

2d

k
e(−1) − b

k − 2

k
e(k+1) + (b− (k+ 1)c+ d)e(k) + (k+ 2)(c−

d

k
)e(k−1), (21)

and also

L′e(−2) = −2(b+ d)e(−1) + be(1) + (b+ c+ d)e(−2) + (c+
d

2
)δ(3). (22)

Next observe that (17) can be written in the form























Luλ = e(0) − e(1) and Luδ = e(0),

Luα = Luσ = e(−1) − e(0),

L′uε = e(−1) − e(0),

(23)

so it is likely that the u’s can be expressed as linear combinations of the e(k)’s. Actually, we will
show they can be expressed as such linear combinations, with a potential extra additive term
whose image by L (resp. L′) is proportional to δ(2) (resp. δ(3)). So we end these preliminaries
with displaying two sequences: one in L2 whose image by L is δ(2), and one in L3 whose image
by L′ is δ(3).

Assume that, at time 0, instead of being assigned one of two different types (resident or
mutant), all individuals are assigned distinct types. We denote by Pn the law of the (binary)
logistic branching process (b, c, d) starting from n individuals distinctly labelled at time 0,
where the type of an individual is transmitted to its offspring. In other words, under P, we
keep track of the whole descendance of each ancestral individual.
Then for k=2,3, let Tk denote the first time when the total population size (i.e., the unlabelled
process) is k. Finally, we define

q(k)
n := Pn( at time Tk, the k living individuals have k distinct types ).

14



In the tree terminology, q(k) is the probability that all individuals in the first surviving k-tuple

have different ancestors at time 0. In particular, q
(k)
k = 1.

Lemma 4.3 Let D(2) ∈ L2 and D(3) ∈ L3 be the sequences defined as

D(2)
n =

q
(2)
n

κ(n − 1)
n ≥ 2,

D(3)
n =

q
(3)
n

κ′(n − 1)(n− 2)
n ≥ 3,

where

κ = b

(

1 −
2q

(2)
3

3

)

+ c+ d, κ′ =
b

2

(

1 −
q
(3)
4

2

)

+ c+
d

2
.

Then LD(2) = δ(2) and L′D(3) = δ(3).

Proof. It is quite elementary to check the result by standard applications of the Markov
property under P, but we prefer to give a more conceptual proof. We start with D(2).
Under P, we only keep track of two types at time t, i.e. the number Xt of residents, and the
number Yt of mutants, whereas under Pn, there are n types at time 0, say 1, 2, . . . , n. Recall
individuals of all types are exchangeable (because in this setting, the discrete operators ∆0 and
L are associated to selective neutrality). Set

wn,m := Pn,m(XT2 = YT2 = 1).

Now by exchangeability,

wn,m =

n
∑

i=1

n+m
∑

j=n+1

Pn+m( at T2, type i and type j have one representative each )

= nmPn+m( at T2, type 1 and type 2 have one representative each ),

and once again by exchangeability,

q(2)n =
∑

1≤i<j≤n

Pn( at T2, type i and type j have one representative each )

=

(

n
2

)

Pn( at T2, type 1 and type 2 have one representative each ).

As a consequence,

wn,m =
2nm

(m+ n)(m+ n− 1)
q
(2)
m+n.

Observe that by definition w is harmonic (in the sense that ∆0w = 0) on the complementary

of Ω1 ∪ Ω2 ∪ {(1, 1)}. Then as in the previous subsection, with vn = q
(2)
n /(n − 1), we get that

(Lv)n = 0 for any n ≥ 3. The proof is completed by checking that (Lv)2 = κ 6= 0.

As to D(3), set

wn,m := En,m(XT3YT3(XT3 − YT3)) = 2Pn,m((XT3 , YT3) = (2, 1)) − 2Pn,m((XT3 , YT3) = (1, 2)).
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Now by exchangeability

Pn,m((XT3 , YT3) = (1, 2))

=

n
∑

i=1

n+m
∑

j=n+1

Pn+m( at T3, type i has one representative and type j has two )

+
∑

1≤i≤n

∑

n+1≤j<k≤n+m

Pn+m( at T3, types i, j and k have one representative each )

= nmPn+m( at T3, type 1 has one representative and type 2 has two )

+ n
m(m− 1)

2
Pn+m( at T3, types 1, 2 and 3 have one representative each )

Since Pn,m((XT3 , YT3) = (1, 2)) = Pm,n((XT3 , YT3) = (2, 1)), the corresponding first terms in
the difference cancel out, and we are left with

wn,m = nm(n−m)Pn+m( at T3, types 1, 2 and 3 have one representative each ).

But again we get an expression involving the last displayed probability as

q(3)n =

(

n
3

)

Pn( at T3, types 1, 2 and 3 have one representative each ),

so that

wn,m =
6nm(n−m)

(m+ n)(m+ n− 1)(m+ n− 2)
q
(3)
m+n.

This time w is harmonic on the complementary of Ω1 ∪ Ω2 ∪ {(1, 1), (1, 2), (2, 1)}. Then with

vn = q
(3)
n /(n − 1)(n − 2), we get that (L′v)n = 0 for any n ≥ 4. The proof is completed by

checking that (L′v)3 = κ′ 6= 0. 2

Lemma 4.4 For any k ≥ 2, (q
(k)
n )n has a nonzero limit q

(k)
∞ as n→ ∞.

Proof. From [23], we know that ∞ is an entrance boundary for the probabilities Pn, n ≥ 1, so

that P∞ and q
(k)
∞ are properly defined for any k ≥ 1. At time t, we denote by Zt the number of

living individuals and by Nt the number of types represented. Obviously, under P∞, Zt → ∞
as t→ 0+. As to N , since it is a nonincreasing function of time, it has a right-limit N0+ ≤ ∞
at t = 0. Next we want to show that

∃k0 ≥ 2, q(k0)
∞ = 0 ⇒ P∞(N0+ ≤ k0) = 1. (24)

This will end the proof of the Lemma. Indeed, N0+ ≤ k0 means that, under P∞, there are at
most k0 individuals whose total descendance at any time t is Zt. Then, conditional on these
individuals, Z would be dominated by a binary logistic branching process starting at k0, which
contradicts the fact that Z0+ = +∞. Conclude by summing over all possible k0-tuples.

Now, we prove (24). Assume there is k0 ≥ 2 such that q
(k0)
∞ = 0. Since for k ≥ k0, q

(k0)
n >

q
(k)
n q

(k0)
k , we get that q

(k)
∞ = 0 for all k ≥ k0. Recall that Tj is the first hitting time of j by Z.

For n ≥ j ≥ k ≥ k0,

q(k)
n > Pn(NTj = k,NTk

= k)

> Pn(NTj = k)C(j, k),
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where C(j, k) is the probability that conditional on Tj = k, after picking k representative
individuals at Tj (one for each type), the first j − k events after Tj are the deaths of all non-
representative individuals. Because this probability only depends on j and k, we get that
P∞(NTj = k) = 0 for all j ≥ k ≥ k0. As a consequence,

P∞(NTj ≤ k0) = 1.

But under P∞, limj→∞ Tj = 0 a.s., so that P∞(N0+ ≤ k0) = 1. 2

The proof of Lemma 4.2 is split up into the following (sub)subsections, each of which be-
ing dedicated to one (or two) invasibility coefficient(s). In Propositions 4.5, 4.6, 4.8 and 4.10,
we display the solutions of (17) such that uι (ι 6= ε) and (nuε

n)n are bounded (therefore proving
Lemma 4.2). We also specify the behaviour of each invasibility coefficient as the population
size grows to infinity.

4.2.2 Results for the λ-invasibility

Here, we must find a bounded sequence uλ in L2 such that Luλ = e(0) − e(1).
Recall from Lemma 4.3 that D(2) ∈ L2 is a sequence such that LD(2) = δ(2), and

D(2)
n =

q
(2)
n

κ(n − 1)
n ≥ 2,

where q
(2)
n is the probability that the first surviving pair in the (labelled) logistic branching

process (b, c, d) have two distinct ancestors in the initial n-tuple.
Since, by (20),

Le(−1) = −2be(0) + be(1) + be(−1) + (c+ d)δ(2),

and by (19)

Le(1) = de(−1) + (−2c+ d)e(1) + 2(c− d)e(0),

we can readily state the following

Proposition 4.5 (fertility) The sequence uλ defined as

uλ = −
d

2bc
e(−1) +

d(c+ d)

2bc
D(2) +

1

2c
e(1), (25)

is a bounded sequence of L2 such that Luλ = e(0) − e(1). Then the invasibility coefficient gλ

associated to fertility (gλ
n = nuλ

n) is given by

gλ
n = −

dn

2bc(n − 1)
+
d(c+ d)

2bcκ

nq
(2)
n

n− 1
+

n

2c(n + 1)
n ≥ 2. (26)

In particular,

lim
n→∞

gλ
n =

b− d+ d(c+ d)q
(2)
∞ /κ

2bc
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4.2.3 Results for the α and σ-invasibilities

Here, we must find bounded sequences uα and uσ in L2 such that Luα = Luσ = e(−1) − e(0).
Exactly in the same way as for the λ-invasibility coefficient, we can readily make the needed
statement.

Proposition 4.6 (aggressiveness, survival) The sequences uα and uσ defined as

uα = uσ =
2c− d

2bc
e(−1) −

(2c − d)(c + d)

2bc
D(2) +

1

2c
e(1), (27)

are bounded sequences of L2 such that Luα = Luσ = e(−1) − e(0). Then the invasibility co-
efficients associated to aggressiveness (gα

n = nuα
n) and survival, (gσ

n = nuσ
n) are given by

gα
n = gσ

n =
(2c− d)n

2bc(n − 1)
−

(2c− d)(c+ d)

2bcκ

nq
(2)
n

n− 1
+

n

2c(n + 1)
n ≥ 2. (28)

In particular,

lim
n→∞

gα
n = lim

n→∞
gσ
n =

b+ 2c− d− (2c− d)(c + d)q
(2)
∞ /κ

2bc

4.2.4 Results for the δ-invasibility

For δ and ε-invasibility coefficients, the task is mathematically more challenging. A side-effect
is that we only obtain fine results in the case when the resident species has no natural death
rate. This shortcoming is not very disturbing, however, because we are especially interested in
precisely those populations with stationary behaviour (which are those needed for applications
to adaptive dynamics). From now on, we assume that d = 0.
Recall that we must find a bounded sequence uδ in L2 such that Luδ = e(0).

Set θ := b/c.

Lemma 4.7 Let Φ be the sequence of L2 defined recursively as Φ2 = 1 and

c(n+ 2)Φn+1 + [b− c(n + 1)] Φn − b
n− 2

n− 1
Φn−1 = 0. (29)

Then the sequence (nΦn)n converges to a nonzero finite limit Φ∞, and the (thus well-defined)
sum

S :=
∑

n≥2

n−1Φn

has 3c− bS = cΦ∞.

Proposition 4.8 (defence capacity) Define the sequence φ of L2 as

φn := Φn/cΦ∞ n ≥ 2.

Then, with φ1 := 1/2c, the sequence uδ of L2 defined as

uδ :=
∑

k≥1

φke
(k)
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is a bounded sequence such that Luδ = e(0). The invasibility coefficient gδ associated to defence

capacity (gδ
n = nuδ

n) is given by

gδ
n =

∑

k≥1

nφk

n+ k
n ≥ 2. (30)

In particular,

gδ
n ∼

1

c
ln(n) as n→ ∞.

The proof of Lemma 4.7 stems immediately from the two following claims. Claim 1 will also
be helpful in the proof of Proposition 4.8.

Claim 1. Assume that (nΦn)n converges to a finite limit Φ∞, where (Φn)n is defined in
(29). Then the real number S :=

∑

n≥2 n
−1Φn and the sequence W :=

∑

k≥2 Φke
(k) of L2 are

well-defined, and

(i) cΦ∞ = 3c− bS

(ii) LW = cΦ∞e
(1).

Claim 2. The sequence (nΦn)n converges to a nonzero finite limit.

Proof of Claim 1. To prove (i), let

βn := (n+ 1)Φn and γn := (n− 1)Φn n ≥ 2, (31)

so that
lim

n→∞
βn = lim

n→∞
γn = Φ∞,

and, thanks to (29),

βn+1 − βn = −
θ

n− 1
(γn − γn−1) n ≥ 2, (32)

with γ1 = 0. As a consequence, by Abel’s transform, we get

S =
∑

n≥2

γn

(

1

n− 1
−

1

n

)

=
∑

n≥2

γn − γn−1

n− 1

= −θ−1
∑

n≥2

(βn+1 − βn) = −θ−1(Φ∞ − β2)

= (3 − Φ∞)/θ.
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As for (ii), thanks to (19) and (20), and by continuity of linear operators,

LW = lim
l→∞

l
∑

k=2

ΦkLe
(k)

= lim
l→∞

l
∑

k=2

Φk

(

−
b

k
e(1) − b

k − 1

k
e(k+1) + [b− (k + 1)c]e(k) + (k + 1)ce(k−1)

)

= lim
l→∞







−b

(

l
∑

k=2

k−1Φk

)

e(1)− b

l+1
∑

i=2

i− 2

i− 1
Φi−1e

(i)+

l
∑

k=2

[b− (k + 1)c]Φke
(k)+

l−1
∑

j=1

c(j + 2)Φj+1e
(j)







= −bSe(1) + lim
l→∞

{

l−1
∑

k=2

(

−b
k − 2

k − 1
Φk−1 + [b− (k + 1)c]Φk + c(k + 2)Φk+1

)

e(k)

−b
l− 2

l− 1
Φl−1e

(l) − b
l − 1

l
Φle

(l+1) + [b− (l + 1)c]Φl + 3cΦ2e
(1)

}

= (3c− bS)e(1),

which ends the proof. 2

Proof of Claim 2. We split this proof into the four following steps (recall (31))

(i) if (nΦn)n converges to a finite limit Φ∞, then Φ∞ 6= 0

(ii) (βn)n has constant sign for large n

(iii) (βn)n is bounded

(iv) (βn)n converges.

Since we are only interested in the asymptotic properties of the sequences (Φn)n, (βn)n and
(γn)n, we will implicitly assume throughout this proof that θ/(n+ 1) < 1, that is, n ≥ θ.

(i) If Φ∞ exists, then thanks to Claim 1, we can define W =
∑

k≥2 Φke
(k) and the doubly

indexed sequence w as

wn,m =
nm

n+m
Wn+m (n,m) ∈ N × N \ (0, 0).

Because W is bounded, w is sublinear. Assume Φ∞ = 0. Then by Claim 1, LW = 0, and the
same calculations as those yielding (17) and (18) show that ∆0w = 0. The contradiction comes
with Lemma 3.2, which implies that the null sequence is the only sublinear doubly indexed
sequence which vanishes on Ω1 ∪ Ω2 and is in the kernel of ∆0.

(ii) First observe that (29) reads

βn+1 =

(

1 −
θ

n+ 1

)

βn + θ
n− 2

n(n− 1)
βn−1, (33)
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so if there is n0 ≥ θ such that βn0βn0−1 ≥ 0, then a straightforward induction shows that
(βn)n≥n0 never changes sign. Now, we prove that if no such n0 exists, then (βn)n converges
to 0, which contradicts (i). Indeed, assume that for all n ≥ θ, βnβn−1 < 0. Then for any
n ≥ θ + 1, if βn−1 < 0, then βn > 0 and βn+1 < 0, so that

(

1 −
θ

n+ 1

)

βn < −θ
n− 2

n(n− 1)
βn−1,

which can be written as
(

1 −
θ

n+ 1

)

|βn| < θ
n− 2

n(n− 1)
|βn−1|,

and we would get the same inequality if βn−1 > 0. This would imply that |βn|/|βn−1| would
vanish as n grows, and so would βn.

(iii) Without loss of generality, we can assume thanks to (ii) that there is n0 such that
βn ≥ 0 for all n ≥ n0 (otherwise change β for −β). Next, we prove that for all n ≥ n0,
βn+1 < max(βn, βn−1). It is then elementary to see that (βn)n is bounded. First check that

βn+1 − βn = −
θ

n− 1
(βn − βn−1) − 2θ

βn−1

n(n− 1)(n + 1)
,

so for any n ≥ n0,

βn+1 − βn ≤ −
θ

n− 1
(βn − βn−1).

In particular, if βn+1 ≥ βn, then βn ≤ βn−1, and

|βn+1 − βn| ≤
θ

n− 1
|βn − βn−1| < |βn − βn−1|,

which reads βn+1 − βn < −βn + βn−1, that is, βn+1 < βn−1. As a conclusion, βn+1 < βn or
βn+1 < βn−1.

(iv) By (32) and Abel’s transform, we get

βn+1 − β2 = −θ
n
∑

k=2

γk − γk−1

k − 1

= −θ
γn

n− 1
− θ

n−1
∑

k=2

γk

k(k − 1)
,

and the r.h.s. converges, because (γn)n is bounded, thanks to (iii). 2

Proof of Proposition 4.8. Thanks to Claim 1 above, since uδ = φ1e
(1) + (cΦ∞)−1W ,

Luδ = φ1Le
(1) + (cΦ∞)−1LW

= (2c)−1(−2ce(1) + 2ce(0)) + (cΦ∞)−1cΦ∞e
(1)

= e(0).
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The boundedness of uδ is straightforward. To get the equivalent of gδ
n as n→ ∞, it is sufficient

to prove that nWn ∼ Φ∞ ln(n). First, starting over from the proof of Claim 2 (iv) above, get
that

Φ∞ − β2 = −θ
∑

k≥2

γk

k(k − 1)
,

so that
βn+1 − Φ∞ = −θ

γn

n− 1
+ θ

∑

k≥n

γk

k(k − 1)
,

whch implies that βn − Φ∞ = o (n−1). Next, writing ρk := kΦk, we get

nWn =
∑

k≥2

nρk

k(n + k)
=
∑

k≥2

ρk

(

1

k
−

1

n+ k

)

= lim
l→∞

{

n+1
∑

k=2

ρk

k
+

l
∑

k=2

ρn+k − ρk

n+ k
−

l+n
∑

k=l+1

ρk

k

}

=
n+1
∑

k=2

ρk − Φ∞

k
+

n+1
∑

k=2

Φ∞

k
+
∑

k≥2

ρn+k − ρk

n+ k

= Φ∞ ln(n) +O (1),

where the last equation comes from the fact that ρk = Φ∞ +O (k−1) as k → ∞. 2

4.2.5 Results for the ε-invasibility

Recall from Lemma 4.3 that D(3) is a sequence in L3 such that LD(3) = δ(3), and

D(3)
n =

q
(3)
n

κ′(n− 1)(n− 2)
n ≥ 3,

where q
(3)
n is the probability that the first surviving triple in the (labelled) logistic branching

process (b, c, d) have three distinct ancestors in the initial n-tuple. Now as in the previous
problem (δ-invasibility), we assume that the resident species has no natural death rate, that
is, d = 0.
Here, we must find a sequence uε in L3 such that (nuε

n)n is bounded, and L′uε = e(−1) − e(0).
Recall θ = b/c.

Lemma 4.9 Let Ψ be the sequence of L3 defined recursively as Ψ3 = 1 and

c(n + 3)Ψn+1 + [b− c(n+ 1)] Ψn − b
n− 3

n− 1
Ψn−1 = 0. (34)

Then the sequence (n2Ψn)n converges to a nonzero finite limit Ψ∞, and the (thus well-defined)
sums

S :=
∑

n≥3

n−1Ψn and Σ :=
∑

n≥3

Ψn

have
Σ + 2θS = Ψ∞ + (θ − 3)Σ = 5.
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Proposition 4.10 (isolation) Define the sequence ψ of L3 as

ψn := −Ψn/cΨ∞ n ≥ 3.

Then, with

ψ−2 = −
1

b(θ + 3)

ψ−1 =
θ + 1

b(θ + 3)

ψ1 =
2θ

3c(θ + 3)

ψ2 =
Σ

cΨ∞
−

2θ + 3

3c(θ + 3)
,

the sequence uε of L3 defined as

uε :=
∑

k≥−2,k 6=0

ψke
(k) +

1

θ(θ + 3)
D(3)

is such that (nuε
n)n is bounded and L′uε = e(−1) − e(0). Then the invasibility coefficient gε

associated to isolation (gε
n = n2uε

n) is given by

gε
n =

∑

k≥1

n2ψk

n+ k
+

1

κ′θ(θ + 3)

n2q
(3)
n

(n− 1)(n − 2)
n ≥ 3. (35)

In particular,

gε
n ∼

1

c
ln(n) as n→ ∞.

Since proofs of these statements are quite similar to those done for the δ-invasibility, we will
often sketch them. First, we prove the following two claims.

Claim 1. Assume that (n2Ψn)n converges to a finite limit Ψ∞, where (Ψn)n is defined in
(34). Then the real numbers S :=

∑

n≥3 n
−1Ψn and Σ :=

∑

n≥3 Ψn, as well as the sequence

Z :=
∑

k≥3 Ψke
(k) of L3 are well-defined, and

(i) Σ + 2θS = Ψ∞ + (θ − 3)Σ = 5.

(ii) L′(Z − Σe(2)) = cΨ∞(e(2) − e(1)).

Claim 2. The sequence (n2Ψn)n converges to a nonzero finite limit.

Proof of Claim 1. To prove (i), let

βn := (n+ 2)(n + 1)Ψn and γn := (n− 2)(n − 1)Ψn n ≥ 3, (36)

so that
lim

n→∞
βn = lim

n→∞
γn = Ψ∞,
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and, thanks to (34),

βn+1 − βn = −
θ(n+ 2)

(n− 1)(n − 2)
(γn − γn−1) n ≥ 3, (37)

with γ2 = 0. As a consequence, by two applications of Abel’s transform, we get

Σ =
∑

n≥3

Ψn =
∑

n≥3

βn

(

1

n+ 1
−

1

n+ 2

)

=
β3

4
+
∑

n≥3

βn+1 − βn

n+ 2
= 5Ψ3 − θ

∑

n≥3

γn − γn−1

(n− 1)(n − 2)

= 5 − θ
∑

n≥3

2γn

n(n− 1)(n − 2)

= 5 − 2θS.

On the other hand, the same type of arguments as above show that

Σ =
∑

n≥3

γn

(n− 2)(n − 1)
=
∑

n≥3

γn − γn−1

n− 2

= −θ−1
∑

n≥3

n− 1

n+ 2
(βn+1 − βn)

= −θ−1







−
β3

4
+ Ψ∞ +

∑

n≥3

(

n− 2

n+ 1
βn −

n− 1

n
βn

)







= −θ−1 (−5 + Ψ∞ − 3Σ) ,

which ends the proof of (i). With the help of (21) and (22), (ii) can be proved easily mimicking
what was done for the δ-invasibility. 2

Proof of Claim 2. We proceed just as for the defence capacity. First, we prove that if Ψ∞

exists, it cannot be 0. Indeed, consider Σ and Z ∈ L3 defined in Claim 1, and further define

zn,m =
nm(n−m)

n+m

(

Zn+m −
Σ

n+m+ 2

)

(n,m) ∈ N
⋆ × N

⋆.

Because (nZn)n is bounded, z is sublinear. If Ψ∞ = 0, then thanks to Claim 1, we would get
∆0z = 0, but this would contradict Lemma 3.2.
Next recall the sequences β and γ defined in (36). Thanks to (34),

βn+1 =

(

1 −
θ

n+ 1

)

βn + θ
(n+ 2)(n − 3)

n(n− 1)(n + 1)
βn−1,

which proves that βn has constant sign for large n, otherwise it would converge to 0 (and then
Ψ∞ = 0, which would contradict (i)). Therefore we can assume that βn ≥ 0 for large n without
loss of generality. Since

βn+1 − βn = −
θ

n+ 1
(βn − βn−1) − 6θ

βn−1

n(n− 1)(n + 1)
,
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then for any sufficiently large n, 0 ≤ βn+1 < max(βn, βn−1), so that (βn)n is bounded, and so
is (γn)n. Use (37) to show that

βn+1 − β3 = −θ
n+ 2

(n− 1)(n − 2)
γn − θ

n−1
∑

k=3

k + 6

k(k − 1)(k − 2)
γk,

and conclude that (βn)n is convergent. 2

Proof of Proposition 4.10. Recall Z defined in Claim 1 and set ϕ2 := −(2θ+3)/3c(θ+3),
as well as V ∈ L3

V := ψ−2e
(−2) + ψ−1e

(−1) + ψ1e
(1) + ϕ2e

(2),

so that

uε = −(cΨ∞)−1(Z − Σe(2)) + V +
1

θ(θ + 3)
D(3). (38)

By an elementary computation relying on (21) and (22), get

L′V = −
1

θ(θ + 3)
δ(3) + e(−1) − e(0) − e(1) + e(2),

and conclude, thanks to Claim 1, that L′uε = e(−1) − e(0).
To get the equivalent of gε

n as n→ ∞, first recall (38) and observe that

ψ−2 + ψ−1 + ψ1 + ϕ2 = 0,

so that (n2Vn)n converges. Next consider nZn

nZn =
∑

k≥3

nΨk

n+ k
=
∑

k≥3

kΨk

(

1

k
−

1

n+ k

)

= Σ −
∑

k≥3

kΨk

n+ k

= Σ − Ψ∞
ln(n)

n
+ o

(

ln(n)

n

)

,

by a similar method as in the proof of Proposition 4.8. As a consequence,

nuε
n = −(cΨ∞)−1

(

nZn − Σ
n

n+ 2

)

+ nVn +
1

θ(θ + 3)
nD(3)

n =
ln(n)

cn
+ o

(

ln(n)

n

)

,

which ends the proof, since gε
n = n2uε

n. 2

5 Adaptive dynamics in finite populations

In this section, we consider a stochastic model of evolution in a finite population generalizing the
previous one, where the number of coexisting types and the corresponding population sizes may
fluctuate. First, our goal is to apply to this process a limit of rare mutations while keeping the
population size finite, in order to describe the evolutionary process on the mutation timescale
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as a ‘trait substitution sequence’ (TSS, [28, 3]) where evolution proceeds by successive fixations
of mutant types. Second, we want to apply to this TSS a limit of small mutation steps (weak
selection) in the way leading to the ‘canonical equation of adaptive dynamics’ [8, 4]. Because
of the combination of population finiteness and weak selection, the genetic drift carries over
to the limiting process. This is a diffusion process of evolution over the trait space that we
call ‘canonical diffusion of adaptive dynamics’, and is grounded on a realistic individual-based
description of the evolutionary dynamics, in which the population size may fluctuate because
of interactions of the logistic branching type.

However, in finite stochastic populations, making mutations rare eventually leads to the
extinction of the population before any mutation occurs. Therefore, in order to apply our first
limit, we have to consider a model where the extinction is impossible, in a similar way as in
the case where d1 = d2 = 0 in the two-type logistic branching model of the previous sections.

5.1 Description of the process

At any time t, the population is composed of a finite number N(t) of individuals characterized
by their (phenotypic) traits x1(t), . . . , xN(t)(t) belonging to a given trait space X , assumed to

be a closed subset of R
k for some k ≥ 1. The population state at time t will be represented by

the counting measure on X

νt =

N(t)
∑

i=1

δxi(t).

Let us denote by M the set of finite counting measures on X , endowed with the σ-field induced
by the Borel σ-field on X ⊂ R

d as follows: let ϕ denote the application mapping any element
∑k

i=1 δxi of M to the k-tuple (xπ(1), . . . , xπ(k)) where the permutation π of {1, . . . , k} is chosen
such that this vector is ranked in, say, the lexicographical order. Then, this function ϕ is a
bijection from M to the set of lexicographically ordered vectors of ∪k

i=0X
k. The Lebesgue

σ-field on this set therefore provides a σ-field on M.
For any ν ∈ M and any measurable function f : X → R, we will use the notation 〈ν, f〉

for
∫

f(x)ν(dx). Observe that N(t) = 〈νt,1〉 and that 〈νt,1Γ〉 is the number of individuals at
time t with trait value in Γ ⊂ X .

The Markovian dynamics of the population are governed by the following parameters:

• b(x) is the birth rate of an individual with trait x.

• c(x, y) is the rate of competition felt by an individual with trait x from an individual
with trait y. Specifically, in a population with state ν =

∑N
i=1 δxi , the death rate of an

individual with trait x (where x is one of the xi) is given by

N
∑

i=1

c(x, xi) − c(x, x) =

∫

X
c(x, y)(ν(dy) − δx(dy)). (39)

• γµ(x) is the probability that a birth from an individual with trait x produces a mutant
individual, where µ(x) ∈ [0, 1] and where γ ∈ (0, 1) is a parameter scaling the frequence
of mutations. We are interested in the limit γ → 0.

26



• M(x, dh) is the law of the trait step h = y − x between a mutant individual with trait y
born from an individual with trait x. Since the mutant trait y = x + h must belong to
X , this measure has its support in X − x := {y − x : y ∈ X} ⊂ R

k.

In other words, the infinitesimal generator of the M-valued Markov jump process (νγ
t )t≥0 is

given by

Lγϕ(ν) =

∫

X
[ϕ(ν + δx) − ϕ(ν)] (1 − γµ(x)) b(x)ν(dx)

+

∫

X

∫

Rk

[ϕ(ν + δx+h) − ϕ(ν)]γµ(x)b(x)M(x, dh)ν(dx)

+

∫

X
[ϕ(ν − δx) − ϕ(ν)]

(∫

X
c(x, y)ν(dy) − c(x, x)

)

ν(dx). (40)

In this equation, each integral with respect to ν ∈ M corresponds to a sum over all individuals
in the population. The first term describes the birth events without mutation, the second term
the birth events with mutation, and the third term describes the death events (by competition).
We will denote by P

γ the law of this process (or P
γ
ν0 when the initial condition has to be

specified). When necessary, we will denote the dependence of νt on the parameter γ with the
notation νγ

t .
We make the following assumptions:

• There are positive constants b̄, c and c̄ such that b(·) ≤ b̄ and c ≤ c(·, ·) ≤ c̄.

• M(x, dh) has a density on R
k which is uniformly bounded in x ∈ X by some integrable

function M̄(h).

For any γ ∈ (0, 1), the population size 〈νγ
t ,1〉 is dominated by a scalar logistic branching pro-

cess with dynamical parameters (b̄, 0, c), so that one can prove exactly as for Proposition 2.1(a)
the following result.

Proposition 5.1 Fix p ≥ 1 and pick a positive C. There is a constant C ′ such that, for any
γ ∈ (0, 1),

E(〈νγ
0 ,1〉

p) ≤ C ⇒ sup
t≥0

E(〈νγ
t ,1〉

p) ≤ C ′.

Observe that, if there is no mutation (µ ≡ 0) and ν0 = X0δx +Y0δy (dimorphic population),
then, for any t ≥ 0, νt = Xtδx + Ytδy, where (Xt, Yt) is the two-type logistic branching process
of Section 2 with

B =

(

b(x)
b(y)

)

, C =

(

c(x, x) c(x, y)
c(y, x) c(y, y)

)

and D =

(

0
0

)

.

Accordingly, we will denote by un,m(x, y) the probability of fixation of the mutant type y. More
generally, if at time t the population is composed of n different traits, the process follows a
n-type logistic branching process until the next mutation.

Let us also point out that, when there is only one individual in the population (νt = δx for
some x ∈ X ), the death rate (39) equals 0, so that extinction is impossible. Then, as observed
in the beginning of Section 2, if µ ≡ 0 and if the initial population is monomorphic (ν0 = nδx
for some n ∈ N

∗ and x ∈ X ), the number of individuals 〈νt,1〉 is a positive recurrent Markov
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chain converging in distribution to ξθ(x), where ξθ(x) is a Poisson random variable of parameter
θ(x) := b(x)/c(x, x) conditioned on being nonzero

P(ξθ(x) = i) =
e−θ(x)

1 − e−θ(x)

θ(x)i

i!
, i ≥ 1. (41)

Recall that E(ξθ) = θ/(1 − exp(−θ)).

5.2 Limit of rare mutations and the trait substitution sequence in finite

population

Here, we study the behaviour of the process νγ in the limit of rare mutations (γ → 0) on the
mutation timescale t/γ.

Let us introduce the following strong form of convergence in law. We will say that a
sequence of random variables (Xn) converges strongly in law to a random variable Y if and
only if E(f(Xn)) → E(f(Y )) when n→ ∞ for any bounded measurable real function f .

Fix x ∈ X . For γ ∈ (0, 1), let νγ
0 = Nγ

0 δx where the N
∗-valued random variables Nγ

0 satisfy
supγ∈(0,1) E((Nγ

0 )p) <∞ for some p > 1.

Theorem 5.2 For any positive 0 < t1 < . . . < tn, the n-tuple (νγ
t1/γ , . . . , ν

γ
tn/γ) converges

strongly in law to (ζt1 , . . . , ζtn) where ζti = NtiδZti
such that

(1) (Zt; t ≥ 0) is a Markov jump process on X with initial value Z0 = x and with infinitesimal
generator

Aϕ(x) =

∫

X
(ϕ(x+h)−ϕ(x))µ(x)b(x)

θ(x)

1 − e−θ(x)

+∞
∑

n=1

un,1(x, x+h)
e−θ(x)θ(x)n−1

(n− 1)!
M(x, dh)

(42)

(2) Conditional on (Zt1 , . . . , Ztn) = (z1, . . . , zn), the Nti are independent and respectively dis-
tributed as ξθ(zi).

Observe that the TSS generator (45) may be written as

Aϕ(x) =

∫

X
(ϕ(x+ h) − ϕ(x))β(x)χ(x, x + h)M(x, dh)

where

β(x) := µ(x)b(x)
θ(x)

1 − e−θ(x)
(43)

is the production rate (on the timescale t/γ) of mutants in a stationary x-type population and

χ(x, y) := e−θ(x)
+∞
∑

n=1

un,1(x, y)
θ(x)n−1

(n − 1)!
M(x, dh) (44)

will be interpreted as the fixation probability of a mutant individual with trait y in a stationary
x-type population.

This result shows that, in the limit of rare mutations, on the mutation timescale, the
population is always monomorphic and that the trait of the population evolves as a jump
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process, where a jump corresponds to the appearance and fixation of a mutant subpopulation.
The process Z is the TSS in our model (case of finite populations).

Let us denote by τn the n-th mutation time (τ0 = 0), by ρn the first time after time τn
when the population gets monomorphic, and by Vn the single trait value surviving at time
ρn (ρ0 = 0 if the initial population is monomorphic). With this notation, we can state the
following result, adressing the main biological issue of Theorem 5.2, namely the convergence of
the support of the measure νγ

·/γ to the process Z.

Theorem 5.3 The process (Sγ
t ; t ≥ 0) defined as

Sγ
t =

∞
∑

n=0

Vn1{ρn≤t/γ<ρn+1}

converges in law for the Skorohod topology on D(R+,X ) when γ → 0 to the process (Zt; t ≥ 0)
with initial state Z0 = x and with infinitesimal generator (42).

Observe that such a convergence for the measure νγ
·/γ cannot hold because the population

size Nt in Theorem 5.2 is not a càdlàg process.
The proofs of the two preceding theorems are put to Subsection 6.1.

5.3 Limit of small mutation steps and the ‘canonical diffusion of adaptive

dynamics’ in finite populations

Here, we want to apply a limit of small jumps to the TSS process with generator (42) of the
previous subsection, in order to obtain the equivalent of the canonical equation of adaptive
dynamics in finite populations. Let Ck

b be the set of k times differentiable functions with
bounded i-th derivatives, 1 ≤ i ≤ k. We will need in this section the following additional
assumptions:

• X = R
k for simplicity

• b and c are in C2
b

• the mutation kernels M(x, ·) satisfy

– for any x ∈ R
k, M(x, ·) has 0 expectation, i.e.

∫

Rk hM(x, dh) = 0

– the covariance matrix of M(x, ·) has Lipschitz entries and is uniformly elliptic in
x, i.e. there is a positive constant C such that

∫

Rk(s′h)2M(x, dh) ≥ C‖s‖2 for any
s ∈ R

k.

– the third order moments of M(x, ·) are uniformly bounded in x.

Recall that there is a symmetric matrix σ(x) such that σ(x)σ(x)′ = σ(x)2 is the covariance
matrix of M(x, ·) which is called its square root. Then its uniform ellipticity ensures that σ(x)
has also Lipschitz entries in x.

The limit of small jumps is obtained by introducing a parameter ǫ > 0 and replacing the
mutation law M(x, dh) by its image by the application h 7→ ǫh, M(x, dh/ǫ). Of course, this
scaling of the size of the jumps has to be combined with a scaling of time in order to observe
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a non-trivial limit. This leads (after a change of variable) to the following generator of the
rescaled TSS (Zǫ

t ; t ≥ 0):

Aǫϕ(x) =
1

ǫ2

∫

Rk

(ϕ(x+ ǫh) − ϕ(x))β(x)χ(x, x + ǫh)M(x, dh) (45)

where the mutant production rate in a stationary x-type population, β(x), is defined in (43),
and where the fixation probability of a mutant of trait y appearing in a stationary x-type
population, χ(x, y), is defined in (44). The factor 1/ǫ2 in (45) corresponds to the correct
timescaling, as will appear below.

We will use the notation vι(x) and gι(x) (ι = λ, δ, α, ε, σ) for, respectively, the first-order
derivatives of the fixation probability in the vicinity of neutrality (all individuals have trait

x), and the corresponding invasibility coefficients. Similarly, we will denote by q
(2)
n (x), κ(x)

and φn(x) the quantities appearing in Sections 4.5 and 4.6 for λ, α and σ-invasibilities, and in
Section 4.8 for the δ-invasibility.

It follows from Theorem 3.3 that the function χ is C2
b . Observe also that

d

dy
∣

∣

y=x

(

c(x, x) c(x, y)
c(y, x) c(y, y)

)

= ∇1c(x, x)

(

0 0
1 1

)

+ ∇2c(x, x)

(

0 1
0 1

)

where, for bivariate f , ∇if is the gradient of f w.r.t. the i-th variable (i = 1, 2). Then, by
Theorem 4.1,

χ(x, x) = e−θ(x)
∑

n≥1

θ(x)n−1

(n + 1)(n − 1)!
=
e−θ(x) − 1 + θ(x)

θ(x)2

and
∇2χ(x, x) = e−θ(x)(aλ(x)∇b(x) − aδ(x)∇1c(x, x) + aα(x)∇2c(x, x))

where, for ι = λ, δ, α,

aι(x) =

∞
∑

n=1

vι
n,1(x)

θ(x)n−1

(n − 1)!
=

∞
∑

n=1

ngι
n+1(x)θ(x)

n−1

(n+ 1)2(n− 1)!
.

Remark 5.4 Observe that ε-invasibilities do not appear in this computation, because of the
symmetry between resident and mutant types in the competition kernel. One could include
ε-invasibilities in the formula of ∇2χ(x, x) by assuming a competition matrix of the form

(

c1(x, x) c1(x, y)
c2(y, x) c2(y, y)

)

for some functions c1 and c2 coinciding on the diagonal. Such an asymmetry between resident
and mutant would not be unrealistic biologically and can be explained by the resident construct-
ing its own niche. This ecological adaptation of the resident to its medium would then result in
a difference in the competition felt by x from y according whether x is the resident or not.

Now, fix a function ϕ in C3
b . For any x, h ∈ R

k and ǫ > 0, there exists 0 ≤ ǫ′ ≤ ǫ such that

ϕ(x+ ǫh) − ϕ(x) = ǫh′∇ϕ(x) +
ǫ2

2
h′Hϕ(x+ ǫ′h)h
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where Hϕ(y) denotes the Hessian matrix of ϕ at y, and there exists 0 ≤ ǫ′′ ≤ ǫ such that

χ(x, x+ ǫh) = χ(x, x) + ǫh′∇2χ(x, x+ ǫ′′h).

Therefore, using the fact that Hϕ and ∇2g are bounded Lipschitz functions, it takes only
elementary computations to prove that

(ϕ(x+ ǫh) − ϕ(x))χ(x, x + ǫh) = ǫ(h′∇ϕ(x))χ(x, x) + ǫ2(h′∇ϕ(x))(h′∇2χ(x, x))

+
ǫ2

2
(h′Hϕ(x)h)χ(x, x) +O(ǫ3‖h‖3)

where the O(ǫ3‖h‖3) is uniform in x ∈ R
k. Now, since the mutation kernel has zero expectation,

∫

Rk

(h′∇ϕ(x))χ(x, x)M(x, dh) = 0.

Combining these results, thanks to boundedness of the third-order moments of the mutation
kernel, we easily obtain for any ϕ ∈ C3

b , that Aǫϕ converges uniformly to the function A0ϕ
defined as

A0ϕ(x) =

∫

Rk

(h′∇ϕ(x))β(x)e−θ(x)h′(aλ(x)∇b(x) − aδ(x)∇1c(x, x) + aα(x)∇2c(x, x))M(x, dh)

+
1

2

∫

Rk

(h′Hϕ(x)h)β(x)
e−θ(x) − 1 + θ(x)

θ(x)2
M(x, dh). (46)

In view of this, the following theorem is natural. Recall that σ(x) is the symmetric square
root matrix of the covariance matrix of M(x, ·), which is Lipschitz in x, and that χ(z, z) =
(exp(−θ(z)) − 1 + θ(z))/θ(z)2.

Theorem 5.5 If the family (Zǫ
0)ǫ>0 has bounded first-order moments and converges in law

when ǫ → 0 to a random variable Z0, then the process Zǫ converges in law for the Skorohod
topology on D(R+,R

k) to the diffusion process (Zt; t ≥ 0) with initial state Z0 unique solution
to the stochastic differential equation

dZt = r(Zt)dt +
√

β(Zt)χ(Zt, Zt)σ(Zt)dBt (47)

where B is a standard k-dimensional Brownian motion and

r(z) = β(z)e−θ(z)

∫

Rk

M(z, dh)
(

h′
[

aλ(z)∇b(z) − aδ(z)∇1c(z, z) + aα(z)∇2c(z, z)
])

h.

Remark 5.6 In the case where X 6= R
k, this result is still valid, apart from the following

technical difficulties. First, for the process Zǫ to be well-defined, one needs to assume that
scaling the mutation law M(x, dh) cannot drive Zǫ out of X . This is true for example, when
ε ≤ 1, if X is convex, or if Supp(M(x, dh)) is convex for any x ∈ X . Second, uniqueness in
law has to hold for the diffusion with generator A0. For example, one can ensure the existence
of a Lipschitz factorization σ(x)σ(x)′ of the covariance matrix of M(x, ·) by assuming that the
function from X to the set of nonnegative symmetric matrices mapping x to the covariance
matrix of M(x, ·) can be extended to R

k in a C2 fashion [14].
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Remark 5.7 In the case where the mutation step law M(x, ·) has non-zero expectation, the
calculation above shows that the first-order term in Aǫ does not vanish, so that the correct
timescaling is 1/ǫ (instead of 1/ǫ2), and the TSS process Zǫ can be shown to converge to the
solution of the deterministic ODE

dz

dt
= β(z)χ(z, z)

∫

Rk

hM(z, dh).

In this case, the main force driving evolution is the mutation bias. The mutation rate β(x) and
the fixation probability χ(x, x) only affect the speed of evolution.

Theorem 5.5 gives the equivalent of the canonical equation of adaptive dynamics [8, 4]
when the population is finite. It is no longer a deterministic ODE, but a diffusion process, in
which the genetic drift remains present, as a consequence of the population finiteness and of
the asymptotic of weak selection (ǫ→ 0). Diffusion processes have long been used to describe
evolution in biology (see, among many others, [13, 12, 19, 25, 16]). Our process provides such
a model, which is grounded on a microscopic precise desription of the population dynamics, in
a realistic way. In particular, because of the quadratic density-dependence, the population size
is not fixed and may fluctuate.

The diffusion part in (47) gives the strength of the genetic drift, which square is proportional
to the mutation rate β(x) and to the covariance matrix of the mutation step law M(x, dh).
The drift part gives the expression of the deterministic strength driving evolution, which is
often related in macroscopic evolutionary models to a fitness gradient. In our case, the fitness
is given by the function χ. Indeed, χ(x, y) is the fitness of a mutant trait y in a stationary
resident population with trait x (in the sense proposed by Metz et al. [27]), and it appears in
the deterministic part of (47) as the gradient of χ with respect to the second variable, in a
similar way as in the standard canonical equation of adaptive dynamics [8, 4]. Therefore, the
‘hill-climbing’ process of evolution occurs here, as in the classical models of adaptive dynamics,
in a fitness landscape y 7→ χ(x, y) that depends on the current state x of the population.
Observe also that the deterministic drift term in (47), as in the canonical equation of adaptive
dynamics, is proportional to the mutation rate β(x), the covariance matrix of the mutation
step law M(x, dh) and the gradient of the fixation probability.

The coefficients appearing in the deterministic part of (47) can be expressed as follows.

Proposition 5.8 The coefficients aι for ι = λ, δ, α can be expressed in terms of the microscopic

parameters b(x), θ(x), q
(2)
n (x), κ(x) and φn(x) as

aλ(x) =
eθ(x)(θ(x)2 − 3θ(x) + 4) − θ(x) − 4

2b(x)θ(x)2
(48)

aα(x) =
eθ(x)(θ(x)2 − θ(x) + 2) − θ(x) − 2

2b(x)θ(x)2
−

1

κ(x)θ(x)

∞
∑

n=1

nq
(2)
n+1(x)θ(x)

n−1

(n+ 1)!
(49)

aδ(x) =
∑

k≥1

φk(x)

θ(x)k+2

∫ θ(x)

0
uk−1(eu(u2 − u+ 1) − 1)du (50)

=
1

θ(x)3

∫ θ(x)

0
(eu(u2 − u+ 1) − 1)πx

(

u

θ(x)

)

du (51)
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where for k ≥ 1,

∫ θ

0
uk−1(eu(u2 − u+ 1) − 1)du = eθ

(

θk+1 − (k + 2)θk + (k + 1)2(k − 1)!

k−1
∑

i=0

(−1)iθk−i−1

(k − i− 1)!

)

− (−1)k−1(k + 1)2(k − 1)! −
θk

k
(52)

and for any v ∈ [0, 1), πx(v) :=
∑

k≥1 φk(x)v
k−1. Moreover, πx is solution on [0, 1) to

u2(1 − u)π′′x(u) + u(θ(x)u(1 − u) + 2 − 3u)π′x(u) − 2πx(u) +
θ(x)

b(x)
= 0. (53)

The proofs of Theorem 5.5 and Proposition 5.8 can be found in Subsection 6.2.

Example. Let us consider a one-dimensional trait x ∈ R in a population undergoing sym-
metric competition c(x, y) = c(|x− y|). This type of competition kernel has been considered in
numerous earlier works, see e.g. [7]. As a consequence, ∂c/∂x(x, x) = ∂c/∂y(x, x) = 0. We may
and will assume that c(0) = 1. We still denote by σ(x) the standard deviation of the mutation
kernel M(x, ·). Then, thanks to Theorem 5.5 and Proposition 5.8, the canonical diffusion of
adaptive dynamics is given by

dZt = r(Zt)dt+ σ(Zt)µ(Zt)
1/2

(

b(Zt)

1 − e−b(Zt)
− 1

)1/2

dBt

where

r(x) =
µ(x)σ(x)2

2

(

1 +
4

b(x)
+

b(x) − 4

1 − e−b(x)

)

b′(x).

In forthcoming work, this diffusion and other examples will be investigated.

6 Proofs

6.1 Proofs of Theorems 5.2 and 5.3

These proofs rely on the following three lemmas. The first one states that there is no accumu-
lation of mutations on the timescale t/γ. The second one gives the limiting laws of γτ1 and of
the population size at time τ1. The last one gives the behaviour of ρ0 and V0 when the initial
population is monomorphic.

Lemma 6.1 Fix C, η > 0. There is ε > 0 such that for any γ ∈ (0, 1),

E(〈νγ
0 ,1〉) ≤ C ⇒ ∀t ≥ 0, P

(

∃n ∈ N
∗ :

t

γ
≤ τn ≤

t+ ε

γ

)

< η. (54)

Moreover, for any η > 0 and t ≥ 0, there exists n ∈ N
∗ such that, for any γ ∈ (0, 1),

E(〈νγ
0 ,1〉) ≤ C ⇒ P(τn ≤ t/γ) < η. (55)

Lemma 6.2 Assume νγ
0 = nδx.
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(a) The couple (γτ1, 〈ν
γ
τ1−,1〉) converges in law to a couple of independent random variables

(T,N) where T is an exponentially distributed random variable with parameter β(x) de-
fined in (43) and the law of N is the following size-biased version of ξθ(x)

P(N = k) =
kP(ξθ(x) = k)

E(ξθ(x))
= e−θ(x) θ(x)

k−1

(k − 1)!
, (56)

which is the law of a shifted Poisson random variable of parameter θ(x).

(b) For any p ≥ 1, supγ∈(0,1) E
γ
nδx

(〈ντ1 ,1〉
p) <∞.

Lemma 6.3 Assume νγ
0 = nδx + δy (with y 6= x). Then

(a) γρ0 → 0 in probability and P
γ(ρ0 < τ1) → 1 when γ → 0.

(b) For any p ∈ [1, 2], supγ∈(0,1) Enδx+δy

(

〈νγ
ρ0 ,1〉

p1{ρ0<τ1}

)

<∞.

(c) limγ→0 P
γ(V0 = y) = 1 − limγ→0 P

γ(V0 = x) = un,1(x, y).

Proof of Lemma 6.1. Fix C > 0 and assume E(〈νγ
0 ,1〉) ≤ C. By Proposition 5.1, there

exists a constant C ′ such that E(〈νγ
t ,1〉) ≤ C ′ for any t ≥ 0 and γ > 0. Therefore, it is sufficient

to show Lemma 6.1 for t = 0.
Now, when the total population size is n, the total mutation rate in the population is

bounded by γb̄n, so that the number of mutations Mt between times 0 and t is dominated
by a point process with intensity γb̄〈νs,1〉ds. More precisely (using for example the coupling
argument of Theorem 2 in [3]) Mt can be shown to be smaller than

∫ t
0

∫

N∗ 1{i≤〈νs−,1〉}P (di, ds),
where P (di, ds) is a Poisson point process on N

∗×R+ with intensity measure γb̄
∑

k≥1 δk(di)ds.
Therefore,

P(Mε/γ ≥ 1) ≤ E(Mε/γ) ≤ γb̄

∫ ε/γ

0
E(〈νγ

s ,1〉)ds ≤ εb̄C ′,

which concludes the proof of (54).
Similarly, for t ≥ 0, P(Mt/γ ≥ n) ≤ tb̄C ′/n, which implies (55). 2

Proof of Lemma 6.2. Fix γ ∈ (0, 1) and assume that νγ
0 = nδx. The number of mutations

issued from individuals of type x before time t can be constructed as
∫ t
0

∫

N∗ 1{i≤Y γ
s−}P

γ(di, ds)

where Y γ
t = 〈νγ

t ,1{x}〉 and P γ(di, ds) is a Poisson point process on N
∗ × R+ with intensity

measure γµ(x)b(x)
∑

k≥1 δk(di) ds independent of (Y γ
t ; t ≥ 0). On another hand, on the event

{t < τ1}, Y
γ
t = Xγ

t , where Xγ is a scalar logistic branching process with dynamical parameters
((1−γµ(x))b(x), c(x, x), 0) and with initial state Xγ

0 = n. Therefore, for any bounded function
f : N

∗ → R and for any t ≥ 0,

E
γ(f(〈νγ

t/γ ,1〉); γτ1 > t) = E

[

f(Xγ
t/γ) exp

(

−γµ(x)b(x)

∫ t/γ

0
Xγ

s−ds

)]

. (57)
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Now, fix n ≥ 1, t > 0 and a bounded function f : N
∗ → R. On the one hand, since 〈νγ

t ,1〉
is a piecewise constant process,

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) = lim
n→+∞

E
γ





[2nt]
∑

k=0

f(〈νγ
k2−n/γ

,1〉)1{2−nk<γτ1≤2−n(k+1)}





and on the other hand, by (57),

lim
n→+∞

[2nt]
∑

k=0

E
γ
[

f(〈νγ
k2−n/γ

,1〉)1{2−nk<γτ1≤2−n(k+1)}

]

= lim
n→+∞

[2nt]
∑

k=0

E

[

f(Xγ
k2−n/γ

)

(

e−γµ(x)b(x)
∫ k2−n/γ
0

Xγ
s ds − e−γµ(x)b(x)

∫ (k+1)2−n/γ
0

Xγ
s ds

)]

= µ(x)b(x) lim
n→+∞

2−n

[2nt]
∑

k=0

E

[

f(Xγ
k2−n/γ

)Xγ
k2−n/γ

e−γµ(x)b(x)
∫ k2−n/γ
0 Xγ

s ds

]

(58)

where the last equality follows from Lebesgue’s theorem and the facts that |1−e−u−u| ≤ u2/2,
that supt≥0 E((Xγ

t )2) ≤ C <∞ and that

∣

∣

∣

∣

E

(∫ t+ε

t
Xγ

s ds− εXγ
t

)∣

∣

∣

∣

≤

∫ t+ε

t
E(|Xγ

s −Xγ
t |)ds = o(ε)

uniformly in t ≥ 0. This last equation is an immediate consequence of the fact that, for any
s < t and M > 0,

E(|Xγ
s −Xγ

t |) ≤ E(Xγ
s +Xγ

t ;Xγ
s 6= Xγ

t ) ≤ E(Xγ
s ;Xγ

s > M) + E(Xγ
t ;Xγ

t > M)

+ 2MP(no jump of the process Xγ occurred on the time interval [s, t])

≤
2C

M
+ 2M

(

1 − e−M(b(x)+c(x,x)(M−1))(t−s)
)

.

Define ϕ(t) := E[f(Xγ
t )Xγ

t exp(−γµ(x)b(x)
∫ t
0 X

γ
s ds)]. Distinguishing as above between the

cases where Xγ
s > M , Xγ

t > M , Xγ
s = Xγ

t and Xγ
s 6= Xγ

t , one can easily prove that ϕ(s) → ϕ(t)
when s → t, i.e. that ϕ is continuous. Thus, the Riemann sum in the right hand side of (58)
converges to the corresponding integral, and for any γ ∈ (0, 1),

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) = µ(x)b(x)

∫ t

0
E

(

f(Xγ
s/γ)Xγ

s/γe
−γµ(x)b(x)

∫ s/γ
0 Xγ

udu
)

ds. (59)

Now, since the individual birth rate of the logistic branching process Xγ is decreasing with
respect to γ, all the processes Xγ can be constructed on a same space in such a way that, for
any 0 ≤ γ1 ≤ γ2 ≤ 1 and t ≥ 0, Xγ2

t ≤ Xγ1
t . Therefore, assuming that f is a nonnegative and

nondecreasing function, for any 0 ≤ γ ≤ γ0 ≤ 1,

E

(

f(Xγ0

s/γ)Xγ0

s/γe
−γµ(x)b(x)

∫ s/γ
0 X0

udu
)

≤ E

(

f(Xγ
s/γ)Xγ

s/γe
−γµ(x)b(x)

∫ s/γ
0 Xγ

udu
)

≤ E

(

f(X0
s/γ)X0

s/γe
−γµ(x)b(x)

∫ s/γ
0 X

γ0
u du

)

.
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For any γ ∈ (0, 1), let us denote by ξ(γ) the random variable ξ(1−γµ(x))θ(x). By the ergodic

theorem for positive recurrent Markov chains, γ
∫ s/γ
0 X0

udu → sE(ξ(0)) when γ → 0. Then,
since supt≥0 E((Xγ0

t )2) <∞, for any s > 0,

lim
γ→0

E

(

f(Xγ0

s/γ)Xγ0

s/γe
−γµ(x)b(x)

∫ s/γ
0 X0

udu
)

= E

(

f(ξ(γ0))ξ(γ0)e−µ(x)b(x)E(ξ(0))s
)

and, by Lebesgue’s theorem,

lim sup
γ→0

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) ≤
E(f(ξ(γ0))ξ(γ0))

E(ξ(0))

(

1 − e−µ(x)b(x)E(ξ(0))t
)

.

Similarly,

lim inf
γ→0

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) ≥
E(f(ξ(0))ξ(0))

E(ξ(γ0))

(

1 − e−µ(x)b(x)E(ξ(γ0))t
)

.

Letting γ0 decrease to 0 finally yields

lim
γ→0

E
γ(f(〈νγ

τ1−,1〉)1{γτ1≤t}) =
E(f(ξ(0))ξ(0))

E(ξ(0))

(

1 − e−µ(x)b(x)E(ξ(0))t
)

. (60)

The same method applies to the case of nonincreasing nonnegative functions f , which completes
the proof of Lemma 6.2(a).

Lemma 6.2(b) can be obtained by taking f(x) = xp ∧ K in (59), then letting first K go

to infinity and next t to infinity (using the fact that
∫ s/γ
0 Xγ

udu ≥ s/γ since Xγ
u ≥ 1 for any

u ≥ 0), and finally using Proposition 5.1. 2

Proof of Lemma 6.3. Before the first mutation, νγ
t = Xγ

t δx + Y γ
t δy where (Xγ

t , Y
γ
t ) is a

two-type logistic branching process with dynamical parameters

B =

(

(1 − γµ(x))b(x)
(1 − γµ(y))b(y)

)

, C =

(

c(x, x) c(x, y)
c(y, x) c(y, y)

)

, D =

(

0
0

)

.

On the event {τ1 > ρ0}, V0 = y if and only if there is fixation in the process (Xγ , Y γ), V0 = x
otherwise, and ρ0 = T .

Now, by Lemma 6.1, for any η > 0, there exists ε > 0 such that P(τ1 > ε/γ) ≥ 1− η. Since
Pn,1(T <∞) = 1, this implies easily (a). It is then elementary to deduce from the continuity of
the fixation probability with respect to the components of the matrix B that (c) holds. Finally,
(b) follows from the observation that

Enδx+δy

(

〈νγ
ρ0
,1〉p1{ρ0<τ1}

)

≤ En,1((X
γ
T )p + (Y γ

T )p)

and from Proposition 2.1(c). 2
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Proof of Theorem 5.2. Observe that the generator A of the process Z, defined in (42) can
be written as

Aϕ(x) =

∫

X
(ϕ(x+ h) − ϕ(x))β(x)κ(x, dh), (61)

where β(x) has been defined in (43) and where κ(x, dh) is the probability measure on X − x
defined by

κ(x, dh) = e−θ(x)
∞
∑

n=1

un,1(x, x+ h)
θ(x)n−1

(n − 1)!
M(x, dh)

+ e−θ(x)

(

∫

Rk

∞
∑

n=1

(1 − un,1(x, x+ y))
θ(x)n−1

(n − 1)!
M(x, dy)

)

δ0(dh). (62)

This means that the TSS model Z with initial state x can be constructed as follows: let
(U(k), k = 0, 1, 2, . . .) be a Markov chain in X with initial state x and with transition kernel
κ(x, dh), and let (P (t), t ≥ 0) be an independent standard Poisson process. Then, the process
(Zt, t ≥ 0) defined by

Zt := U ◦ P

(∫ t

0
β(Zs)ds

)

is a Markov process with infinitesimal generator (62) [11, Chap. 6]. Let (Tn)n≥1 denote the

sequence of jump times of the Poisson process P and define (Sn)n≥1 by Tn =
∫ Sn

0 β(Zs)ds or
Sn = ∞ if

∫∞
0 β(Zs)ds < Tn. Observe that any jump of the process Z occurs at some time

Sn, but that all Sn may not be effective jump times for Z, because of the Dirac mass at 0
appearing in (62). As will appear below, the sequence (Sn) can be interpreted as the sequence
of mutation times in the limit process. Whether an effective jump occurs at time Sn or not
then corresponds to the fixation or extinction of the mutant.

Let Px denote the law of ζt conditional on Supp(ζ0) = Z0 = x. Fix t > 0, m ∈ N
∗, x ∈ X

and a measurable subset Γ of X . Under Px, S1 and ZS1 are independent, S1 is an exponential
random variable with parameter β(x), and ZS1 has law κ(x, ·). Therefore, for any n ≥ 1,
applying the strong Markov property to the process Z at time S1 in the second line,

Px(Sn ≤ t < Sn+1, ∃z ∈ Γ : ζt = mδz) = Ex

(

1{Zt∈Γ}1{Sn≤t<Sn+1}
e−θ(Zt)

1 − e−θ(Zt)

θ(Zt)
m

m!

)

=

∫ t

0
β(x)e−β(x)s

∫

Rk

Px+h(Sn−1 ≤ t− s < Sn, ∃z ∈ Γ : ζt−s = mδz)κ(x, dh)ds. (63)

Moreover,

Px(0 ≤ t < S1, ∃z ∈ Γ : ζt = mδz) = 1{x∈Γ}e
−β(x)t e−θ(x)

1 − e−θ(x)

θ(x)m

m!
. (64)

These two relations characterize the one-dimensional laws of the process ζ. The idea of our
proof is to show that the same relations hold when we replace Sn by τn and the support of ζt
by the support of νγ

t/γ (when it is a singleton) in the limit γ → 0.
More precisely, let us define for any ν0 ∈ M and n ∈ N

pγ
n(t,Γ,m, ν0) := P

γ
ν0

(

ρn ≤
t

γ
< τn+1, ∃z ∈ Γ : νt/γ = mδz

)
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We will prove the following lemma after the end of this proof.

Lemma 6.4 For any x ∈ X , m,k ≥ 1, n ≥ 0, t > 0 and any measurable subset Γ of X ,
pn(t,Γ,m, x) := limγ→0 p

γ
n(t,Γ,m, kδx) exists, is independent of k and satisfies

p0(t,Γ,m, x) = 1{x∈Γ}e
−β(x)t e−θ(x)

1 − e−θ(x)

θ(x)m

m!
(65)

and ∀n ≥ 1, pn(t,Γ,m, x) =

∫ t

0
β(x)e−β(x)s

∫

Rk

pn−1(t− s,Γ,m, x+ h)κ(x, dh)ds. (66)

Comparing (63) and (64) with (65) and (66), this lemma implies that pn(t,Γ,m, x) =
Px(Sn ≤ t < Sn+1, ∃z ∈ Γ : ζt = mδz).

Recall that νγ
0 = Nγ

0 δx with supγ∈(0,1) E((Nγ
0 )p) < ∞ for some p > 1. By Proposition 5.1,

supγ∈(0,1) supt≥0 E(〈νγ
t ,1〉

p) < +∞ and

∣

∣

∣
P

γ
νγ
0
(∃z ∈ Γ : νγ

t/γ = mδz) − Px(∃z ∈ Γ : ζt = mδz)
∣

∣

∣

≤ 2P(Nγ
0 > M) +

M
∑

k=1

∣

∣

∣

∣

∣

∞
∑

n=0

(pγ
n(t,Γ,m, kδx) − pn(t,Γ,m, x))

∣

∣

∣

∣

∣

P(Nγ
0 = k).

Because of Lemma 6.1 (55), the quantity inside the absolute value in the r.h.s. of this equation
converges to 0 when γ → 0. Thus,

lim
γ→0

P
γ
νγ
0
(∃z ∈ Γ : νγ

t/γ = mδz) = Px(∃z ∈ Γ : ζt = mδz). (67)

Summing this relation over m ∈ N
∗ and taking Γ = X implies that

lim
γ→0

P
γ
νγ
0
(Supp(νγ

t/γ) is a singleton) = 1. (68)

Now, consider a bounded measurable f : M → R such that f(ν) = 0 if 〈ν,1〉 6= m ∈ N
∗ and

define the function f̂ : X → R by f̂(x) = f(mδx). Then, it follows from (67) and (68) that

lim
γ→0

E
γ
νγ
0

(

f(νγ
t/γ

)
)

= lim
γ→0

E
γ
νγ
0

(

f̂(Supp(νγ
t/γ

)); Supp(νγ
t/γ

) is a singleton and 〈νγ
t/γ
,1〉 = m

)

= Ex(f̂(Zt);Nt = m) = Ex(f(ζt)) (69)

This equality generalizes to any bounded measurable f : M → R using once again that
supγ∈(0,1) E(〈νγ

t ,1〉
p) < +∞. This completes the proof of Theorem 5.2 for one-dimensional

distributions.
The extension to finite dimensional marginals can be proved exactly in the same fashion.2

Proof of Lemma 6.4. We will prove this lemma by induction over n ≥ 0.
Fix x ∈ X , m,k ≥ 1 and t > 0. First, we have already proved in (57) that

pγ
0(t,Γ,m, kδx) = 1{x∈Γ}P

γ
kδx

(

〈νγ
t/γ ,1〉 = m, γτ1 > t

)

= 1{x∈Γ}E

[

1{Xγ
t/γ

=m} exp

(

−γµ(x)b(x)

∫ t/γ

0
Xγ

s−ds

)]
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whereXγ is a scalar logistic branching process with dynamical parameters ((1−γµ(x))b(x), c(x, x), 0)
and with Xγ

0 = n. Using the method that led us to (60), we get

lim
γ→0

pγ
0(t,Γ,m, kδx) = 1{x∈Γ}P(ξθ(x) = m) exp(−µ(x)b(x)E(ξθ(x))t),

which entails (65).
Then, fix n ≥ 1. Applying the strong Markov property to the process νγ at time τ1, and

using the fact that the mutant trait at this time is x + U where U has law M(x, dh) and is
independent of νγ

τ1−, we get

pγ
n(t,Γ,m, kδx) =

∫

Rk

E
γ
kδx

[

1{γτ1≤t}p
γ
n−1(t− γτ1,Γ,m, 〈ν

γ
τ1−,1〉δx + δx+h)

]

M(x, dh). (70)

Now, we want to apply the strong Markov property to νγ at time ρ0 to compute the quan-
tity pγ

n−1(s,Γ,m, lδx + δy) appearing inside the expectation in the last formula. For K > 0,
distinguishing between the cases where ρ0 > τ1, 〈νρ0,1〉 > K, V0 = x and V0 = y yields

pγ
n−1(s,Γ,m, lδx + δy) = E

γ
lδx+δy

[

1{ρ0<τ1, 〈νγ
ρ0

,1〉≤K, V0=x}p
γ
n−1(s − γρ0,Γ,m, 〈ν

γ
ρ0
,1〉δx)

+1{ρ0<τ1, 〈νγ
ρ0

,1〉≤K, V0=y}p
γ
n−1(s− γρ0,Γ,m, 〈ν

γ
ρ0
,1〉δy)

]

+ P
γ
lδx+δy

({ρ0 ≥ τ1} ∩E) + P
γ
lδx+δy

({ρ0 < τ1} ∩ {〈νγ
ρ0
,1〉 > K} ∩ E)

where
E = {ρn−1 ≤ s/γ < τn, ∃z ∈ Γ : νs/γ = mδz}.

The third term of the r.h.s. converges to 0 when γ → 0 because of Lemma 6.3(a) and the last
term converges to 0 when K → +∞ uniformly for γ ∈ (0, 1) because of Lemma 6.3(b).

Now, assume that pγ
n−1(t,Γ,m, kδx) converges to pn−1(t,Γ,m, x) as in the statement of

Lemma 6.4. As a consequence of Lemma 6.1 (54), for any t > 0, the function s 7→ pγ
n−1(s,Γ,m, kδx)

is uniformly continuous on [0, t]. Combining this observation with Lemma 6.3(c),

lim
γ→0

pγ
n−1(s,Γ,m, lδx + δy) = ul,1(x, y)pn−1(s,Γ,m, y) + (1 − ul,1(x, y))pn−1(s,Γ,m, x). (71)

This uniform continuity argument also applies to s 7→ pγ
n−1(s,Γ,m, lδx + δy), so that the

convergence in (71) is uniform in s ∈ [0, t] and l ∈ {1, . . . , L}, for fixed L ≥ 1. Therefore, we
can combine Lemma 6.2(a) and (b) as above to get

lim
γ→0

E
γ
kδx

[

1{γτ1≤t}p
γ
n−1(t− γτ1,Γ,m, 〈ν

γ
τ1−,1〉δx + δy)

]

=

∫ t

0
dsβ(x)e−β(x)s

∞
∑

l=1

e−θ(x) θ(x)
l−1

(l − 1)!
[ul,1(x, y)pn−1(t− s,Γ,m, y) + (1 − ul,1(x, y))pn−1(t− s,Γ,m, x)] .

Finally, using Lebesgue’s theorem, this limit applies inside the integral in (70), which gives
exactly (66) and ends the proof of Lemma 6.4. 2
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Proof of Theorem 5.3. Since the limiting law of the process (Sγ
t ; t ≥ 0) is characterized

by its finite dimensional distributions, obtained in Theorem 5.2, we only have to show the
tightness of their laws. Fix T > 0. By Ascoli’s theorem for càdlàg functions (see e.g. [2]), we
have to show that, for any ε, η > 0, there is δ > 0 such that

lim sup
γ→0

P(ω′(Sγ , δ) > η) < ε (72)

where the modulus of continuity ω′ is defined as

ω′(f, δ) = inf{ max
0≤i≤r−1

ω(f, [ti, ti+1))}

where the infimum is taken over all the finite partitions 0 = t0 < t1 < . . . < tr = T of [0, T ]
such that ti+1 − ti > δ for any 0 ≤ i ≤ r − 1, and where ω is the usual modulus of continuity

ω(f, I) = sup
s,t∈I

‖f(t) − f(s)‖.

Now, for any n ≥ 0,

P
γ(ρn+1 − ρn < δ) ≤ P

γ(ρn − τn > δ) + P
γ(τn+1 − τn < 2δ).

When γ → 0, the first term goes to 0 by Lemma 6.3(a) and Lemma 6.2(b), and the lim sup of the
second term is smaller than 1−exp(−βδ) by Lemma 6.2(a) and (b), where β := infx∈X β(x) > 0.
Therefore, by Lemma 6.1(b), for any ε > 0, there exists δ > 0 such that

lim sup P
γ(∃n ≥ 0 : ρn+1 − ρn < δ and ρn+1 ≤ T ) ≤ ε,

which implies (72). 2

6.2 Proofs of Theorem 5.5 and Proposition 5.8

Proof of Theorem 5.5. We will use the classical method of tightness and martingale prob-
lem formulation to prove this theorem (e.g. [18]). We divide the proof in three steps.

Step 1. Uniqueness of the limit process. Strong existence and uniqueness for the SDE (47)
follow standardly from the Lipschitz-continuity of its coefficients.

Step 2. Tightness of the family of laws of Zǫ. For any ǫ > 0, let Nǫ(dh, du, dt) be a Poisson
point process on R

k × [0, 1] × R+ with intensity measure qǫ(dh, du, dt) = M̄(h)dh β̄χ̄du dt/ǫ2,
where β̄ and χ̄ are constants bounding the functions b and χ from above, respectively, and
M̄ has been defined as the integrable function bounding the density m(x, ·) of M(x, ·) for any
x ∈ R

k. Then it is straightforward to check that Aǫ is the infinitesimal generator of the Markov
process Zǫ

Zǫ
t = Zǫ

0 + ǫ

∫ t

0

∫ 1

0

∫

Rk

h1{
u≤

β(Zǫ
s−)

β̄

χ(Zǫ
s−,Zǫ

s−+ǫh)

χ̄

m(Zǫ
s−,h)

M̄(h)

}Nǫ(dh, du, ds)

Since β and χ are bounded, a process generated by Aǫ is unique in law (e.g. [11]), and this
construction characterizes the law of the process Zǫ appearing in the statement of Theorem 5.5.
Let us denote this law by Pǫ.
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Observe that, if we denote by Ñǫ the compensated Poisson measure Nǫ − qǫ, Z
ǫ
t can be

decomposed as Zǫ
0 + Z̃ǫ

t + Ẑǫ
t , where

Z̃ǫ
t = ǫ

∫ t

0

∫ 1

0

∫

Rk

h1{
u≤

β(Zǫ
s−

)

β̄

χ(Zǫ
s−

,Zǫ
s−

+ǫh)

χ̄

m(Zǫ
s−

,h)

M̄(h)

}Ñǫ(dh, du, ds)

and

Ẑǫ
t =

1

ǫ

∫ t

0

∫

Rk

hβ(Zǫ
s−)χ(Zǫ

s−, Z
ǫ
s− + ǫh)M(Zǫ

s−, dh)ds

=
1

ǫ

∫ t

0

∫

Rk

hβ(Zǫ
s−)[χ(Zǫ

s−, Z
ǫ
s− + ǫh) − χ(Zǫ

s−, Z
ǫ
s−)]M(Zǫ

s−, dh)ds

where the last equality follows from the fact that the mutation step law M(x, ·) has 0 expec-
tation.

We will use Aldous’ criterion [1] to prove the tightness of the family of probability measure
(Pǫ)ǫ>0 on D(R+,R

k). Fix δ, ǫ > 0 and let τ and τ ′ be two stopping times such that τ < τ ′ <
τ+δ. Since |χ(x, x+ǫh)−χ(x, x)| ≤ ǫK‖h‖ for some constant K, ‖Ẑǫ

τ ′ −Ẑǫ
τ‖ ≤ δβ̄KM2, where

M2 = supx

∫

‖h‖2M(x, dh), which is finite by assumption. By standard results on stochastic
integrals with respect to Poisson point measures,

Eǫ(‖Z̃
ǫ
τ ′−Z̃ǫ

τ‖
2) = Eǫ

(

∫ τ ′

τ

∫ 1

0

∫

Rk

ǫ2‖h‖21{
u≤

β(Zǫ
s−)

β̄

χ(Zǫ
s−,Zǫ

s−+ǫh)

χ̄

m(Zǫ
s−,h)

M̄(h)

}qǫ(dh, du, ds)

)

≤ δβ̄χ̄M2.

Therefore, for any η > 0,

Pǫ(‖Z
ǫ
τ ′ − Zǫ

τ‖ ≥ η) ≤ Pǫ(‖Ẑ
ǫ
τ ′ − Ẑǫ

τ‖ ≥
η

2
) + Pǫ(‖Z̃

ǫ
τ ′ − Z̃ǫ

τ‖ ≥
η

2
) ≤ 1{2δβ̄KM2≥η} +

4δβ̄χ̄M2

η2

which converges to 0 when δ → 0. This gives the first part of Aldous’ criterion. For the second
part, we have to prove the tightness of (Zǫ

t )ǫ>0 for any t ≥ 0. Similar computations as above
prove easily that (Z̃ǫ

t )ǫ>0 and (Ẑǫ
t )ǫ>0 are tight, and the tightness of (Zǫ

0)ǫ>0 follows from the
assumption that it is bounded in L1.

Step 3. Martingale problem. Let P0 be an accumulation point of (Pǫ)ǫ>0 when ǫ→ 0 on
D(R+,R

k), endowed with the canonical filtration Ft. Since the martingale problem for (47) is
well-posed, it suffices to show that, for any ϕ ∈ C2(X ), under P0, the process

Mϕ
t (w) = ϕ(wt) − ϕ(w0) −

∫ t

0
A0ϕ(ws)ds.

on D(R+,X ) is a local Ft-martingale. We already know that under Pǫ,

M ǫ,ϕ
t (w) = ϕ(wt) − ϕ(w0) −

∫ t

0
Aǫϕ(ws)ds

is a local Ft-martingale. Since β and χ are bounded, this is a square-integrable martingale as
soon as ϕ ∈ C3

b .
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Fix ϕ ∈ C3
b , s > 0 and t > s, and consider p real numbers 0 ≤ t1 < . . . < tp ≤ s for some

p ≥ 1, and a continuous bounded function q : (Rk)p → R. We can write

∣

∣

∣

∣

E0

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
A0ϕ(wu)du

]}∣

∣

∣

∣

≤

∣

∣

∣

∣

Eǫ

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
Aǫϕ(wu)du

]}∣

∣

∣

∣

+

∣

∣

∣

∣

Eǫ

{

q(wt1 , . . . , wtp)

∫ t

s
(Aǫϕ(wu) −A0ϕ(wu))du

}∣

∣

∣

∣

+

∣

∣

∣

∣

E0

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
A0ϕ(wu)du

]}

−Eǫ

{

q(wt1 , . . . , wtp)

[

ϕ(wt) − ϕ(ws) −

∫ t

s
A0ϕ(wu)du

]}∣

∣

∣

∣

.

The first term of the r.h.s. is 0 since M ǫ,ϕ is a Pǫ-martingale. Because of the uniform conver-
gence of generators (46), the second term converges to 0 when ǫ→ 0. The third term also goes
to 0 when ǫ → 0 since Pǫ converges to P0. Finally, since the l.h.s. does not depend on ǫ, it
is 0.

A classical use of the monotone class theorem allows to extend this equality to all Fs-
measurable bounded functions q, so Mϕ is a P0-martingale. This result can easily be extended
to any C2 function ϕ by a standard truncation technique, which completes the proof of Theo-
rem 5.5. 2

Proof of Proposition 5.8. It follows from Proposition 4.5 that

aλ(x) =

∞
∑

n=1

nθ(x)n−1

2c(x, x)(n + 2)(n + 1)(n − 1)!

and from Proposition 4.6 that

aα(x) =
∞
∑

n=1

θ(x)n−1

b(x)(n + 1)(n − 1)!
+

∞
∑

n=1

nθ(x)n−1

2c(x, x)(n + 2)(n + 1)(n − 1)!
−

∞
∑

n=1

q
(2)
n+1(x)θ(x)

n−1

θ(x)κ(x)(n + 1)(n − 1)!
.

Elementary calculations then give (48) and (49).
For the δ-invasibility, using Proposition 4.8 and switching the two sums, we get

aδ(x) =
∑

k≥1

φk(x)
∑

n≥1

n2θ(x)n−1

(n+ k + 1)(n + 1)!
.

The following observation

∑

n≥1

n2un−1

(n+ 1)!
=

d

du



u
d

du

∑

n≥1

un

(n+ 1)!



 =
d

du

(

u
d

du

(

eu − 1

u

))

=
eu(u2 − u+ 1) − 1

u2

yields (50). (51) follows from switching the sum and the integral in (50) which is standard
since φn(x) = O(1/n).
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Equation (52) can be checked using the fact that eu(uk−kuk−1+k(k−1)uk−2+. . .+(−1)kk!)
is a primitive of euuk.

Finally, (53) can be deduced from the facts that φ1(x) = 1/2c(x, x) = θ(x)/2b(x) and

∀n ≥ 2, (n+ 2)φn+1(x) + (θ(x) − n− 1)φn(x) − θ(x)
n− 2

n− 1
φn−1(x) = 0.

Multiplying these equations by (n− 1)xn+1 and summing over n ≥ 2 yields

0 =
∑

n≥3

(n + 1)(n − 2)φn(x)un + θ(x)
∑

n≥2

(n− 1)φn(x)un+1

−
∑

n≥2

(n+ 1)(n − 1)φn(x)un+1 − θ(x)
∑

n≥2

(n− 1)φn(x)un+2

=
d

du

(

u4 d

du

(

πx(u) − φ1(x) − φ2(x)u

u

))

+ θ(x)u3π′x(u) − u
d

du

(

u3π′x(u)
)

− θ(x)u4π′x(u)

which finally gives (53). 2
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