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Constructions of Dirichlet structures

Nicolas Bouleau™*

Abstract. We show how the constructions of Dirichlet structures allow to equip the
main probabilistic objects with Dirichlet forms. We emphasize the case of local white
Dirichlet structures on the Poisson space and on the Wiener space. This yields tools for
studying the existence of density of functionals of processes with independent increments
and of stationnary processes.

1991 Mathematics Subject Classification: 31C25.

introduction

We shall use the expression ‘Dirichlet structure’ to denote a term (2, F, m, ID, &)
where (2, F, m) is a measured space, most often a probability space, and & a
Dirichlet form defined on a dense subspace ID of L?(m), i.e. a closed positive
bilinear form on which contractions operate.

Our aim is simplicity: to construct Dirichlet structures by algebraical methods
which follow the classical methods of constructions of usual probability spaces.
Our purpose is both pedagogical and methodological to get tools for obtaining
results (existence of densities, variational calculus, etc) on the most fundamental
probabilistic objects. This is an extension of Chapter V The algebra of Dirichlet
structures of the book written with Francis Hirsch [BH].

We are studying especially white structures. For probabilistic structures the
concept of whiteness is related to two ideas:

i) spatial independence: random variables with disjoint sets of indices are in-
dependent,

ii) stationnarity: invariance in law under translation of the index set, which is
therefore a group.

For Dirichlet structures we reserve the word white for the notion which is the
conjonction of the following properties:

i) spatial independence in the Dirichlet sense, that is in the sense of product of
Dirichlet structures,

ii) translation invariance

ii1) locality, we restrict ourselves to local Dirichlet structures, so that the func-
tional calculus and the density criterion hold.

*  Ecole des Ponts, Paris.
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This doesn’t prevent us from using sometimes whiteness in a weaker sense with
only i) and ii) or even with i) weakened in spatial orthogonality.

With respect to the existing literature about Dirichlet structures on the Poisson
space (or about symmetric semigroups acting on the Poisson space giving rise to a
Malliavin calculus), which is numerous ([DKW], [BGJ], [W], [CP], [NV], etc) the
approach is in the spirit of [BGJ] and [W] but with a presentation which allows
to study more easily the criterion of existence of density. The structure on the
elementary Poisson space (on IR;) defined by Carlen and Pardoux [CP] which is
local and possesses the property that the divergence operator coincides with the
stochastic integral on previsible processes and satisfies the density criterion (EID)
as proved in [BH] chapter V §5.3 (cf also [P]) but it is not white and does not
extend easily to define structures for general P.I.I’s.

About the case of Wiener space, the approach can be seen as an elementary
introduction to the white noise theory and to the second quantization.

1. Products,Dirichlet independence

1.1. Notation and definitions

We consider first Dirichlet structures (Q, F, m, ID, £) where (2, F, m) is a prob-
ability space and (ID, &) a Dirichlet form i.e. a closed symmetric positive bilinear
form with dense domain ID in L?(m) such that

FED = [fAleD and E(fA1)<E(),

and we suppose 1 € ID and £(1) = 0. To give such a structure is equivalent to
consider a strongly continuous symmetric semigroup (P);>o on L?(m) which is
Markovian (0< f<1 = 0< Pf <1, 1 =1)cf [BH].

Three properties concerning Dirichlet strucutres will be interesting for us:
¢ (OCCQ), (Existence of a carré du champ opérator)

VfeDNL® 3fe L', YheDDN L™, 2E(fh,f)—5(h,f2):/fhdm.

Then one sets T'(f, f) = 1, T'(f,g) is defined by polarisation. I' is a continuous
operator from ID x ID into L!(m), it is uniquely defined. One has
1

E(f9) = /F(f,g)dm Vf g €D.

2
If F' is a contraction

[(Fof Fog)<T(f,f) ¥feD,
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¢ (L) (Locality)
VieD E(f+1]-1)=£&(f)
or equivalently
Vi$g€eD fg=0= &(fg)=0

Under (OCC) and (L) a functional calculus holds: If f € D™, ¢ € D", F, G
Lipschitz and C?,

T(F( ZF (fi.95)

and these hypotheses can be weakened if m =n = 1:
If F, G are Lipschitz from IR to IR:

L(F(f),G(9)) = F'(N)G'(9)T(f, )

where F' | G’ are the derivatives in the sense of Lebesgue, this formula makes
sense by the fact that

VieD f.(T(f f)-m) << A1 (Lebesgue measure onIR).

¢ (EID) (Energy image density property)
It is the preceding property extended to the case of dimension &:

Ve  fo(det(T(f, f)).m) << A

where T'(f, f*) is the matrix T'(f;, f;).
This property is satisfied on the Wiener space when equipped with the form
associated with the Ornstein-Uhlenbeck semigroup.

1.2. Products

Definition. Let S; = Q;, F;, m;, D;, &) i = 1,2 be two Dirichlet structures as
defined in 1.1. The product structure S1 ® Sy is defined as (1 x Qa, F1 @ Fq, my x
ma, D, &) with

= {f € L%(my xmy) : forma—a.e. y f(.,y) €Dy formi—a.e x f(z,.) €D,y

/ E1(F(y) dmaly / &(F(x, ) dmi(z) < +oo}
/51 ) dims )+/52(f(:c,.))dm1(:v).

and
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It is easy to show that S; ® S5 is a Dirichlet structure.
If Sy and Sy satisfy (OCC) then S ® Ss satisfies (OCC) too and

L(f)(z,y) =T(f( w)) (=) + Ta(f(z, ) (y)-

If S; and Sy are local, S1 ® S5 1s local too.
Infinite products

Definition. Let S; = (4, F;, m;, ID;, &) i € b

7 N Dirichlet structures. The
product S = @, Si 15 defined by S = (Q, F, m, D,

e
&) with

(Q, F,m) = ®(QZ, Fi,my)  (product probability space)

1€IN
and
D= {f € L*(m) : Vi, for almost all wo,w1,... ,wi_1,Wit1,. ..
the map © — f(wo,w1,...,Wi—1, &,Wiy1,...) belongs to ID;
and /Z&(f) dm <+oo}
1€IN
and

e = [ X&) dm.

1€EN

The fact that this defines a closed form comes from the following argument:
Let (fn) be a Cauchy sequence in ID equipped with the norm [|.||; defined by
|1t =&+ .]|%2, such that

1o = fllzz = 0.

There exists a subsequence f,,, such that

Y = FIP < o0
k

and

ST (EFargn = fan))? < +o0.

k
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Then for every 7 and for almost every wg, w1, ..., w;—1,w;it1, ... (product measure)
one has

a) Z/(f"k( e Wis 1, B Wit ) — (e wis1, T, Wi, - ))2 dm;(z) < +4oo
2

b) (& (farsn — ) < oo,

k

this last fact coming from the inequalities

=

[etram < ([ am?® < ew?.

By the closedness of the form (ID;, &;), it follows that
for almost every wo,w1,...,wi—1,wit1,... the map

i+ flwo,wi, . -, Wi1, 8,Wwit1, ..
is in ID; and & (fn, — f) — 0, hence by the Fatou lemma
/Z&(f) dm = /Zh;ngi(fnk) dm < liminf€(f,,)
ieN i€EN
and since f, is Cauchy in ID, this last term is finite and f € ID. Similarly
/Z&-(f— fn)dm :/Zli;né’i(fnk — fn)dm < lin}cinf(‘)(fnk —fn)
ieN i€EN

which can be made < £ for k and n large enough since f, is Cauchy in ID, so we
have f, = f in ID. After proving the closedness, the fact that the form is Dirichlet
is without difficulty. O

e As for finite products if the Sis are local so is S.
o If every S; satisies (OCC) with carré du champ opérator T;, then S satisfies
(OCCQC) and its carré du champ operator T is given by

VfeD TI(f)= _Z r;(f)

e About property (EID), the passage from finite to infinite dimension, which is
the heart of the proof of property (EID) on the Wiener space (cf [BH]) comes from
the following fact:

Proposition. Let S;, i € IN be Dirichlet structures satisfying (OCC) and (L). If
each finite product

Su = ®S¢ u finite part of N

1€EU
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satisfies (EID), then the infinite product
S=@)Si
ieN
satisfies (EID).

Proof. . With the same notation as in the preceding proof, let U € ID", then
N
(U, U*) = lim (U, U™)
Ntoo 4
1=0
increasing limit in the sense of semi-definite positive matrices, hence if B is a
Lebesgue negligible Borel set in IR"

N
/13 o U.det T(U,U*) dm = h}Vn/ g o U.det() Ty(U,U*))dm =0
=0
and the proposition is proved. O

1.3 Images.

We are now almost able to define the concept of D-independence. But, as in the
case of probability structures, we need before to define the law (here the D-law)
indeed independence means that the law of a pair is the product of the laws. Thus
we need the notion of image structure:

1.3.1 Finite dimensional images.

Definition. Let (2, F, m, D, £) be a Dirichlet structure
(a) ford e IN* and U € D%, let us define

Dy = {f € L*(Uum) : foU €D}, & (f) =E(fol).

then (]Rd,B(]Rd),U*m,]]’DVU,g(;) ts a Dirichlet dtructure and the set Ay of
Lipschitz functions from IR? into R s in ]ﬁ; .

(b) Let Dy be the closure of Ag in Dy and &y = 8U|]DU then the Dirichlet
structure (IRd, B(IRd), U.m, Dy, &) is reqular in the sense of Fukushima (i.e.
there is a dense subspace of C’K(IRd) equipped with uniform topology, which is
also dense in Dy )

The structure (]Rd,B(]Rd), U.m, Dy, &) is called the image of S by U and
denoted U, S. .
Remark There are cases in which Dy # Dy
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o If S satisfies (OCC) with carré du champ operator T, then U..S satisfies (OCC)

with carré du champ operator T'y given by
Tu(f)(z) =E[L(foU)|U =z] U.m-ae.
where IE refers to the measure m. In other words
ElgoUTu(f)]=E[lgoUT(foU)] V bounded g.

o If S is local, so 1s U, S.
Under (OCC) and (L) for S we have thus

VF € Ag0 CHIRY)

d
oF oF
To(F)(@) = Y B0, U))|U = 2] 90, B 5, (@)
i,7=1 ¢ J
Remark. The fact that Dirichlet structures can be easily transported by images is

remarkable, because the associated semigroups and the associated Markov process
do not correspond in the same way. (cf [BH] chapter V §1.2)

1.3.2 General images.

It is not necessary the map U be in ID so that the image by U exists. Let S =
(Q, F, m, D, £) be a Dirichlet structure. Let (W,G) be a measurable space and
U a measurable map from Q into W.

Let us consider a set 4 of measurable maps from W into IR such that

a) A is a dense subvectorspace of L%(U.m)

b)Vfec ALVFED(R) FofeA

c)VfeA, foU €,
then the form (A, &4 1) defined by £4u(f) = E(f o U) is closable in L?(U.m).
Let (D4, &4,v) its closure, the Dirichlet structure

NS = (W,6,U.m,Dav,Eav)
is called the image structure of S by U with respect to A, it depends on A generally.

1.4 Dirichlet independence.
Let S = (Q, F, m, ID, £) be a Dirichlet structure.

Definition 1.4.1. U € ID? and V € ID? are said to be D-independent if
(U,V)S = (U.S) ® (Vi5)

i.e. if the image structure by the pair (U, V') is the product of the images by U and
V.
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Proposition 1.4.2. U and V are D-independent iff

VSDI:SDQ € Cl(IRp): lea 1/)2 S Cl (Rq)
E(proUyroV, paolUtpaoV)
=&(prolU,p20U)(Y10V,h20V)2(m)+EW10V a0 V(10U 02 0U)12(m)

Under (OCC) we have the following criterion:

Proposition 1.4.3. If S satisfies (OCC) with operator T', for U € DP, V € ID?
to be independent it is necessary and sufficient that

(a) U and V are independent on the probability space (2, F, m)

(b) Vi, k E[L(Us, Vi)|U, V] = 0 m — a.e.

(C) Vl,j ]E[F(UZ, U])|U, V] = ]E[F(UZ, U])|U] m— a.e.

(d) VE,ITE[T(Vy, V)|U, V] = E[T(Vg, Vi|[V] m— a.e..

Remark 1.4.4. A sufficient condition for U and V to be independent is that
(a) U and V are independent

(b)) T(U;, Vi) =0 Vi, k

( U,T(U;,Uj)) is independent of V

( V,T(Vi, V;)) is independent of U.

D-independence can easily be extended to infinite families.

2. White structures related to the Poisson space

We shall first construct local Dirichlet structures on a Poisson space over a mea-
surable space (X, X') without other properties for the moment. It will yield white
structures in the sense of i) and iii) only. After that we shall look at what hap-
pens when X =Y x IR;, getting structures associated with general processes with
independent increments.

2.1. Finite Poisson space

Let us first recall the construction of the finite Poisson space, that is in other words
of the Poisson point process with finite intensity measure.

Let (X, X) be a measurable space and p a finite positive measure on (X, X).
Let us set 6 = pu(X), po = %u. Let us consider the product probability space

(X, X, 10)N x (N, P(IN), IPy)
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where 1Py is the Poisson law on IN with parameter 6:
n

6
Py{n} = e_gm n € IN.

Let (Xy)new+, Y be the coordinate mappings from this product space into its
factors. So X,, are independent variables with values in X and law pg and Y is
independent of the X,,’s with law IPy. The formula

Y 0
N = Z_:laxn (with 21: =0)

defines a random variable N with values in the set M, of point measures on (X, X),
that is sums of Dirac masses, equipped with the o-field M, generated by the maps

m — m(A) AeX,

and N has the following properties (cf Neveu [N])
a) YA € X, the random variable N(A) has a Poisson law with parameter u(A)

A A k
P(N(A) = k) = et >“(k!)

In particular IEN (A) = p(A). (so p is the intensity measure of N).

b) For By,..., B, € X pairwise disjoint, the random variables
N(By),...,N(By,) are independent.

We follow this construction starting from a Dirichlet structure (X, X, pg, d, e),
which, as before, is supposed to satisfy 1 € d, e(1) = 0, and in addition sat isfies
(L) and (OCC) with operator +.

The product Dirichlet structure (2.1.1):

(Q, F, m D, &) = (X, X, o, d,e)N x (IN,P(N), Py, L*(IP4), 0)

as we have seen satisfies (L) and (OCC). Let still (X, )nen+ and Y be the coordi-
nate mappings and

the associated Poisson point process.

Lemme 2.1.2. Let U = F(Y, X1, X3, ..., Xn,...) be in L*(Q, F, m),
(a) UeDiff

VmeN F(m, X1, Xs,...) €D and E(U) = /E(F(m,...))d]Pg(m) < 400
(b) U eD iff
VmVk, for,ugb]N* —a.e Ty, ..., Tk_1,Thyl,---

F(m,z1,...,25-1,., Tk41,...) €d
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and
1 (o)
= - Zyk(F(m,xl,...,xk_l,.,mk+1,...))dIPg(m)d,u < 400

(c) ForU € D the carré du champ operator T' of (2, F, m, ID, £) is given by

F)y=> w(F(Y, X1,..., Xs—1, ., Xeg1 - ) (Xk)

This is a direct consequence of properties of product structures

Lemma 2.1.3. For f € d, N(f) is defined and in ID.

Proof. f is an equivalence class for pg or p-a.e. equality, now, if f = g py-a.e
E[N(f) = N(g)| <EN|f —gl = ulf — gl =0,

so N(f) = N(g) p-ae.
Using the Laplace functional of N, (cf [N])

Ee~ M) = exp{—/(l —e M) du} A>0

we get
/f du+ ([ 1wy

proving that N(f) € L%(m) for f € L?(

Then for f € d,

Z Li<vpy(F)(Xe) = Z’Y(f)(Xk)
= N((£))
= e(f) O

and E(N(f)) = 2u((f))

So we have obtained (2.1.4):
for fed T(N(f)) = N(v(f))
for f,ged T(N(f),N(9)) =
N(f) and N(g) are D-

Corollary 2.1.5. If f¢g = 0 and f f,g € d, then

independent.
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Proof. We know that N(f) and N(g) are independent. By remark 1.4.4 it suffices
to show
a) Y(N(f), N(
b) (N (), T(N
(N (), TN ()

structure (X, X

9)) = 0, which comes from (2.1.4) because ¥(f,g) =0
(£))) is independent of N(g), which comes from (2.1.4) too, since

= (N(f),N(v(f))) and v(f) = 0 on {g # 0} by the fact that the
Ho, d, e) is local. O

Remark 2.1.6.If Vm (X, X, o, d, e)™ satisfies (EID) then (Q, F, m, ID, &) sat-
isfies (EID).
Remark 2.1.7. The map

N:f— (N /fd,u

from L?(X,X,po) into L?(Q,F, m) is an homomorphism which preserves L2-
norms and Dirichlet forms, and is therefore an isometry from d into ID equipped
by any a-norm: («||. H%Q(uo) + e)% and (ef| . ||%2(m) + 5)%. Indeed we have

0= [ any? = [ sau

—/fd,u) =e(f) for f € d.

From f and ¢ with disjoint support N gives Kf(f) and N(g) which are D—independent.l
N is therefore a Wiener-Karhunen measure in the strong Dirichlet sense.

Remark 2.1.8 Let us recall that M, is the set of point measures on X, X' with
the o-field M, generated by the maps m — m(4) A € X. We can consider
the image of the structure (2, F, m, ID, £) by N in the sense of general images
of §1.2.3 with respect to the set A of measurable functions from (M,, M,) into
(R, B(IR)):

A={m = Gm(f),...,m(fa)), GEDRY, fi,...,faed,d €N}
the required properties on A are fulfilled, as easily seen. The image structure is
(Mp, My, P Dy, &)

where TP is the law of a Poisson point process with intensity u, (ID1, &) is a local
Dirichlet form satisfying (OCC) and characterized by the fact that its carré du
champ operator I'y verifies:

CuF(N(f), - N (fa) = D FN (), N(f)E(N (f1).. N(fd))N(v(fi,fj))I

Vfied i=1,...,,YF € D(RY).
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2.2. o-finite Poisson space.

The probabilistic definition of a Poisson point process with o-finite intensity mea-
sure yu is easily made by product using property b) of the Poisson point process.
In the case of Dirichlet structures, the construction cannot be so simple.
Remark 2.2.1. We have defined for the moment Dirichlet structures only on prob-
ability spaces. Tt is possible (cf [BH]) with minor changes to define structures
(E,F,m,ID, &) with m o-finite. Hypotheses (L) and (OCC) are expressed in the
same way.
2.2.2. We shall assume that Dirichlet structures (X, X', pg, di, e) are given where
p are o-finite measures such that g = Zk pr 18 o-finite and that Ngdy is dense in
L%(p). If we define the form e = Y, ex on Ngdy, it is easy to see that it is closable
and therefore defines a Dirichlet structure

(X, X, p1,d,e).

We suppose also that the structures (X, X, ux,dg, ex) are local, satisfy (OCC)
with the same operator in the sense that their carré du champ operator coincides
with that of (X, X, u,d,e) on d. It is denoted by ~.

By the construction of remark 2.1.8 with each of these structures it is possible to
define a Poisson point process Nj with intensity measure p defined on a Dirichlet
structure Sy given by formula (2.1.1) with carré du champ operator Ty, satisfying:

For U = F(Ni(f1),..., Nx(f4)), F € D(RY), f; ed
Tx(U) = ZFZ(Nk(ﬁ), s N (Fa))Fi(Ng (f1), - Ne(fa)) N (v (£, £5))

Let us consider the product S = ), Sk. Let us set

As it is often done in probability theory, to avoid the use of the coordinate map-
pings in the notation, we shall consider that the Nj’s are random variables defined

and D-independent random variables defined on S = (Q, F, P, ID,£).
Then we define N by

N:ZNk
k

we know already by well known probabilistic arguments, that N is a Poisson point
process with intensity measure p = >, pix.

The structure S possesses a carré du champ operator T which is the sum of the
I'x’s acting on the k-th coordinate mapping.
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WU =F(N(f1),...,N(fa)) fied,i=1,....d, F € D(R%), one has (2.2.2.1):
(W)=Y Y F(N(f), - NE)VFJ(N(F), - N(f) Ne(3(fi, 7))
ko i]
=Y FN(A), - NG FJ (N (f1), -, NN (i, £5)
i,
Finally, the image of the structure S by N with respect to the set A of measurable
mappings from (M,, M,) into (IR, B(IR))
A={m—=Gm(f),...,m(fs)), GEDRY, f1,...,, facd, de N*}
introduced in 2.1.8, is a Dirichlet structure
(Mpa Mpa ]Pa ]Dla gl)

which is local, satisfies (OCC) with operator T such that, if we note NV the indentity
mapping from M, into M,,
. N is a Poisson point process with intensity p

Afor U=F(N(f1),...,N(fa)) fied, i=1,...,d, F € D(R"),
rw) = ZF{(N(fl), o N[ Fj(N (1), N(F))N (v (£, 7).

In particular if f € d

E(N(f) - / fdu) = e(f).

By these relations, the compensated Poisson process N — y is defined on L%(p)
and is an isometry in the Dirichlet sense as before.

2.3 Dirichlet structures related to a process
with independent increments (PII)

We apply the preceding study to the case where
X=R; xY
XY =B(Ry)xY Y oc—fieldonY
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and where
p=dt xn

with n o-finite measure on (V,)).

We are given a Dirichlet structure on (X, X) say (X, X, u, d, e) which is local
(L) and possesses a carré du champ operator (OCC) denoted 5. By the preced-
ing construction one obtains a structure (M,, M,, IP,, ID, £) and the indentity
mapping N is a Poisson point process with intensity pu.

This contains the case of processes with independent increments(Y;), if we put

N=3% 8v.-v.)

seR4

this is a Poisson point process on IR} x IR* with intensity dt x v where v is the
Lévy measure of the PIT (V3).

Tt is now possible to develop the stochastic calculus related to this PIT (V3)
(stochastic integrals, s.d.e., etc) to study the belonging of the obtained random
variables to ID, and applying remark 2.1.6 and (EID) to obtain density results.

3. White structures related to the Wiener space

3.1

Let us recall the construction of the Wiener integral and that of Brownian mo-
tion it gives. Let (x») be an orthonormal basis of L?(T, T, u), where (T, 7T, u) is
a o-finite measured space, (g,) be a sequence of independent reduced Gaussian
random variables defined on a probability space (Q,.4,P). With f € L%(T, T, u)
we associate I(f) € L%(Q2, A, TP) by

I(f) :Z < fiXn > gn-
I is a homomorphism from L?(T, 7, u) into L*(Q, A, TP). If f and g are in L? and

if [ fgdu =0 then I(f) and I(g) are independent.
Let us take T'= [0, 1], 7 = B([0, 1]), p = dt, and let us put

B) = 32 tn(0gn with 4= [ xa(s)ds

this series converges in C([0,1]) a.s. and in LP((€2, A, TP), C([0, 1])) for p € [1, 0]
(cf [BH] chapter V example 1.3.2) and defines a Brownian motion. We put

1f) = / f(s)dB..
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3.2
The preceding construction involves the product probability space
(Q,A,P) = (R, B(R), N(0,1))™

the gl s being the coordinate mappings. If we equip each factor of this product
with a Dirichlet form (IR, B(IR), N (0, 1),d,, e,) which we suppose, as usual, local
and with (OCC) =,, by the theorem on products we obtain a Dirichlet structure
on (2, A4,1P)

(Q,A4,P,D,&) =](R,B(R), N(0,1),d, en)

n

which is local and with (OCC) T such that

YUED U=F(go,91,---19n,--.)

L(U) = l(F)
where the =, acts on the n-th argument.
Examples.

3.2.1. Let us take

we obtain
(Q,A4,1P,ID,&) = (R, B(R), N(0, 1), H(R, N(0,1)),u — %/uﬂ dN (0, 1))V

and this structure is an abstract Wiener space equipped with the Ornstein-Uhlenbeckl]
structure since we have

0 F6aB) =T < foxn > 00) = 30 < £ > 7(a0)

1
=3 < foxn 5= [l = / 12 (s)ds
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3.2.2. Let us take

en(u) = %a(n) /u'z dN(0,1)
d, = H'(R, N(0, 1))

we get

(AP, D, &) =[](R,B(R), N(0,1), H'(R, N(0,1)),u — %a(n)/um dN(0, 1))I

n

a) For a(n) = 4mn? we have for f € L?[0,1]

f(t) — Z fneinnt

nez
1
/0 f(S)st = angn

1 2
I / F(5)aB) = 3 4mn® = (| 1B

and by the theorem on products we see that fol f(s)dB;s belongs to ID if and only
if

fer?0,1] and an247rn2 < 400

that is f is continuous on the torus 7" and belongs to the Sobolev space H*(T1).
b) For a(n) = 27n?? ¢ € IN, we obtain similarky a local Dirichlet structure with
carré du champ operator I' satisfying

1 1
r(/ f(s)dB,) :/ £ (5)ds
0 0
1 . 99 7 2
and [, f(s)dB, € D iff S ez M fn < oo
Whiteness.

The structures obtained in 3.1.2 are white because if f,g are such that
.2
Yonez 4 (fa” + ") < +oo and if

fg=0
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then U = [ f(s)dB, and V = [ g(s)dB;, are D-independent. Indeed, by remark
1.4.4, it suffices to show
r=0
(U,T(U)) is independent of V'
(V,T(V)) is independent of U
But T(U, V) = [ f(9)(s)g{?) (s) ds = 0 by the fact that if u,v € H(T") uv =0 =

u'v’ = 0 a.e. and the two other properties are fulfilled because T'(U) and T'(V) are
constants.

(EID).

Since the energy image density property is fulfilled on finite products, it follows
that all structures obtained in 3.1.2 satisfy (EID).

Gradient and semigroup.

Let (22, A, 1P, D, g) be the Dirichlet structure obtained in 3.2.1.a). By looking
on the multiple Wiener integrals it is easy to show that this structure possesses a
gradient D (cf [BH] chapter V §5.2) with the Hilbert space H = L?[0,1].

Denoting by D, d, A, the gradient, the divergence, the generator, of the classical
Ornstein-Uhlenbeck structure (cf Yan [Y]) we have:

~ d

D=—D
dt

~ d

0= —-0—
dt

~ 1. d2

A=50zD

Let p;be the heat semigroup on T, then the semigroup P, associated with the
structures

(QJ 'AJ ]PJ HDJ g)
is characterized by its action on multiple Wiener integrals:

Pe(Iu(£)) = s (p* f)
where f € HL . (T*).

sym
Looking then to the exponential vectors

Exp(h) = exp(/h(s)st — % < h,h>)

we obtain

]StEa:p(h) = FEzp(p:h)
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that is (}5;) is obtained by the second quantization and we have the Mehler formula
(cf [FLP])

P,F(w) = Ey [F(pw + (I — pa) 2 w)].

and the similar results hold for the other structures of example 3.2.2.
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