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RESIDUAL RISKS AND HEDGING
STRATEGIES IN MARKOVIAN MARKETS *

Nicolas BOULEAU and Damien LAMBERTON
CERMA-ENPC
93167 Noisy-le-Grand CEDEX

France

Abstract

We prove two explicit formulae for the quadratic residual risk and for the
optimal hedging portfolio of a european contingent claim when the underly-
ing stock prices are functions of a Markov process. These expressions allow
the practical handling of a great deal of non classical models which are less
optimistic than Black and Scholes’s one.

PRESENTATION. R.C. Merton [18] begins the history of option pricing with
Louis Bachelier (1900) who gave [1] a pricing formula with an underlying stock price
modelled by a brownian motion. This idea of representing the chaotic evolution of the
stock values by a stochastic process was progressively improved, but it took a really
new dimension with the works of Black and Scholes, and Merton, in which appeared
the principle of pricing by simulation with the underlying stock. Afterwards, by
the contributions of Harrison, Kreps, Pliska, Bensoussan, Karatsas, (see [13], [2],
[17]) among others, the mathematical framework of the problem was clarified and
the essential role of martingale theory and stochastic integration was brought out.
The possibility of pricing by simulation is mathematically expressed by the property
of representation of the contingent claim as a stochastic integral with respect to the
underlying stock price. This is the object of the complete market assumption of
Harrison and Pliska.

Nevertheless stochastic calculus allows to go further and to study models in which
the claim cannot be completely simulated. Except in some particular situations (see
for example [23]), it will be the case in general for models with jumps. For some
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for helpful and enlightening discussions with L. Caron, F. Debierre, E. Deval-Guilly, M.H. Dorat-
Mot, L. Mignon, J. Sorazio, B. Thomas, and many other practitioners.



models with jumps, Merton gave pricing formulae in [19] and the existence and
characterisation of an optimal strategy minimizing the quadratic risk was brought
out by Follmer and Sondermann [10]. That opens a wide field of models for which a
mathematical analysis is possible and which give less optimistic but, in some cases,
more realistic results than diffusion models with perfect simulation.

In this study we reinstate a Markovian framework to get explicit formulae. It
is not supposed that stock prices constitute a Markov process by themselves but
that they are functions of a Markov process. This is a quite general situation which
even includes, through Markovian representation, some models based on stationary
processes. The introduction of the carré-du-champ operator permits to express the
results for almost general Markov processes and these formulae are easy to write
down explicitly in each particular case. Thanks to these formulae it is possible to
use in a practical real situation a great variety of models which can be completely
substituted to the classical Black and Scholes model.

A significant interest of those models is to allow the portfolio manager to evaluate
the sensitivity of his hedging to the underlying stock model, and therefore to estimate
the instantaneous and residual risks better. To this end, the parameters of the models
must be adjusted to the reality and that can be done essentially in two manners:

i) By the statistical way, using historical series. This method gives approximate
models which are little sensitive to instantaneous fluctuations and form what can be
called the background of the scenery.

ii) By referring to the quoted prices of options in organized markets, as it is
usually done with the Black and Scholes model.

The fact that this model is the most widely used by financial traders appears
mainly in the structure of relative prices of the options on the same stock or currency.
This structure looks more or less as if all prices were obtained with the Black and
Scholes model with the same volatility . But it is also possible to choose a model in
a family (determined for example by the method (i)) in such a way that the structure
of the option prices obtained from the model coincides at best with the structure of
quoted prices.

The formulae of residual risks we establish then permit to use the model chosen
by methods (i) or (ii). In the European case, to which we limit the study here,
numerical algorithms are classical and essentially involve computations of expecta-
tions of functionals of a Markov process. The American case requires the solution of
variational inequalities and will be treated elsewhere.

The first part presents the framework and the main results, especially the
formulae for residual risks and the estimates for the maximal risk incurred during
the management of the portfolio.

The second part deals with the derivation of these results when the underlying
stock prices and the conditional claim are functions of a Markov process satisfying
the right hypotheses. A family of examples is treated.



The expression of the results is made more accurate in a third part, where the
Markov process is supposed to be symmetric by using Dirichlet forms. A family of
examples is also treated.

In the last part we give some consequences of this study about the problem of
determining cases of perfect hedging.

The main results were announced in [7]. We thank the members of the work-
shop ”New financial models” of the CERMA for their suggestions and especially O.
Chateau for the help he brought to this work.

I Hedging formulae and residual risks.

Before going into the details of hypotheses and proofs, we give here a formal descrip-
tion of the main results which are proved in parts II and III.

The state of the market is represented by a Markov process (X;) with filtration
(F:). It is supposed that the discounted underlying stock price S; is a martingale
with respect to (F;) which writes

St = G(ta Xt)

where (5 is a function satisfying suitable hypotheses. We suppose here for simplicity
that the contingent claim is European and that its discounted value is of the form
H(St) where T is the exercise time.

The main tool for the study of residual risks in this setting is the carré-du-champ
operator. Such an operator exists under very general assumptions (cf [14], [6], [9]
chapter XV §2) and can be computed in terms of the parameters of the model (cf
parts II and III). A self-financing hedging strategy for the conditional claim builds
a portfolio whose discounted value at time ¢ is

‘/L‘:‘/O—I' Jsts

(0,¢]

where V; is equal to the initial value of the hedging portfolio F'(0, Xy), and (.J;) is
an (F;)-predictable process. The residue at time 7' is the lack of hedging

Rr = H(St)— Vr
. Then the following estimate of the variance of Rt holds :

E(RY) > E(Vo — IB(H(ST|F))* + IE [/OT [F(F, F)— %] (s, X5) ds] (1)

where I' is the carré-du-champ operator which in usual cases can be computed by
the formula

I(F,G) = A(FG)— F AG — G AF,



where A is the generator of (X;) operating on the x variable .
In the estimate (1), equality is obtained for a unique hedging strategy minimizing
the quadratic risk IE[R%] and obtained by letting

Vo =TE(H(S7)|Fo)
(2)

optimal ( )
Jt( primal) - = E(g:g) (t, Xe-).

It is now natural to define the value of the claim at time 0 by :IE(H(S7)|Fo) =
F(0,Xy), and at time ¢ by : IE(H(S7)|F:) = F(t, X:). See ?? for ralated arguments.
The residue at time ¢ can then be defined by :

Ry = F(taXt) - Vi

For the optimal strategy, the martingale (R;) satisfies

< R.R>= /Ot (F(F, F) - %) (s, X,) ds

which gives by Doob’s inequality, an estimate for the maximal residue during the
optimal management of the portfolio :

E[(Ry)%] < 4/0T P, (F(F, F)— %) (s,z)ds (3)

where = Xj is the starting point of the process (X3).

Formulae (1), (2) and (3) extend to the case where there are several stocks (.S
with values in IR%), (see theorem 5. part II).

Remark 1. In this model, the amount of underlying stock which is in the
optimal hedging portfolio at time ¢ depends on the value of the process (X;) which
represents the market, that is to say, on the level of economic quantities which
govern the evolution of the stock price. If one restricts oneself to hedging strategies
for which (.J;) is measurable with respect to the natural filtration of the stock price
(S:), inequality (1) still holds, but the equality (2) may not be reached. The risks
are therefore increased which is not surprising regarding the fact that less is used
than the available information of the model.

Remark 2. The solution of the problem of pricing is not the aim of this
study. Nevertheless, as this question is especially difficult in the case of incomplete
markets that we are looking at, it is suitable to give some comments to make easier
the reading of the sequel.

It is well known that if under some probability IP the discounted stock price S; is
a martingale with respect to a filtration (F;), and if there exists a previsible process
(J) such that the discounted claim C' can be written

C = Ko+ / J,.dS, (%)
01



then this property will still be true under a probability IP’ equivalent with IP, and
the value

Ko+ [ J,.dS, (30k)

(0.4]
which can be proposed for the (discounted) pricing of C' at time ¢, is the only value
of the form K + [ /;-dSs which can be extended to get the equality (x) at time
T, and this is so under any probability IP" ~ IP.
On the contrary, if under IP no pair (Ko, (./;)) reaches the equality (%), the pricing
by arbitrage is nolonger possible and if , under IP a strategy (Ko, (.J;)) is found which
minimizes the quadratic risk

E(C — Ko — J,.dSs)?,
(0,7]

this strategy and the corresponding residue do depend on IP. It should be noted that
in an incomplete market there exist in general several probabilities under which the
discounted stock price is a martingale. So there is no easy answer to the question of
pricing the claim at time ¢, nor to the question ,the price being chosen, of sharing
out the residue of hedging between the seller and the buyer of the claim.

Nevertheless, these questions are in fact somewhat abstract, because in practice
it is not really known wether the stock price allows a representation through a model
with perfect hedging or not. What is known is the structure of the prices of options
in organized markets, and from this point of view the problem of pricing is solved a
priori and 1t remains only that of finding the hedging. This can be done following
several models and several ways as discussed in the presentation.

ITI Right hypotheses.

II.1 The carré-du-champ operator.

Let (Q, F:, F, X, IP?) be a right Markov process (cf [12]) with state space (F,E). The
process (X;) is said to admit a carré-du-champ operator (cf [20]) if for every initial
law 4 the square integrable martingales of the filtration (F{') have skew brackets
absolutely continuous with respect to Lebesgue measure.

This is equivalent to saying that the domain of the extended generator (defined
as in [20], [3], or [9]) is an algebra. According to the problem one is dealing with,
it is convenient to change slightly the definition of the extended generator and we
shall adopt the following one :

Definition 1 . Let [ be a finite universally measurable function on E.
i) We shall say that f belongs to Di(A) if there exists a universally measurable
function g satifying

t
(/ g | (X,)ds < 4o Vtzo) Pa.s. Ve € F
0



such that .
Cf = 1(X0) = J(Xo) = [ g(X.) ds

be a local right continuous martingale under IP* for all x in F.
ii) We shall say that f belongs to Dy(A) if f belongs to Di(A) and if cf is
(FF,IP7)-locally square integrable for all x in K.

The function g which appears in i) is unique up to a zero potential set, it is
denoted Af. This definition leads to the following result :

Proposition 2 . If the Markov process (X;) admits a carré-du-champ operator, and

if [ belongs to Dy(A) then f? belongs to Di(A) and
¢
<C100 > = [ T(f)(X,) ds
0

where
P(f,[)=Af*=2fAf

is called the carré-du-champ operator.
Proof. Let f be in Dy(A). Ito’s formula applied to the semi-martingale Y; = f(X3)
gives

ﬁ@&):f%xw+¢gbfuemcn>@+wc&cﬂf+zAmy;dog

It is known that the bracket [CY, C'/]; is an additive functional and by the fact that f
belongs to Dy(A) there exists (cf [21] corollary of theorem 3) an additive functional
which is a common version of < C/,CY >; under every measure IP”,. Thanks to
the existence of the carré-du-champ operator for the process (X;), Motoo’s theorem
gives a universally measurable function A such that

< CF0F 5= /Oth(Xs)ds.
Then, the process
P = ) =2 [ F(X)g(Xs) ds — [ h(X,) ds

is a right continuous local martingale under every IP*.That proves that f? belongs

to D1(A) and Af? = 2f Af + h, which completes the proof. 0
For f and g in D3(A), I'(f,g) is defined by polarisation.



II1.2 Optimal hedging under right hypotheses.

We consider a right Markov process (X;) with state space (F, E), canonical filtration
(F:) and transition semi-group (FP;).

(A1) It is supposed that (X;) admits a carré-du-champ operator.
It is then the same for the process (¢, X;) with values in (IR; x F,B(IR4) ® &)
(cf [20] p162) whose generator is denoted by A.

(A2) For all z, the discounted stock price S; is supposed to be a (F;, IP7)-
martingale of the form S; = G(t, X;) with G € D, A.

(A3) It is supposed that the contingent claim is of the form H(S;) and
that the function f = H(G(T,.)) satisfies Prf?(z) < 4oco for all z inF.

For all z, the value of the contingent claim at time¢ < T'is given by the martingale
Mt == ]EI(H(ST) | Ft) == F(t,Xt)

where F(t,z) = Praf(2).

By assumption (A3) the martingale M; is square integrable under every IP”and
it follows that /' belongs to D,(.A).

With any predictable process (.J;) such that

T
E%j ﬁd<&5>0<+m
0

a self financing portfolio is associated, whose initial value is V5 = F'(0, X) and whose
value at time ¢ is

(0.t

The residue which corresponds to this strategy is given by

Rt = F(t,Xt) - F(O,Xo) - ( ]Js dSS.
0,
Minimizing IE”( R3.) amounts to projecting the martingale F(¢, X;) — F(0, Xo) on the
stable subspace generated by (.S;), which leads for .J; to take a previsible version of
the density of < M, S > with respect to <.5,5 > and that gives, thanks to paragraph
I1.1, the following result:

Theorem 3 . The process (J;)o<i<t of optimal hedging is given, under every IP”,

by
_ I(F,G)

"= 16a)

(1,X,.) 0<t<T



where ' is the carré-du-champ operator of the process (t, X:) and the associated
residue satisfies

t

[F(F, F)— w (s, Xs)ds.

<R,R>t:/ F(G)G)

0

It is to be noted that the previsible set {(w,t) : I'(G,G)(¢, X;—) = 0} is not
charged by the measure d< S, S5 >;. As usual the left limit X;_ is to be taken in a
Ray compactification of E (cf [9] chapter XV). The expression of < R, R >; permits
to compute the variance of R; and therefore by Doob’s inequality to estimate the
maximal residue during the time interval [0, 7] :

T
B < T =4 [ PR ) - T
0
where R} = supgicr | Bt | -

I1.3 Multivariate case.

For handling models with several stocks or currencies, we replace the assumptions
(A2) by the following one :

(A2 bis) It is supposed that, for all  the vector S; of stock prices is a
(F;)-martingale with value in IR? under P* whose components are of the

form S} = G'(t, X;) with G} € Dy(A) for i =1,...,d.

In the same way, the function H of assumption (A3) will be a borelian function
from IR? to IR, and we keep the same assumptions on f as before.

We denote (& the column array with components G*, ..., G TI'(G, G*) the matrix
with coefficients ['(G*,G7) (0 < 1,7 < d) and ['(G, F) [resp. ['(F,G*)] the column
[resp. row] array with components I'(G*, F)) (0 <1 < d) [resp. T(F,G7) (0 <5 <

d)].

Lemma 4 . i) The matriz I'(G,G*)(t, ) is positive definite oulside a zero potential
set for the process (t, X3).

ii) For (t,z) outside a zero potential set, the vector I'(G, F)(t,z) is in the range
of I'(G,G*)(t, ).

Proof. For i) it is sufficient to remark that for every vector A with rational coordi-
nates Ay,..., A\g €Q, we have

d d
AT(G,G)A = S NN (Gy, Gy) =T (Z e )\ZGZ»)
1]

and to use the positivity property of I'.



For ii), it is shown that I'(G, F) is orthogonal to the kernel of I'(G, G*) by using
the inequality

d

=1

< \l r (é NG, 2; /\Z'Gi) \/W

which follows from the fact that
NT(G, G+ 2uNT (G F) + ,u2F(F, F)

is positive for all rationals p, Ay,..., A; outside a zero potential set hence also for
real p, Ay, ..., A outside the same set.

Theorem 5 . The optimal hedging process J; = (J}, ..., J?) is given, under every
measure IP*, by

Jy =1l D (F,G*) (T(G,G*) + el (1, X)) (4)

and the corresponding residue satisfies

t

<R,R>t:/

0

[F(F, F) = lim T(F,G*) (D(G, ) + )7 (G, F)| (5, X) ds. - (5)

Proof. Thanks to the preceding lemma, the algebraic lemma below (and the sim-
ilar result obtained by transposition) gives that the projection of the martingale
F(t, X:) — F(0, Xo) on the stable subspace generated by (S;) (cf [15] chapter IV) is
given by

1
lim I'(F, G*) (D(G, G*) + eI) ™" (s, X,_) dS,

o =0

and formula 5 follows likewise.

Lemma 6 . Lel B be a symmetric positive d x d-matriz, let U be a vector in the
range of B and V be a vector such that U = BV. Then

W =1lim(B +el)~'U

e—0

exists, U = BW and V*BV = W*BW. Further more W is given by W = PPV
where PP is the orthogonal projection on the range of B.

Proof. That is easily seen by taking a basis of IR? consisting of a basis of Ker(B)

and a basis of Range(B). m



I1.4 Example.
Before specifying further, let us give a result which opens a wide field of applications.

Proposition 7 . Let (Y;) be a process with stationary independent increments
(PSII) with values in IR? and let a be a Lipschitz function mapping from IR" to
,C(IRd,]Rn). The Markov process with values in IR", assoctated with the stochastic
differential equation :

dXt = G(Xt_) d)/t (6)
possesses a carré-du-champ operator.

Proof. Let G, be the canonical o-fields of the PSIT Y considered as a Markov
process. Denote ‘H; = G;°,IP = [P the law of Y when starting from zero. The fact
that bounded C?-functions with bounded derivatives belong to the domain of the
extended generator of Y and constitute an algebra stable by the resolvent family,
which is easy to verify, implies that on (€2, H;, IP) every square integrable martingale
M; has an absolutely continuous bracket < M, M >.

On (92, H;,IP) equation (6) has a unique strong solution X;(z,w) starting from
x. If we set

Puf(x) = TLI(X: ()]
for f € Cy(IR") the flow X;(z,w) has the Markov property with respect to the
filtration (H;) :
Elf(Xigu(z,w)) | He] = Pof(Xu(z,w0)).

On the other hand the function a being globally Lipschitz, there exists (cf [22])
an z-continuous version of the flow X;(z,w). It follows that if we set W = IR" x
0, K; = B(IRR") @ H¢, IP* = p @ IP where p is a probability on IR", the process
Xi(w) = Xi(z,w) is a Feller Markov process with respect to the o-fields K; with
semi-group (F;). Let (U,),0 be the resolvent family of (P;) and (F;) be the canonical
o-fields of (X¢). To show that X possesses a carré-du-champ operator, let us consider
universally measurable bounded functions f and g such that f = U,(pf — g) and let
us remark that

CP = e [(X0)=[(Xo)— / e (g=pf)(X;) ds = T Um e (pf — 9)(Xs) ds | K

is a martingale with respect not only to (F;) but also to (Ky).
By the preceding the process < C?f, CPf >£Kt) is absolutely continuous, but by
a result of Cinlar [8] (see also [16]) this continuous increasing additive functional is

in fact (F;)-adapted, hence is the skew bracket of (C’tp’f) with respect to (F;). That

is enough to imply that X possesses a carré-du-champ operator. O

In order to completely specify an example, let us write the characteristic function
of the PSIT'Y :
Eexpi(u,Y;) = e~y e RY



with

0w) = i) + (S w)+ [ (1= O i) ) dv(y)

where p € IR?, ¥ is a symmetric positive definite matrix, and v is a positive measure
on R such that [1 A |y|?dv(y) < +oo.

We suppose that v has a compact support in IR? and satisfies y = [ yly>1y dv(y).
Then Y is a martingale with exponential moments.

We introduce d functions ay,...,a4 from IRy to IR, vanishing at zero, Lips-
chitzian with coefficients k; respectively, and we suppose that the compact support

of v is contained in
d

1
g(_ k_’ +OO)
The market is represented by the following system of stochastic differential equations
dX! = a(X!_)dY;! i=1,...,d (1)
Xi=2>0

Lemma 8 . The unique solution of system (7) takes on values in (0, 00)%.

Proof. Extending the «;’s by 0 on IR_, and using the usual iterative method, it 1s
easy to prove the existence and uniqueness of a solution with values in IR which
a square integrable martingale. To show that X! never vanishes, we consider the

sequence of stopping times T}, = inf{t > 0 : X! < 0} Then XT > ﬁ , and
by the condition on the support of v and the £;’s XT > 1= 'OXZ holds for some
p € [0,1). Then Ito’s formula applied to the martingale (XTnM) and the log function

yields:

Xine L Tnt ad (X))
E(log X ):—§IE ; O (X712 du
Tnnt X4+ ai( XDy op(XY)
IE/ d/ dy) [log Ze T 9NAJY Al Aa) i)
+IE [ du [ v y)(og X XY

Therefore IE <log T”"t) > —ct for some positive constant ¢ which does not depend

on n, and that gives the announced result. O

By proposition (7), the process X; is a Feller process admitting a carré-du-champ
operator. The generator can be computed on C%-functions with bounded derivatives
by Ito’s formula :

Af(z) = ygol I ((X0) — f(X0))
82




+/ (z +a(z) ®y) — f(z) - (grad f(z), a(z) @ y)] dv(y)

where a(z) @ y is the vector with coordinates o;(z)y; ¢=1,...,d.
Let us suppose that the stock price be modelled by a vector in IR"™ which is a
linear function of the components of X :

St - BXt

where B is a n x d-matrix with positive coefficients. Assumptions (A1) and (A2bis)
are fulfilled.

The expression of the carré-du-champ operator on the function
F(t,z) = Pr_+H o B(x),

where H satisfies assumption (A3), is easy to obtain by Ito’s formula if /' is supposed
to be C'' in ¢ and C? in x with bounded derivatives (which often, in practice, will
come from the regularizing property of P;) and then one has :

DERD) = Dot g 5o

+/ F(t,z + a(z) @ y) — F(t,z))* dv(y)

MGG (ta) = Bal) [+ [y duly) ale) B
where ¢ is the diagonal matrix (a;) 1 =1,...,d and
MG, F)(t,2) = Ba(e)Sa(e)grad, F(l,7)
-I-B/]Rda(:z:) RylF(t,z+alz)®y)— F(t,z)] dv(y).
Remark. It is seen on this example that computing the carré-du-champ operator of
(t, X;) on regular functions amounts to letting the carré-du-champ operator of (X3)

act on the partial function F} : + — F(t,z). But this is not always the case. It will
become valid under symmetric hypotheses that we now introduce.

III Symmetric hypotheses.

III.1 Symmetric processes and the carré-du-champ operator

We shall reinforce the assumptions of paragraph (I1.2) in the following way. We
suppose the Markov process (X;) is a Hunt process with values in a locally compact
space with a denumerable basis, equipped with its borel o-field £ and that it is
symmetric with respect to a positive o-finite measure m on (F, &) (cf [9], [6], [11]).
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The semi-group (F;) of (X;) induces a symmetric strongly continuous semi-group
on L*(m) whose generator will be denoted by A. The operator (—A) is positive self
adjoint and admits the spectral representation

—A= AdE,.

[0,00)
The scalar product on L*(m) is denoted (.,.) and we set

o1
D= {ue L*m) | %1_%1 ;(u — Pou,u) < oo}

ID is the domain of the operator v/—A and is a Hilbert space when equipped with
the graph norm : || u ||1= [(u, u) + (v —Au, \/—Au)]%.

Classically ID is called the Dirichlet space and the bilinear form on ID

((u7v)) = (V _Aua v _Av)
is the Dirichlet form associated with (X;) (cf [11]). Let Co(FE) be the space of

continuous functions with compact support from K to IR; ID is said to be regular
if ID N Co(F) is dense both in Co(F) equipped with the uniform norm and in ID
equipped with the norm || . ||;. Under these conditions it can be proved (cf [11]
chapter 3) that every function w in ID admits a quasicontinuous version which will
be denoted .

The additive functional @(X;) — @(Xo) admits, under the measure IP™, a unique
decomposition of the form a(X:) — @(Xo) = M + AY where M} is a martingale
additive functional with finite energy and A} is a continuous additive functional
with null energy :It is the Fukushima decomposition (cf [11] chapter 5).

We now introduce the following assumption which reinforces (A1) :

(SA1). DD is supposed to be regular and (X;) is supposed to admit a
carré-du-champ operator.

In this symmetric context the existence of a carré-du-champ operator will always
refer to the following definition ([6] proposition 2.2) :

VieDnL>® 3fel,Yhe DNL>,
2(fh, f)) = (k) = [ ] dom. (8)

And then the carré-du-champ of fis I'(f, f) = f.
The following two propositions illustrate the utility of the carré-du-champ oper-
ator for computations of skew brackets.

Proposition 9 . Under assumption (SA1), the carré-du-champ operator can be
defined as a continuous bilinear form from ID x ID into L'(m) and for u in 1D the
increasing process < M"*, M" >, is given, under IP™, by

1
< M, M*>,= / T(u, u)(X,) ds.

0
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Proof. The definition and continuity of I' on ID x ID is established in [6] proposi-
tion 2.2. The expression of < M*, M™ >, can be obtained by approximating u by
potentials.

Proposition 10 . Let f belong to 1.2(m) and let T be a positive number. For every
real t € [0,T[, the function F; = Pr_,f is in 1D and the martingale

My =TE"(f(Xs) | Ft) = Pr—of(X4)
defined for t <T', satisfies

1
<M,M>t:/ I(F,, F,)(X,)ds Yt<T, P a.s.

0
This proposition is easily obtained by showing that M2 — [{ T'\(Fy, F})(X,)ds is a
martingale under IP™, which follows easily, by using the stationarity of the process,
from the following lemma :

Lemma 11 . For every f € L*(m), the function ® : [0,T[— L'(m) defined by
(1) = P,(Pr_.f)?* is continuously differentiable and

dd

E = PtF(PT—tfa PT—tf)'

Proof. a) Let us note first that the symmetry of the semi-group implies by spectral
representation that the application ¢ — P, f is C'' (and even analytic) from (0, c0)

into L?*(m)and also into DA or ID.
b) Suppose f € L?(m) N L>*(m), then by writing

Ot +h) = &(t) _ (Pran = P)Pronf)’ | p (Pronf)® = (Prof)”
h h ! h

it is clear that, for all ¢ < T,
O(t+ h) — d(1)

}1Li_r>1% Y = AP,(Pr_f)’ — 2P[(Pr_.f)APr_f] (9)
in L2(m).
Now, it follows from the definition of the carré-du-champ operator (8) that
APg* —2P(g Ag) = Pi(I'(g,9)) Vg€ DANLT(m). (10)

From (9) and (10) we obtain that the following limit holds in L2(m) :
i O(t+h)—d(t)

h—0 h

= PU(Pr_if, Pr_of) Vf€LX(m)NL¥(m).  (11)

But the right hand side being a continuous map from [0, T") into L'(m), we have

d

ﬁ(Pt(PT_tf)Q) = Pl(Pr_if, Proif)

in Ly(m) and this relation extend to all functions f in L*(m). 0



II1.2 The space IDj,..

Concerning the underlying stock price, it is important to be able to consider func-
tions on F not bounded at infinity. Hence we shall introduce a local boundedness
assumption for the jumps which allows to define the space IDj,.. The Levy kernel
(cf [9] chapter XV) will be denoted by N.

Proposition 12 . Let U and V be two open sets in E such that
UcVand (z€0U= N(z,V°) =0).
If two functions [ and g in ID coincide in V', then

I'(f. f)="T(g.9)
holds m-a.e. in U.

Proof. Let us set u = f — ¢, and let us write the Fukushima decomposition for wu :
w(X:) —a(Xo) = M + Ay
If
T=inf{t>0:X,€U}

then X; € U forallt € (0,T) hence X;_ € U for t € (0,T] and X; € V a.s. for tin
(0, T] by the assumption on the Levy kernel. It follows that M/, +AY,, =0 Vta.s..
But A} is a continuous additive functional with zero energy hence with vanishing
quadratic variation, and that implies M}, = 0, hence < M*, M"* >,,r= 0, which
yields, by proposition (9), [ I'(u,u)(Xs)ds =0 a.s..

From this we obtain for almost all s < T,
IE™ [T (u, u)(Xs)1{semy] = 0.
But by the symmetry of the process killed at time 7' ([11] lemma 4.2.3 p97)
IE™ (I (w, ) (Xo) Lgsery) = ™ (D (u, u)(Xo)l (<))
Hence I'(u,u)(Xo)lrs0 = 0 IP™ a.e., and therefore I'(u,u) = 0 m-a.e. in U which

implies the equality I'(f, f) = I'(¢,9) m-a.e. in U. O

This proposition leads to the following assumption in order to be able to define
]])loc-
(SA2) (local boundedness of the jumps) It is supposed there exists a
sequence (U,) of relatively compact open sets such that

U_n C Un—}—l; UnE]NUn =F

and
Vne N, I3m >n, Yo € U, N(z,U;)=0.
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Definition 13 . A function [ will be said to belong to Dy, if there exists a sequence
of functions f, in ID and a sequence of open sets O, increasing to E such that

f=f. m-a.e. on Q,.

Under assumption (SA2) one can extend I' as an operator from Dy, X Dy, into

Llloc(m)‘

II1.3 Applications

a) Let us associate now with the process (X;) satisfying (SA1) and (SA2) the
following financial model :

(SA3) It is supposed that the discounted stock price S; is a martingale
(under P, for all z) of the form S; = h(t)k(X,) with k € IDy,. and & locally
bounded with values in IR.

(SA4) The discounted contingent claim is supposed to be of the form
H(S7) with H such that the function f = H(h(T)k(.)) be in L*(m).

Proposition 14 . Under assumptions (SA1) to (SA4) the formula giving the op-
timal hedging process takes the form

L(F, Gy)

Jy = X 0<t<T
“= (G, Gy <i<

and the residue R; salisfies

t

T(F,, )2

NN (X5)ds (12)

<R,R>t:/

[F(Fs, F) —
0
where Fy = Pr_,f and Gy = h(t)k.

This proposition follows from the computation of skew brackets made in paragraph
ITI.1. Tt can be extended to the multivariate case in the same spirit as in part II.

b) Example.
Let us consider a real PSII (X;) whose Levy measure is symmetric with respect
to the origin. Its characteristic function can then be written

]E[eiuXt | XO — fC] — eiuze—td}(u)

with 5
P(u) = %uQ + /]R(l — cos uy) dv(y).

(X:) is a Feller process symmetric with respect to Lebesgue measure.



Denote the Fourier transform of f :

J) = [ e (@) da
Then we have :
Proposition 15 . a) The Dirichlet form on L*(IR,dx) associated with (X;) is given

by
D = {f € L¥(IR, dz) /|f V2 () du < +oo

f.q =5 / u) du (13)

b) There exists a carré-du-champ operator given for f and g in ID by

M(f 07 () = 5= [ G070+ () () + bt O]t (14)

Proof. Point a) is classical ([11] §1.4) and the definition of the carré-du-champ
operator with the explicit form obtained in a) gives (14) for f and g in ID N L> and

extends to ID x ID by continuity. O

In particular the bound |¢/(u)| < ¢(1 + |u|*) shows that functions f belonging to
H'(IR) are in ID.

Let us suppose, for simplicity, that the measure v has a compact support in IR,
then the local boundedness assumption for jumps is fulfilled, and the space 1Dy,
contains the functions whose first derivatives in the sense of distributions are in
LIOCQ(IR) hence contains C''-functions. And for such a function f we have :

O(f.f) = @)+ [ [fla+y) = J(@)] dvy). (15)
Observing, then, that if
k(z) = ae™® 4 be™"
h(t) = eVt a,b,A € R

the function h(¢)k(z) is harmonic for the process (¢, X;), which implies, thanks to
the local boundedness of jumps, that A(¢)k(X;) is a martingale, we see that we can
define the stock price of our model by

Sy = h(t)k(X3)

M) = exp [—t (”22 + /]Ru —ew)dz/(y)ﬂ

k(z) = ae’” + be "
77/\ € IR+'

with
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S; is then a positive martingale with & € Dy, because k is C'', assumptions (SA1),
(SA2) and (SA3) are therefore fulfilled and so is (SA4) if we take for the function
H, which defines the claim, a function in L*(IR,dz) with compact support, and
proposition (14) applies.

In the case where k(z) = ae*®, X € IR, a € IRy, by setting

formula (12) gives after integration

E* < R, R>p= 41? /]R2 F(u)f(v)eite=ve {e—T?l)(u—v) _ e—T[w(u)+¢(u)]] Ni(u,v) du dv
(16)
with
[P (u) + P (A) = Plu 4 iN][P(v) + P(A) = P(v +iM)]
20 (1A ) [ (u) — p(u — v) + P(v)]

and the amount of stock to have in the hedging portfolio can be computed by the
fact that if one sets

Ny(u,v)=1—

o) = ah(1) R (1
then e
= X(Xt_)Zh(T)

and x(z) is computable by

[P(A) + w4+ 9A) + D(W)] iy —w(in]
PALIEDY '

If one wishes, as it is usual in practice when the asset S; contains all the infor-
mation of the market, to express the predictable process

R(u) = f(u)

I'(Fy, Gy)
J= ——FF (X
S G Gy )
by means of the asset itself S;_, one has to replace z by %log #(t) in formula (17).

IV Cases of existence of strategies without risk

The following proposition results from stochastic calculus without any Markovian
hypothesis :
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Proposition 16 . Suppose the discounted underlying stock price is a continuous
local martingale with values in RY with respect to a filtration (G:) and that the con-
tingent claim H be such that the conditional expectation IE[H | G| can be expressed
in the form

[E[H | G| = V(t,5:)

where V is a difference of convex functions on Ry x R?. Then there exists a G-
predictable process K, such that

0=, +/ K, ds,
(0.7]

with Hy Go-measurable.
Proof. Applying Ito’s formula for convex functions (cf [4]) to V and the semimartin-
gale Y; = (1, 5;), one has
¢
V(t,S,) — V(0,5,) = / VA(Y,) Y, + C(Y, Y, V)
0

where Cy(Y,Y*, V) is a continuous process with finite variation and where V* is some
(any, cf [5]) borel section of the sub-differential of V.
Then we see that in the relation

d , t
V(L,S:) — V(0,So) — Z/O Vi(s, 5,) dSE = /0 V7(s, S,) ds + Co(Y, Y™, V)
=1

both sides are equal to zero because the left hand side is a local martingale and the

right hand side a continuous process with finite variation. That gives the result.
The preceding study allows to improve this result under Markovian hypotheses.
Assume that symmetric hypotheses of part III hold and that the process (X)
has continuous sample paths. Let us recall the notations:
Sy = h(H)k(Xy), Gi(z) = h(t)k(x)
fo= H(A(T)k(.)), Fy(z) = Pro.f(z).

Proposition 17 . Let us suppose F; can be written

Fi(z) = x(H)¢(Gi())

with x measurable and finite and ¢ Lipschitzian from IR into R, then there exists a
hedging strateqy without risk.

Proof. That comes from the Lipschitzian functional calculus (cf [6]). In formula
(12) we have
F(Ft, Gt) = X(t)SI(Gt)F(Gt, Gt) m — a.ce.



and

U(Fy, Fy) = ()% (GO (Gy, Gy) m — a.e.

where £ is a version of the derivative of £. O

There is a similar result in the multivariate case if £ is supposed to be C' (cf

[6])-
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HEDGING STRATEGIES

Abstract:

We prove two explicit formulae for the quadratic residual risk and for
the optimal hedging portfolio of a european contingent claim when the underlying
stock prices are functions of a Markov process. These expressions allow the practical
handling of a great deal of non classical models which are less optimistic than Black
and Scholes’s one.
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