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ABSTRACT

We propose in this paper a Multi-Scale Variance Stabilizing

Transform (MSVST) for approximately Gaussianizing and sta-

bilizing the variance of a sequence of independent Poisson

random variables (RVs) filtered by a low-pass linear filter.

This approach is shown to be fast, very well adapted to ex-

tremely low-count situations and easily applicable to any di-

mensional data. It is shown that the RV transformed using

Anscombe VST can be reasonably considered as stabilized

for an intensity λ & 10, using Fisz VST for λ & 1 and us-

ing our VST (after low-pass filtering) for λ & 0.1. We then

use the MSVST technique to stabilize the detail coefficients

of the Isotropic Undecimated Wavelet Transform (IUWT) of

multi-dimensional Poisson count data. We use a hypothe-

sis testing framework in the wavelet domain to denoise the

Gaussianized and stabilized coefficients, and then apply the

inverse MSVST-IUWT to get the estimated intensity image

underlying the Poisson data. Finally, potential applicability of

our approach is illustrated on an astronomical example where

isotropic structures must be recovered.

1. INTRODUCTION

The ability to restore the underlying intensity from an inho-

mogeneous Poisson process is crucial for many applications.

We observe a discrete dataset of counts x = (Xn)n∈I where

I is the index set. Each count Xn is independently Poisson

distributed with a mean λn, i.e. Xn ∼ P(λn).

A host of estimation methods have been proposed in the

literature. A common solution is to use a variance stabilizing

transform (VST), which “Gaussianizes” the Poisson noise be-

fore applying the standard wavelet thresholding denoising on

the transformed signal. For example, Anscombe transform [1]

and Fisz transform are respectively proposed in [2] and [3].

Besides nonlinear VST, direct wavelet filtering has been stud-

ied in [4, 5]. The state-of-the-art methods are Bayesian ap-

proaches (see overview in [6]). A great part of the above

methods are based on the Haar wavelet transform until re-

cently, Jansen [7] introduced a conditional variance stabiliza-

tion, which generalizes the idea in [3] and is applicable to

any family of wavelet transforms. A Bayesian scheme was

also derived within this framework, which can be deemed as

an extension of [8, 9, 10]. Other technique such as penalized

maximum likelihood estimation [11, 12] can also be consid-

ered Bayesian, since the penalization term implicitly intro-

duces a prior on the underlying intensity. In general, Bayesian

methods outperform those of direct wavelet filtering [4, 5].

However Bayesian approaches require having enough “useful

signals” in the observations in order to well fit the prior (usu-

ally by estimating prior parameters). In the low-intensity case

where we generally lack such “useful signals”, the final esti-

mation can suffer from a large bias produced by an improperly

fitted model. Another previous important contribution to this

field is the wavelet-domain hypothesis testing framework first

introduced in [13, 14]. Thresholds based on user-specified

false detection rate are derived for Haar coefficients both in

the constant and the model-based background situations. Uni-

versal thresholds are also found available in the above two

cases [14, 15]. However, this method is only adapted to piece-

wise constant and burst like intensities as it uses the Haar

wavelet, which will yield stair-case-like artifacts in estimat-

ing regular intensities. Although Kolaczyk [16] derived the

Poisson-corrected version of the Gaussian-based threshold for

any wavelet, the asymptotic approximation used in [16] may

not allow reasonable threshold solution in very low intensity

settings. A recent work [17] has tackled these two drawbacks

by proposing a more sensitive bi-orthogonal Haar domain hy-

pothesis testing procedure.

In this paper, we propose a VST for approximately Gaus-

sianizing and stabilizing the variance of a sequence of inde-

pendent Poisson random variables (RVs) filtered by a low-

pass linear filter. This approach is shown to be fast, very well

adapted to extremely low-count situations and easily appli-

cable to any dimensional data. We then adapt the VST to a

Multi-Scale (MSVST) context to stabilize the detail coeffi-

cients of the IUWT of multi-dimensional Poisson count data.

We use a hypothesis testing framework in the wavelet domain

to threshold the Gaussianized and stabilized coefficients, and

then apply the inverse MSVST to get the estimated intensi-

ties underlying the Poisson data. Global statistical error rate

is also controlled by using a multi-test scheme, i.e. the False

Discovery Rate (FDR) procedure.



2. VST OF FILTERED POISSON DATA

Let (Yn) be a sequence of RVs observed at the output of a
finite impulse response (FIR) filter h ∈ l2(Z):

yn =
X

i

h[i]xn−i (1)

where (Xn) are independent Poisson RVs1. We addition-

ally assume that the h[i]’s are non-negative samples for i =
1, . . . , Nh (typically h is a low-pass filter). Our goal is to

stabilize the variance of Yn.

It is known that if h = δ, the Anscombe transform [1]

of Yn (hence Xn) acts as if the data arose from a Gaussian

distribution with unit variance, under the assumption that the

intensity λn is large. This is why the Anscombe VST per-

forms poorly in low-count settings. But, if the filter h acts as

an “averaging” kernel (more generally a low-pass filter), one

can reasonably expect that stabilizing Yn would be more ben-

eficial, since the signal-to-noise ratio measured at the output

of h is expected to be higher.

A transformation of Yn is sought, such that its variance is
constant irrespective of the value of Yn. The general form of
the VST A is derived by delta-method argument, giving that:

AY = Z(Y ) = b
√

Y + c (2)

In the following, although the general case can be treated eas-

ily, for the sake of simplicity we shall assume that ∀n, λn =
λ. For instance, in the a multi-scale wavelet transform con-

text, this amounts to considering that the intensity is constant

within the support of the wavelet. The next lemma summa-

rizes the main properties of this transformation:

Lemma 1 (i) From the Taylor series expansion of the RV
Z(Y )/b at Y = Y , its mean and variance are given by:

Z/b =
√

τ1

√
λ +

4 c τ1 − τ2

8 τ
3/2
1

λ−1/2 + O(λ−3/2) (3)

Var [Z/b] =
τ2
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„
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2

32 τ3
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4τ2
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− τ3
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«

λ−1+

„

16c2 τ2 + 16c τ3 + 5 τ4

64τ3
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− 21 c τ2
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32τ4
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«

λ−2 + O(λ−3) (4)

where τk =
∑

i(h[i])
k.

(ii) For the VST to be second order accurate and Z to have
asymptotic unit variance, b and c must satisfy:

b = 2

r

τ1

τ2
, c =

7τ2

8τ1
− τ3

2τ2
≥ 0 (5)

(iii) For b and c as above, Z − b
√
τ1λ

D→
λ→+∞

N (0, 1).

1We can even consider the more general case where X is the sum of

mutually independent Gaussian and Poisson variables. But here we prefer to

simplify the presentation.

This result tells us that for the chosen value of c, the first

order term in the expansion disappears, and the variance is

almost constant up to a second order residual term. Thus,

for appropriately chosen filter h, this residual is expected to

be smaller than for the case of the Anscombe transform ap-

plied on the original samples Xn. The same reasoning holds

for the expansion of Z in (3). Let’s consider the case of a

2D B3-spline filter2 (cf. (8)), which gives c = 0.0177 and

b = 7.3143. With asymptotic unit variance and
√
λ for the

expectation, the coefficient before the term O(λ−2) in (4) is

1.72×10−3 and that beforeO(λ−1/2) in (3) is −4.94×10−4,

while these coefficients associated with the Anscombe VST

are respectively −1.56 × 10−1 and 6.25 × 10−2. Therefore,

for this kind of filter, the convergence rate towards the asymp-

totic behavior of Lemma 1 is much faster (about 100 times)

for the new VST than for the Anscombe VST. Clearly, the

new VST will outperforms the Anscombe VST in low count

situations.

This is confirmed by the simulations depicted in Fig.1,

where the estimates of Z (resp. Var [Z]) obtained from 500

realizations ofZ are plotted as a function of the intensity λ for

both Anscombe (dashed-dotted), Fisz (dashed) and our VST

(solid). The theoretical bounds from expansions of Lemma 1

limited to the first term (i.e. 1 for the variance and
√
λ for the

expectation) are also plotted. The saliency of our new VST is

obvious. The variance of the RV stabilized using our VST is

faster in sticking to the asymptotic bounds. Consequently, the

RV transformed using Anscombe can be reasonably consid-

ered as stabilized for λ & 10, using Fisz for λ & 1 and using

our VST (after low-pass filtering with h) for λ & 0.1.

Fig. 1. Z and Var [Z] for the Anscombe, Fisz and our (using the B3-

spline filter) VST. Notice that the RV transformed using Anscombe

can be reasonably considered as stabilized for λ & 10, using Fisz

for λ & 1 and using our VST for λ & 0.1.

3. MULTI-SCALE VST AND WAVELET-DOMAIN

DENOISING

Although this section focuses on the (not necessarily separa-
ble in nD, n ≥ 2) undecimated wavelet transform (UWT),
our arguments can be extended similarly to other multi-scale
transforms (e.g. the curvelet transform). The UWT W using
the filter bank (h, g) of a 1D signal x ∈ ℓ2(Z) leads to a set
W = {w1, . . . , wJ , aJ} wherewj are the wavelet coefficients
at scale j and aJ are the coefficients at the coarsest resolution.
The passage from one resolution to the next one is obtained
using the “à trous” algorithm:

aj+1 = h̄(j) ∗ aj and wj+1 = ḡ(j) ∗ aj (6)

where h̄[k] = h[−k] and similarly for g. The reconstruction
is obtained by:

aj =
1

2
(h̃(j) ∗ aj+1 + g̃(j) ∗ wj+1). (7)

2Used in the IUWT.



The filter bank (h, g, h̃, g̃) needs only verify the exact recon-

struction condition. This provides us a high degree of free-

dom when designing the synthesis prototype filter bank.
Because astronomical images contain mostly isotropic sources

(stars, galaxies, etc.), astronomers generally prefer using an-
other transform, the Isotropic Undecimated Wavelet Trans-
form (IUWT) [18]. Requirements for a good analysis of such
data are: the filters do not need to be orthogonal or bi-orthogonal,
but they must be symmetric, and more importantly, h, g, the
scaling function φ and the wavelet function ψ must be nearly
isotropic. For example, the following filter bank satisfies these
requirements:

h1D = [1, 4, 6, 4, 1]/16

h[k, l] = h1D[k] · h1D[l], g = δ − h (8)

From the structure of g, it is easily seen that the wavelet
coefficients are obtained just by taking the difference between
two resolutions:

wj+1 = aj − aj+1 (9)

In 2D and higher dimensions, at each scale j, we obtain one
set {wj} (and not three as in the 2D UWT) which has the
same number of samples as the input data. The reconstruction
is obtained by a simple co-addition of all wavelet scales and
the final smoothed array, namely:

a0 = aJ +

J
X

j=1

wj (10)

That is, the synthesis filters are h̃ = δ and g̃ = δ. Both the

analysis and synthesis filter banks implement a frame expan-

sion.

We are now ready to introduce the MSVST-based denois-

ing: a multiscale algorithm for denoising after stabilizing the

variance of wj and bringing its distribution closer to normal-

ity, when the input signal x is a sequence of independent Pois-

son RVs. The main steps of this general MSVST denoising

algorithm are as follows:

1: Let a0 = x. For a given filter bank (h, g = δ − h, h̃ =
δ, g̃ = δ),

2: for j = 0 to J − 1 do

3: Calculate the approximation coefficients aj+1 using (6).
4: Calculate

wj+1 = Aj aj −Aj+1 aj+1 (11)

where Aj aj = τ
−1/2
1

√
aj + cj is our VST, and cj is

the constant in (5) obtained when the scaling function

φ̄(j) plays the role of the low-pass filter considered in

the previous section.

5: Apply the denoising operator D towj+1, assuming that

they are contaminated by an (almost) zero-mean Gaus-

sian noise, to get the estimates ŵj+1 = D wj+1.

6: end for

7: Reconstruct â0:

â0 = A−1
0

 

AJaJ +

J
X

j=1

ŵj

!

. (12)

3.1. Denoising step

This subsection is devoted to some details on the denoising

step of the algorithm above. We aim at designing a hypothe-

sis testing-based denoiser in the same vein as in [17]. To do

so, one must access the distributional properties of the stabi-

lized detail coefficients wj , under the null hypothesis that the

intensity λ underlying the Poisson process is constant. Thus,

Let us consider the RV wj under the null hypothesis. The

following proposition gives the asymptotic expansions of wj

and Var [wj ].

Proposition 1 We have the following asymptotic expansions:

wj = 0 + O(λ−1/2)

Var [wj ] =
1

τ
(j)
1 b2

j

+
1

τ
(j+1)
1 b2

j+1

− ζj+1(h)

2τ (j)
1τ (j+1)

1
+ O(λ−1/2)

where ζj+1(h) =
∑

k,l H
j+1(k, l)Hj(k, l), and:

Hj+1(k, l) =
“

Hj ∗ h̄(j)(k)h̄(j)(l)
”

(k, l), H0 = δ (13)

where bj (resp. bj+1) is defined as in (5) associated to φ̄(j)

(resp. φ̄(j+1)) and similar for τ
(j)
1 and τ

(j+1)
1 . The results

above clearly prove that, to a good approximation, the Gaus-

sianized version of the detail coefficients have a zero mean

and a variance that depends only on the scale and the chosen

filter bank.

Thus, exploiting these results, the hypothesis testing-based

denoiser only requires pre-calculating these variances before

applying the MSVST, which is computationally simple and

fast. Moreover, as the wavelet coefficients are tested simul-

taneously (multiple testing) and are dependent, we used the

FDR strategy under dependency [19] to control the global sta-

tistical error.

4. RESULTS AND DISCUSSION

For illustrative purposes, we have simulated an image with

circle-like X-ray sources on a constant background for XMM-

Newton telescope. This image can be seen as a model for ce-

lestial objects of different size and flux.3 Each source along

any radial branch has the same flux and has a more and more

extended support as we go farther from the center. The flux

reduces as the branches turn in the clockwise direction. De-

noising such an image is highly challenging. The observed

image of counts is Fig. 2(a), the restored intensity using our

approach in (d) and those restored using some of our competi-

tors Anscombe in (b) and Fisz in (c). For all the methods, the

FDR level was fixed at 0.2. Cycle-spinning was used for the

3Defined as the integral of the source intensity over its support.



Fisz transform in order to not bias the comparison of estima-

tors in favor of our approach.

As revealed by this figure, all estimators perform com-

paratively well at high intensity levels (image center). How-

ever, compared with (b), the relative merits (sensitivity) of

the MSVST estimator become increasingly salient as we go

farther from the center, and as the branches turn clockwise,

i.e. as the intensity becomes low. Even the sources of very low

counts were detected by our estimator (see the last branches

clockwise in (d) and compare to (b)). Fisz method also proves

relatively sensitive. However, it still exhibits a clear staircas-

ing artifact despite the cycle-spinning. Cycle-spinning has the

drawback of making the Fisz approach much slower than our

method (typically 10 − 50 shifts are used in cycle-spinning

for each axis of an 512× 512 image, hence 100− 2500 times

slower).

Fig. 2. (a) Noisy; (b) Anscombe VST; (c) Fisz approach [3]; (d)

Our method.

5. CONCLUSION

In this paper, a multi-scale VST is proposed for intensity esti-

mation of a sequence of independent Poisson RVs. A general

wavelet-domain denoiser was also described and has proven

very efficient in estimating Poisson noise contaminated data.

The algorithm can be easily extended to any dimension and

can also be generalized to other multi-scale transforms such

as those integrating directionality, e.g. curvelet transform.

Another potential application of the MSVST method is the

denoising of multi-spectral data, e.g. 2D + energy. Our cur-

rent research is focusing on these aspects.
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