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Abstract— In this paper we present an automatic design gener-
ation methodology for heterogeneous architectures composed of
microprocessors, DSPs and FPGAs. This methodology is based
on an adequation algorithm architecture where application is
represented by a control data flow graph and architecture by
an architecture graph. We focus on how to take into account
specificities of partially reconfigurable components during the
adequation process and for the design generation. We present
a method which generates automatically the design for both
fixed and partially reconfigurable parts of a FPGA. This method
uses prefetching technic to minimize reconfiguration latency of
runtime reconfiguration and buffer merging to minimize memory
requirements of the generated design.

I. I NTRODUCTION

Recent developments in radio technology have introduced
software defined radio paradigm SDR [1]. This evolution has
emerged with the proliferation of wireless standards, including
both local area networks 802.11 to 2,5G, 3G, and future 4G
telecommunication standards. Future telecommunication sys-
tems will be software reprogrammable radios, which could be
reconfigured to adapt for changing communication protocols
and channels.

Such systems require heterogeneous architectures based on
digital signal processors (DSPs), general purpose processors
and reconfigurable devices like field programmable gate arrays
(FPGAs). The whole application is split between HW/SW
components during the partitioning process. This step leads to
a compromise between system’s performance of an hardwired
solution and flexibility of a software solution.

These components use different levels of reconfigurations.
Harvard-based architectures (DSPs, general purpose proces-
sors) are reconfigurable at system-level and use a tempo-
ral scheme implementation of operations. Configuration of
the data path requires few data and can be performed at
each cycle. This high flexibility is well adapted to control
based applications but suffers from its power efficiency for
repetitive and high throughput computations. The introduction
of Dynamically Reconfigurable Systems (DRS), can deliver
higher levels of performance, flexibility and power efficiency.
Reconfigurable devices, including FPGAs, can fill the gap
between hardwired and software technology. Recently runtime
reconfiguration (RTR) of partial FPGA parts has led to the
concept of virtual hardware. Its allows to change only a
specified part of the chip while other areas remain operational

and unaffected by the reconfiguration [2]. So RTR allows more
sections of an application to be mapped into hardware, a larger
part of the application can be accelerated by contrast with
a microprocessor computation. By changing dynamically the
functionality performed by the FPGA over the time, we can
address SDR constraints and obtain a scalable system which
can evolved in agreement with its environment requirements,
and hence using a reconfigurable hardware platform across
multiple standards. However reconfiguration latency is a major
drawback of runtime reconfiguration on commercial devices
and must be considered during HW/SW partitioning process.
The objective is to obtain a near optimal scheduling of tasks in
time over an heterogeneous architecture [3]. These more and
more complex systems must be handled by an appropriate
design flow to reduce development time under strong time-
to-market pressure. These steps can be achieved by modeling
application operations through control data flow graph (DFG)
and operate an Adequation Algorithm Architecture (AAA)
methodology.

In this paper we focus on codesign systems with DSPs
and commercial FPGAs for telecommunication applications.
The first section describes the tool SynDEx [4] used for
the application partitioning stage. We describe the impact of
run-time reconfigurable component utilization on algorithm-
architecture adequation in the second section. Next modeling
a partially runtime reconfigurable part of a FPGA with this
tool is exposed. Then we present the automatic VHDL de-
sign generation for a runtime reconfigurable component. We
discuss how to generate an automatic management of runtime
reconfiguration over the time with SynDEx. As a proof an
implementation example using a partially reconfigurable chip
is presented in the last part of the paper.

II. AAA APPROACH ANDSYNDEX REPRESENTATION

Some partitioning methodologies based on various ap-
proaches are reported in the literature [5]. They are character-
ized by the granularity level of the partitioning, metrics, target
hardware, support of runtime-reconfiguration, flow automation
and on-line / off-line scheduling policies. Few tools, based
on these partitioning methodologies, provide a seamless flow
from the specification to the implementation.

Choice of candidates for a dynamic hardware implementa-
tion can be guided by some metrics: execution time, memory



Fig. 1. Algorithm graph

Fig. 2. Architecture graph

constraints, power efficiency, reconfiguration time, configura-
tion prefetching capabilities and area constraints.

Among theses methods we have chosen SynDEx already
used in [6]. Many libraries have been developed for heteroge-
neous platforms.

SynDEx is an academic system-level CAD tool which
supports AAA methodology. This free tool has been developed
by the INRIA Rocquencourt France laboratory and several
others laboratories contribute on its development over different
research topics. AAA methodology aims at finding the best
matching between an algorithm and an architecture while
satisfying time constraints. SynDEx automatically generates
a distributed and optimized synchronized executive.

Application algorithm is modeled by a data flow graph
(DFG) to exhibit the potential parallelism between operations
as represented by Figure 1. The algorithm model is a direct
data dependence graph where each node models an operation
and each oriented hyperedge models a data produced as output
of a node and used as input of an other node or several
others nodes. An operation is executed as soon as its input are
available, and this DFG is infinitely repeated. SynDEx includes
hierarchical algorithm representation, conditional statements
(if...then...else) and iteration of algorithm parts (for...do...).

Architecture is also modeled by a graph, which is a directed
graph where the vertices are operators (e.g microprocessors,
DSP, FPGA) or media (e.g OCB busses, ethernet) and edges
are connections between them. Operators have no internal
parallelism computation available but the architecture exhibits
the actual parallelism between operators. An example is shown
Figure 2. In order to perform the adequation between these two
graphs, operations and data dependencies have to be charac-
terized (time execution) on each vertices of the architecture
graph.

Adequation consists in performing a mapping and a schedul-
ing of the operations and data transfers onto the operators
and the communication media. It is carried out by a heuristic
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Fig. 3. SynDEx methodology flow

which takes into account durations of computations and inter-
component communications. The result is a synchronized
executive represented by a macro-code for each vertices of
the architecture. Figure 3 depicts the overall methodology
flow. This macro-code is composed of operations calls, com-
munication interfaces, memory allocation directives, threads
and semaphores for synchronization. Each macro-code is then
translated toward a high level language for each HW/SW
components. This translation produces an automatic dead-lock
free code generation, macro-code directives are replaced by
a corresponding code given in libraries (C/C++ for software
components, VHDL for hardware components). Today this
tool is used on heterogeneous architecture based on DSP and
FPGA. Then we want to extend SynDEx capacities to runtime
reconfigurable components.

III. RUN TIME RECONFIGURATION CONSIDERATIONS FOR

ADEQUACY

A. Minimizing reconfiguration cost

Runtime partially reconfigurable components must be han-
dled with a special processing during the adequation step.
A major drawback of using runtime reconfiguration is the
significant delay of hardware configuration. The total runtime
of an application includes execution delay of each task on the
hardware along with the total time spent for hardware recon-
figuration between computations. The length of the sequence
of reconfiguration is proportional to the reprogrammed area on
the chip. Partial reconfiguration allows to change only a spec-
ified part of the design hence decreasing the reconfiguration
time. An efficient way to minimize reconfiguration overhead is
to overlap it as much as possible with the execution of others
operations executed on others components. It is known as
configuration prefetching [7]. Figure 4 illustrate our purpose.
In this one we want to map and schedule an algorithm graph
onto an architecture composed of two resources, one of them is
dynamically reconfigurable. The algorithm, composed of six
functions, is split into two branches. FunctionD needs the
results ofC andY functions.

Operations{X,Y } are assumed to be executed by the
dynamic reconfigurable component of the architecture succes-
sively. Operations{A,B, C,D} are implemented on the non-
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reconfigurable component. According to this algorithm, among
all operations scheduling possibilities, one potential selection
is:

S1:{A,X,B,Y,Y,C,D}

which is infinitively repeated. With this scheduling two
reconfigurations are needed: one after computation of X
to implement Y, one after the second computation of Y to
implement X again. We have to define the following terms:

• Ck: Computation cost of operation k.
• Tj,k: Cost of data transmission between operations j and

k through the media.
• Rk: The reconfiguration delay of operation k.
• Dj,k: The time between the end of an operation j to

the beginning of the operation k, both executed on the
reconfigurable component.

• Pk: Prefetching cost of operation k.

The prefetching cost of operationk is Pk = Rk-Dj,k, with
j a previous different operation. So considering scheduling
S1, we have to add the following prefetching cost to the first
operation Y:

Py = Ry-Dx,y

with Dx,y= Tx,b+Cb+Tb,y

In order to improvePy, Ry must be similar to the de-
lay between two reconfigurable operations. Hence a way to
minimize prefetching overhead is to overlap a maximum of
computations or communications with reconfigurations of the
dynamic part. The heuristic of SynDEx has to be improved to
take into account this overhead on reconfigurable operations.

B. Architecture graph modeling of runtime reconfigurable
components

Runtime reconfigurable parts of an component must be
considered as vertices in the architecture graph. As shown
in the example in Figure 5, runtime reconfigurable parts of a
FPGA (D1 and D2) and fixed parts (F1) can be represented
as hardware operators of the architecture. An internal media
(IL) allows data exchanges between them. (D1 and D2) will
integrate the dynamic operator and the control to manage it.

Fig. 5. Model of runtime reconfigurable parts of a FPGA with SynDEx

IV. A UTOMATIC DESIGN GENERATION

A. General FPGA synthesis scheme

Once mapping and scheduling of the algorithm are
performed, macro-code is automatically generated and each
one must be translated. The translation generates the VHDL
code, both for the static and dynamic parts of a FPGA. We
use the GNU macro processor M4 and macros embedded in
libraries. Different kinds of macro are developed for:

- communications,
- memory allocations,
- operator instantiations,
- synchronization using semaphores.

The final FPGA design is based on several processes:

- process to control communication sequencings,
- process to control computation sequencings,
- process which performs data transmission/reception,
- process for each kind of operator to control its be-
haviour,
- process which controls activation of reading and writ-
ing phases of buffers,

A same operator can be used at different time in the
data flow, only one instantiation of each kind of operator
is done in VHDL. We have defined an uniform interface
for each operator through encapsulation. As described in the
next section, we use global buffers which allow us to merge
different kinds of buffer (depth and data width) filled by
operators to store computation results. These two points lead to
build complex data paths automatically. Our libraries are able
to perform these constructions by using conditional VHDL
signal assignment. In next section, we deal with two important
points: optimization of memory for exchanged data and control
of reconfigurations.

B. Macro-code preprocessing for memory minimization

The goal is to merge as much as possible independant
buffers to minimize the total memory requirement, this is
known as buffer merging technics [8]. We operate a macro-
code preprocessing which analyzes data life of variables
stored in these buffers and results in a list of buffers which



C o n t r o l

o p e r a t o r  j  

C o n t r o l

o p e r a t o r  k  
O p e r a t o r  k

O p e r a t o r  j

B u f f e r  

k

B u f f e r  

j

C o m p u t a t i o n

 c o n t r o l

O p e r a t i o n s

 c o m p l e t e

S t a r t

o p e r a t i o n s

e n a b l e

e n a b l e

r e a d y

r e a d y

c o n f i g u r a t i o n  r e q u e s t s

a c k n o w l e d g e m e n t s

S t a t e  

r e c o n f i g u r a b l e

 p a r t

b i t s t r e a m

C o n t r o l

o p e r a t o r  d y n  
O p e r a t o r  

d y n

R e c o n f i g u r a b l e  p a r t

C o m p u t a t i o n

 c o n t r o l

e n a b l e

r e a d y

S t a r t

o p e r a t i o n
O p e r a t i o n

 c o m p l e t e

C o n f i g u r a t i o n

 m a n a g e r

B i s t r e a m

m e m o r y

P r o t o c o l  

c o n f i g u r a t i o n

b u i l d e r

a )  N o n - r e c o n f i g u r a b l e  a r c h i t e c t u r e  b )  D y n a m i c a l l y  r e c o n f i g u r a b l e  a r c h i t e c t u r e   

B u f f e r  

k

B u f f e r  

j

M

P

Fig. 6. Architecture comparison between fixed/runtime reconfigurable solutions

must be merged into a global one. Buffers can be different as
they must store computation results of operations working on
various depth and data width (we consider only 8,16 or 32
bits width). Hence global buffers are automatically generated
in agreement with operators data type computation results
associated. We denote by:

• L : {b1, b2, ..bn} : A list of n buffers which can be merged,
whereL(k) = bk.

• Dk : The depth of buffer k.
• Wk : The data width of buffer k.

Hence the total amount of memory needed is:

• Without buffer merging:Mbm =
∑n

i=1 DL(i) ∗ WL(i)

• With buffer merging:Mbm = max(DL(i) ∗ WL(i))
for 1 ≤ i ≤ n.

So the saved memory is:

Smem = Mbm − Mbm.

C. Design generation for runtime reconfigurable components

In order to perform reconfiguration of the dynamic part
we have chosen to divide this process into two sub-parts: a
configuration manager and a protocol configuration builder.
Figure 6 shows a simple example based on two operations
(j and k) which are executed successively. Case a) shows
the design generated for a non-reconfigurable component, the
two operators are physically implemented. Caseb) is based
on a dynamically reconfigurable component which implement
successively the two operations. A configuration manager is
in charge of the bitstream which must be loaded on the
reconfigurable part by sending configuration requests. These
requests are sent only when an operation has completed its
computation and if a different operation has to be loaded
after. So reconfigurations are performed as soon as the current
operation is complete to enable configuration prefetching as
described before. This functionality provides also informa-
tion on the current state of the reconfigurable part, this is
useful to start operator computations (with signal’enable’)
only when the reconfiguration process is ended. Configuration
requests are sent to the protocol configuration builder which
is in charge to construct a valid reconfiguration stream in

agreement with the protocol mode employed (e.g boundary
scan). Encapsulation of operators with a standard interface
allows to reconfigure only the area containing the operator
without altering the design around. Functionalities involved
in the general control of the dynamic area and the operator
remain on a static part of the circuit with buffers. That allows
to reduce the size of the bitstream which must be loaded and
decrease the time needed to reconfigure.

Now this way to proceed must be adapted with architecture
considerations. There are many ways to reconfigure partially a
FPGA, Figure 7 shows three solutions of architectures for this
purpose. Case a) shows a standalone self reconfiguration where
the fixed part of the FPGA reconfigures the dynamic area. This
case can be adapted for small amounts of bitstream data which
can be stored by on-chip FPGA memory. However bitstreams
which contain partial configurations require often a lot of
memory and can’t fit within the limited embedded memory
provided by FPGAs, so bitstreams are stored by an external
memory as depicted in the case b). The last case c), shows
the used of a microprocessor to perform the reconfiguration.
In this case the FPGA sends reconfiguration requests to the
microprocessor through hardware interruptions for example.
This microprocessor can be viewed as a slave for the FPGA.
Either the microprocessor can act as a master by reconfiguring
directly the dynamic area of the FPGA. The CPLD is used to
interface these two components.
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LabelsM andP show where are implemented functionalities
’Configuration manager’and ’Protocol configuration builder’
respectively are implemented. Locations of these function-
alities have a direct impact on the reconfiguration latency.
Case c) has the highest reconfiguration latency since the
’protocol configuration builder’ is a task of the microprocessor
which can be activated through an hardware interruption.
Moreover external memory accesses are often costing. Macro-
codes generated for runtime reconfigurable components are
handled by a special library. The’Configuration manager’is
automatically generated in agreement with the sequencing of
operations expressed in the macro-code. The reconfigurable
part provides a virtual hardware, so at some time only one
operator is physically implemented on this dynamic part.

Operations of the DFG implemented on this reconfigurable
part are viewed as a global operation from the point of view
of the control computation process. Computation invocations
of these operations are renamed with a generic name in
the macro-code. This renaming is feasible because there is
no ambiguity on which operator is addressed when signal
’enable’ is driven (see figure 6). That allows to have only
one control functionality for managing tasks implemented by
the dynamically reconfigurable part.

V. I MPLEMENTATION EXAMPLE

Figure 8 shows an example based on a MC-CDMA trans-
mitter. In this case the adequation algorithm - architecture
is out of purpose. We want to map this application over an
architecture composed of one DSP and one FPGA dynamically
reconfigurable (Figure 9). BlockSpreadingis constrained to
be executed on the dynamic part of the FPGA(fpga dyn).
According to the spreading factor, two spreading operations
(fht4 or fht8), can be executed and selected by the entry con-
dition Cond. Figure 10 represents a given mapping/scheduling
performed by SynDEx for this application (reconfiguration
times are not taken into account). Modulation process is
mapped onto the DSP, interleaving and ifft onto the fixed part
of the FPGA. According to entryCond component OpDyn
implements operationsfht4 or fht8.

A. Design generation

Figure 11 represents the computation sequencing for the
partially reconfigurable part as expressed by the macro-code.
We can merge buffers{B, C,D} and operations{fht4, fht8}
are merged to generate operationOp Dyn.

B. Implementation results

1) Xilinx design flow for partial reconfiguration:This ex-
ample has been tested on a Virtex II FPGA from Xilinx. The
code, both for fixed and dynamic part has been generated with
SynDEx, through librairies. However, the generation of the
bitstream needs a specific flow called modular design.

This design flow is broken down into three main phases:
creating the floorplan and constraints for the overall design,
implementing each module through the place and route pro-
cess, assembling individual modules together into a complete

Fig. 8. Algorithm graph of a MC-CDMA transmitter

Fig. 9. Architecture graph

design. Module’s boundary cannot be changed and the position
and region occupied by any single reconfigurable module is
always fixed. Reconfigurable modules communicate with other
modules, both fixed and reconfigurable, by using a special
bus macro. Bus macro implementation is based on 3-state
buffers (TBUFs). The overall structure should be a top level
design with each functional module defined as a ”black-box”
level of hierarchy. Hence as shown in the Figure 12 the
operatorOp Dyn must be connected through the bus macro
and instantiated in the top level of the FPGA design.

2) Numerical results of implementation:We have imple-
mented the transmitter on a prototyping board from Sundance
technology [9]. This board is composed of one DSP C6201
from Texas Instrument running at 200Mhz and one FPGA
Xilinx Xc2v2000 partially reconfigurable. Virtex II has an
internal reconfiguration access port (ICAP) based on a subset
of the SelectMap interface. The previous example has been
implemented according to two different ways corresponding
to cases b) and c) of figure 7.

In case c), see figure 12, total or partial reconfigurations of
the FPGA are performed through the bus CP by the DSP.
Bitstreams are stored in the external memory of the DSP
after they have been translated to an assembly file format.
A part of the protocol configuration builder is a task of
the DSP, this task is activated by hardware interruption and
sends configuration data to the CPLD which configures the
FPGA in mode SelectMap. Time to reconfigure the whole
FPGA is nearly to 300 ms. On the other hand reconfiguration
of the operatorOp Dyn takes about only 75 ms from the
reconfiguration request to acknowledgment by the FPGA. This
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partially reconfigurable part of the FPGA

represents 25% of the total configuration time.
For the case b) depicted in figure 13, at power-up the

FPGA is fully configured with its bitstream stored in the
external memory. Then partial reconfigurations are handle
by the protocol configuration builder, which is in charge to
address memory and drive ICAP. Reconfiguration is driven
at 50Mhz and one bistream byte is loaded each cycle by the
ICAP, hence reconfiguration of the operatorOp Dyn takes only
4.5 ms. So a self reconfiguration is much more efficient in time
since there is no wasted DSP cycles in the reconfiguration
process.

Nevertheless, in all cases bitstreams take a large amount of
memory and need to be stored in external memory.

VI. CONCLUSION

We have described a methodology flow to manage automati-
cally partially reconfigurable parts of a FPGA. It allows to map
applications over heterogeneous architectures and fully exploit
advantages given by partially reconfigurable components. The
AAA methodology and associated tool SynDEx have been
used to perform mapping and code generation for fixed and
dynamic parts of FPGA. Either, SynDEx’s heuristic needs
additional developments to optimize time reconfiguration. Fur-
thermore, complex design and architecture can support more
than one dynamic parts.

This design flow has the main advantage to target as well as
software components as hardware components to implement
complex applications from a high level functional description.

We plan to apply this design flow for radio system telecom-
munication architectures and implement various telecommuni-
cation standards over a reconfigurable platform.
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Fig. 13. Implementation architecture and internal FPGA dynamic part design
detailed - self reconfiguration based -
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