
HAL Id: hal-00017881
https://hal.science/hal-00017881

Submitted on 26 Jan 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Design methodology for runtime reconfigurable FPGA:
From high level specification down to implementation

Florent Berthelot, Fabienne Nouvel, Dominique Houzet

To cite this version:
Florent Berthelot, Fabienne Nouvel, Dominique Houzet. Design methodology for runtime re-
configurable FPGA: From high level specification down to implementation. 2005, pp.497 - 502,
�10.1109/SIPS.2005.1579919�. �hal-00017881�

https://hal.science/hal-00017881
https://hal.archives-ouvertes.fr

Design methodology for runtime reconfigurable
FPGA: From high level specification down to

implementation
Florent Berthelot , Fabienne Nouvel , Dominique Houzet

CNRS UMR 6164 IETR/INSA
Rennes 20 av des Buttes de Coesmes, 35043 Rennes, France

florent.berthelot@ens.insa-rennes.fr, {fabienne.nouvel, dominique.houzet}@insa-rennes.fr

Abstract—In this paper we present an automatic design gen-
eration methodology for heterogeneous architectures composed
of processors, DSPs and FPGAs. This methodology is based
on an Adequation Algorithm Architecture where application is
represented by a control data flow graph and architecture by
an architecture graph. We focus on how to take into account
specificities of partially reconfigurable components during the
adequation process and for the design generation. We present
a method which generates automatically the design for both
fixed and partially reconfigurable parts of a FPGA. This method
uses prefetching technic to minimize reconfiguration latency of
runtime reconfiguration and buffer merging to minimize memory
requirements of the generated design.

I. INTRODUCTION
Recent developments in radio technology have introduced

software defined radio paradigm SDR [1]. This evolution has
emerged with the proliferation of wireless standards, including
both local area networks 802.11 to 2,5G, 3G, and future 4G
telecommunication standards. Future telecommunication sys-
tems will be software reprogrammable radios, which could be
reconfigured to adapt for changing communication protocols
and channels.
Such systems require heterogeneous architectures based on

digital signal processors (DSPs), general purpose processors
and reconfigurable devices like field programmable gate ar-
rays (FPGAs). The whole application is split between Hard-
ware/Software (HW/SW) components during the partitioning
process. This step leads to a compromise between system’s
performance of an hardwired solution and flexibility of a
software solution.
These components use different levels of reconfigurations.

Harvard-based architectures (DSPs, general purpose proces-
sors) are reconfigurable at system-level and use a tempo-
ral scheme implementation of operations. Configuration of
the data path requires few data and can be performed at
each cycle. This high flexibility is well adapted to control
based applications but suffers from its power efficiency for
repetitive and high throughput computations. The introduction
of Dynamically Reconfigurable Systems (DRS) can deliver
higher levels of performance, flexibility and power efficiency.
Reconfigurable devices, including FPGAs, can fill the gap
between hardwired and software technology. Recently runtime
reconfiguration (RTR) of partial FPGA parts has led to the

concept of virtual hardware. Its allows to change only a
specified part of the chip while other areas remain operational
and unaffected by the reconfiguration [2]. So RTR allows
more sections of an application to be mapped into hardware,
a larger part of the application can be accelerated by contrast
with a processor computation. By changing dynamically the
functionality performed by the FPGA over the time, we can
address SDR constraints and obtain a scalable system which
can evolved in agreement with its environment requirements,
and hence using a reconfigurable hardware platform across
multiple standards. However reconfiguration latency is a major
drawback of runtime reconfiguration on commercial devices
and must be considered during HW/SW partitioning process.
The objective is to obtain a near optimal scheduling of tasks in
time over an heterogeneous architecture [3]. These more and
more complex systems must be handled by an appropriate
design flow to reduce development time under strong time-
to-market pressure. These steps can be achieved by modeling
application operations through control data flow graph (DFG)
and operate an Adequation Algorithm Architecture (AAA)
methodology.
In this paper we focus on codesign systems with DSPs and

commercial FPGAs for telecommunication applications. The
first section describes the SynDEx tool [4] used for the appli-
cation partitioning stage. We describe the impact of run-time
reconfigurable component utilization on algorithm-architecture
adequation in the second section. Next the way of model-
ing a partially runtime reconfigurable part of a FPGA with
SynDEx is exposed. Then we present the automatic VHDL
design generation for a runtime reconfigurable component. We
discuss how to generate an automatic management of runtime
reconfiguration over the time with SynDEx in section 4. A case
study based on a runtime reconfigurable multicarrier code-
division multiple-access (MC-CDMA) transmitter is presented
in section 5 followed by the conclusion.

II. AAA APPROACH AND SYNDEX REPRESENTATION
Some partitioning methodologies based on various ap-

proaches are reported in the literature [5]. They are character-
ized by the granularity level of the partitioning, metrics, target
hardware, support of runtime-reconfiguration, flow automation
and on-line / off-line scheduling policies. Few tools, based

� � � �

� �
� � � �

� �� � � �

� �
�

� � � �

� �

�

�

� 	
 	 � �

�

Fig. 1. Algorithm graph

� � � � � � � � �

� � � � � �

� � � � 	
 � �

� � � � � �

� � � � � �

� � � � � � � � �

� � � � � �

� � � � � �

� � � � � �� � � � � � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � 	
 � �

Fig. 2. Architecture graph

on these partitioning methodologies, provide a seamless flow
from the specification to the implementation.
Choice of candidates for a dynamic hardware implementa-

tion can be guided by some metrics: execution time, memory
constraints, power efficiency, reconfiguration time, configura-
tion prefetching capabilities and area constraints.
Among theses methods we have chosen SynDEx already

used in [6]. SynDEx is an academic system-level CAD tool
which supports AAA methodology. This free tool has been
developed by the INRIA Rocquencourt France laboratory and
several others laboratories contribute on its development over
different research topics. AAA methodology aims at finding
the best matching between an algorithm and an architecture
while satisfying time constraints. SynDEx automatically gen-
erates a distributed and optimized synchronized executive.
Application algorithm is represented by a data flow graph

(DFG) to exhibit the potential parallelism between operations
as represented by Figure 1. The algorithm model is a direct
data dependence graph. An operation is executed as soon as
its input are available, and this DFG is infinitely repeated.
SynDEx includes hierarchical algorithm representation, con-
ditional statements and iteration of algorithm parts.
Architecture is also modeled by a graph, which is a directed

graph where the vertices are operators (e.g processors, DSP,
FPGA) or media (e.g OCB busses, ethernet) and edges are
connections between them. Operators have no internal paral-
lelism computation available but the architecture exhibits the
actual parallelism between operators. An example is shown
in Figure 2. In order to perform the adequation between
these two graphs, operations and data dependencies have to
be characterized (time execution) on each vertices of the
architecture graph.
Adequation consists in performing a mapping and a schedul-

ing of the operations and data transfers onto the operators
and the communication media. It is carried out by a heuristic
which takes into account durations of computations and inter-
component communications. The result is a synchronized
executive represented by a macro-code for each vertices of
the architecture. Figure 3 depicts the overall methodology
flow [7]. Each macro-code is then translated toward a high
level language for each HW/SW components. This translation

� � � � � � � � � � 	 	 	 	 	 	 	 	 	 	 	 	 	

� � � � � � � �

� � � � � � � 	 � � � 	 � � � � � � � � � �

� � � � � � � � � 	 � � � � � � � � � � � � � � � � � 	 � � � � �

	 	 	 	 	 	 	 	 � � � � � � � � � � � 	

! � � � � � " � � � � 	 # � � � � � � $ � % � " � � � � � �

! � � � � � 	 & � � � � � � � � �

� � � ' � � � � � � �

	 	 � � � � � � � � � � �

(� � � � � � �

� � � � � � � � � � �

	 	 � � ' �) � � � 	

� � � � � � � � �
	 � � � �) � � �

� � � � � � � � �

Fig. 3. SynDEx methodology flow

produces an automatic dead-lock free code generation, macro-
code directives are replaced by a corresponding code given
in libraries (C/C++ for software components, VHDL for
hardware components). Many libraries have been developed
for heterogeneous platforms. Today this tool is used on het-
erogeneous architecture based on DSP and FPGA. Then we
want to extend SynDEx capacities to runtime reconfigurable
components.

III. RUN TIME RECONFIGURATION CONSIDERATIONS FOR
ADEQUACY

A. Minimizing reconfiguration cost
Runtime partially reconfigurable components must be han-

dled with a special processing during the adequation step.
A major drawback of using runtime reconfiguration is the
significant delay of hardware configuration. The total runtime
of an application includes execution delay of each task on the
hardware along with the total time spent for hardware recon-
figuration between computations. The length of the sequence
of reconfiguration is proportional to the reprogrammed area on
the chip. Partial reconfiguration allows to change only a spec-
ified part of the design hence decreasing the reconfiguration
time. An efficient way to minimize reconfiguration overhead is
to overlap it as much as possible with the execution of others
operations executed on others components. It is known as con-
figuration prefetching [8]. Figure 4 illustrates our purpose. In
this example we want to map and schedule an algorithm graph
onto an architecture composed of two resources, one of them is
dynamically reconfigurable. The algorithm, composed of six
functions, is split into two branches. Function D needs the
results of C and Y functions. Operations {X,Y } are assumed
to be executed by the dynamic reconfigurable component of
the architecture successively. Operations {A,B,C,D} are im-
plemented on the non-reconfigurable component. According to
this algorithm, among all operations scheduling possibilities,
one potential selection is:

S1:{A,X,B,Y,Y,C,D}
which is infinitively repeated. With this scheduling two

reconfigurations are needed: one after computation of X
to implement Y, one after the second computation of Y to

�

*

+ � *

!

�

� � �

� 	 � � � � � � � � � �
 	

� � � � � 	 � �

� 	 � � � � � � � � � �
 	

� � � � � 	 � �
� 	 � � �

Fig. 4. Algorithm and architecture example

� � � � � � � �

� � � � � �

� � � � � � �

� � � � � �

� � � � � �

� � � � � � � �

� � � � � �
, % � 	
 , % , % � 	
 , %

! � - � ! �

Fig. 5. Model of runtime reconfigurable parts of a FPGA with SynDEx

implement X again. We have to define the following terms:

• Ck: Computation cost of operation k.
• Tj,k: Cost of data transmission between operations j and
k through the media.

• Rk: The reconfiguration delay of operation k.
• Dj,k: The time between the end of an operation j to
the beginning of the operation k, both executed on the
reconfigurable component.

• Pk: Prefetching cost of operation k.
The prefetching cost of operation k is Pk = Rk-Dj,k, with

j a previous different operation. So considering scheduling
S1, we have to add the following prefetching cost to the first
operation Y:

Py = Ry-Dx,y

with Dx,y= Tx,b+Cb+Tb,y

In order to improve Py, Ry must be similar to the de-
lay between two reconfigurable operations. Hence a way to
minimize prefetching overhead is to overlap a maximum of
computations or communications with reconfigurations of the
dynamic part. The heuristic of SynDEx has to be improved to
take into account this overhead on reconfigurable operations.

B. Architecture graph modeling of runtime reconfigurable
components
Runtime reconfigurable parts of an component must be

considered as vertices in the architecture graph. As shown
in the example in Figure 5, runtime reconfigurable parts of a
FPGA (D1 and D2) and fixed parts (F1) can be represented
as hardware operators of the architecture. An internal media
(IL) allows data exchanges between them. (D1 and D2) will
integrate the dynamic operator and the control to manage it.

IV. AUTOMATIC DESIGN GENERATION

A. General FPGA synthesis scheme

Once mapping and scheduling of the algorithm are
performed, macro-code is automatically generated and each
one must be translated. The translation generates the VHDL
code, both for the static and dynamic parts of a FPGA. We
use the GNU macro processor M4 and macros embedded
in libraries. Different kinds of macro are developed for
communications, memory allocations, operator instantiations
and synchronization. The final FPGA design is based on
several dedicated processes to control:

- communication sequencings,
- computation sequencings,
- operator behaviour,
- activation of reading and writing phases of buffers,
A same operator can be used at different time in the

data flow, only one instantiation of each kind of operator
is done in VHDL. We have defined an uniform interface
for each operator through encapsulation. As described in the
next section, we use global buffers which allow us to merge
different kinds of buffer (depth and data width) filled by
operators to store computation results. These two points lead to
build complex data paths automatically. Our libraries are able
to perform these constructions by using conditional VHDL
signal assignment. In next section, we deal with two important
points: optimization of memory for exchanged data and control
of reconfigurations.

B. Macro-code preprocessing for memory minimization

The goal is to merge as much as possible independant
buffers to minimize the total memory requirement, this is
known as buffer merging technics [9]. We operate a macro-
code preprocessing which analyzes data life of variables
stored in these buffers and results in a list of buffers which
must be merged into a global one. Buffers can be different as
they must store computation results of operations working on
various depth and data width (we consider only 8,16 or 32
bits width). Hence global buffers are automatically generated
in agreement with operators data type computation results
associated. We denote by:

• L : {b1, b2, ..bn} : A list of n buffers which can be merged,
where L(k) = bk.

• Dk : The depth of buffer k.
• Wk : The data width of buffer k.

Hence the total amount of memory needed is:

• Without buffer merging: Mbm =
Pn

i=1DL(i) ∗WL(i)

• With buffer merging: Mbm = max(DL(i) ∗WL(i))
for 1 ≤ i ≤ n.

So the saved memory is:

Smem =Mbm −Mbm.

� � � � � � �

� � � � � � � � 	 � 	

� � � � � � �

� � � � � � � � 	 � 	
. � � � � � � � 	 �

. � � � � � � � � �

� � ' ' � � 	

�

� � ' ' � � 	

�

� � � � � � � � � � �

	 � � � � � � �

. � � � � � � � � �

	 � � � � � � � �

� � � � �

� � � � � � � � �

� � � " � �

� � � " � �

� � � � �

� � � � �

� � � ' � � � � � � � � � 	 � � � � � � � �

� � / � �) � � � � � � � � � �

� � � � � 	

� � � � � ' � � � � � " � �

" � � � � � � � �

� � � � � � �

� � � � � � � � 	 � � � 	
. � � � � � � � 	

� � �

� � 	
 � � � � � � � � � �

� � � �
� � � � � � � � � � �

	 � � � � � � �

� � � " � �

� � � � �

� � � � �

� � � � � � � � � . � � � � � � � �

	 � � � � � � � �

� � � ' � � � � � � � � �

	 � � � � � � �

� � � � � � � �

� � � � � �

� � � � � � � � 	

� � � ' � � � � � � � � �

" � � � � � �

� 	 0 � � � � � � � � ' � � � � � " � � 	 � � � � � � � � � � � � 	 " 	 ! � � � � � � � � � � 	 � � � � � ' � � � � � " � � 	 � � � � � � � � � � � � 	 	

� � ' ' � � 	

�

� � ' ' � � 	

�

�

�

Fig. 6. Architecture comparison between fixed/runtime reconfigurable solutions

C. Design generation for runtime reconfigurable components

In order to perform reconfiguration of the dynamic part
we have chosen to divide this process into two sub-parts: a
configuration manager and a protocol configuration builder.
Figure 6 shows a simple example based on two operations
(j and k) which are executed successively. Case a) shows
the design generated for a non-reconfigurable component, the
two operators are physically implemented. Case b) is based
on a dynamically reconfigurable component which implement
successively the two operations. A configuration manager is
in charge of the bitstream which must be loaded on the
reconfigurable part by sending configuration requests. These
requests are sent only when an operation has completed its
computation and if a different operation has to be loaded
after. So reconfigurations are performed as soon as the current
operation is complete to enable configuration prefetching as
described before. This functionality provides also information
on the current state of the reconfigurable part, this is useful to
start operator computations (with signal ’enable’) only when
the reconfiguration process is ended. Configuration requests
are sent to the protocol configuration builder which is in
charge to construct a valid reconfiguration stream in agreement
with the used protocol mode (e.g selectmap). Encapsulation of
operators with a standard interface allows to reconfigure only
the area containing the operator without altering the design
around. Functionalities involved in the general control of the
dynamic area and the operator remain on a static part of the
circuit with buffers. That allows to reduce the size of the
bitstream which must be loaded and decrease the time needed
to reconfigure.
Now this way to proceed must be adapted with architecture

considerations. There are many ways to reconfigure partially
a FPGA, Figure 7 shows three solutions of architectures for
this purpose. Case a) shows a standalone self reconfiguration
where the fixed part of the FPGA reconfigures the dynamic
area. This case can be adapted for small amounts of bitstream
data which can be stored by on-chip FPGA memory. However
bitstreams which contain partial configurations require often
a lot of memory and can’t fit within the limited embedded
memory provided by FPGAs, so bitstreams are stored by an
external memory as depicted in the case b). The last case c),
shows the used of a processor to perform the reconfiguration.
In this case the FPGA sends reconfiguration requests to the

processor through hardware interruptions for example. This
processor can be viewed as a slave for the FPGA. Either it
can act as a master by reconfiguring directly the dynamic
area of the FPGA. The CPLD is used to interface these two
components.
Labels M and P show where functionalities ’Configuration

manager’ and ’Protocol configuration builder’ respectively are
implemented. Locations of these functionalities have a direct
impact on the reconfiguration latency. Case c) has the high-
est reconfiguration latency since the ’protocol configuration
builder’ is a task of the processor which can be activated
through an hardware interruption. Moreover external memory
accesses are often costing. Macro-codes generated for runtime
reconfigurable components are handled by a special library.
The ’Configuration manager’ is automatically generated by
our libraries in agreement with the sequencing of operations
expressed in the macro-code. The reconfigurable part provides
a virtual hardware, so at some time only one operator is
physically implemented on this dynamic part.
Operations of the DFG implemented on this reconfigurable

part are viewed as a global operation from the point of view
of the control computation process. Computation invocations
of these operations are renamed with a generic name in
the macro-code. This renaming is feasible because there is
no ambiguity on which operator is addressed when signal
’enable’ is driven (see Figure 6). That allows to have only
one control functionality for managing tasks implemented by
the dynamically reconfigurable part.

- � & �

� � � � � � �

! 	 � � � � � � � � � �
 	 � � � �

	 	 	 	 	

� � 	 � � � � �

� � � � � � � �

1
��

�
��

� 	 � � � � � � � � � � 	 � � � ' 	 � � � � � ' � � � � � � � � � 	

) � � � 	 � � � � � � � 	 " � � � � � � � � 	 � � � � � �

" 	 � � � � � � � � � � 	 � � � ' 	 � � � � � ' � � � � � � � � � 	

) � � � 	 � ' ' � � � � � 	 " � � � � � � � � 	 � � � � � �

"
� �
� �

� �
� 	
� �
�
�

- � & �

� � % !
! � � �

� � � � � � �

1 � � � � �

� � � � � � � �

� � � ' � � � � � � � � � 	 � � � � � � � �

� � � � �

! 	 � � � � � � � � � �
 	 � � � �

� � � � � � �

� � 	 � � � � �

� 	 (� � � � ' � � � � � � � � � 	 � � � � � � � 	 � 	 � � � � � � � � � � � � � �

1 � � � � �

� � � � � � �

� � 	 � � � � �

� � � � � � � �

� � � � � � �

! � � �

- � & �

� � / � �) � � � � � � � � � �

�

�

�

�

��

�

	 	 	 	 	 	 	

! 	 � � � � � � � � � �
 	 � � � �

Fig. 7. Different ways to reconfigure dynamic parts of a FPGA

V. IMPLEMENTATION EXAMPLE

Our implementation application is a transmitter system
for future wireless networks for 4G air interface [10]. This
transmitter is based on MC-CDMA modulation scheme. MC-
CDMA combines Orthogonal Frequency Division Multiplex-
ing (OFDM) with spreading. SynDex algorithm graph, de-
picted by Figure 8, shows the basic numeric computation
blocks of this transmitter. Block modulation performs either
a QPSK or QAM-16 modulation. This adaptive modulation
is selected by the conditional entry Select which defines the
modulation of each OFDM symbol according to the signal
to noise ratio. Spreading block implements a Fast Hadamard
Transform (FHT). Next a frequency interleaving is done in
order to take into account the frequency diversity offered by
OFDM modulation. The OFDM modulation is performed by
an Inverse Fast Fourier Transform thanks to IFFT block which
also implements zero-padding process. As this paper focus on
dynamic reconfiguration we consider blocks Spreading, Inter-
leaving and IFFT as a unique global block not reconfigurable.
We have to implement this transmitter over a prototyping board
from Sundance technology [11]. This board is composed of
one DSP C6201 from Texas Instrument and one FPGA Xilinx
Xc2v2000 partially reconfigurable. Its model with SynDEx is
represented by Figure 9. Mapping of functionalities over the
architecture gives the following results. The DSP is in charge
of data generation and modulation selection. BlockModulation
is constrained to be executed on the dynamic part of the FPGA
(fpga dyn). Spreading, Interleaving and IFFT are executed
on the fixed part of the FPGA. Table I sums-up the most
significant parameters of this transmitter.

A. Design generation
Figure 10 represents the computation sequencing for the

partially reconfigurable part as expressed by the macro-code.
This computation sequencing has to be implemented on the
reconfigurable part of the FPGA, hence some transformations
must be made. We merge buffers {B,C,D} and operations
{QPSK,MAQ16} to generate operation Op Dyn before the
VHDL synthesis.

B. Implementation results
1) Xilinx design flow for partial reconfiguration: This ap-

plication has been implemented on a Virtex II FPGA from
Xilinx. The code, both for fixed and dynamic part has been
automatically generated with SynDEx, thanks to the libraries.

� � � � � � � � 	
 � � � � � � � 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 � � � � �
� � � � � � � � � � 	 � � � � � � � � � � � 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 � � � ! " �
# � � � � � � 	 �
 	 � � � � � 	 $
 � � � % � � � � 	 � � � � � � & 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 ' �
(� � � � 	 � � � � �) � � 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 � * + 	 , �
- � � � � 	 � � � � � � � � 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 ! * ' � 	 � � 	
� � � � � � � � � � 	 	 	 	 � 	 . / � 0 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 � 1 . !
# � � 	 � � � 	 � � � � 	 � � � 	 � � � � 	 $ � � � � � � � � � 	 � � � � & 	 	 � 	 � * " � " 	 � � � � � � � 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 � 	 ! * 2 ! 2 	 � � � � � � �

TABLE I
MC-CDMA TRANSMITTER PARAMETERS- INDOOR SCHEME

Fig. 8. Algorithm graph of a MC-CDMA transmitter

Fig. 9. Architecture graph

However, the generation of bitstreams needs a specific flow
called modular design. This design flow is broken down
into three main phases: creating the floorplan and constraints
for the overall design, implementing each module through
the place and route process, assembling individual modules
together into a complete design. Reconfigurable modules com-
municate with other modules, both fixed and reconfigurable,
by using a special bus macro (3-state buffers) and must be
top-level modules.
2) Numerical results of implementation: Virtex II integrates

an internal reconfiguration access port (ICAP) for partial
reconfiguration. Scheme b of Figure 7 is applied.
Figure 11 shows the resulting design of the reconfigurable

transmitter. The FPGA is divided in two parts. The first
one is static and implements non reconfigurable logic, the
second one takes 8% of the FPGA and is dedicated to
the dynamic operator. The design automatically generated in
agreement with SynDEx macro-code is framed by a gray
rectangle. We can distinguish blocks executed by the part
fpga fix of Figure 9 such as Spreading, Interleaving, IFFT
and communications process (Interface IN OUT). This non-
reconfigurable part also integrates the design automatically
generated for block modulation. As modulation functionality
is runtime reconfigurable, design generated by SynDEx for
this block doesn’t integrate the main functionality which is
implemented by operator Op Dyn.
The DSP can select modulation performed by the dynamic

part by sending this value to module Interface IN OUT. Next
this value is send to block modulation through communication
link LIO. Interface IN OUT module receives DSP data from
SHB bus. Receiving process can be locked-up during partial
reconfigurations thanks to signal In Reconf. If Select register
value is changed, block modulation sends a reconfiguration

! 	 � # $ % & ' � � � � 	 � (�

� � �) � � *

� � � � � � � � � � � � �

� �

� � � � � � � � � ! " � � � � � � � � � � � � � # � �

� � � � �
 � � � � � � � �

� $ % & ' (� $) * � � � � � # � � " � �

	

� � " �) � +

� 	 � � $ % & �

� � � � 	 � (�

� � � � 	 � (�

� � � � 	 � (�

� � � � 	
 	 � �

Fig. 10. Representation of macro-code computation sequencing for the
partially reconfigurable part of the FPGA

! � �

2 , 	 � 3 4 5 �

� � � � � � � 	

� � � �

� � �

� � � � � � � 	

� � � � � �

� � �

� 	 � � � �

� � � � �

� � � � � � � 	
 �

� � � �

� � " � �

� � � �
 	 � � �

! � � � 6 � � �

! � � � 6 � �

�
�
�
�
�
��
�
�
�
�

,
�-

��
��
�
�
�
�
�

�
�
	
�
�
�
�
�

.
�
�-

��
��
�
�
�
�
�

� � � � � � � � � ! � � �

/ � � � � � � � 	 	 � � � � � � �

& � � �

� �

� / �

! 	 � � � � 	 � � � � � � � �

� � " " � � # $ %

� � " " � � # & ' (

(� � � �# � � " � �

$ �
� �
� "
	
� �
#
$ %

#
&
'
(

�
)
� �
	
*
� �
+

$ �
� �
� �
� 	
! �
�
+

$ �
�
(

% & '

% & �

�
�
*
�
� 	
� �
�
�

� ,
-
. �
	

� �
�)
	
� �
� �
�
�
� �
�
� /

� � *
� � � � � �

� � 	 0 � 	 � � �

& � (! 	 � � � �

(� � � �
� � � � � � � 	
 � 0 � 	 * � � �

� � � � � � � � � � � � � �

" � � � � 	 �

� � 	 	 	 	 	 	 7 	 % �) 	 � � � � � 	 � � � � � � � 	 � � � � � � � � � � � � � 	 " � � 	 ' � � 	 � � � � � � � � � � � 	 � � � ' � � � � � � � � �

� / � 	 	 	 7 	 � � � � 	 � � � � � 	 � � � � � � � 	 � � � � � � � � � � � � � 	 " � � 	 ' � � 	 � � � � 	 � � � � � � � � � � � �

& � � � 	 7 	 , � � � � � � � 	 � � � ' � � � � � � � � � 	 � � � � � � 	 � � � �

Fig. 11. Reconfigurable MC-CDMA transmitter architecture

request to the protocol builder component which is next in
charge to address external memory and drive ICAP. This self
reconfiguration operates at 50Mhz, one bistream byte is loaded
each cycle by the ICAP. So the reconfiguration time needed to
reconfigure Op Dyn takes about 4ms. As noted by Table I the
maximum net bit rate per user in streaming mode is about of
0.909Mbits/s with QPSK modulation. Our Xilinx IFFT core
implementation allows us to reach a maximum bit rate per
user of 0.296 Mbits/s. Time to reconfigure the modulation is
of the order of some data frames, hence this system is enough
reactive to allow fast adaptations with time-varying channels.
Other computation blocks such as spreading or interleaving
can be implemented using this method to obtain a full scalable
system.
As shown in Table II, FPGA resources utilization needed to

implement QPSK and QAM-16 modulations are more impor-
tant with a dynamic reconfiguration scheme. This overhead is
due to the generic VHDL structure generation, based on the
macro code description, which is more adapted for medium-
complex data path control. However this gap is decreasing
with the number of different reconfigurations needed and the
ability of runtime reconfiguration to provide virtual hardware.
However the flexibility given by this methodology and the
automatic VHDL generation can overcome hardware resource
overhead. For instance we can easily add a Forward Error
Correction (FEC) process, such as Reed-Solomon encoder,
in addition with modulation process. So we obtain a new
configuration for the dynamic part. Since the size of the
reconfigurable part is fixed by the designer, any design able

to meet this area constraint can be implemented.

� � * � � 	 � - . � 	
 � �

�
) � �
 � � � 	 � � � � � � � � � � � �) � � * 1) � " � + �
 � � � � � � � � � � � �
 � � � �
 � 	 � � � � ! 	 � � � � � � � � � �
 	 � � � � 	 � � � � � � � � � �

� �

� % � � �
 � � 	 � � 2 � 3 � + ' ' � ' 3 � , 3 '

� � � � 4 � % � � � 5 	 � � 2 � � � � � � � � � � � � � � � � � � 6 � 6 ' ' � 6 � 4

� � � � � 	 � 	 � � � � � � 2 � � � � � � � � � � � � � � � � � 6 6 � 3 7 � 6 � 4

�
 � � 8 � ! � " � � � , * � � � � � � 2 � � � � � ' � ' � 7 � � �

� � � � � � � 	 � � 2 � 4 � 4 � 4 � , � -

� 9 � � � 5 � � � �
 � � 	 � � � � 2 � � � � � � � � � � � � 4 � 4 � 4 � 7 � �

TABLE II
FIX-DYNAMIC MODULATION IMPLEMENTATION COMPARISON

VI. CONCLUSION
We have described a methodology flow to manage automati-

cally partially reconfigurable parts of a FPGA. It allows to map
applications over heterogeneous architectures and fully exploit
advantages given by partially reconfigurable components. The
AAA methodology and associated tool SynDEx have been
used to perform mapping and code generation for fixed and
dynamic parts of FPGA. Either, SynDEx’s heuristic needs
additional developments to optimize time reconfiguration.
Furthermore, complex design and architecture can support
more than one dynamic part. This design flow has the main
advantage to target as well as software components as hard-
ware components to implement complex applications from a
high level functional description. This methodology can easily
be used to introduce dynamic reconfiguration over already
developed fixed design. As well as for fast IP block integration
on fixed or reconfigurable architectures.

REFERENCES
[1] J. Mitola, “Software radio architecture evolution: Foundations, technol-

ogy tradeoffs, and architecture implications,” IEICE Trans. Commn., vol.
E83-B, no. 6, pp. 1165–1172, June 2000.

[2] E. L. Horta, J. W. Lockwood, D. E. Taylor, and D. Parlour, “Dynamic
hardware plugins in an fpga with partial runtime reconfiguration,”
Design Automation Conference (DAC), 2002.

[3] J. Noguera and R. Badia, “A hw/sw partitioning algorithm for dynam-
ically reconfigurable architectures,” Proc. Design Automation and Test
in Europe, vol. pp. 72934, 200t, 2001.

[4] C. Sorel and Y. Lavarenne, “From algorithm and architecture specifi-
cations to automatic generation of distributed real-time executives: a
seamless flow of graphs transformations,” Formal Methods and Models
for Codesign Conference, France, pp. 123– 132, June 2003.

[5] J. Harkin, T. McGinnity, and L. Maguire, “Partitioning methodology
for dynamically reconfigurable embedded systems,” IEE Proc-Comput.
Digit. Tech, vol. 147, November 2000.

[6] V. Fresse, O. Deforges, and J.-F. Nezan, “Avsyndex: A rapid prototyping
process dedicated to the implementation of digital image processing
applications on multi-dsps and fpga architectures,” EURASIP JASP, pp.
990–1002, september 2002.

[7] F. Berthelot, F. Nouvel, and D. Houzet, “Design methodology for
dynamically reconfigurable systems,” JFAAA , Dijon France, pp. 47–
52, January 2005.

[8] S. Hauck, “Configuration prefetch for single context reconfigurable
coprocessors,” ACM/SIGDA International Symposium on FPGAs, vol.
E83-B, no. 6, p. 6574, June 1998.

[9] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Minimizing memory
requirements for chain-structured sdf graphs,” Proc. of ICASSP, Aus-
tralia, vol. E83-B, no. 6, p. 6574, June 1994.

[10] S. Lenours, F. Nouvel, and J.-F. Helard, “Design and implementation
of mc-cdma systems for future wireless networks,” EURASIP JASP, pp.
1604–1615, August 2004.

[11] S. M. T. Ltd, “http://www.sundance.com.”

