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1 Introduction

In a number of situations, Markov operators appear to be a wonderful tool to provide
useful information on a given measured space. Let us for example mention heat ker-
nel methods to prove functional inequalities like Sobolev or Log-Sobolev inequalities, or
Cauchy kernels to prove boundness results on Riesz transforms in Lp. Heat kernels are
widely used in Riemannian geometry and statistical mechanics, while Poisson, Cauchy
and other kernels had been proved useful in other contexts related to classical harmonic
analysis (see [8, 4, 5, 6, 10, 9, 17, 25, 26, 1, 32] for example to see the action of different
families of semigroups in various contexts).

It seems therefore interesting to describe all Markov kernels associated to a given
structure. In what follows, we shall consider a probability space (E, E , µ) on which is
given an orthonormal L2(µ) basis F = (f0, f1, · · · , fn, · · · ), where we impose f0 = 1.
Such a basis shall be called a unitary orthonormal basis (UOB in short). In general our
basis F shall be real, but we do not exclude to consider complex bases.

We may then try to describe the Markov operators defined from a family of probability
measure k(x, dy) by

f 7→ K(f) =

∫

E

f(y) k(x, dy)

which are symmetric in L2(µ) and have the functions fn as eigenvectors. In other words,
we want to define the linear operator K from

K(fn) = λnfn,
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and try to describe for which sequences (λn) this operator is a Markov kernel. We shall
call these sequences Markov sequences (MS’s in short) associated to the UOB F .

For a general basis F , this is quite impossible. But many bases which appear in
natural examples have a special property, which we call the hypergroup property, under
which one is able to describe all Markov sequences associated with the UOB F .

This expository paper is not intended to be a complete account of the general theory
of hypergroups, for which we may for example refer to the complete treaty [11]. In fact,
we just extracted from this theory what is useful for our purpose. More precisely, we
concentrated on the fundamental aspect which we are interested in, that is the possibility
of describing all Markov kernels associated to our basis F .

The paper is organized as follows.

In the first part, we present the case of finite sets, where the hypergroup property
appears as the dual property of a more natural condition on the basis F , namely the
positivity of the multiplication coefficients. This property is called the GKS property in
[7] because of its links with some famous correlation inequalities in statistical mechanics,
and we keep this notation. These correlation inequalities did in fact motivated our efforts
in this direction (see paragraph 2.6). Many examples come from the representation theory
of groups, but we propose a systematic exposition. The hypergroup property provides a
convolution operation on the set of probability measures on the space, and the Markov
kernels may be represented as the convolution with some given measure. In this situation,
the hypergroup property appears as a special property of an orthogonal matrix. We shall
see that in fact there are many situations where no group structure hold and where
nevertheless the hypergroup property holds.

The second part is devoted to the presentation of Achour’s theorem, which states
this property for the basis of eigen vectors of a Sturm-Liouville operator with Neuman
boundary conditions, associated to a log-concave symmetric measure on a compact in-
terval. The original Achour’s theorem was not stated exactly in the same way, but his
argument carries over very easily in our context. We give a complete proof of this result,
since to our knowledge this proof was never published. We tried to relax the symmetry
condition on the measure, and provide various rather technical extensions of the theorem.
But we did not succeed to extend Achour’s theorem to a wider class of measures which
would include the case of Gasper’s theorem on Jacobi polynomials studied in the next
chapter. The real motivation of this effort is that in general, log-concave measures on R

or on an interval serve as a baby model in Riemannian geometry for manifolds with non
negative Ricci curvature. Unfortunately, the symmetry condition does not seem to have
any natural interpretation.

In the last part, we present Gasper’s theorem, which states hypergroup property for
the Jacobi polynomials. We present a proof which relies on geometric considerations on
the spheres when the parameters are integers, and which easily extends to the general
case. We follow Koornwinder’s proof of the result, and give a natural interpretation of
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Koornwinder’s formula (lemma 5.3) which represents those polynomials as the moments of
some complex variable. We found after the redaction of this part that the interpretation
of Jacobi polynomials as harmonic functions was already known from specialists (see
[12, 20, 30]) but it seems that it was not directly used to prove this integral representation
formula. We hope that this simple interpretation may provide other examples for similar
representation in other contexts.

2 The finite case

In this section, we restrict ourselves to the case of finite sets, since in this context most
of the ideas underlying the general setting are present, and we so avoid all the analytic
complexity of the more general cases that we shall study later on.

2.1 The GKS property

In what follows, we assume that our space is a finite set

E = {x0, . . . , xn},

endowed with a probability measure

µ = (µ(x0), . . . , µ(xn))

with a real basis
F = (f0, . . . , fn)

with f0 = 1. We suppose here that for any x ∈ E, µ(x) > 0.

We shall write 〈f〉 for
∑

fdµ and 〈f, g〉 for
∑

fgdµ.

The algebra structure of the set of functions is reflected in the multiplication tensor
(aijk) for which

fifj =
∑

k

aijkfk.

We therefore have
aijk = 〈fifjfk〉,

and we see that the tensor (aijk) is symmetric in (ijk). It has also another property which
reflects the fact that the multiplication is associative.

Definition 2.1. We shall say that F has the property GKS if all the coefficients (aijk)
are non negative.
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This notation comes from the GKS inequality in statistical mechanics that we shall
describe at the end of this section.

Observe that aij0 = δij .

Many natural bases F share this property. For example, consider the hypercube
E = {−1, 1}N , with the uniform measure on it. Let ωi denotes the i-th coordinates

ω = (ω1, . . . , ωn) 7→ ωi,

and, for A ⊂ {1, . . . , N}
ωA =

∏

i∈A

ωi, ω∅ = 1.

Then,
F = {ωA, A ⊂ {1, . . . , N}}

is a UOB of (E, µ). Since
ωAωB = ωA∆B,

it has the GKS property.

(We shall see later that this is a special case of a generic situations in finite groups).

Although we are here mainly interested in the case of a real basis, there are many
natural complex GKS bases, issued in general from the representation theory of finite
groups (see paragraph 2.5 later). If the basis is complex, we shall still require that the
multiplication coefficients are non negative real numbers, which means that

aijk = 〈fifj f̄k〉 ≥ 0,

for any (i, j, k).

In what follows, we only consider real GKS bases, although the next result remains
probably true in the complex setting.

Proposition 2.2. If a UOB has the GKS property, then there exists a unique point x0

on which every fi(x0) is maximal. Moreover, for any i, |fi| (x) ≤ fi(x0), and at this point
x0, µ(x0) is minimal.

Proof. — Let us say that a function f : E 7→ R is GKS if for any i = 0, . . . , n, 〈ffi〉 ≥ 0.
This amounts to say that f is written in the basis F with positive coefficients.

We shall say that a set K ⊂ E is GKS if 1lK is a GKS function. We shall say that a
point x is GKS if {x} is a GKS set.

We shall see that there is only one GKS point.

Remark first that the sum of two GKS functions is GKS and that, thanks to the GKS
property of F , the product of two GKS functions is GKS. Also, a limit of GKS functions
is GKS. Observe also that a GKS function has always a non negative integral with respect
to µ.
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Let us consider a non zero GKS function f and consider m = maxx∈E |f |. We see first
that {f = m} 6= ∅.

For this, assume the contrary, that is that f = −m on |f | = m. Since m > 0, we

see that f2p+1

m2p+1 is a GKS function, and converges to −1l{f=−m}. Since a GKS function has
positive integral, this is impossible. Using the same argument, we see that

1

2
(lim

n

f 2n

m2n
+ lim

n

f 2n+1

m2n+1
) = 1l{f=m}

is a GKS function.

Therefore, the set {f = m} is a GKS set, and there are non trivial GKS sets.

Moreover, for any GKS function, the set {f = max |f |} is GKS.

Let E1 be a nonempty GKS set, minimal for the inclusion. Then, for any GKS function
f , g = 1lE1

f is GKS. If g is not 0, then its maximum is attained on a subset E2 of E1

which is again GKS. Since E1 is minimal, we have E2 = E1.

Therefore, for any GKS function, its restriction g to E1 is either 0 on E1, either
constant (and equal to the maximum of g). In any case, f is constant on E1. Since it
applies for all the functions fi ∈ F , and since F is a basis, every function is constant on
E1 and therefore E1 is reduced to a single point {x0}.

The same proof shows that any GKS set contains a GKS point.

For a GKS point x0, fi(x0) =
〈fi1lx0

〉
µ(x0)

≥ 0.

Then, consider two distinct points x0 and x1, and write

1lx0

µ(x0)
=
∑

k

fk(x0)fk,
1lx1

µ(x1)
=
∑

k

fk(x1)fk.

Writing the product, we see that

0 =
1lx0

1lx1

µ(x0)µ(x1)
=
∑

ijk

aijkfi(x0)fj(x1)fk,

with the multiplication coefficients aijk.

We see that for any pair of distinct points, and for any k,

∑

ij

fi(x0)fj(x1)aijk = 0.

Suppose then that x0 and x1 are GKS points. In the previous sum, all coefficients are
non negative. Therefore, for any (i, j, k)

aijkfi(x0)fj(x1) = 0.

5



If we apply that with i = 0 and j = k, we see that fj(x1) = 0, for any i. This is impossible
since then any function would take the value 0 in x1.

Let x0 be this unique GKS point. Any GKS set contains x0. Since for any GKS
function, the set where f is maximum is GKS, any GKS function attains its maximum at
x0.

It remains to show that µ is minimal at x0. For this, observe that for any point x, the
function

fx = µ(x)1lx0
− µ(x0)1lx

is GKS (this comes from the fact that each fi is maximal at x0). Therefore, the maximum
value of |fx| is attained in x0, which gives the result.

2.2 Orthogonal matrix representation

Consider the matrix
(Oij) =

(

√

µ(xi)fj(xi)
)

,

we see easily that the matrix (Oij) is an (n+1)× (n+1) orthogonal matrix with positive

first column (Oi0) =
√

µ(xi).

Conversely, any such matrix may be considered as associated to a UOB on a finite set
with measure µ given by

µ(xi) = O2
i0.

Therefore, there is a one to one correspondence between the set of orthogonal matrices
with positive first columns, and the set of finite probability spaces, whose probability
has everywhere positive weight, endowed with a UOB. (In fact, this is not completely
true, since we would not distinguish between bases given in different orders, provided
that the first element is 1, which identifies the set of UOBs with a quotient of a the set
of orthogonal matrices through a permutations of rows and columns.)

The GKS property may be translated into the property of such an orthogonal matrix
as

(2.1) ∀j, k, l,
∑

i

OijOikOil

Oi0
≥ 0.

The transposed of an orthogonal matrix is orthogonal, and we just saw that an orthog-
onal matrix which has the GKS property also has non negative row. We may of course
rearrange the labelling of the points in such a way that this row is the first one. Then,
the situation is completely symmetric.
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We shall then consider the squares of terms in the first row as a probability measure
on the dual set {0, 1, . . . , n} :

ν(i) = µ(x0)f
2
i (x0).

Thanks to the fact that the functions fi are maximal at x0 and that this maximum
must be larger than 1 (since

∫

f 2
i dµ = 1), the dual measure is also minimum at 0.

As an application, we may see that the unique example of a real GKS basis with the
uniform measure is the case of the hypercube.

To see this, we first observe that the dual measure is uniform too. In fact, for the
matrix (Oij), we have O00 = 1√

n+1
, where n+ 1 is the number of points in the space, and

since the first row is positive and has minimum value 1√
n+1

, it must be constant since the
sum of the squares of its coefficients is 1.

Now, if we multiply the matrix O by
√
n + 1, then we see that in each column, the

maximum value of the coefficients is attained on the first row and is equal to 1. Since the
sum of all the squares of the coefficients in a given column must add to n+ 1, this shows
that in any column, the coefficients must take only values ±1.

Now, playing a bit with the orthogonality relations, we see that the cardinal of the
space must be n + 1 = 2k fore some k, and then that the values are those of the basis
(ωA).

Nevertheless, we shall see in paragraph 2.5 that there always exists a complex GKS
basis on any finite set with uniform measure.

On two points, an easy computation shows that a two dimensional orthogonal matrix
having the GKS property must be

(

cos θ sin θ
sin θ − cos θ

)

with θ ∈ [π/4, π/2). In fact, in dimension 2, given the measure (giving two distinct
positive masses on the two points), there are exactly two UOB, and only one such that
the unique non constant function is maximal on the point with minimal mass (a necessary
condition to have the GKS property as we saw). In this situation, any GKS matrix is
symmetric, and the set of orthogonal matrices having the GKS property is connected.

On three points, the situation is more complicated. We saw for example that there are
no real GKS basis when the measure is uniform. The set of GKS UOBs on three points
is connected, and one may see that the maximum value of µ(x0) for which there exists
a GKS basis is µ(x0) = 1/4, and in this case the probability measure is (1/4, 1/4, 1/2)
and the unique GKS basis is obtained taking the real parts of the characters in the group
Z/4Z (we shall see later in paragraph 2.5 how to associate complex or real GKS bases
to any finite group). There is also a complex GKS basis with the uniform measure (the
characters of the group Z/3Z).
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2.3 The hypergroup property.

As we saw before, when we have the GKS property, the situation is completely symmetric
and we may consider the dual property. This is the hypergroup property.

Definition 2.3. We shall say that the UOB F of L2(µ) satisfies the hypergroup property
(HGP in short) at point x0 if for any (x, y, z) ∈ E3,

K(x, y, z) =
∑

i

fi(x)fi(y)fi(z)

fi(x0)
≥ 0.

Of course, this supposes that for any i, fi(x0) 6= 0.

We do not require the GKS property to hold for the HGP property.

Remark. — Since we may always change for any i ≥ 1 fi ∈ F into −fi, and still get an
UOB, and that this operation does not change the hypergroup property, we see that we
may always assume that fi(x0) > 0.

To see the duality with the previous situation, let us enumerate the points in E starting
from x0, and recall our orthogonal matrix O with Oij =

√

µ(xi)fj(xi).

Then, under the GKS condition, O has non negative first line and first column. Recall
that the GKS property may be written as

∀j, k, l,
∑

i

OijOikOil

Oi0

≥ 0.

while the HGP property writes

∀j, k, l,
∑

i

OjiOkiOli

O0i
≥ 0,

Notice also that if both properties occur, then the point x0 must be the unique point
where all the functions fi are non negative, and that they are maximal at this point.

From the symmetry of the situation, we may consider the functions

gx(i) =
Oxi

O0i

as an UOB on the set {0, . . . , n} endowed with the measure ν(i) = O2
0i.

From this we deduce that a basis has the HGP property if and only if this new basis
has the GKS property, where of course the point 0 plays the role of the point x0 in
the previous paragraph. Therefore, the gx(i) are maximal at i = 0, and moreover 0i0 is
minimal at i = 0. This means that, for the HGP property also, one has
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Proposition 2.4. If the UOB F has the HGP property at point x0, then

∀i, x, |fi(x)| ≤ fi(x0); ∀x, µ(x) ≥ µ(x0).

(Recall that we assume that fi(x0) > 0.)

We may reformulate the HGP property in the following way, which we shall use later
in a different context, since it is more tractable.

Proposition 2.5. The UOB F has the HGP property if and only if there is a probability
kernel k(x, y, dz) such that, for any i = 0, . . . , n

fi(x)fi(y)

fi(x0)
=

∫

fi(z)

fi(x0)
k(x, y, dz).

Proof. — The proof is straightforward. If the hypergroup property holds, then the kernel

k(x, y, dz) =

(

∑

i

fi(x)fi(y)fi(z)

fi(x0)

)

µ(dz)

is a probability kernel satisfying our conditions.

On the other hand, if such a probability kernel k(x, y, dz) exists, then writing

k(x, y, dz) = K1(x, y, z)µ(dz)

and
K1(x, y, z) =

∑

i

ai(x, y)fi(z),

one sees that

ai(x, y) =
fi(x)fi(y)

fi(x0)
.

The link with the Markov operators is the following.

Definition 2.6. A Markov operator is just an operator K which satisfies K(1) = 1 and
which preserves non negative functions.

Given a sequence λ = (λi, i = 0, . . . , n), we define the associated linear operator Kλ

by
Kλ(fi) = λifi.

A Markov sequence (MS in short) is a sequence λ = (λi) such that the associated operator
Kλ is a Markov operator.
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Remark that for any MS λ, one has λ0 = 1. Remark also that

Kλ(f)(x) =

∫

f(y) kλ(x, dy),

where

kλ(x, dy) =

(

∑

i

λifi(x)fi(y)

)

µ(dy).

Therefore, the set of MS’s is just the set of sequences λ such that the matrices kλ(x, y)
are Markov matrices.

The HGP property asserts that, for any x, the sequence

λ(x) =

(

fi(x)

fi(x0)

)

i=0,...,n

is a MS.

It is quite standard to see that any eigenvalue λi of a Markov operator must satisfy
|λi| ≤ 1.

The set of Markov sequences is a convex compact set, which is stable under point
multiplication.

The main interest of this property relies in the following.

Theorem 2.7. If the basis F has the HGP property, then all Markov sequences may be
written as

(

λi =

∫

fi(x)

fi(x0)
dν(x)

)

i

for some probability measure ν on E.

More precisely, the sequences
(

λi(x) = fi(x)
fi(x0)

)

i
are the extremal points in the convex

set of all Markov sequences.

The main interest of this result is that there exist numerous natural L2 bases with the
HGP property, as we shall see later.

Proof. — The representation formula is straightforward. Indeed, writing ν(dy) = kλ(x0, dy),
one has

λifi(x0) =

∫

fi(y) ν(dy),

which gives the representation.

From this, it is easy to see that if the sequences (λi(x))i are Markov sequences, then
they are extremal. Indeed any representation

fi(x)

fi(x0)
= θλ1

i + (1 − θ)λ2
i
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with MS’s λ1 and λ2 leads to

fi(x) =

∫

fi(y) ν(dy),

with
ν(dy) = θKλ1(x0, dy) + (1 − θ)Kλ2(x0, dy).

From this we deduce that for any function f

f(x) =

∫

f(y) ν(dy),

and therefore ν = δx, which gives the extremality.

Remark. — Observe the following: when the hypergroup property holds, the set of
Markov sequences in imbedded in a n-dimensional affine space (the affine space gener-
ated by the n + 1 points in the extremal set). Moreover, this is a n-simplex and the
representation of a point in this set as affine combinations of extremal points is unique.

We may ask for which kind of L2 basis on a finite space this still happens. It is
quite clear that the cardinal of the set of extremal Markov sequences is finite. Indeed,
if we consider the n-dimensional affine space H1 = {(λi), λ0 = 1}, the set of Markov
sequences is delimited by a finite number of (n − 1)-hyperplanes in E1. Namely, for any
pair (x, y) of points in E, one considers the half space defined by {〈λ, F x,y〉 ≥ 0}, where
F x,y = (fi(x)fi(y)). Then the set of Markov sequences is the intersection of all these half
spaces. Therefore, all the extremal points lie in the finite set E1 of possible intersections
of the hyperplanes Hx,y = H1 ∩ 〈λ, F x,y〉 = 0. Now, consider any point x0 such that for

any index i, fi(x0) 6= 0. The point λx/x0 = ( fi(x)
fi(x0)

) belongs to Hx0,y for any y 6= x, thanks

to the orthogonality relations of the basis. Therefore, those points λx/x0 belong to the set
E1. When x0 is fixed and x varies in E, those points describe a simplex Sx0

for which we
know that all the Markov sequences belong to it. The hypergroup property holds at some
point x0 exactly when no other point in E1 lie in the interior of Sx0

.

On three points, one may check directly that the hypergroup property holds at some
point x0 exactly when the set of Markov sequences is a simplex (that is no other simplex
is possible than the simplices Sx, x ∈ E). We may wonder if this situation is general, that
is if the hypergroup property is equivalent to the fact that the set of Markov sequences is
a simplex.

2.4 Markov operators as convolutions

When the hypergroup property holds, we may introduce a convolution on the space of
measures.

Indeed, consider the kernel

k(x, y, z) =
∑

i

fi(x)fi(y)fi(z)

fi(x0)
.

11



We observe that, for any (x, y)
∫

k(x, y, z) µ(dz) = 1,

and therefore the measures

µx,y(dz) = k(x, y, z) µ(dz)

are probability measures.

We may decide that the convolution is defined from this kernel by

δx ∗ δy = µx,y,

and extending it to any measure by bilinearity.

Moreover, we extend the convolution to functions by identifying a function f with the
measure fdµ. This gives

f ∗ g(z) =

∫

f(x)g(y)k(x, y, z) dµ(x)dµ(y).

Observe that

(2.2) fi ∗ fj = δij
fi

fi(x0)
,

and that this property again completely determines the convolution.

It is easy to verify that this convolution is commutative and that δx0
∗ ν = ν for any

ν. Moreover, if an operator K satisfies K(fi) = λifi, then

K(f ∗ g) = K(f) ∗ g = f ∗K(g),

as may be verified directly when f = fi and g = fj using 2.2.

On the other hand, if ν is a probability measure, then the operator Kν(f) = f ∗ ν is
a Markov operator which satisfies

Kν(fi) = λifi,

with

λi =

∫

fi dν

fi(x0)
.

This is straightforward using 2.2 if we write ν(dx) = h(x)µ(dx) and the decomposition of
h along the basis F .

Therefore, if K is a Markov operator, then we have

K(f) = K(f ∗ δx0
) = f ∗K(δx0

).

This representation is exactly the representation of Markov sequences, with ν = K(δx0
),

and every Markov operator Kλ may be defined from Kλ(f) = f ∗ ν, for some probability
measure ν.

12



2.5 The case of finite groups

Many natural examples of finite sets endowed with a probability measure and a UOB
which satisfies both GKS and HGP properties come from finite groups.

Since perhaps not every reader of these notes is familiar with this setting, let us
summarize briefly the basic elements of the analysis on groups. We refer to [19] or [27]
for more details.

Given a finite group G, one may consider linear representations ρ : G 7→ U(V ),
that is group homomorphisms between G and some U(V ), for some finite dimensional
Hermitian space V (where U(V ) denotes the unitary group of V ). Such a representation
is irreducible if there is no non trivial proper subspace of V which is invariant under
ρ(G). Any representation may be split into a sum of irreducible representations, acting
on orthogonal subspaces of V . Two representations (ρ1, V1) and (ρ2, V2) are equivalent if
there exists a linear unitary isomorphism h : V1 7→ V2 such that ρ1(g) = h−1ρ2(g)h for
any g ∈ G.

There are only a finite number of non equivalent irreducible representations, that we
denote (ρi, Vi), i ∈ I = {0, . . . , n}.

Let Ĝ the set of the equivalence classes of G under the conjugacy relation (g1 is
conjugate to g2 is g2 = g−1g1g for some g ∈ G). We endow Ĝ with the probability ν
which is image measure of the uniform measure on G, that is the measure of any class is
proportional to the number of points in this class. A function on G which is constant on
conjugacy classes (that we call a class function) is in fact a function on Ĝ. It is just a
function which is stable under conjugacy.

For any irreducible representation (ρi, Vi), if we denote χi(g) = trace (ρi(g)), the func-
tion χi is a class function, that is is constant on any conjugacy class. This is the character
of the representation. By convention, we take χ0 = 1, that is the trace of the constant
representation into the space V = {C}.

We have

Proposition 2.8. The set {χi, i ∈ I} is a (complex) UOB for (Ĝ, ν). Moreover, it has
the GKS and HGP properties.

Proof. — We shall not enter in the details here. We refer to any introduction book on
the representation theory of finite groups for the first fact. We shall detail a bit more the
HGP and GKS properties, which are perhaps less standard.

For the GKS property, for any pair of irreducible representations (ρi, Vi) and (ρj , Vj),
one may consider the representation ρi ⊗ ρj in the tensor product Vi ⊗ Vj. If we split this
representation into irreducible representations and take the trace, and if we notice that
trace (ρ1 ⊗ ρ2) = trace (ρi)trace (ρ2), then we get that

χiχj =
∑

k

mijkχk,
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where mijk is the number of times that the representation ρk appears in this decomposi-
tion. Here we may see that not only the multiplication coefficients are positive, but they
are integers.

We shall see next that this basis has the HGP property at the point x0 = e (which is
a class by itself). For that, we require a bit more material.

First define the convolution on the group G itself by

φ ∗ ψ(g) =
1

|G|
∑

g′∈G

φ(gg′−1)ψ(g′).

The Fourier transform is defined on the set I of irreducible representation as

φ̂(i) =
∑

g∈G

φ(g)ρi(g).

(It takes values in the set of linear operators on Vi.)

One has an inversion formula

φ(g) =
1

|G|
∑

i

ditrace
(

ρi(g
−1)φ̂(i)

)

,

where di is the dimension of Vi (the degree of the representation).

One has
(φ ∗ ψ)̂ = φ̂ψ̂,

and

χ̂j(i) = δij
|G|
di
.

Now, the convolution of two class functions is again a class function, as seen directly
from the definition.

We want to show that this convolution is exactly the convolution that we defined in
the previous section from the HGP property, that is

χi ∗ χj = δij
χi.

χi(e)
.

For that, we look at the Fourier transform and the result is straightforward, since χi(e) =
di.

This convolution is then the convolution defined from the χi, and we have

δx ∗ δy = k(x, y, z)dµ(z),

where

k(x, y, z) =
∑

i

χi(x)χi(y)χi(z)

χi(e)
.
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Since by construction in this case the convolution of two probability measures is a
probability measure, the kernel k(x, y, z) is non negative, which proves the HGP property.

Observe that here the kernel k(x, y, z) has a simple interpretation. Given 3 classes
(x, y, z), then

k(x, y, z) =
|G|

|x| |y|m(x, y, z),

where m(x, y, z) is, for any point g ∈ z, the number of ways of writing g = g1g2 with
g1 ∈ x and g2 ∈ y, this number being independent of the choice of g ∈ z.

If we want to stick to real bases as we did before (and as we shall do in the next
chapters), we may restrict ourselves to real groups (that is groups where g and g−1 are
always in the same class), or we may agglomerate the class of g with the class of g−1. We
get a new probability space, where the functions ℜ(χi) form an UOB which again satisfies
the GKS and HGP properties.

It is certainly worth to notice that, unlike the convolution on G itself, the convolution
on Ĝ is always commutative.

Observe that taking the group Z

nZ
, one gets a complex GKS and HGP UOB on the set

of finite points with the uniform measure (with fl(x) = exp(2iπlx)), and that the unique
real case where the measure is uniform and is GKS (the hypercube) is nothing else that
the group (Z/2Z)n.

Unlike what happens for finite groups, it is not true in general that a basis F which
has the GKS property has the dual property HGP.

This is the case on two points spaces, since any orthogonal GKS matrix is symmetric.

If we look at the sets with three points, one may construct examples of an orthogonal
matrix having the GKS property without the HGP property (and conversely, of course).
In fact, consider an orthogonal matrix (Oij), 0 ≤ i, j ≤ 2, with positive first row and
columns. Then O00, O01 and 010 determine entirely the first rows and columns, and then
it is easy to see that there are only 2 orthogonal matrices with given O00, O01, O10.

On three points, it is not hard (using a computer algebra program) to produce orthog-
onal matrices which have the GKS and not the HGP property, or which have neither, or
both.

2.6 On the GKS inequalities

We conclude this section with some remarks on the correlation inequalities in statistical
mechanics.

In this context, one is interested in the space of configurations of some system. We
have a set of positions i ∈ K, K being a finite set, and at each point i ∈ K there is
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some random variable xi with values in E, where E is some finite set, endowed with a
probability measure µ. One is then interested in the set EK of configurations, which is
equipped with a measure µH , where

µH(dx) = exp(H(x))
µ0(dx)

ZH
,

where µ0 is the product measure µ⊗K on EK , H is some function on EK (the Hamiltonian),
and ZH is the normalizing constant.

One of the basic example of spin systems is when E = {−1, 1}, and H =
∑

A cAωA,
where the functions ωA are the canonical GKS basis on {−1, 1}K described before.

To study such systems (and more precisely their asymptotics when K enlarges), one
uses some structural inequalities. We present here two fundamental such inequalities,
known as GKS inequalities, from Griffiths [24], Kelly and Sherman [28]. The GKS prop-
erty for a basis has been introduced in [7], in an attempt to generalize the GKS inequality
to a more general context.

The classical GKS inequalities are settled in the context of ( Z

2Z
)K . As before, we say

that F is a GKS function if F =
∑

A⊂K fAωA, where ∀A, fA ≥ 0.

Then we have

Proposition 2.9. 1. (GKS1 inequality). Assume that F and H are GKS. Then

∫

F dµH ≥ 0.

2. (GKS2 inequality). Assume that F,G and H are GKS functions. Then

∫

FG dµH ≥
∫

F dµH

∫

G dµH .

The main advantage of the GKS and hypergroup properties is that they are stable
under tensorisation. That is, if one considers two sets (Ei, µi) with UOB bases Fi (i =
1, 2), then, on the set (E1 ×E2, µ1⊗µ2) one has a natural UOB basis F1 ⊗F2 = (fi ⊗fj).
Then, if both Fi are GKS or HGP, the same is true for F1 ⊗F2. This is straightforward
from the definitions.

This allows us to consider a set (E, µ) with a given GKS basis F , and then the basis
F⊗K on EK is again GKS.

One has the following ([7])

Proposition 2.10. If (E, µ) has an UOB F which is GKS, then the GKS1 inequality is
true.
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Proof. — The previous statement just means that if we define a GKS function F as a
function which may be written as F =

∑

i Fifi, where (fi) are the elements of F and ∀i,
Fi ≥ 0, then if F and G are GKS functions, one has

∫

F dµH ≥ 0.

The statement is straightforward, since exp(H) is again GKS, being the sum of a series
with non negative coefficients, and such is F exp(H). Since any GKS function has a
positive integral, the conclusion follows.

The GKS2 inequality is much harder. It has only be obtained in some restricted
settings, like products of abelian groups, and when the basis comes from GN for G ele-
mentary groups like dihedral groups, and some for other few groups. Nevertheless, in any
example, one has both the GKS and the HGP property.

There is no example of a GKS basis where the GKS2 inequality is not satisfied. But
we may restrict ourselves to a simpler setting.

Here is one conjecture that we had been unable to prove, and which motivated most
of the material of this section :

Conjecture. — If the UOB F has the GKS and the HGP property, then the GKS2
inequality is true.

3 The hypergroup property in the infinite setting

In the first section, we described the hypergroup property in the context of finite set.
In what follows, we consider a general probability space (E, E , µ), together with an L2

basis F = {f0 = 1, f1, . . . , fn, . . .). Very soon, we shall restrict ourselves to the case of a
topological space (in fact an interval in the basic examples of sections 4.3 and 5), where
the functions fi of the basis will be continuous bounded functions. But some general
properties may be stated in a more general context.

3.1 Markov sequences associated to an UOB

Let (E, E , µ) a general probability space. In this subsection, we shall ask (E, E) to be at
least a ”nice” measure space in the context of measure theory. For us, it shall be enough
to suppose that E is a separable complete metric space (a polish space) and that E is the
σ-algebra of its σ-field. Then L2(µ) is separable.

We suppose that some L2(µ) orthonormal basis F = (f0, . . . , fn, . . .) is given, with
f0 = 1. In what follows, we shall assume that this is a basis of the real Hilbert space
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L2(µ), although we may as well assume that the functions fn may have complex values
and be a basis of the complex Hilbert space. Such a unitary basis F will be called a
Unitary Orthonormal Basis (UOB) associated with the measure µ.

We are interested in bounded linear operators K on L2(µ), for which the functions fn

are eigen-vectors. They are uniquely determined by

K(fn) = λnfn,

for some bounded sequence (λn). The central question we address here is to determine
for which sequences (λn) one has

K(f)(x) =

∫

E

f(y) k(x, dy),

for some Markov kernel k(x, dy) of probability measures on E.

As before, we shall call such a sequence (λn) a Markov Sequence (MS in short) asso-
ciated to the UOB F . We shall say that the kernel k (or rather K with a slight abuse of
notation) is associated with the MS (λn).

In general, this is not an easy question, but as before the hypergroup property of the
basis will be a way of describing all Markov sequences.

Let us start with some basic remarks.

First, for any Markov operator, K(f0) = f0, since f0 is the constant function, and
therefore λ0 = 1.

Also, any such Markov operator is symmetric in L2(µ), since we already know its
spectral decomposition which is discrete and given by the basis F . That means that for
any pair (f, g) of functions in L2(µ), one has

∫

K(f)(x)g(x) µ(dx) =

∫

f(x)K(g)(x) µ(dx).

Therefore, the measure K(x, dy)µ(dx) is symmetric in (x, y).

But any Markov operator is a contraction in L∞(µ), and any symmetric Markov kernel
is a contraction in L1(µ), since, for any f ∈ L2(µ),

∫

|K(f)| dµ ≤
∫

K(|f |) dµ =

∫

|f |K(f0) dµ =

∫

|f | dµ.

Therefore, by interpolation, K is a contraction in Lp(µ) for any p, and in particular
in L2.

We deduce from that that any MS (λn) satisfies

∀n, |λn| ≤ 1.
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Also, if (λn) and (µn) are MS’s, with associated kernels K and K1, for any θ ∈ [0, 1],
(θλn + (1 − θ)µn) is a MS, associated with the kernel θK + (1 − θ)K1.

Therefore, the set of Markov Sequences is convex, and compact (for the product topol-
ogy on RN). This shows that describing all Markov sequences amounts to describe the
extremal points of this convex set.

Notice also that the set of all Markov sequences is stable under pointwise multipli-
cation, which corresponds to the composition of operators. In other words, if Θ is the
set of extremal points in the compact set of Markov sequences, and if (λi(θ)) is the MS
associated to the point θ ∈ Θ, then one has

λi(θ)λi(θ
′) =

∫

Θ

λi(θ1) R(θ, θ′, dθ1),

for some probability kernel R(θ, θ′, dθ1) on the space Θ.

To determine that an operator K is a Markov operator starting from its spectral
decomposition, we shall need the following proposition.

Proposition 3.1. A bounded symmetric operator K on L2(µ) is a Markov operator if
and only if

K(f0) = f0, f ≥ 0 =⇒ K(f) ≥ 0.

Proof. — This is where we need the fact that the measure space (E, E , µ) is a nice space.
The conditions on K are obviously necessary. To see the reverse, we apply the bi-measure
theorem ([18], page 129). We consider the map

E × E 7→ [0, 1] : (A,B) 7→
∫

1lAK(1lB) dµ(x).

For any fixed B, this is a measure in A, and by symmetry, it is also a measure in B. Since
our spaces are polish spaces, theses measures are tight, and therefore we may extend this
operation into a measure µK(dx, dy) on the σ-algebra E × E . The measure is symmetric,
and any of its marginal is µ.

Then, we apply the measure decomposition theorem to write

µK(dx, dy) = K(x, dy)µ(dy).

The kernel K(x, dy) is exactly the kernel we are looking for.

3.2 The hypergroup property

The GKS property is relatively easy to state in a general context, as soon as the functions
fi of the basis are in L3(µ), since then we may just ask that

∀(i, j, k),

∫

E

fififk dµ ≥ 0.
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But for the dual hypergroup property, one has to be a bit more cautious. In general,
functions in L2 are defined up to a set a µ-measure 0. Therefore, the meaning of fi(x)

fi(x0)
is

not so clear. In order to avoid difficulties, and since this shall correspond to the examples
we are going to describe below, we restrict ourselves to the following setting : E is a
compact separable Hausdorff space, and the functions fi are continuous on E.

We may then set the following definition.

Definition 3.2. We shall say that the UOB F has the hypergroup property at some point
x0 ∈ E , if, for any x ∈ E, the operator defined on F by

Kx(fi) =
fi(x)

fi(x0)
fi

is a Markov operator.

In other words, we require the sequences fi(x)
fi(x0)

to be Markov sequences.

Observe that this implies that |fi| is maximal at x0, since the eigenvalues of a Markov
operator must be bounded by 1. Since the functions fi are normalized in L2(µ), then for
any i ∈ N, one has |fi(x0)| ≥ 1.

As before, this definition is equivalent to the following

Proposition 3.3. The UOB F has the HGP property at the point x0 if and only if there
exists a probability kernel K(x, y, dz) such that, for any i ∈ N

fi(x)fi(y)

fi(x0)
=

∫

fi(z) K(x, y, dz).

Proof. —

We shall mainly use this in the obvious way : if there is a probability kernel K(x, y, dz)
satisfying the hypothesis of the proposition, then the HGP property holds. In fact, if such
a probability kernelK(x, y, dz) exists, for any x ∈ E, the Markov kernelK(x, y, dz) defines

a Markov operator with Markov sequence fi(x)
fi(x0)

.

For the reverse, if the HGP property holds, there exists for any x a Markov kernel
kx(y, dz) which satisfies

fi(x)fi(y)

fi(x0)
=

∫

fi(z) kx(y, dz).

It remains to turn this family of kernels into a two parameter kernel K(x, y, dz).

Sometimes, it is easier to see the HGP property in the reverse way.

Proposition 3.4. If there exists a non negative kernel k(x, dy, dz) such that for any i, j
∫

fi(y)fj(z) k(x, dy, dz) = δij
fi(x)

fi(x0)

then the HGP property holds at the point x0.
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Proof. — Remark first that from our hypotheses, the kernel k(x, dy, dz) is a probability
kernel (taking i = j = 0 in the definition).

Now, the two marginals of the kernel k(x, dy, dz) are equal to µ, since
∫

fi(y) k(x, dy, dz) = δ0i,

which shows that those marginals and µ give the same integral to any fi, and therefore
to any L2 function.

We may then decompose the kernel k(x, dy, dz) = k1(x, y, dz)µ(dy).

Since the functions fi are bounded, we may consider the bounded functions

Hi(x, y) =

∫

fi(z) k1(x, y, dz).

From the definition of k1 and the hypothesis on k, it is straightforward to check that
∫

Hi(x, y)fk(x)fl(y) µ(dx)µ(dy) = δilδik
1

fi(x0)
,

and hence

Hi(x, y) =
fi(x)fi(y)

fi(x0)
.

Therefore k1 satisfies the hypotheses of proposition 3.3 and the proof is completed.

The representation of Markov sequences is then the same than in the previous section.

Theorem 3.5. If the UOB F has the hypergroup property, then any Markov sequence has
the representation

λi =

∫

E

fi(x)

fi(x0)
ν(dx),

for some probability measure ν on E. Moreover, the Markov sequences fi(x)
fi(x0)

are the
extremal Markov sequences.

Proof. — The proof is exactly similar to the finite case (theorem 2.7).

Remark that the series K(x, y, z) =
∑

i
fi(x)fi(y)fi(z)

fi(x0)
does not converge in general.

We shall see in the examples developed in the next section that the formal measure
K(x, y, z)µ(dz) is not absolutely continuous with respect to µ, and may have Dirac masses
at some points.

But we may still define a convolution structure from fi ∗ fj = δij
fi

fi(x0)
, which maps

probability measures onto probability measures, and all Markov kernels associated with
F would be represented as K(f) = f ∗ ν, for some probability measure on E. We give no
details here since this will not be used in the sequel.
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4 Sturm-Liouville bases and Achour’s theorem

4.1 The natural UOB associated with a measure on a compact
interval

In this section, we shall consider some natural infinite UOB coming from the spectral
decomposition of Sturm-Liouville operators on a compact interval of the real line.

Let us first describe the context. Consider a probability measure µ(dx) = ρ(x)dx on
some compact interval [a, b] ⊂ R. In what follows, we shall assume for simplicity that ρ
is smooth, bounded above and away from 0 on [a, b]. Associated with ρ is a canonical
differential operator

L(f)(x) = f ′′(x) +
ρ′

ρ
(x)f ′(x),

which is symmetric in L2(µ). We shall consider here L acting on function on [a, b] with
derivative 0 at the boundaries a and b (Neumann boundary conditions).

In this context, L is essentially self adjoint on the space of smooth functions with
f ′(a) = f ′(b) = 0 and there is an orthonormal basis

F = (f0 = 1, f1, . . . , fn, . . .)

of L2(µ) which is given by eigen-vectors of L satisfying the boundary conditions. This
means that there is an increasing sequence of real numbers

λ0 = 0 < λ1 < . . . < λn . . .

such that
Lfi = −λifi, f

′
i(a) = f ′

i(b) = 0.

From the standard theory of Sturm-Liouville operators, the eigenvalues λi are non
positive and simple. Therefore, there is for any λi a unique solution fi of the previous
equation, which has norm 1 in L2(µ) and which satisfies f(a) > 0. We refer to any
standard text book for details (see [13] or [34] for example).

This basis shall be called the canonical UOB associated with µ on [a, b].

The fact that we chose to deal with the Neuman boundary conditions and not with
the Dirichlet boundary conditions (f(a) = f(b) = 0) comes from the fact that we require
the function 1 to be an eigenvector of the operator.

It will be much more convenient in what follows, essentially for notational reasons, to
extend our functions by symmetry in a and b, (and the same for µ). In this way we may
consider that we are working on functions on the real line, which are symmetric under
x 7→ 2a− x, and are 2(b− a)-periodic.

The eigenvectors are perhaps not smooth then at the boundaries a and b, but they
are at least C2 (since they are solutions of the equation Lfi = −λifi at the boundary).
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The hypergroup property is stated at some point in [a, b]. In the finite case, we know
at which point we may expect the hypergroup property to hold : this is a point of minimal
mass. In the general case, such a reasoning does not hold, since one may choose a point
with minimal density to a given reference measure, but this depends on this choice.

Here, the basis F is the sequence of eigen-vectors of an elliptic second order differential
operator L symmetric in L2(µ). In this setting, there is a natural distance associated to
the operator L (in this precise example of Sturm-Liouville operators, this is the natural
distance on R). In any example we know, the point x0 is minimal in the following sense

(4.3) lim
r→0

µ(B(x0, r))

µ(B(x, r))
≤ 1.

We did not try to prove this in a more general context. However, it is not clear how
the properties of the operator L must be reflected in the properties of F to insure for
example that the maximal values of the eigen-vectors are attained at the same point, and
that this point is of minimal mass in the sense of (4.3).

4.2 Wave equations

In this context, one have some other interpretation of the hypergroup property.

On D = [a, b]2, we shall consider the following differential equation

(4.4) LxF (x, y) = LyF (x, y),

for a function F which has Neumann boundary conditions on the boundary of D. We
shall say that such a function is a solution of the (modified) wave equation.

We have to be careful here with the regularity assumption on the function F (x, y) that
we require. We shall see later that given any smooth function f(x) at the level x = x0,
with Neumann boundary condition, there is exactly one smooth function F (x, y) on D
which is solution of the equation 4.4 and satisfies F (x, y0) = f(x).

In fact, if f(x) =
∑

i aifi(x) is the L2 orthogonal decomposition of f , then

F (x, y) =
∑

i

ai

fi(y0)
fi(x)fi(y)

is a formal L2 solution of the wave equation, since

LxF =
∑

i

λi
ai

fi(y0)
fi(x)fi(y) = LyF.

But we do not even know (for the moment) that this solution is such that LxF is in
L2(µ⊗ µ).
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Therefore, we shall say that F is a weak L2 solution of 4.4 if for any smooth function
G(x, y) with Neumann boundary conditions on ∂D, one has

∫

[(Lx − Ly)G(x, y)]F (x, y) µ(dx)µ(dy) = 0.

Since
∫

Lx(F )G µ(dx)µ(dy) =

∫

Lx(G)F µ(dx)µ(dy)

for any pair of smooth functions F and G satisfying the Neumann boundary conditions,
then any ordinary solution is a weak one.

Now, given any L2(µ) function f(x), the above construction produces a weak L2(µ⊗µ)
solution F (x, y) satisfying the wave equation 4.4, and we claim immediately that this
solution is unique. In fact, writing the function F (x, y) as

F (x, y) =
∑

ij

aijfi(x)fj(x),

and using the fact that the eigenvalues are simple, one may check that if F satisfies weakly
4.4, then aij = 0 if i 6= j, from which we deduce our claim.

Observe moreover that a00 =
∫

F (x, y) µ(dx)µ(dy), and that for almost every y0,
F (x, y0) ∈ L2(µ) and that

∫

F (x, y0) µ(dx) =

∫

F (x, y) µ(dx)µ(dy).

It is not clear however that if F (x, y0) is smooth, then F (x, y) is smooth. This shall
be done later at least when y0 = a or y0 = b.

The link between solutions of the wave equation and Markov kernels is the following.

If a Markov kernel is Hilbert-Schmidt (that is if its eigenvalues λi satisfy
∑

i λ
2
i <∞),

then it may be represented as a

K(f)(x) =

∫

f(y)k(x, y) µ(dy),

where
k(x, y) =

∑

i

λifi(x)fi(y).

Therefore, there is a one to one correspondence between Hilbert-Schmidt Markov kernels
and non negative weak L2 solutions of the wave equation which satisfy

∫

F (x, y) µ(dx)µ(dy) = 1.

We then have the following
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Theorem 4.1. Assume that for any function f(x) on the interval [a, b] with Neuman
boundary conditions, there exists a unique C2 solution Hf (x, y) of the wave equation 4.4
on [a, b]2 such that H(x, y0) = f(x). Then, the HGP property holds at the point y0 for the
natural UOB associated with µ if and only whenever f ≥ 0 one has Hf ≥ 0 on I2.

In other words, the hypergroup property is equivalent to the fact that the wave equa-
tion is positivity preserving.

Proof. — Assume first that the hypergroup property holds at the point y0. Take any
smooth solution F (x, y) of the wave equation with F (x, y0) = f(x) ≥ 0. Then, from what
we just saw, one has

F (x, y) = Ky(f)(x),

where Ky is the Markov kernel with eigenvalues fi(y)
fi(y0)

. Therefore, F (x, y) is everywhere
non negative.

On the other hand, assume that any smooth solution of the wave equation which is
non negative on {y = y0} is non negative everywhere. Consider the heat kernel

pt(x, z) =
∑

i

exp(−λit)fi(x)fi(z).

We know that it is a smooth function on D, which is everywhere positive. Then,

Ft,z(x, y) =
∑

i

exp(−λit)

fi(y0)
fi(z)fi(x)fi(y)

is the unique L2 solution of the wave equation with Ft,z(x, y0) = pt(x, z).

Therefore, this function is non negative, and this shows that for any t > 0, the sequence

exp(−λit)
fn(z)

fn(y0)

is a Markov sequence. It remains to let t go to 0 to get the result, since a limit of Markov
sequences is a Markov sequence.

4.3 Achour’s theorem and wave equations

In what follows, we consider the case of a symmetric interval [−b, b]. Then we have

Theorem 4.2. (Achour) Assume that the density ρ is log-concave and symmetric on
[−b, b]. Then, the natural UOB associated with µ has the HGP property at the point −b.
In this case, we may as well choose x0 = b.

The same is true an any interval with any log-concave increasing density ρ.
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This result is one of the very few cases when one may produce hypergroup bases
without any kind of group structure on the space E. We shall see in the next chapter
that this property holds for Jacobi polynomials, but in this case, there are at least for the
integer values of the coefficients some interpretations of the convolution which reflects the
group action of some orthogonal group. There is absolutely no such interpretation in this
context.

In general, Achour’s result is stated with a density ρ which vanishes at the boundary.
Under the conditions usually stated in Achour’s theorem, there are then no difference
between Neumann and Dirichlet boundary conditions. The series

∑

i
fi(x)fi(y)fi(z)

fi(x0)
µ(dz) is

absolutely continuous with respect to the measure µ, which is not the case here.

We chose to present this result in the case where the density ρ is bounded below since
it seemed to us to be more natural.

Apparently, the proof of Achour’s theorem had never been published. We found a
mention of it in the reference book [11], with no proof. Most of the ideas presented here
come from Achour’s thesis.

Proof. — To prove this result, we shall make use of the characterization of the hypergroup
property in terms of the wave equation given in theorem. 4.1. We shall see in the next
paragraph that any smooth bounded function satisfying Neumann boundary condition
on [a, b] has a unique extension as a smooth solution of the wave equation 4.4, when x0

is one of the boundary points (see paragraph 4.5). (This has nothing to do with the
log-concavity of the measure or with the symmetry: this is just a consequence of the fact
that log(ρ) is smooth and bounded.)

We first treat the case where the density ρ is log-concave symmetric.

First we make use of the symmetry assumption. Then, any eigenvector of the operator
L on [−b, b] with Neumann boundary condition is either even or odd, since fi(−x) is also
an eigenvector with the same eigenvalue.

Then, any L2 solution F (x, y) of the wave equation 4.4, written as

F (x, y) =
∑

i

aifi(x)fi(y)

is symmetric under the change (x, y) 7→ (y, x) and under (x, y) 7→ (−x,−y).
We want to show that if F (x,−b) ≥ 0, then F (x, y) ≥ 0 everywhere. For this, it is

enough to show this on the domain D1 = {x+ y ≤ 0, x ≥ y}.
Also, we may change F into F + ǫ for any ǫ > 0, and we are thus reduced to prove

that the result is true when the function f on the boundary is bounded below by some
positive constant.

Then, a point M ∈ D1, let ∆M be the triangle delimited by the lines x + y = c and
x − y = c′ passing through M and the line y = −c. Let M− and M+ be the points
of this triangle which lie on the line {y = −b}, M− being the left point and M+ the
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right one (see figure 1). Let F be a smooth solution of the wave equation 4.4, and let
G(x, y) = F (x, y)ρ(x)ρ(y).

(4.5) 2G(M) = G(M−) +G(M+) +

∫

[M−M ]

G(s)a+(s) ds+

∫

[MM+]

G(s)a−(s) ds

where

a+(x, y) =
1√
2
(
ρ′

ρ
(x) +

ρ′

ρ
(y)), a−(x, y) =

1√
2
(
ρ′

ρ
(y) − ρ′

ρ
(x)),

and the integral
∫

[M−M ]
H(s)ds and

∫

[MM+]
H(s) ds denote the one dimensional integrals

along the segments [M−M ] and [MM+] against the (euclidean) length measure on those
lines.

This formula relies on an integration by parts formula. Even though we shall use it
only on domains like ∆M , it is perhaps of some interest to state it in general. So we set
it as a lemma. We shall not give too much details here, since a more general formula will
be derived in the next paragraph.
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Lemma 4.3. Let H a smooth function on D and Ω ⊂ D a domain with a piece-wise C1

boundary ∂Ω. Then
∫

Ω

(Lx − Ly)H(x, y) ρ(x)ρ(y) dxdy =

∫

∂Ω

∇H ⊙ n ρ(x)ρ(y) ds,

where n = (nx, ny) denotes the exterior normal derivative of the domain and

∇H ⊙ n = ∂xHnx − ∂yHny,

ds designing the length measure on the boundary ∂Ω.

We shall not prove this lemma. It is the analogue of the classical Stokes formula,
where the elliptic operator ∆ is replaced by the hyperbolic operator Lx −Ly, its invariant
measure being ρ(x)ρ(y)dxdy.

One may see this as a particular case of the general integration by parts formula
∫

D

H1(Lx − Ly)H1 ρ(x)ρ(y) dxdy = −
∫

∇H1 ⊙∇H2 ρ(x)ρ(y) dxdy,

applied with H1 = 1l∆M
.

From the previous formula, applied on Ω = ∆M for a function F which is solution of
the wave equation 4.4 and has 0 normal derivative on the boundary [M−,M+], one has

−
∫

[M−M ]

(∂xF + ∂yF )ρ(x)ρ(y) ds+

∫

[MM+]

(∂xF − ∂yF )ρ(x)ρ(y) ds = 0.

We may then perform a next integration by parts on both integrals to find

G(M−) −G(M) +

∫

[M−M ]

G(s)a+(s) ds+G(M+) −G(M) +

∫

[MM+]

G(s)a−(s) ds = 0,

which gives 4.5.

Under our assumptions of ρ, both a+ and a− are non negative on the subdomain D1:
under the log-concavity assumption a− is non negative on {y ≤ x}, and a(x) + a(y) =
a(y) − a(−x) ≥ 0 if x+ y ≤ 0.

Now, consider the smallest y ∈ (−b, 0) such that there exists some point in (x, y) ∈ D1

with G(x, y) = 0. On this point, we have

2G(M) = 0 ≥ G(M−) +G(M+),

which gives a contradiction.

For the case where the density is log-concave increasing, we may use the same argument
on the domain {x ≥ y}, since we still have the solution of the wave equation symmetric
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under the change (x, y) 7→ (y, x). Then we extend F by symmetry around the axes
x = −b and x = b, and then by periodicity, into a function defined on R × [−b, b]. The
same argument of integration by part remains valid, and, by means of the symmetrization,
the domain of integration (Mm+M−) that should be used is replaced by the same triangle
∆M as before, as shown in figure 2. Then we use the fact that the function a is decreasing
and positive.

Notice that the second case (when a is non negative) may be reduced to the first one
if we extend ρ by symmetry around b, into a log-concave function on the interval [−b, 3b],
symmetric around the point x = b. (The function ρ may not be C2 at the point x = b,
but this causes no problem). Then one has to apply the previous result on symmetric
functions on the interval [−b, 3b].
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4.4 Other representations of the solutions of the wave equation

In this paragraph, we shall consider an operator L(f) = f ′′ + a(x)f ′ in I = [0, 1], with
Neumann boundary conditions, and look at different representations of the solutions of
the wave equation 4.4.

We shall consider the probability measure ρ(x)dx in I which satisfy ρ′

ρ
= a.

Let F (x, y) be a solution of the wave equation (Lx − Ly)F = 0 on I2 with Neumann
boundary conditions. As before, it is easier to extend F to R2 by imposing symmetry
conditions at the boundaries x ∈ Z or y ∈ Z, and to extend a by imposing antisymmetry
conditions on these lines (or if one prefers, symmetry conditions on ρ).

We have seen before that such an equation has an integral representation 4.5. Our
first task shall be to change it into a new one.

As before, for M = (X, Y ) with y > 0, we denote by ∆M the triangle delimited by
the lines {x+ y = X + Y }, {y− x = Y −X} and {y = 0}. M+ and M− denote the edges
of this triangle which lie on the line {y = 0}.

For S ∈ ∆M , we denote by S−M the unique point U on the interval [M−,M ] such that
S ∈ [U,U+] and S+M the unique point U on [M,M+] such that S ∈ [U−U ] (see figure 3).

Recall that

a+(x, y) =
1√
2
(a(x) + a(y)), a−(x, y) =

1√
2
(a(y) − a(x)),

and let R(x, y) = ρ(x)ρ(y).

Proposition 4.4. If a continuous function G satisfies 4.5, then the function

H(x, y) =
G(x, y)
√

R(x, y)

satisfies

2H(M) = H(M−) +H(M+) +

∫

[M−,M+]

H(S)a0(M,S) dS +

∫

∆M

H(S)a(M,S) dS,

where

a(M,S) =
1

2

√

R(S)

(

a+(S−M)
√

R(S−M)
a−(S) +

a−(S+M)
√

R(S+M)
a+(S)

)

,

and

a0(M,S) =

√

R(S)

2
√

2
(
a+(S−M)
√

R(S−M)
+

a−(S+M)
√

R(S+M)
).
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Proof. — We first start by considering the function

θM(S) =

√

R(M)

R(S)
,

and we notice that, for S ∈ [M−,M ],

θM (S) = 1 +
1

2

∫

[S,M ]

θM (U)a+(U) dU,

and similarly that, for S ∈ [M,M+],

θM (S) = 1 +
1

2

∫

[M,S]

θM (U)a−(U) dU.

Then we start from equation 4.5, we replace the term
∫

[M−M ]

G(S)a+(S) dS
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by
∫

[M−M ]

(1 − θM(S))G(S)a+(S) dS +

∫

[M−M ]

θM(S)G(S)a+(S) dS.

In the last integral, replace G(S) by

1

2

(

G(M−) +G(S+) +

∫

[M−S]

G(U)a+(U) dU +

∫

[SS+]

G(U)a−(U) dU

)

.

Then we have
∫

S∈[M−M ]

θM (S)a+(S)

(
∫

U∈[M−S]

G(U)a+(U) dU

)

dS =

∫

[M−M ]

G(S)a+(S)

(
∫

U∈[S,M ]

θM (U)a+(U) dU

)

dS,

and this last expression cancels with

∫

[M−M ]

(1 − θM(S))G(S)a+(S) dS.

We do the same computation on the other side [M,M+], and we collect the results.
Observe that the term

∫

[M−M ]

θM(S)a+(S)G(S−) dS

gives rise to one part of the integral

∫

[M−M+]

H(U)a0(M,U) dU,

while the term
∫

[M−M ]

∫

[SS+]

G(U)θM (S)a+(S)a−(U) dSdU

produces one part of the integral

∫

∆M

H(U)a(M,U) dU.

We shall see in what follows that one may find many other integral representations of
the wave equation.

One is the following
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Proposition 4.5. Let F be a solution of the wave equation 4.4, and let ψ be a smooth
positive function on I2 satisfying the Neuman boundary conditions.

Then, if we set G(x, y) = F (x, y)ψ(x, y)ρ(x)ρ(y), we have

2G(M) = G(M+) +G(M−) +

∫

[M−M ]

G(s)K+(s) ds+

∫

[MM+]

G(s)K−(s) ds(4.6)

−
∫

∆M

G(s)
(Lx − Ly)(ψ)

ψ
ds,(4.7)

where
K+(x, y) =

√
2(∂x + ∂y) log(ψ

√

ρ(x)ρ(y))

and
K−(x, y) =

√
2(∂y − ∂x) log(ψ

√

ρ(x)ρ(y)).

Proof. — The proof is the same as before, but we have to consider the equation satisfied
by G instead of the equation satisfied by F . It is perhaps easier to make the computations
under a change of variables

x =
u+ v√

2
, y =

u− v√
2
,

in which case the operator Lx − Ly becomes

2∂2
uv −

a−(u, v)√
2

∂u +
a+(u, v)√

2
∂v.

We extend our functions by symmetry to the set {y ≤ 0}, and then our functions
become for the new variables symmetric under the symmetry (u, v) 7→ (v, u). Then the
result is obtained through the integration on a square {u0 ≤ u ≤ u1, u0 ≤ v ≤ u1}. Since
we shall not use these representations here, the details are left to the reader.

As a consequence, if we set U ≤ V when U ∈ ∆V , and if there exists a positive
function ψ satisfying the Neumann boundary conditions with (Lx −Ly)(ψ) ≤ 0 and such

that
√

ρ(x)ρ(y)ψ is increasing for this partial order, then any continuous solution of the
wave equation 4.4 which is non negative on {y = 0} is non negative everywhere. In
particular, if there is a solution of the wave equation which is increasing for this order,
then the property holds.

If we are looking for the hypergroup property at the point 0 for the Neumann basis
on [0, 1], a good candidate for the function ψ in proposition 4.5 seems to be

ψ(x, y) = 1 − f(x)f(y)

f(1)2
,

where f is the (increasing) eigenvector associated with the first non 0 eigenvalue, provided
that |f(1)| ≤ |f(0)|, which is a necessary condition for the hypergroup property to hold
at 0. But we were unable to derive reasonable conditions on a which would insure that for
this particular case the function

√

ρ(x)ρ(y)ψ is increasing for the partial order on [0, 1]2.
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4.5 More about the solutions of the wave equation 4.4

As we saw in the previous section, there are many integral representations of the solutions
of the wave equation on [0, 1]2.

Most of them appear as

F (M) =

∫

F (S) V0(M, dS) +

∫

F (S) V1(M, dS),

where V0(M, dS) is a continuous family of bounded measures whose support is the interval
[M−,M+] on the boundary {y = 0}, and V1(M, dS) is a continuous family of bounded
measures with support ∆M .

In general, those representations lead to a unique representation

F (M) =

∫

[M−,M+]

F (S) W (M, dS),

for a continuous family of bounded measures with support in [M−,M+]. The crucial point
is that in some situations the measure W (M, dS) may be positive even if V1(M, dS) is
not. In the case of Achour’s theorem however, the measure W is positive only on some
symmetric functions.

To understand these representations, we shall consider a more general setting.

Consider a separable compact Hausdorff space E, and two continuous families V0(M, ds)
and V1(M, ds) on E (two kernels). We shall identify such a family with the operator

F 7→ Vi(F )(M) =

∫

E

F (y) Vi(M, dS),

which maps the Banach space C(E) of continuous functions into itself. The identity
operator corresponds to the kernel I(M, dS) = δM (dS), and the composition of kernels

V ⊙W (M, dS) =

∫

U

V (M, dU)W (U, dS)

corresponds then to the operator composition.

We set

‖V ‖ = sup
M

∫

E

|V (M, dS| ,

which is the operator norm.

Then we have

Lemma 4.6. Consider some continuous function F ∈ C(E) satisfies

(4.8) ∀M ∈ E, F (M) =

∫

F (S) V0(M, dS) +

∫

E

F (S)V1(M, dS).
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If the series

(4.9)
∑

n

∥

∥V ⊙n
1

∥

∥

converges, then setting

E(V1) = W1 =
∑

n

V ⊙n
1 ,

one has
F = W1 ⊙ V0(F ).

In particular, if V0 is supported by some closed subset E0 of E, and if the condition
4.9 is satisfied for V1, then there exists a unique solution F to the equation 4.8 given the
restriction F0 of F on E0.

Moreover, if the kernels V0 and V1 are non negative, if F0 is non negative, so is F .

Proof. — The proof is straightforward and is just the classical representation of (I−V1)
−1

as
∑

n V
⊙n
1 . Observe moreover that if V1 is non negative, so is W1 = E(V1), and that the

representation of the solution is then given by a non negative kernel.

In what follows, and to apply these lemmas, we shall consider the case where E is a
compact subset of R × [0,∞[, and where, for some point M ∈ E, the measure V0(M, dS)
is supported by [M−,M+], V1(M, dS) is supported by ∆M , and has a bounded density
a(M,S) with respect to the Lebesgue measure on the product, in which case we write

(4.10) F (M) =

∫

[M−,M+]

F (S) V0(M, dS) +

∫

∆M

F (S)a(M,S) dS.

Then we have

Proposition 4.7. Let κ a uniform bound on |a(S, U)|, (S, U) ∈ ∆M in 4.10. Then, on
∆M , we have

∥

∥V ⊙n
1

∥

∥ ≤ κn |∆M |n
(n!)2

,

where |∆M | denotes the area of the triangle ∆M .

Proof. — Recall the partial order (S1 ≤ S2) ⇐⇒ S1 ∈ ∆S2
.

Then one has
V ⊙n

1 (M, dS) = 1l∆M
(S)an(M,S)dS,

where

an(M,S) =

∫

S≤S1≤...≤Sn−1≤M

a(M,Sn−1)a(Sn−1, Sn−2) . . . a(S1, S) dS1 . . . dSn−1.
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It is easy to see by induction that

|an(M,S)| ≤ κn |[S,M ]|n
n!2

,

where |[S,M ]| denotes the area of the rectangle {U | S ≤ U ≤ M}.
The conclusion follows easily from this estimate.

Considering the representation of the solutions of the wave equation given in proposi-
tion 4.4, we see that any continuous solution may be represented as

F (M) =

∫

[M−M+]

F (S) V (M, dS)

where V (M, dS) has two Dirac masses at the points M− and M+ and has a bounded
density on (M−,M+). The smoothness of this density depends of course on the smoothness
of the function a itself (and may be analyzed through the convergence of the series that
we just described). For example, if a has k bounded derivative, then so has the density.

We may observe the following.

Corollary 4.8. Consider a solution F of equation 4.8. Assume that V0 is non negative
and supported by E0 ⊂ E, and that V1 ≥ V2, in the sense that V3 = V1 − V2 is a non
negative kernel. Suppose that V2 and V3 satisfy the growth condition 4.9 and moreover
that E(V2) = W2 is non negative.

Then, if the restriction F0 of F on E0 is non negative, then F is non negative every-
where on E.

Proof. — Once again, this is straightforward. Setting W2 = (I − V2)
−1, one has

F = W2 ⊙ V0(F ) +W2 ⊙ V3(F ),

which is an equation of the same type, but with non negative kernels.

We may apply this for example for the solutions of 4.10 :

Corollary 4.9. If V0(M, dS) is non negative and a(U, S) ≥ −C, on S ≤ U ≤M , where

C =
µ2

0

2 |∆M |
and µ0 is the first 0 of the Bessel G function which is solution on (0,∞) of

G” +
G′

x
= −G, G(0) = 1, G′(0) = 0.

Then any continuous solution of equation 4.10 which is non negative on the boundary
{y = 0} is non negative on ∆M .

36



Proof. — It is a simple application of the previous corollary 4.8 with V2(M, dS) =
−C1l∆M

(S)dS.

In this case, it is not hard to see that

E(V2)(M, dS) = 1l∆M
(S)F (|[S,M ]|) dS,

where |[S,M ]| denotes the Lebesgue measure of the rectangle [S,M ] = {U | S ≤ U ≤ M}
and

F (x) =
∑

n

(−Cx)n

(n!)2
.

The function F is the solution of

xF” + F ′ = −CF, F (0) = 1, F ′(0) = −C,

which is related to the functionG through the change of variable x = z2

4C
. The functionG is

non negative on [0, µ0) and this gives the result provided one observes that |[S,M ]| ≤ |∆M |
2

.

Remark. — One may also observe that 1
µ2

0

is the fundamental eigenvalue of the Laplace

operator on the unit ball of R2 with the Dirichlet boundary condition, the function G(‖x‖
µ0

)
being the corresponding eigenvector.

All these considerations provide many criteria on the function a such that the as-
sociated Neumann basis on I has the hypergroup property at the left end point of the
interval. In the next section, we shall deal with Gasper’s theorem, where I = [0, π/2] and
a(x) = α tanx− β cot x, with α ≥ β > −1. The reader should check that no one of these
criteria may apply on this example. Achour’s theorem shows that the hypergroup prop-
erty holds for this example in the symmetric case α = β, even on any symmetric (around
π/4) subinterval of [0, π/2]. But we do not even know for the moment if the hypergroup
property holds in the general case on any symmetric subinterval of [0, π/2]. (But is is
true for small subintervals and also provided that the parameters α and β belong to some
specific domains that we shall not describe here).

5 The case of Jacobi polynomials : Gasper’s theorem

Gasper’s theorem states the hypergroup property for the family of Jacobi polynomials.
The case of Jacobi polynomials may be considered as a special case of a Sturm-Liouville
basis on [0, π/2]. In this situation, both the GKS and the HGP property hold [21, 22, 23].
Actually, it is a unique situation for orthogonal polynomials, since they are the only ones,
up to a linear change of variables, for which the HGP property holds (see [15, 14, 16])
(under some mild extra condition on the support of the measure wich represents the
product formula). In the case of symmetric Jacobi polynomials (known as Gegenbauer
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or ultraspherical polynomials), the HGP property may be seen as a particular example
of Achour’s theorem (although in this case the measure has a density which vanishes at
the boundary). But in the general case, as we already mentioned, none of the extension
we gave of Achour’s theorem covers this result. Even worse, we do not know if the HGP
property holds for any symmetric subinterval of [0, π/2].

The Jacobi polynomials are a quite universal object, since they are basically the unique
examples of a family of orthogonal polynomials which are also eigen vectors of Sturm-
Liouville operators (together with their limiting cases the Hermite and Laguerre polyno-
mials, see [31]). On the other hand, for special values of the parameter, they may be
considered as eigen vectors of rank-one symmetric compact spaces (here, with our nota-
tions, it is for the parameters (1, p), (2, p), (4, p) and (p, p), with p ∈ N). But for a wider
range of parameters (p, q ∈ N ), they may be seen as eigen vectors of a Laplace operator
on a p + q − 1 dimensional sphere. The special case where p = q is much simpler, since
then one may consider a p-dimensional sphere.

In this section, after a short introduction on Jacobi polynomials and the statement of
the hypergroup property for these polynomials, we present the simpler case of symmetric
Jacobi polynomials, where the convolution structure has a nice geometric interpretation
for p ∈ N. For the dissymmetric case, although the Jacobi polynomials still have a simple
geometric interpretation too when the parameters are integers, the convolution structure
is far less obvious.

5.1 Jacobi polynomials

This polynomial family is defined for some positive parameters p and q as the family of
orthogonal polynomials associated with the measure

µp,q(dx) = Cp,q(1 − x)
q−2

2 (1 + x)
p−2

2 dx

on [−1, 1], Cp,q being a normalizing constant such that µp,q is a probability measure.

These polynomials are also the eigenvectors of the operator

Lp,qf(x) = (1 − x2)f ′′(x) − (q
x+ 1

2
+ p

x− 1

2
)f ′(x)

on [−1, 1]. If P p,q
k is the polynomial of degree k, one has

Lp,qP
p,q
k = −k(p + q

2
+ k − 1)P p,q

k .

Remark. — These polynomials are traditionally parametrized by α = q−2
2

and β = p−2
2

with α, β > −1, from [33] or [21, 22, 23].

If we change x = cos(2θ), θ ∈ [0, π
2
], then this operator is turned into

Lp,qf(θ) =
1

4
[f ′′(θ) + ((q − 1) cot(θ) − (p− 1) tan(θ)) f ′(θ)] .
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We see then that Jacobi polynomials is one example of a Neumann basis associated
with a Sturm-Liouville operator (except that the density of the measure vanishes at the
boundary points, for parameters larger than 2). We may also observe that the measure
is log-concave as soon as p and q are in [1,∞).

When p and q are integers, one may see the operator Lp,q as the action of some spherical
laplacian on a quotient of the sphere.

More explicitly, we set N = p+ q. Let us denote by |X| the euclidean norm of a point
X in R

N , and let S
N−1 be the unit sphere. We consider the Laplace operator ∆S on the

unit sphere SN−1 in RN : this is the restriction to the sphere of the usual Laplace operator
on RN acting on function which are defined in a neigbourhood of the sphere and do not
depend on the radius of the point.

We parametrize SN−1 as

(5.11) X = (

√

1 + x

2
X1,

√

1 − x

2
X2),

where X1 ∈ S
p−1 X2 ∈ S

q−1, and x ∈ [−1, 1]. The action of ∆S on a function which
depends only on x gives again a function of x, and we have

∆S(h)(x) = 4Lp,q(h)(x).

We shall say that such a function on the sphere which depends only on x (that is
which depends only on the norm of the projection of X onto R

p) has the invariance
SO(p)× SO(q), where the action of SO(p)× SO(q) is obtained by the action of the first
component on X1 and of the second on X2.

The measure µp,q is the invariant measure for the operator Lp,q and the uniform mea-
sure is the invariant measure for the Laplace operator on the sphere. This shows that
µp,q is the image of the uniform measure on the sphere (normalized as to be a probability
measure) under the map X 7→ x of formula 5.11.

In fact, under this map X 7→ (X1, X2, x), it is straightforward to see that the uniform
measure σp+q−1 on Sp+q−1 is transformed into σp−1 ⊗ σq−1 ⊗ µp,q.

Thanks to this remark, consider N ≥ p and look at the projection π(X) from SN−1

onto the unit ball in Rp. (That is the orthogonal projection when the sphere is imbedded

into RN). If we set x = 2 |π(X)| − 1 and X1 = π(X)
|π(X)| , we see that the image measure of

σN−1 under X 7→ (x,X1) is µp,N−p ⊗ σp−1. This remark shall be used in paragraph 5.4.

5.2 Gasper’s result

Gasper proved the following product formula which gives the HGP property for Jacobi
polynomials, applying proposition 3.3.
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Theorem 5.1 (Gasper). Let p, q > 0 and −1 < x, y < 1. Then

• we have the following product formula :

∀ k, P p,q
k (x)P p,q

k (y)

P p,q
k (1)

=

∫

P p,q
k (z) mp,q(x, y, dz)

where mp,q(x, y, dz) is a borelian measure on [−1; 1] ;

• the measure mp,q is positive (and then is a probability measure) if and only if

(p, q) ∈ {q ≥ p} ∩ {p ≥ 1 or p+ q ≥ 4};

• moreover, if q > p > 1, mp,q(x, y, dz) is absolutely continuous with respect to µp,q,
with density in L2(µp,q), so that

Kp,q(x, y, z) =
∑

k

P p,q
k (x)P p,q

k (y)P p,q
k (z)

P p,q
k (1)

≥ 0,

with convergence of the sum for almost all z.

The original Gasper’s proof (see [22, 23]) consisted in the explicit computation of
the sum Kp,q(x, y, z) using formulae on special functions like Bessel’s and hypergeometric
functions. There had been many other proofs of this property . For example, Koornwinder
derived it in [30] from the addition formula of Jacobi polynomials and he found an other
proof in [29], that we discuss next.

Here we restrict ourself to prove the HGP property in the symmetric case (p = q) and
in the case when q > p > 1. In the latter case, we follow a proof given by Koornwinder
in [29]. However, his argument was based on an integral representation formula of the
polynomials (our lemma 5.3), whose proof, as we found in literature (see [2] together
with [3]), relies on computational considerations on hypergeometric functions. In section
5.4, we shall give a more geometric interpretation of this formula, at least when p and q
are integers (it appears finally that the interpretation of Jacobi polynomials as harmonic
functions was already known – see [12, 20, 30] – but it seems that it was not yet directly
used to derivte Koornwinder’s representation formula).

5.3 The special case of ultraspherical polynomials (p = q ≥ 1)

In the case when p = q, Jacobi polynomials are called ultraspherical polynomials. In this
case, there is a much simpler representation of Lp,p when p ∈ N∗ as the action of the
Laplace operator on the sphere S

p (and not on S
2p−1 as before).

When p is a positive integer, then the hypergroup property has a simple geometric
interpretation, and thus the property is quite easy to establish. This easily extends to the
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case when p /∈ N, by a simple extension of the formulae. This is what we are going to see
in this paragraph.

Consider a smooth function F : Sp 7→ R which depends only on the first coordinate.
To fix the ideas, let F (X) = f(X · e1), where e1 is the first unit vector in Rp+1, and Y ·X
denotes the standard scalar product in Rp+1. Then, if ∆Sp is the Laplace operator on Sp,
we have

∆Sp = Lp,p(f)(X · e1).

As before, the image measure of the uniform measure on the sphere through the map
X 7→ x = X · e1 is the invariant measure for Lp,p, that is µp,p. Moreover, we may
parametrize Sp∗ = Sp \ {e1,−e1} by

(5.12) X = (x,
√

1 − x2X1),

where x ∈ (−1, 1) is the first coordinate of the point x ∈ Sp ⊂ Rp+1, and X1 ∈ Sp−1.
Through this map S

p∗ 7→ (−1, 1) × S
p−1, the image measure of σp is µp,p ⊗ σp−1.

From that, we see that if P p,p
k is the k-th ultraspherical polynomial, then P p,p

k (X.e1)
is an eigenvector of ∆Sp , with eigenvalue λp

k = −k(k + p− 1).

Observe that for any point Y on the sphere, P p,p
k (Y.X) is again an eigenvector on the

sphere with the same eigenvalue. (This comes from the fact that the Laplace operator on
the sphere is invariant under rotations.)

Now, if we take two points Y and Z on the sphere, P p,p
k (Y.X) and P p,p

k (Z.X) are two
eigenvectors of ∆Sp, with the same eigenvalue. Let us compute their scalar product in
L2(Sp).

H(Y, Z) =

∫

Sp

P p,p
k (Y.X)P p,p

k (Z.X) σp(dX).

Obviously, H(Y, Z) is a smooth function, taking values in [−1, 1], and if R is any
rotation, H(Y, Z) = H(RY,RZ). From this we see that H(Y, Z) = h(Y ·Z), and we may
write the function h in terms of ultraspherical polynomials

h =
∑

k

akP
p,p
k .

We have

ar =

∫

h(x)Pr(x) µp,p(dx) =

∫

Sp

h(Y.Z)P p,p
r (Y.Z) σp(dZ)

=

∫

Sp

∫

Sp

P p,p
r (Y.Z)P p,p

k (Y.X)P p,p
k (Z.X) σp(dX)σp(dZ).

Using Fubini’s theorem and the orthogonality of eigenvectors associated with different
eigenvalues, we see that ak = 0 unless k = p. We therefore see that

∫

Sp

P p,p
k (Y.X)P p,p

k (Z.X) σp(dX) = akP
p,p
k (Y.Z).
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To compute ak we choose Y = Z, from which we get, if we remember that the poly-
nomials P p,p

k have norm 1 in L
2

, that

akP
p,p
k (1) = 1.

Now, if we rewrite this formula for Y = e1 and through the parametrization described
above in 5.12, then we get, for Z = (z,

√
1 − z2Z1),

P p,p
k (z)

P p,p
k (1)

=

∫

x,X1

P p,p
k (x)P p,p

k (zx+
√

1 − z2
√

1 − x2X1Z1) µp,p(dx)σp−1(dX),

while, for k 6= l,
∫

x,X1

P p,p
k (x)P p,p

l (zx+
√

1 − z2
√

1 − x2X1Z1) µp,p(dx)σp−1(dX) = 0.

This may be rewritten as
∫

x,t

P p,p
k (x)P p,p

l (zx+
√

1 − z2
√

1 − x2t) µp,p(dx)µp−1,p−1(dt) = δkl
P p,p

k (z)

P p,p
k (1)

.

This last formula may be turned into an explicit representation
∫

x,t

P p,p
k (x)P p,p

l (y) kp(z, dx, dy) = δkl
P p,p

k (z)

P p,p
k (1)

for some probability kernel kp(z, dx, dy), which gives the hypergroup property thanks to
proposition 3.4.

When p is not an integer, since we have an explicit representation of the kernel
kp(z, dx, dy) = Kp(x, y, z)µ(dx)µ(dy), it is a simple verification to check that the function
Kp(x, y, z) satisfies LxKp = LyKp together with

lim
y→1

Kp(x, y, z) µp,p(dz) = δx(dz),

which is enough to get the HGP property at the point 1.

Moreover, the convolution associated with this hypergroup structure is quite easy to
understand when p is an integer.

Let us say that a probability measure µ on the sphere Sp is zonal around X ∈ Sp if it
is invariant under any rotation R ∈ SO(p+ 1) such that RX = X.

Given any probability measure µ on [−1, 1], and any X ∈ Sp, we may lift µ into a
unique probability measure µ̂ which is zonal around X such that the image measure of µ̂
under the projection π(Y ) = Y ·X from S

p onto [−1, 1] is µ.

Now, let us choose e1 ∈ Sp, and consider two probability measures ν1 and ν2 on [−1, 1].
We may lift ν1 into a probability measure ν̂1 on S

p, which is zonal around e1. Then, we

42



choose a random point in Sp according to ν̂1. Then, given X, we consider the lift of ν2

which is zonal around X and choose a point random point Y according to this measure.
Then, the resulting law of Y is zonal around e1, and we project this measure into a new
measure ν1∗ν2. It is an exercise to show that this convolution is the convolution associated
to the hypergroup structure in this case.

5.4 The case of dissymmetric Jacobi polynomials (q > p > 1)

Although the dissymmetric Jacobi polynomials may be interpreted as eigenvectors of the
Laplace operator on the sphere Sp+q−1, it is far from trivial to prove the hypergroup
property even in the case where p and q are integers. Nevertheless, the proof that we
present below for completeness and which is due essentially to Koornwinder [29] has also
some simple interpretation when p and q are integers in terms of harmonic analysis in
Rp+q.

Koornwinder’s proof relies on two facts, given in the following lemmas 5.2 and 5.3.
In what follows, and to lighten the notations, we remove the indices p and q from the
definitions of the polynomials P p,q

k .

Lemma 5.2. (Bateman’s formula) Let bk,r the the coefficients such that

Pk(s)

Pk(1)
=

k
∑

r=0

bk,r(s+ 1)r.

Then
Pk(s)Pk(t)

Pk(1)2
=

k
∑

r=0

bk,r
(s+ t)r

Pr(1)
Pr(

1 + st

s+ t
).

Lemma 5.3. (Koornwinder’s formula)

Pk(x)

Pk(1)
=

∫

[−1,1]2

[

2(1 + x) − (1 − x)(1 + u) + i
√

2
√

1 − x2
√

1 + uv

4

]k

µp,q−p(du)µp−1,p−1(dv).

Before going further, let us show that this implies the HGP property at the point
x0 = 1. In fact, we shall use the characterization of the hypergroup property given by
proposition 3.3.

For that, we replace in Bateman’s formula of 5.2 the representation given by Koorn-
winder’s formula. For this, we observe that, if (s, t) ∈ (0, 1)2, then

(

1 + st

s + t

)2

> 1,
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and therefore if we set x = 1+st
s+t

, we may replace by analytic continuation i
√

1 − x2 by√
x2 − 1.

Then, if we set

ψ(s, t, u, v) =
2(1 + x) − (1 − x)(1 − u) +

√
2
√
x2 − 1

√
1 + uv

4
,

one has

Pk(s)Pk(t)

Pk(1)2
=

∫ k
∑

r=0

bk,r[(s+ t)ψ(s, t, u, v)]k µp,q−p(du)µp−1,p−1(dv).

From the definition of the coefficients bk,r, we get then

Pk(s)Pk(t)

Pk(1)2
=

∫

Pk((s+ t)ψ(s, t, u, v)− 1)

Pk(1)
µp,q−p(du)µp−1,p−1(dv).

If we define mp,q(s, t, dz) to be the image measure of µp,q−p(du)µp−1,p−1(dv) under the map

(u, v) 7→ (s+ t)ψ(s, t, u, v)− 1,

one gets
Pk(s)Pk(t)

Pk(1)
=

∫

Pk(z) mp,q(s, t, dz),

which is the announced result.

Of course, one has to check that the image measure is indeed supported by [−1, 1],
but this point is left to the reader.

We now give the proof of lemmas 5.2 and 5.3. As it shall turn out, they rely on
elementary considerations on the interpretations of the operator Lp,q. For the moment,
we restrict ourselves to the case where p and q are positive integers, and we shall interpret
those formulae in term of the Laplace operator on R

p+q.

First observe that, given any function f on [−1, 1], we may lift this function on the
sphere S

p+q−1 into a function which has the SO(p)×SO(q) invariance. Namely, using the
parametrization of the sphere given in 5.11, we set

F (

√

1 + x

2
X1,

√

1 − x

2
X2) = f(x).

Notice that in this formula,
x = |π1X|2 − |π2(X)|2 ,

where π1 and π2 are the orthogonal projections on Rp and Rq when the sphere is imbedded
into R

p+q. Let us call U(f) such a lift of a function from [−1, 1] onto the sphere.
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Now, if Pk is the Jacobi polynomial of degree k, the corresponding function Fk = U(Pk)
is an eigen-vector of the Laplace operator on the sphere, and therefore the restriction to
the sphere of a harmonic polynomial of degree 2k. Therefore, if we parametrize a point
Z in R

p+q by R = |Z|2 and X = Z
|Z| , we may see that the function RkFk(X) is harmonic

in Rp+q.

This may be seen in another way, since we may write the Laplace operator in those
coordinates as

∆ =
∂2

∂2
R

+
N

2R

∂

∂R
+

1

4R2
∆S,

where N = p + q and ∆S is the Laplace operator on SN−1. (It does not look as usual
because of the change of r = |x| into r2 = R.) Since

∆SFk = 4U(Lp,qPk) = −4k(k +
N

2
− 1)Fk,

and one may check directly that H(R,X) = RkFk(X) is a solution of ∆H = 0.

In other words, the solutions of

(
∂2

∂2
R

+
N

2R

∂

∂R

+
1

R2
Lp,q)F = 0

correspond to harmonic functions in Rp × Rq which are radial in both components (bi-
radial harmonic functions). If (X, Y ) are the two component of a point in Rp+q, then this
harmonic function is

(|X|2 + |Y |2)kPk(
|X|2 − |Y |2

|X|2 + |Y |2
).

Proof. — (Of Bateman’s formula 5.2.)

Let L = Lp,q. The function K(s, t) = Pk(s)Pk(t) is a solution of the wave equation

(Ls − Lt)K = 0.

In order to prove the assertion, which amounts to verify the identity of two polynomials,
it is enough to check it on an open set. We shall choose to prove it on the set {s ∈
(−1, 1), t > 1}, on which the wave equation (Ls−Lt)K = 0 becomes an elliptic equation.

On the other hand, consider a solution G(R, x) of

(
∂2

∂2
R

+
N

2R

∂

∂R
+

1

R2
Lp,q)G = 0,

and perform the change of variable

R = s+ t; x =
1 + st

s + t
.
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This equation becomes (Ls − Lt)G = 0. (We shall leave the computation to the reader,
since it is just brute calculus.)

This strange (and miraculous) change of variables may be much understood if we first
operate a change of variables to reduce the leading terms to ∂2

x + ∂2
y in both equations,

and then observe that the transformation we made is conformal in R2, and thus preserves
the leading terms. But we could find no simple geometric transformation, even in the case
where p and q are positive integers, to understand this change of a bi-Jacobi equation into
a bi-radial harmonic function.

Therefore, the right-hand side of Bateman’s formula is a solution of the wave equation
(Ls−Lt)F = 0. The coefficients bk,r are computed in such a way that the two polynomials
coincide on t = 1.

To see that they must coincide everywhere, it is enough to remark that if two poly-
nomials A(s, t) and B(s, t) in (s, t) are solutions of the wave equation which coincide on
t = 1, they coincide everywhere. Indeed, we may write

A(s, t) =

k
∑

r=0

arPr(s)Pr(t), B(s, t) =

k
∑

r=0

brPk(s)Pk(t),

and identifying the values in t = 1 produces ar = br, r = 0, . . . , k.

We now turn to the proof of Koornwinder’s formula.

We begin with a lemma. Here, we shall use for the first time that q > p.

Lemma 5.4. Consider a bi-radial analytic function H on Rp+q. (That is H(X, Y ) =
h(|X|2 , |Y |2), where h is an analytic function on R2.) Then, if H is bi-radial and har-
monic in Rp+q, then one has

(5.13) H(X, Y ) =

∫

S0(q)

H(X + iπ(RY ), 0) ν(dR),

where ν(dR) is the Haar measure on the group SO(q), and π is the orthogonal projection
π : R

q 7→ R
p.

As a consequence, if H(X, Y ) = h(|X|2 , |Y |2), with g(x) = h(x, 0), then

(5.14)

h(|X|2 , |Y |2) =

∫

[−1,1]2
g(|X|2 − 1 + u

2
|Y |2 + i

√
2 |X| |Y |

√
1 + us) dµp,q−p(u)dµp−1,p−1(s).

In practice, we shall just apply this lemma with polynomials functions h.

Proof. — (Of lemma 5.4.)

The proof comes from the following remark. We observe that if F (X) is any analytic
radial function in R

p, of if one prefers, any function f(|X|2), where f is real analytic, then
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F (X + iY ) is a solution in Rp × Rp of ∆XF + ∆Y F , that is this function is harmonic in
R2p. This is clear if we consider that F (X + Y ) is a solution of ∆XF = ∆Y F .

Remark here that in this analytic continuation, we consider some functions
f(|X + iY |2), where

|X + iY |2 = |X|2 − |Y |2 + 2iX · Y.
This is not the norm of X + iY considered as a point in Cp.

Then, F (X+ iπ(Y )) is harmonic in Rp+q, since the projection of the Laplace operator
on Rq is the Laplace operator on Rp. Hence, for any element R ∈ SO(q), F (X + iπ(RY ))
is harmonic in Rp+q since the Laplace operator on Rq is invariant under rotations.

From this, we see that

H(X, Y ) =

∫

SO(q)

F (X + iπ(RY ), 0) ν(dR)

is harmonic. Observe also that it is bi-radial ; it is obviously radial in Y , since we averaged
using the Haar measure on SO(q). To see that it is radial in X, we just observe that, if
R1 ∈ SO(p), one has

F (R1X + iπ(Z), 0) = F (X + iR−1
1 π(Z), 0),

since F (X, 0) is radial. Moreover, for any R1 ∈ SO(p), there exists R2 ∈ SO(q) such that
R1π(Z) = π(R2Z).

Now, to prove formula 5.14, we just have to explicit the formula 5.13. For that, we

write X = |X| e1, where e1 ∈ S
p−1 and π(RY ) = |Y |

√

1+u
2
Y1, where Y1 ∈ S

p−1.

We know that if R is chosen according to the Haar measure on SO(q), the law of

R Y
|Y | is uniform on Sq, and therefore, writing π(R Y

|Y |) = |Y |
√

1+u
2
Y1, the law of (x, Y1)

is µq−p,p(dx) ⊗ σp−1(dY1), as we saw at the end of paragraph 5.1. Therefore, if we set
s = e1 · Y1 the law of (u, s) is µp,q−p(du) ⊗ µp−1,p−1(ds).

Then,

|X + iπ(RY )|2 = |X|2 − 1 + u

2
|Y |2 + i

√
2 |X| |Y |

√
1 + ue1 · Y1,

and
∫

SO(q)

g(|X + iπ(RY )|2) =

∫

[−1,1]2
g(|X|2 − 1 + u

2
|Y |2 + i

√
2 |X| |Y |

√
1 + us) µp,q−p(dx)µp−1,p−1(ds).

To finish the proof of the first formula 5.13, we observe that the two members of 5.13
coincide on Y = 0. On the other hand, the explicit formulation given in 5.14 shows that
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if g is analytic, then the right-hand side in 5.13 is also analytic in (|X|2 , |Y |2). Indeed, if
we observe that the measure µp−1,p−1(ds) is symmetric, all odd powers of |Y | |X| in the
polynomial extension of

(

|X|2 − 1 + u

2
|Y |2 + i

√
2 |X| |Y |

√
1 + us

)n

will disappear through integration. We are therefore left with a series in (|X|2 , |Y |2).
It remains to see that two analytic harmonic bi-radial functions which coincide on

Y = 0 coincide everywhere. Let h(|X|2 , |Y |2) an analytic bi-radial harmonic function on
Rp+q. The function h is a solution of

(x∂2
x +

p

2
∂x + y∂2

y +
q

2
∂y)h = 0.

Then, we see that if we write the expansion

h(x, y) =
∑

n,m

an,mx
nym,

one has

an,m+1 = −an+1,m
(n+ 1)(n+ p/2)

(m+ 1)(m+ q/2)
.

This shows that as soon as one knows (an,0), one knows h. This completes the proof of
lemma 5.4.

Proof. — (Of Koornwinder’s formula 5.3, for p and q integers. )

In the case where p and q are non negative integer, it turns out that it once again
relies on properties of the harmonic functions in the Euclidean space.

First, we lift both members on Rp+q and then we multiply them by Rk, where R =
|X|2 + |Y |2.

As we have seen before, the function

(|X|2 + |Y |2)kPk(
|X|2 − |Y |2

|X|2 + |Y |2
)

is a bi-radial harmonic function, which is a polynomial in |X|2 and |Y |2.
It remains to apply lemma 5.4 to conclude the proof.

If we want to extend the proof of Koornwinder’s formula when p and q are no longer
integers, then we just have to observe that, setting S = |X|2 and T = |Y |2, we used the
fact that the fact that

H(S, T ) = (S + T )kPk(
S − T

S + T
)
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is a solution on (0,∞)2 of

(S∂2
S +

p

2
∂S + T∂2

T +
q

2
∂T )H = 0,

and that for any analytic function f , the function

K(S, T ) =

∫

f(S − 1 + u

2
T + i

√
2
√
ST

√
1 + us) µp,q−p(dx)µp−1,p−1(ds)

is also a solution of the same equation (but this time, one has to compute that by brute
force!).

Remarks

1. The proof of Koornwinder’s formula gives a representation, for analytic functions,
of solutions H(S, T ) of LH = 0, where

L = S∂2
S +

p

2
∂S + T∂2

T +
q

2
∂T ,

in terms of the boundary values H(S, 0). This is some kind of Poisson formula. In
such a formula, one has (at least for bounded functions)

H(x, y) = Ex,y(H(XT , YT )),

where (Xs, Ys) is the diffusion with generator L, and T the hitting time of the
boundary.

Here, at least when q ≥ 2, the boundary is polar and the set {y = 0} is never
attained. But the representation is given here through a complex variable (and of
course our functions are unbounded). But all this appears “as if” the process is
willing to hit the boundary, provided one allows complex values (we do not know
which is the meaning of all that, of course). But it is certainly worth to look for
more general integral representations of this type, with complex values on polar
sets.

2. Of course, when q converges to p, the measure µp,q−p(ds) converges to the Dirac mass
at the point 1, and Koornwinder’s formula of lemma 5.3 gives for the ultraspherical
polynomials

(5.15)
P p,p

k (x)

P p,p
k (1)

=

∫

[−1,1]2

[

x+ i

√
1 − x2

2
v

]k

µp−1,p−1(dv).

One may check directly this formula when p ∈ N, through a much simpler argument,
using harmonic functions in Rp+1 instead of harmonic functions in R2p. This time,
one has to extend the polynomial P p,p

k into

Fk(X) = |X|k P p,p
k (

X

|X| · e1),

where e1 is any point on the unit sphere.
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