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Résumé

Cet article décrit un nouvel algorithme1 permettant de gérer des bases de don-
nées. Son champ d’application le plus naturel est néanmoins le datawarehouse (OLAP).
Il repose sur une représentation dénormalisée de la base. Les données sont sto-
ckées dans des thesaurus et des arbres à préfixes (une représentation hiérarchique
de champs de bits) qui ont des propriétés intéressantes.

Mots-clefs : base de données, champs de bits, arbres à radicaux, stockage hiérar-
chique

Abstract

This paper describes a new algorithm2 dealing with databases. This algorithm
allow to fully manage a database, but their most natural field of applications is the
datawarehouse (OLAP). It lies on a de-normalized representation of the database.
The data is stored in thesauruses and radix trees (a hierarchical representation of
bitmaps) which have interesting properties.

Key words : database, bitmaps, radix trees, hierarchical storage

1 Introduction

It is often said that database sizes grow by a rate of 10 % a year and that this growth
is greater than the one of the abilities of computers. Databases are more and more used
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in more and more fields: social actors, armies, commercial agents use more and more
data. A pertinent use of an enormous amount of data may show a huge profit to the data
owner. For instance the “wallmart” stores managers realized, thanks to data mining, that
on saturdays, customers who bought pampers for babies usually also bought beer. They
re-arranged their stores in order to put aside the beer and the pampers. The result was that
the sales of both these articles rose up. (The admitted explanation is that on saturday, it is
more often men who make home shopping.)

Usually, to deal with databases, one may use multidimensional arrays, special indexes
(bitmaps), relation caching, optimized foreign key joins,B-trees or approximation. The
algorithm presented in this paper uses radix trees. It shall be denoted theA-algorithm.
These trees may be understood as a hierarchization of bimaps vectors. It allows one to
answer to SQL queries or to manage the base (to add or remove tuples, a primary key, a
foreign key or an attribute from a relation or even to add or remove a relation to or from a
database).

We show in the next relation a comparison between programs written in C++ designed
to use these algorithm and the same requests performed on the same machine but using the
three most popular commercial products allowing databases management. The requests
were taken from the TPC (see [6]).

When one deals with databases, one may have to answer to two very different kind of
queries: one of them is “What is the content of attributeC in the relationT at the record
Id 17?” and the other is “At which record Ids may I find this given tuple for the attribute
C in relationT?”.

The first query may be very easily answered by reading the relation the wanted at-
tribute belongs to.

But for this first request, there is a case in which the answer is not that easy. This is
the case when the attributeC does not belong toT but to a relationT ′ linked to T by
foreign keys and primary keys.

One may answer this kind of request (“What is the content of tuple with record Id 17
of attributeC in relationT with C not belonging toT ”) by using a de-normalized data
representation.

One may also answer very easily to a request like “Where may I find this given tuple in
attributeC in relationT?” by using radix trees (radix trees may be seen as a hierarchical
representation of bitmaps indexes). The bitmaps are widely used in database management.
One may refer to [10] for a recent work in this matter.

The data of databases is very often stored inB-trees (see [4], [3] or [5] for instance.).

The complexity of the computation of an "and" request with theA-algorithm is aver-
agelyO(i ln L) wherei is the cardinality of the intersection andL the maximum of the
cardinalities of the numbers of records of the relations involved in the request. In the
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worst case (whose probability of appearance tends to 0 when the size of the data tends to
infinity), this complexity of this computation isO(L ln L). This is the complexity of the
algorithms using balanced trees for instance.

The complexity of an "or" request with theA-algorithm isO(L ln L), which is also
the case of the use ofB-trees. The complexity of insertion, suppressions or updates are,
with the A-algorithm, O(ln L). These operations are also performed inO(ln L) with
algorithms usingB-trees.

The reader may refer to [8] or [9].

1.1 Plan of the paper

The paper is organized as follow: the section 1 introduces the problem discussed in
this paper. Its plan is the present subsection (1.1). The next subsection is dedicated to
a presentation of the TPC benchmark (1.2) and the performances of theA-algorithm are
presented in 1.3.

The next section is devoted to an introduction to radix trees (2). The two next subsec-
tions (2.1 and 2.2) explain how one can perform set operations over radix trees.

The next section deals with the creation of the indexes of a database using radix trees
(3). A fundamental case is when the database is made of a single relation itself containing
a single attribute. The subsection 3.1 explains it. The next subsections detail the creation
of the thesaurus (3.1.1), the storage of the indicative functions (the sets of records ids of
each word of the thesaurus are stored in radix trees, subsection 3.1.2). It is convenient
to use macro words to accelerate the computations of between clauses (subsection 3.1.3).
The two next subsections give details of the storage of the attribute (3.1.4 and 3.1.5) and
the next one summarizes the storage of an attribute (3.1.6).

The two subsections are dedicated to cases when a relation has several attributes (3.2)
of when the database has several relations (3.3).

Once the indexes are built, one may request the database (section 4). The first step is
to compute the expansion relation and to remove the join clauses (4.1). The atomic re-
quests are treated in the subsection 4.2. An important case is the between (4.2.1) because
it has several sub cases (4.2.2, 4.2.3, 4.2.4, 4.2.5). Then one may mix these atomic cases
to perform any “where” clause which does not contain sub requests (4.3). Its logical con-
nectors are the “or” (4.3.1), the “and” (4.3.2) and the “not” (4.3.3). A more problematic
case is the case of comparison between attributes (4.4) which is very similar to a cartesian
product (4.5) Then one has to manage the sub queries when they are correlated (4.6) or
not obviously (4.7). The last step is to perform computations on the tuples which are at
the record ids found in the “where” clause (4.8).
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TPC. DAG of the Tables
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Figure 1: The dag of the relations of the TPC

The next section deals with the base management (5). One may manage a relation
(5.1) by adding or removing records (5.1.1 and 5.1.2), add or remove an attribute to a
relation (5.1.3 and 5.1.4), add or remove a primary key or a foreign key (5.1.5, 5.1.6,
5.1.7, and 5.1.8), add or remove a relation (5.2 and 5.2.1)

The before to last section (6) is the conclusion and the last section is dedicated to
aknoledgements (7).

1.2 The TPC

The TPC (the Transaction Processing Performance Council, see [6]) is a benchmark
designed to measure the performances of database manager programs. One can download
a relational database made of eight relations: Lineitems, Partsupp, Part, Supplier, Orders,
Customer, Nation and Region. This base may be scaled by a scale factor as big as 1000.
When its tuple is 1, the size of the database is roughly 1 GB. In this case, the relation
Lineitem is made of 6 millions lines, Partsupp of 800,000 lines, Part of 200,000 lines,
Supplier of 10,000 lines, Orders of 1,500,000 lines, Customer of 150,000 lines, Nation of
25 lines and Region of 5 lines. The dag of the relations is as follow (an arrow between
two relationsT1 andT2 from T1 to T2 means that the relationT1 contains a foreign key
replicating a primary key ofT2 (see figure 2).

The attributes of the relations were the following:

The tpc benchmark contains 22 queries : 20 of them are queries of the data and the
two last queries are insertion and suppression of10% of the lines oflineitem.

280



Annales du LAMSADE n◦ 2

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

RETAILPRICE

COMMENT

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

CUSTKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

QUANTITY

EXTENDEDPrice

DISCOUNT

TAX

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

ORDERKEY

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDERPRIORITY

CLERK

SHIPPRIORITY

COMMENT

NATIONKEY

NAME

REGIONKEY

COMMENT

REGIONKEY

NAME

COMMENT

PART

SUPPLIER

PARTSUPP

CUSTOMER

LINEITEM ORDER

NATION

REGION

200000

10000

800000

150000

6000000 1500000

25

5

Figure 2: The attributes of the relations of the TPC
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The queries performed for this paper where theQ1, Q6, Q17 andQ19. These requests
are:

Q1:

select

l returnflag,

l linestatus,

sum(l quantity) as sum qty,

sum(l extendedprice) as sum base price,

sum(l extendedprice * (1 - l discount)) as
sum disc price,

sum(l extendedprice * (1 - l discount) * (1 +
l tax)) as sum charge,

avg(l quantity) as avg qty,

avg(l extendedprice) as avg price,

avg(l discount) as avg disc,

count(*) as count order

from

lineitem

where

l shipdate <= date ’1998-12-01’ - interval ’:1’ day
(3)

group by

l returnflag,

l linestatus

order by

l returnflag,

l linestatus;

Q6:

select

sum(l extendedprice * l discount) as revenue

from
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lineitem

where

l shipdate >= date ’:1’

and l shipdate < date ’:1’ + interval ’1’ year

and l discount between :2 - 0.01 and :2 + 0.01

and l quantity < :3;

Q17:

select

sum(l extendedprice) / 7.0 as avg yearly

from

lineitem,

part

where

p partkey = l partkey

and p brand = ’:1’

and p container = ’:2’

and l quantity < (

select

0.2 * avg(l quantity)

from

lineitem

where

l partkey = p partkey

);

Q19:

select

sum(l extendedprice* (1 - l discount)) as revenue

from

lineitem,

part
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where

(

p partkey = l partkey

and p brand = ’:1’

and p container in (’SM CASE’, ’SM BOX’, ’SM
PACK’, ’SM PKG’)

and l quantity >= :4 and l quantity <= :4 + 10

and p size between 1 and 5

and l shipmode in (’AIR’, ’AIR REG’)

and l shipinstruct = ’DELIVER IN PERSON’

)

or

(

p partkey = l partkey

and p brand = ’:2’

and p container in (’MED BAG’, ’MED BOX’, ’MED
PKG’, ’MED PACK’)

and l quantity >= :5 and l quantity <= :5 + 10

and p size between 1 and 10

and l shipmode in (’AIR’, ’AIR REG’)

and l shipinstruct = ’DELIVER IN PERSON’

)

or

(

p partkey = l partkey

and p brand = ’:3’

and p container in (’LG CASE’, ’LG BOX’, ’LG
PACK’, ’LG PKG’)

and l quantity >= :6 and l quantity <= :6 + 10

and p size between 1 and 15
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Request A-algo DBM1 DBM2 DBM3

Q1 8s 47s 370s 33s
Q6 2s 24s 22s 24s
Q17 3s 8s 10s 8s
Q19 3s 19s 24s 25s

RF1 (Insert) 4s 231s 96s 53s
RF2 (Delete) 5s 121s 85s 42s

Cartesian Product 7s non Op. Non Op. Non Op.

Table 1: Performances of theA-algorithm compared to SQL Server 2000, Oracle 8i and
DB2

and l shipmode in (’AIR’, ’AIR REG’)

and l shipinstruct = ’DELIVER IN PERSON’

);

p partkey = l partkey

and p brand = ’:3’

and p container in (’LG CASE’, ’LG BOX’, ’LG
PACK’, ’LG PKG’)

and l quantity >= :6 and l quantity <= :6 + 10

and p size between 1 and 15

and l shipmode in (’AIR’, ’AIR REG’)

and l shipinstruct = ’DELIVER IN PERSON’

);

1.3 Performances

The comparison between programs using the algorithm detailed in this paper and the
main programs one can buy were all performed on the same PC, using a single processor
of 2GH, 1GB of RAM, and all the programs written in C++ ; the data was the TPC data
using a scale factor of 1, so the size of the database (the flat relations) was roughly 1 GB.
The cartesian product was performed over two copies of the main relation of the TPC, the
relation lineitem, holding 6 millions lines. DBM1 is Microsoft SQL Server 2000, DBM2
is Oracle 8 and DBM3 is IBM DB2).
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110 2 5 7

Figure 3: The set{0, 2, 5, 7, 11} stored in a radix tree

The algorithm is based on a full use of hierarchical data representation (by the use of
radix trees), for the data and the record Ids they belong to.

In a first part we recall the use of radix trees. This tool will be very useful to fully
manage the database.

2 Radix trees

A radix tree is a convenient mean to store a set of integers or words of a dictionary,
especially when they have all the same length. When dealing with integers, one can
manage to force them to have the same length, by adding prefixes made of repeated 0s. A
radix tree stores its elements in its leaves. When storing numbers written in basis 2, the
nodes may only have a left son (labeled with 0) or a right son (labeled with 1). The path
between the root of the tree and one of its leaves writes a word onto the alphabet{0, 1}
and this word form the digits of the stored integer.

Let us then consider for instance a set of integers written in basis 2 and of same
length in this basis,S. One can storeS in a tree whose paths between the root
and the leaves are the integers ofS. For instance, the setS = {0, 2, 5, 7, 11} =
{0000, 0010, 0101, 0111, 1011} may be stored as (see figure 3).

The advantages of storing a set of integers in such a way are numerous: the storage is
efficient because common prefixes are stored only once in the tree, and, as we will see in
the next subsections, the computations over sets of integers are quite easy to perform and
efficient.

An algorithm to build a radix tree whose leaves are the elements of a setS is the
following:
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Algorithme 1

1. RadixTree Build(set S, height H)

2. Parameters: a set S andH = 1 + �ln2(Max(S))�3

3. Result: a Radix Tree

4. Result = Node

5. if (H = 0) return Result.

6. Build S0 = S ∩ [0, 2H−2 − 1] andS1 = S ∩ [2H−2, 2H−1 − 1]

7. if (S0 �= ∅) Result->LeftNode = Build(S0, H-1)

8. if (S1 �= ∅) Result->RightNode = Build(S1 − 2H−2, H-1)

9. return Result

2.1 Intersection

Let S andS ′ be two sets of integers. We wish to compute the intersectionS ∩ S′ and
let us denotes ands′ their cardinalities.

One way to do it is to sort the two sets (which costsO(s ln s + s′ ln s′)and to compute
this intersection of the sorted sets in timeO(max(s, s′)). So this intersection may be
computed in a time likeO(s ln s + s′ ln s′).

One may also sort only one of the sets, sayS and look for every element ofS′ in the
sorted setS. The cost is likeO(s ln s + s′ ln s) = O((s + s′) ln s) ≤ O(s ln s + s′ ln s′).

Now if we suppose thatS andS′ were stored in radix trees, the cost of the intersection
is like O(i ln s) wherei = #(S ∩ S ′), where#(S) is the cardinality of the setS. Indeed,
the intersection between the two radix trees may be performed level by level

2.2 Union

The cost of computing the union of two sets of integers,S andS′, of cardinalss ands′

is the cost of making a multi-set union plus the cost of computing the intersectionS ∩ S′

in order to remove the common elements toS andS′.
3the parameterH has got not to be re-computed at each recursive call
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Here again, one can begin by sorting the two sets and then computeS ∪ S′. The cost
of this algorithm isO(s ln s + s′ ln s′ + s + s′) = O(s ln s + s′ ln s′).

In a similar manner, one may sort one of the sets, sayS and computeS ∪ S′ by
looking for each element ofS′ in S. The cost of this algorithm isO(s ln s + s′ ln s) =
O((s + s′) ln s).

Now if we suppose again thatS andS′ are stored in radix trees, the cost of the com-
putation ofS ∪S′ is u ln s whereu is the cardinal ofS ∪S′. Indeed, the two trees may be
read simultaneously and the resulting tree may be computed on the flight.

3 Creating indexes

In this section we will explain how one can use radix trees to build convenient indexes
to store and manage databases.

In a first subsection, we will suppose that the database is made of only one relation
which contains only one attribute. This case, though artificial, is fundamental to under-
stand the proceed described in this paper.

Then we will suppose that the database is composed of one single relation, made of
several attributes and at least one Primary Keys. It may be convenient to suppose that a
relation may contain several Primary Keys. Indeed, in practice, it may so happen that a
Primary Key, made of several attributes, could be only partially filled while another could
be fully filled.

The last subsection we be dedicated to the indexes creation of a full database.

3.1 One relation, one attribute

Primary Keys. A primary key is an attribute, or a set of attributes such that two
different tuples of the relation may not have the same tuples on this attribute (or all these
attributes).

There is one implicit and convenient Primary Key in any relation : the record Id (it is
indeed a Primary Key because no two different lines have the same record Id). So we will
assume that the tuples of the relation are identified by their record Ids.

If one has to store, request and manage a date base made of one single relation made
of only one attribute, one may compute the thesaurus of the attribute and then, for each
word of this thesaurus compute the set on integers it appears at.

Then each set may be stored in a radix tree as explained above.
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0 Male
1 Female
2 Female
3 Male
4 Female
5 Male
6 Male
7 Female
8 Female
9 Male
10 Male

Table 2: An example of simple relation

3.1.1 Thesaurus creation

Let us notice that this step necessitates a sort : one has to build the set of couples
(word, record Id), which is sorted according to the first element and according to the sec-
ond for the couples which have the same first element. Then one builds on the thesaurus
and the set of record Ids each of these words appear at.

Let us take an example: let us consider the following relation (see table 2).

(In this example, the record Ids are indicated explicitly.)

One builds the couples (Male, 0), (Female, 1), (Female, 2), (Male, 3), (Female, 4),
(Male, 5), (Male, 6), (Female, 7), (Female, 8), (Male, 9), (Male, 10)

and sorts them according to the first element of the couples:

(Female, 1), (Female, 2), (Female, 4), (Female, 7), (Female, 8), (Male, 0), (Male, 3),
(Male, 5), (Male, 6), (Male, 9), (Male, 10).

Then one is able to build the thesaurus and, for each word of the thesaurus, the set of
record Ids this word appears at:

“Female” appears at record Ids{1, 2, 4, 7, 8} and “Male” appears at record Ids
{0, 3, 5, 6, 9, 10}.

When this is done, it is easy to answer a request like "What are the record Ids the word
“Male” appears at?", but quite uneasy to answer to the request “what is the tuple at record
Id 7?”. For this last request, see subsection 5 below.
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Figure 4: Example of the representation of an attribute of a relation

3.1.2 Storing the indicative functions

Now these sets of record Ids each word of the thesaurus appear at can be stored in
radix trees. This is convenient and powerful to compute intersections, and so on. . .

In the preceding example, one has: (see Figure 4)

3.1.3 Creating macro-words

Another question one may have to answer to when dealing with the attribute of a
relation of a database is a between: one may want to know for instance for which record
Ids the words lye between two given values.

Let us imagine for instance that an attribute is made of dates, formated in YYYYM-
MDD. Compare two dates is compare lexicographically the two words.
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But we may also enlarge the thesaurus, with words that are truncates of the initial
words. Let us indeed add words to the thesaurus of the attribute, for instance any truncate
of six characters or any truncate of four characters.

Then any word of the thesaurus will be represented three times: one time as itself, one
time as a truncate of six characters and one time as a truncate of four characters.

Any word of six characters, say aaaamm, will occur each time a word aaaammxx
occurs. In other words, the record Ids the word aaaamm appears is exactly the union of
the sets of record Ids any word aaaammxx appears at.

In a similar manner, any word of four characters, say aaaa, will occur each time a word
aaaaxxyy occurs and its radix tree will be the union of the corresponding radix trees.

In summary, one builds not only the radix trees of each word of the the-
saurus but also the thesaurus of each prefix of given lengths of words. So when
one has to solve a “between” clause, one splits the wanted interval with respect
to the prefix length pre-computed and read the matching radix trees. For in-
stance, the interval[19931117, 19950225] would demand, without the macro words,
466 reading of radix trees because this interval contains 466 different words.
If one splits this interval with respect to prefix lengths of 6 and 4, one has:
[19931117, 19950225] = [19931117, 19931130] ∪ [199312, 199312] ∪ [1994, 1994] ∪
[199501, 199501] ∪ [10050201, 19950225]. The first interval contains 14 different words
(not truncated). The second contains a single truncated word (6 characters), and the read-
ing a single radix tree gives the set of the records Ids words like199312dd appear at. The
third interval contains one single truncated word (4 caracters) and the reading of the single
matching radix tree gives the set of records Ids words like1994mmdd appear at, and so
on. . . Finally only 42 readings of radix trees are made necessary instead of 466.

3.1.4 Managing lacks

Now, it may also so happen that some tuples were not filled. But each must have an
attribute, even an attribute meaning that there is no attribute at this record Id.

The tuples meaning a lack of information should be chosen in a way as few disturbing
as possible, which means we should choose very seldom tuples. We may for instance
chose : #Empty# for a string,−231 for a signed integer on 32 bits,232 − 1 for an
unsigned integer on 32 bits,− 263 for a signed integer on 64 bits,264 − 1 for an unsigned
integer on 64 bits and so on. . .
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0 Male
1 Female
2 Female
3 Male
4 Female
5 Male
6 Male
7 Female
8 Female
9 Male
10 Male

Table 3: An attribute

0 Female
1 Male

Table 4: The thesaurus

3.1.5 An additional storage

As explained above, the storage of an attribute by thesaurus and radix trees makes
quite uneasy to answer a question like “what is the tuple at record Id 17?” for instance.

This is why it is necessary to store the attribute in its natural order. Of course, instead
on storing the attribute itself, it may be much more affordable to store the word indexes
in the thesaurus.

For instance, the preceding attribute shall be stored:

shall be stored as

and the attribute:

remark it sometimes happen that a word could appear or disappear from a thesaurus
while adding or removing records to a relation. In this case, we might think we have to
rewrite the whole attribute each time this situation happens. This is nevertheless not true:
one may store an unsorted thesaurus and a permutation which stores is contents. Thus
when words are no longer in the s-thesaurus or when a new word appears in it, on has
only to re-write the permutation instead of the whole attribute.
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0 1
1 0
2 0
3 1
4 0
5 1
6 1
7 0
8 0
9 1
10 1

Table 5: An cheap storage of the attribute

3.1.6 Summary of the full storage of an attribute

3.2 One relation, several attributes

Now when a relation has several attributes, each one of them may be treated as if
it were the only attribute of the relation.This means to say that there should exist a
thesaurus for each attribute and the matching radix trees for all word of any of these
thesauruses.

The only remaining question is the storage of the primary keys.

When dealing with a Primary key, one has to be able to answer efficiently to two
questions: at what record Id can we found a given tuple of a primary key, and what is the
tuple of the primary key at a given record Id.

One may answer efficiently to both these questions by storing the attribute or the
attributes of the primary key in its (or their) natural order, namely with increasing record
Ids and by storing in more a permutation allowing one to find a given tuple efficiently.

For instance, let us imagine a primary key made of two attributes, whose tuples are:
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Figure 5: Summary of the whole storage of an attribute
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(0) 1 3

(1) 2 1

(2) 3 2

(3) 2 3

(4) 1 2

(5) 3 7

(6) 2 2

(7) 1 1

(8) 3 3

(9) 4 3

In this example, the record Ids are still explicitly expressed between parentheses. One
then store these two attributes exactly as they are and a permutation. To store the permu-
tation, one has to chose a comparison function. For instance one may compare first the
first attribute and the second in case of equality.

In this case, the sorted primary key is:

(7) 1 1

(4) 1 2

(0) 1 3

(1) 2 1

(6) 2 2

(3) 2 3

(2) 3 2

(8) 3 3

(5) 3 7

(9) 4 3

By removing the tuples (but keeping the record Ids) one obtains the permutation
(7401632859) and thus is able to find a given value by dichotomy.
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When storing a whole relation, it is also convenient to store the number of its records.

3.3 Several Relations

In a relational database, there are usually several relations linked between them by
foreign keys recalling primary keys.

As we explained, a primary key is an attribute or a set of attributes whose tuple may
be an unique identification of the record within the relation (the record Id is a fundamental
example of primary key. See [1] or [2]).

Let us suppose that a relation is made of several billion of records, but that some
attributes may take only five different tuples (for instance, in a genealogy database, one
may want to store for each client the country, the continent the customer was born, the
country, the continent where his mother was born and the country and the continent his
elder child, if any, was born). Instead of recalling fully the names of all these countries
and continents for each record, one may build two other relations, one of countries and
another of continents. Then on each record, instead of recalling all these countries and
continents, one may recall only the primary key of the relation of the countries for the
customer, his mother and elder child if any. And in the relation of the countries, one may
also recall only the primary key of the relation of the continents the country belongs to.
This storage is much cheaper.

Here is a little example of such a practice:

(li) cn Inc BirCoun BirCont MoCoun MoCont EldCoun EldCont

(0) Dupont 817 France Europe Tunisia Africa England Europe

(1) Gracamoto1080 Japan Asia Japan Asia USA America

(2) Smith 934 England Europe India Asia England Europe

(3) Helmut 980 Germany Europe Germany Europe Germany Europe

(cn means “customer name”, Inc “Income”, “BirCoun “Birth Country”, “BirCont
“Birth Continent”, MoCoun “Mother’s birth country”, MoCont “Mother’s birth Conti-
nent”, EldCoun “Elder’s birth country” and EldCont “Elder’s birth continent”.)

This relation may be rewritten in several relations:

Continents:
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Continent

(li) Continent

(0) Africa

(1) America

(2) Asia

(3) Europe

Country

(li) Country Continent

(0) France 3

(1) Tunisia 0

(2) England 3

(3) Japan 2

(4) USA 1

(5) India 2

(6) Germany 3

And the customers’ relation becomes thus:

Customers

(li) cn Inc BirCoun MoCoun EldCoun

(0) Boyer 817 0 1 2

(1) Gracamoto 1080 3 3 4

(2) Smith 934 2 5 2

(3) Helmut 980 6 6 6

and the set of three relations is indeed much shorter to store than the full relation.
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But this also points out that any relational database may be seen as a set of independent
relations.

In the preceding example for instance, we can consider the relation continent by itself,
the relation country with the relation continent expanded inside and the relation people
with the relation country and continent expanded inside (which is the very first relation,
the full one, of this example).

These expansion relations are thus:

Expanded Continents

(li) Continent

(0) Africa

(1) America

(2) Asia

(3) Europe

Expanded Countries

(li) Country Continent

(0) France Europe

(1) Tunisia Africa

(2) England Europe

(3) Japan Asia

(4) USA America

(5) India Asia

(6) Germany Europe
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Expanded Customers

(li) cn Inc BirCoun BirCont MoCoun MoCont EldCoun EldCont

(0) Boyer 817 France Europe Tunisia Africa England Europe

(1) Gracamoto1080 Japan Asia Japan Asia USA America

(2) Smith 934 England Europe India Asia England Europe

(3) Helmut 980 Germany Europe Germany Europe Germany Europe

Of course, it may so happen, like in this example, that a relation should be expanded
several times in another. This means that the attributes of an expanded relation should be
refereed to as the attribute of the expanded relation expanded in the expansion relation via
the list of couples (Primary Key Foreign Key) allowing one to move from the expansion
relation to the expanded relation.

Now we define an expansion relation as a relation in which as much relations as pos-
sible were expanded in. From now on, we will consider only expansion relations and the
database will be made, from now on, of independent expansion relations.

For each of these expansion relations, one can build the indexes as explained above.

And now, we are ready to request or manage the database.

4 Requesting

In this section we explain how one may use the indexes created as explained below to
perform efficient SQL requests. Usually, a request involves several relations. It may be
split in two parts: the first part means to discriminate record Ids and the second part (if
any) means to perform computations over the data of the found records.

The first part may contain join clauses (the link between a foreign key and the match-
ing primary key), comparison between an attribute and a constant (with arithmetic con-
nectors as “=”, “≥”, “>”, “ ≤”, “ <”, between, like, in. . . ), or acomparison between two
attributes (for instance like in a cartesian product), theses requests being logically con-
nected by logical connectors like “and”, “or”, “not”. . . .

The second part may contain arithmetic operations like a sum, a mean, a product, a
star operator,. . . .

299



a Hierarchical Database Manager

4.1 Removing the join clauses: choice of the expansion relation

As explained above, each of the relations, sayR, is considered as an “expansion re-
lation” which means that any relationR′ linked toR via a foreign key are expanded in
R.This means that the attributes ofR′ are developped inR, the thesauruses of these at-
tributes are stored as the ones ofR and the matching radix trees are computed. So the join
clauses are irrelevant in such a relation.

But a request involves usually several relations. How should we chose the appro-
priated expansion relation? The relations involved in the request are all expanded in a
nonempty set of relations, sayT . Exactly one of these relations is expanded in none of
the others. This relation is the expansion relation appropriated to solve the request.

Now, the where clause may contain some join clauses. These clauses must be logically
linked to the remaining part of the request by an “and” operator. So the first step consists
in simply remove these clauses by replacing the (Join Clause And Remaining) part by
(Remaining).

Now let us study how we can manage the where clause cut down from its join clauses

4.2 Atomic requests

We call here an atomic request a fundamental part of a where clause, namely a com-
parison clause linked to the remaining of the where clause by logical operators. Ift is a
relation andc one of its attributes, an atomic clause may bet.c = 3, t.c between
“HIGH” and “MEDIUM”, ort.c like Word% for instance.

We explain in the above subsections how to deal with the atomic requests.

4.2.1 Equality between an attribute and a constant

This is the simplest case: one has only to find the wanted value in the thesaurus, read
its radix tree which gives him the record ids this word appear at.

4.2.2 Between

This is the fundamental example of atomic request. Any of the others may be treated
as a between. It is the clause the macro words where made for.

Let us take back the “date” example given below: one made macro words of length 4
and 6 for an attribute containing dates and wishes to compute the record Ids dates lying
in [19931117, 19950225] appear at.
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As explained above, one may split the interval by same common prefixes
length than the macro words lengths. Thus, one obtains[19931117, 19950225] =
[19931117, 19931130] ∪ [199312, 199312] ∪ [1994, 1994] ∪ [199501, 199501] ∪
[10050201, 19950225].

The computation is then simple: one read the radix tree of the 19931117, “OR” it with
the radix tree of19931118, . . . , “OR” the result with the radix tree of 199312 (the macro
word whose radix tree is precisely the “OR” of the radix tree of all the dates beginning
with 199312), then “OR” the result with the radix tree of the macro word 1994 (whose
radix tree is the “OR” of the radix trees of all the dates beginning with 1994 and so on. . . .

As explained above, one reads only 42 radix trees to perform this computation instead
of 466. . .

Of course one can also manage opened or semi opened intervals by simply excluding
the corresponding word.

4.2.3 Greater than, lower than, greater than or equal, lower than or equal

Each of these atomic requests is in fact a between. Indeed, if we callm the minimum
value of the thesaurus andM its maximal value, then any of these requests are either of the
form (m, a) or of the form(a,M). So if we can manage the between clause, we can also
manage these atomic requests.

4.2.4 In

Thein clause is a way of mixing equality clauses and Or logical connections. So we
can manage them simply.

For instance,t.c in (a, b, c) may be rewritten int.c = a or t.c = b
or t.c = c. The management of theor clause is explained below.

4.2.5 Like

The like clause is another example of between clause: for instance, the clauset.c
like word% may be rewritten in:t.c between [word, wore[. Here again,
manage thebetween clause also manages thelike clause.

4.3 Mixing atomic requests

Now the where clause may mix atomic clauses by using logical operators: theor,
theand and thenot clause. The three next subsections are dedicated to these logical
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clauses.

We would like to empathize that the result of an atomic request is a radix tree.

We will suppose (and show) that this is the case of any where clause.

4.3.1 Or

Now we have to OR two radix trees: The clause is(Left Clause OR Right
Clause). TheLeft Clause andRight Clause when solved, return a radix tree.
So all we have to do is to compute recursively the resulting radix tree of the full clause.

4.3.2 And

TheAnd clause may be performed exactly as theOr clause. However, the computa-
tion is a little more efficient.

Indeed, we have toand two radix trees; this computation is made recursively, check-
ing the matching nodes of the two trees simultaneously. But when one of the trees contains
a node and the other tree does not contain the matching node, it is of course irrelevant to
perform the and of the sons of this node.

4.3.3 Not

thenot clause is the most difficult atomic clause to perform with radix trees.

Each relation’s size (its number of records) is stored. So perform anot over a radix
tree may be done as follow: (the goal is to performnot T with T a radix tree).

let us define an-full radix tree (n-frt) as a tree designed to contain all the numbers
from 0 ton − 1.

Then to perform anot, one may go from an-frt (wheren is the number of records of
the expansion relation the request is solved onto) and remove the nodes corresponding to
T .

To remove a node, one may proceed by removing the node and removing recursively
its father if it has any child left.

For instance, if the expansion relation has 13 records, thenot T with T the following
tree (see Figure 6)

is (see Figure 7)
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Figure 6: A 13-radix tree before a NOT operation

Figure 7: The same 13-radix tree after the NOT operation
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4.4 Comparison between attributes

The comparison between two attributes is the most complex request to perform with
this data representation and has a lot to do with the cartesian products section just below).

Let t be the expansion relation of the request andc andd be two of its attributes. A
comparison between attributes may be a part of a where clause in which we discriminate
the records such that for instancet.c > t.d. We empathize the fact that this compari-
son is done at the same record Ids (this is the difference with the cartesian product).

So how can we perform this clause?

Let Tc andTd be the thesauruses of the attributest.c andt.d. We are looking for
the record Ids such thatt.c > t.d. Here is how we may proceed. For each wordw of
the thesaurusTc, we can compute the radix treer of the interval[md, w

′] wherew′ is the
greatest word ofTd lower thanw. Then by performing anand over thew’s radix tree and
r, one obtains the corresponding record Ids forw.

By Or-ing the results of all the words ofTc, one obtains the wanted radix tree.

Let us notice that the radix treesr (as above) are not to be computed independently
one of the others: if the wordsw are read in an increasing order, one simply has toOr the
radix trees corresponding to the intervals[wi, wi+1[.

The other such clauses may be performed in a similar way.

4.5 Cartesian products

The cartesian product is usually considered as a combinatoric computation over rela-
tion of a relational database. Actually, this computation may be performed quite simply
and efficiently. The authors performed for instance a cartesian product of two relations
(both of them of 6 millions records) in 7 seconds on an average computer.

Let us consider such a request: compute the number of timest.c > t’.d indepen-
dently of the record Ids.

For instance, if the attributest.c andt’.d are:
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t.c

z

ab

z

c

da

e

and

t.d

b

a

as

sa

ca

ba

abra

then the number of timest.c > t.d is 7+1+7+5+6+6 = 32. The complexity
of the naive algorithm is a constant times the product of the two relations’ size. It is not
possible to actually perform cartesian products of two relations with modern machines in
using this algorithm.

So how can we compute efficiently this result?

The attributes are stored with their thesaurus and the radix trees corresponding to each
of the words of these thesauruses.

We may, to each word of the thesaurus, compute the number of records it appears at
by a simple reading of the radix trees.

In the preceding example, this gives:
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t.c

ab 1

c 1

da 1

e 1

z 2

t.d

a 1

abra 1

as 1

b 1

ba 1

ca 1

sa 1

One can also, for the attributet’.d compute, for each word the number of words
lower than or equal to it. This gives:

t.d, cumulated cardinalities

a 1

abra 2

as 3

b 4

ba 5

ca 6

sa 7
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Then, by reading the thesauruses and the corresponding numbers, one can compute the
result. For each wordw of t.c, one has to look for the greatest wordw’ of the thesaurus
of t’.d lower thanw and add to the result the product of the number of occurrences of
w multiplied by the cumulated number of occurrences ofw’.

This gives:

w w’ w-card w’-cumul. card. product partial result

ab a 1 1 1 1

c ba 1 5 5 6

d ca 1 6 6 12

e ca 1 6 6 18

z sa 2 7 14 32

This algorithm’s complexity is a constant time the sum of the sizes of the thesauruses,
which is usually much less than the product of the relation’s number of records even if
the relations do not contain twice any word (a sum of thesauruses sizes is to be compared
to the product of relations sizes. . . )

4.6 Correlated sub queries

This subsection and the following are dedicated to sub-queries. Indeed, the where
clause may contain other where clauses and these sub queries may be or not correlated to
the principal one.

What is a correlated sub query? An example of such request is the request 17 of the
TPC. This request is:

select

sum(l extendedprice) / 7.0 as avg yearly

from

lineitem

part

where

p partkey = l partkey

and p brand = ’[BRAND]’
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and p container = ’[CONTAINER]’

and l quantity < (

select

0.2 * avg(l quantity)

from

lineitem

where

p partkey = p partkey

);

In this request, one has to perform the computation of the sub query in taking into ac-
count the condition requested in the principal part of the query (because thep partkey
of the sub-query belongs to the principal part of the request).

So this kind of requests may be rewritten in order to have to perform a non correlated
sub query. The preceding query would thus become:

select

sum(l extendedprice) / 7.0 as ag yearly

from

lineitem

part

where

p partkey = l partkey

and p brand = ’[BRAND]’

and p container = ’[CONTAINER]’

and l quantity < (

select

0.2 * avg(l quantity)

from

lineitem

partsupp

where
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p partkey = p partkey

and p brand = ’[BRAND]’

and p container = ’[CONTAINER]’

);

So a correlated sub query may be rewritten in a not correlated sub query. This is the
subject of the next sub section.

4.7 General sub queries

Now a SQL request containing not correlated sub queries may be treated simply: each
sub query not containing any sub query is treated as a request by itself and the result of
the computation takes the pace of the full sub request.

4.8 Perform computations on the found records

Now when dealing with a database, we are able to perform computations of record Ids
of the expansion relation (matching the request) according to thewhere clause.

Now let us suppose that the goal of the request is to perform computations over some
attributes of the relation but only for the found record Ids. For instance, it may be to
compute an average tuple like in the preceding example.

The tuples of any attribute of an expansion relation are stored in the order they appear
in it. So it is easy to read this file only for the record Ids matching the first part of the SQL
request and perform the requested computation.

5 Managing the database

Now we are able to store a whole database and to perform efficiently SQL requests
onto it. Usually, the quickest the SQL requests are performed, the slowest the database is
managed.

This is not true in this case: not only are the requests performed fast but the manage-
ment of the database are also fast (see the table of performances 1 in the introduction of
this paper).

Why is that so? The indexes do not contain sorted data, expect the permutations linked
to the thesauruses. In particular, there is no stored sorted data upon one or more attributes.
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To manage a database, one may wish to add or remove records of a relation of a base,
add or remove a primary key, add or remove a foreign key, add or remove a relation. We
will see successively these items in the next sub sections.

5.1 Managing a relation

Manage a relation is the most common operation of the management of a database.
Indeed, the most usual case is when the database manager wishes to add or remove records
of a relation. All the other transformations change the database scheme or organization
and these transformations are much more seldom.

Usually, when removing records of a relation we will refuse to reschedule the whole
relation. This means that some record Ids will be declared free and the corresponding
data will be removed from the expansion relations (we will see how below). So a relation
will usually have “holes’ ’ : some record Ids will not be considered as filled by anything.
These record Ids shall be stored in a file, containing firstly these record Ids and lastly the
first index from which all the record Ids are free.

5.1.1 Adding records to a relation

So we wish to add records to a relation. Let us keep in mind that for us, all the relations
of the database are expansion relations.

By reading the files of the free record Ids of this relation, we may assign a record Id
to each of these records.

So we complete the records by filling the attributes of the relations that may be ex-
panded in this relation (for instance if an attribute is a foreign key, we read the corre-
sponding data in the corresponding relation).

Then we compute the thesaurus and the radix trees of the records to add to the relation
and perform “Or” to the thesauruses and the radix trees of each attribute of the relation.

5.1.2 Removing records to a relation

We have here number of problems to solve: all the relations of our database are expan-
sion relations and we do not want to reschedule the whole relation after to have removed
some records of it. (If we did so, we would have to rewrite all the thesauruses, all the
radix trees of this relation and of all the relations the first one may be expanded in.)

So we have the Ids of the records of the relationT to be removed (these record Ids may
have found thanks to awhere clause). So for each attributec of the expansion relation,
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and for all the wordsw of the thesaurus of these records, we build the radix trees that we
x-or with the radix tree ofw of c.

and then we just store the resulting radix tree in place of the preceding one.

We assume here that we do not have to change anything to the expansion relations in
whichT was expanded. Indeed, if we remove a record expanded in another relation, we
should in this case throw an exception because thedelete instruction was illegal.

5.1.3 Adding an attribute

Add an attributec to an expansion relation consists in several operations. We have
indeed to treat the relationT the attribute to be added belongs to and the relations in which
T is expanded.

The treatment ofT consists in building the thesaurus ofc, the radix trees of each word
of it and to store this whole stuff.

The treatment of each relationT’ in which T is expanded consists in reading the
record Ids ofT’ that must be added toT. Then one computes the thesaurus, the radix tree
of each word of it and store the whole thing.

Let us take an example.

Related relations

T0

(li) c1 fk1

(0) a 2

(1) b 1

(2) c 0

(3) b 1

(4) e 2
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T1

(li) pk1 c2 fk2

(0) 0 S 0

(1) 1 T 1

(2) 2 V 0

T2

(li) pk2 c3

(0) 0 X

(1) 1 Y

The corresponding Expansion relations are thus:

Expanded T0

(T0) (T1) (T2)

(li) c1 fk1 pk1 c2 fk2 pk2 c3

(0) a 2 2 V 0 0 X

(1) b 1 1 T 1 1 Y

(2) c 0 0 S 0 0 X

(3) b 1 1 T 1 1 Y

(4) e 2 2 V 0 0 X
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Expanded T1

(T1) (T2)

(li) pk1 c2 fk2 pk2 c3

(0) 0 S 0 0 X

(1) 1 T 1 1 Y

(2) 2 V 0 0 X

Expanded T2

(li) pk2 c3

(0) 0 X

(1) 1 Y

and let us suppose we wish to add an attribute c2 to T2, whose tuples are Y and Z.

The (expanded) relation T2 becomes

Expanded T2

(li) pk2 c3 c2

(0) 0 X Y

(1) 1 Y Z

To compute the new expanded relation T1, one reads the tuples of the primary key
pk2 and copy the matching tuples of T2 in the new attribute of T1. This gives:
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T1

(T1) (T2)

(li) pk1 c2 fk2 pk2 c3 c2

(0) 0 S 0 0 X Y

(1) 1 T 1 1 Y Z

(2) 2 V 0 0 X Y

in a similar manner, one reads the tuples of pk2 in t0 to compute the new expanded
relation T0. This gives:

T0

(T0) (T1) (T2)

(li) c1 fk1 pk1 c2 fk2 pk2 c3 c2

(0) a 2 2 V 0 0 X Y

(1) b 1 1 T 1 1 Y Z

(2) c 0 0 S 0 0 X Y

(3) b 1 1 T 1 1 Y Z

(4) e 2 2 V 0 0 X Y

5.1.4 Removing an attribute

Remove an attribute is a simple operation. It only consists in erasing the file corre-
sponding to this attribute for the relationT it belongs to and in all the relationsT’ in
whichT is expanded.

5.1.5 Adding a Primary Key

A primary key is stored by the data of the involved attributes and a permutation storing
the order of the data of the primary key.

Add a primary key is thus simply to store the data of the involved attributes and the
corresponding permutation.
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5.1.6 Adding a Foreign Key

Adding a foreign key is quite more complicated.

A foreign keyfk, belonging to an expansion relationT is hooked to a primary key
pk, belonging to an expansion relationT’. The relationT’ must be expanded intoT
according to the couple (foreign key, primary key) being treated even if this relation is
already expanded intoT by the mean of another foreign key.

For each record ofT, of index i, the foreign key has a tuplev and we can find the
record Idp(i) of T’ wherepk = v.

Then we add al the attributes ofT’ in T. To perform this, for each attributec of T’we
read the tupleT ′.c[p[i]] for all integersi. Then we do as usually by building the thesaurus
of this attribute and for each word of this thesaurus the matching radix tree.

5.1.7 Removing a Primary Key

Remove a primary key consists in deleting the corresponding files. Of course, if this
primary key is the target of a foreign key, we should throw an exception because such an
instruction should be illegal.

5.1.8 Removing a Foreign Key

Let us denotefk the foreign key to be removed andT the relation it belongs to. This
foreign key targets a primary key,pk, belonging to a relationT’.

To remove a foreign key breaks the link between two relations. This means thatT’ is
no longer expanded inT and in none of the expansions ofT.

5.2 Managing the base

Manage the database itself consists in adding or removing a whole relation. . .

5.2.1 Adding or removing a relation

Adding (removing) a relation consists in adding (removing) all its attributes, all its
primary keys and and all its foreign keys. All these algorithms have been explained above.
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6 Conclusion

One of the problems of the use of bitmaps is the size of the involved vectors and the
fact that usually many of the bits are equal to 0. In this paper we exposed a database
manager algorithm. It may be used to fully manage a database with performances showed
in the table 1. The use of radix trees seems to be an interesting hierarchization of bitmaps.
They show the advantages to make possible an affordable storage of bitmaps, only the
parts with 1s are stored. They also allow a computation level by level, which gives good
performances in particular ti solve "and" requests.

This algorithm is also parallelizable and a possible future work is to implement a par-
allel version of theA-algorithm (this work is in progress, in cooperation with Christophe
Cérin). This is to be compared to performances obtained with parallelB-trees like in [7],
for instance

In order to keep the efficiency of theA-algorithm, one has to pre-compute the join
clauses. The use of macro-words makes also faster the resolution of “between” clauses.

The author would like to apply these ideas to related problems, like find all the occur-
rences of a pattern in an image whatever the foreground would be, or to find a sound in
some sounds whatever the noise would be.
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