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Abstract

We introduce two notions of complexity of a system of polynomials p1, . . . , pr ∈ Z[n]

and apply them to characterize the limits of the expressions of the form µ(A0∩T−p1(n)A1∩

. . .∩T−pr(n)Ar) where T is a skew-product transformation of a torus T
d and Ai ⊆ T

d are
measurable sets. The obtained dynamical results allow us to construct subsets of integers
with specific combinatorial properties related to the polynomial Szemerédi theorem.
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0. Introduction

The Szemerédi theorem on arithmetic progressions states that given r ∈ N =
{1, 2, . . .}, any set of integers of positive upper density contains an arithmetic progres-
sion {a, a + n, a + 2n, . . . , a + rn} with a ∈ Z, n ∈ N ([Sz]).

A polynomial is said to be integral if it takes on integer values on the integers. The
polynomial Szemerédi theorem says that given a system {p1, . . . , pr} of integral polynomials
with zero constant term, any set of positive upper density in Z contains a configuration of
the form

{
a, a + p1(n), . . . , a + pr(n)

}
with a ∈ Z, n ∈ N ([BL]).

Of course, this polynomial Szemerédi theorem does not necessarily hold for polynomi-
als with non-zero constant term. For instance, “the odd Szemerédi theorem” is not true:
not every set E ⊆ Z of positive density contains an arithmetic progression with an odd dif-
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ference, that is, configurations of the form {a, a+(2n+1), a+2(2n+1), . . . , a+r(2n+1)},
a, n ∈ Z. On the other hand, one can construct, for any r and m, a set E ⊂ Z of
positive density that contains “many” length r progressions with differences of the form
mn + l and no progressions of length r + 1 with differences mn + l for l 6= 0 modm.
More generally, one would like to know whether, given two sets of integral polynomi-
als {p1, . . . , pr} and {q1, . . . , qs}, there exist sets of integers having many configurations
of the form

{
a, a + p1(mn + l), . . . , a + pr(mn + l)

}
and no configurations of the form{

a, a + q1(mn + l), . . . , a + qs(mn + l)
}
.

The Szemerédi-type theorems can be proved using dynamics (see [F1], [BL].) Dy-
namics may also be used to address the above question. Here is how it works. Let
P = {p1, . . . , pr}, where pi are integral polynomials (or, at this stage, just integer valued
sequences). Let (X, µ, T ) be an invertible ergodic Borel probability measure preserving
system on a compact space X, A be a measurable set in X with µ(A) > 0 and x0 ∈ X.
Define E =

{
n ∈ N : T nx0 ∈ A

}
. Then for a, n ∈ N we have

a ∈ E ∩
(
E − p1(n)

)
∩ . . . ∩

(
E − pr(n)

)
iff a, a + p1(n), . . . , a + pr(n) ∈ E

iff T ax0, T
a+p1(n)x0, . . . , T

a+pr(n)x0 ∈ A iff T ax0 ∈ A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A.

Thus, for any n ∈ N, the set En =
{
a : a, a + p1(n), . . . , a + pr(n) ∈ E

}
is the same as{

a : T ax0 ∈ A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A
}
.

Let ∆Xr+1 =

{(
x
x...
x

)
, x ∈ X

}
be the diagonal in Xr+1. Consider the “polynomial

action” g(n)

(x0
x1...
xr

)
=

( x0

T p1(n)x1...
T pr(n)xn

)
, n ∈ N, on Xr+1 corresponding to the system P̂ =

{0, p1, . . . , pr} and let O(P̂ , ∆Xr+1) =
⋃

n∈N
g(n)∆Xr+1 be the orbit of ∆Xr+1 under this

action. Then, for n ∈ N,

T ax0, T
a+p1(n)x0, . . . , T

a+pr(n)x0 ∈ A iff x, T p1(n)x, . . . , T pr(n)x ∈ A for x = T ax0

iff g(n)

(
x
x...
x

)
∈ Ar+1 only if g(n)∆Xr+1 ∩ Ar+1 6= ∅ only if O(P̂ , ∆Xr+1) ∩ Ar+1 6= ∅.

So, a configuration of the form a, a + p1(n), . . . , a + pr(n) is contained in E only if

O(P̂ , ∆Xr+1) ∩ Ar+1 6= ∅.
On the other hand, let µ∆

Xr+1 be the measure on ∆Xr+1 induced by the measure µ
on X, that is, µ∆

Xr+1 (A0 ×A1 × . . .×Ar) = µ(A0 ∩A1 ∩ . . .∩Ar), Ai ⊆ X. Suppose that

µ̃P (A0× . . .×Ar) = limN→∞
1
N

∑N

n=1 g(n)µ∆
Xr+1 (A0× . . .×Ar) exists for any measurable

A0, . . . , Ar ⊆ X (it does if P is a system of polynomials); then µ̃P is a probability measure

on Xr+1 supported by the topological closure O(P̂ , ∆Xr+1) of O(P̂ , ∆Xr+1). Now assume

that the set Ar+1 “has good intersection with O(P̂ , ∆Xr+1)”, that is, µ̃P (Ar+1) = δ > 0.

This means that limN→∞
1
N

∑N

n=1 µ∆
Xr+1

(
g(n)−1Ar+1

)
= δ, or equivalently,

lim
N→∞

1

N

N∑

n=1

µ
(
A ∩ T−p1(n)A ∩ . . . ∩ T−pr(n)A

)
= δ.
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For S ⊆ Z let d(S) denote, if it exists, the density of S, d(S) = limN→∞
1
N

∣∣S∩{1, . . . , N}
∣∣.

Choose our point x0 so that for any set B of the form B = T c1A∩ . . .∩T clA, c1, . . . , cl ∈ Z,
one has d

({
a : T ax0 ∈ B

})
= µ(B). (This is always possible when T is ergodic.) Then for

every n ∈ N, d(En) = µ
(
A∩T−p1(n)A∩. . .∩T−pr(n)A

)
and so, limN→∞

1
N

∑N

n=1 d(En) = δ.

So, not only E contains configurations of the form
{
a, a+p1(n), . . . , a+pr(n)

}
, but contains

many such configurations, and they occur in E quite regularly.

This hints how one can attempt to construct a set E ⊂ Z which contains many
configurations of the form

{
a, a + p1(n), . . . , a + pr(n)

}
and no configurations of the form{

a, a + q1(n), . . . , a + qs(n)
}

for another system Q = {q1, . . . , qs} of integral polynomials:
it suffices to find a dynamical system (X, T ) and a set A ⊂ X such that µ̃P (Ar+1) > 0

whereas As+1 ∩O(Q̂, ∆Xs+1) = ∅. Then we choose a “typical” point x0 of A and define E
as the set of return times of x0 to A.

In this paper we confine ourselves to Weyl systems. A Weyl system is defined by
a unipotent affine transformation of a compact commutative Lie group (which is either
a torus or the product of a torus and of a finite commutative group). Given a system
P = {p1, . . . , pr} of integral polynomials with zero constant term, we find the closure of the

orbit O(P̂ , ∆Xr+1) of the diagonal in a Weyl system under the action of P̂ = {0, p1, . . . , pr}.
We then introduce two parameters of this orbit, W (P ) and V (P ), and call them the Weyl
complexity and the Vandermonde complexity of P . To make the discussion more concrete,
let us consider a standard Weyl system (X, T ): X is the d-dimensional torus T

d and
T (x1, x2, . . . , xd) = (x1 + α, x2 + x1, . . . , xd + xd−1), (x1, . . . , xd) ∈ X, where α ∈ T is

irrational. The closure O(P̂ , ∆Xr+1) of the orbit of ∆Xr+1 under the action of P is a
subtorus of Xr+1 = T

d(r+1). For k = 0, . . . , d + 1, let Lk =
{
(0, . . . , 0, xk, . . . , xd) ∈ X

}
.

The Weyl complexity W (P ) of P is then the minimal k such that the torus Lr+1
k is

contained in O(P̂ , ∆Xr+1). (Of course, this k does not exceed d; we assume that d is
large enough not to affect our considerations.) The Vandermonde complexity V (P ) of P is
defined as the minimal k such that the natural projection Xr+1 −→ Lr+1

k maps the torus

O(P̂ , ∆Xr+1) onto Lr+1
k . Clearly, V (P ) ≤ W (P ).

The meaning of the Weyl complexity of a system of polynomials P is that it is the
minimal integer k for which, in the terminology introduced by H. Furstenberg (see [F1]
and [F4]), the torus Xk−1 = X/Lk is a characteristic factor for P . A measure preserving
system (X ′, µ′, T ′) is said to be a factor of a measure preserving system (X, µ, T ), or just
of X, if one has a measure preserving mapping π: X −→ X ′ such that π◦T = T ′

◦π. The
transformation T ′ may be viewed as “the restriction” of T on X ′ and we will denote it by
the same letter T . For a function f ∈ L1(X), E(f |X ′) ∈ L1(X ′) denotes the conditional
expectation of f with respect to X ′ (for f ∈ L2(X), E(f |X ′) is merely the orthogonal
projection of f to the subspace π∗(L2(X ′)) of L2(X)). A measurable subset A of X is said
to be independent of X ′ if E(1A) is a constant. A factor (X ′, µ′, T ) of (X, µ, T ) is said to be
characteristic for a system of polynomials (or just a system of sequences of integers) P =

{p1, . . . , pr} if the limit behaviour of the averages 1
N

∑N

n=1

∫
X

f0 ·T p1(n)f1 · . . .·T pr(n)fr dµ,
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fi ⊆ L∞(X), only depends on the X ′-projections of fi, that is, if

lim
N→∞

( 1

N

N∑

n=1

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµ

− 1

N

N∑

n=1

∫

X′

E(f0|X ′) · T p1(n)E(f1|X ′) · . . . · T pr(n)E(fr|X ′) dµ′
)

= 0.

Remark. Finding characteristic factors of dynamical systems is an important task, because
it reduces the study of convergence of the multiple averages 1

N

∑N

n=1

∫
X

f0 · T p1(n)f1 · . . . ·
T pr(n)fr dµ to the study of their “image” in a simpler system X ′. Characteristic factors
for “linear systems” {p1, . . . , pr} where pi(n) = cin, i = 1, . . . , r, have been described by
Host and Kra ([HK1]) and by Ziegler ([Z]); they will be called here HKZ factors. HKZ
factors are essentially translations on nilmanifolds. One can show that HKZ factors are
characteristic for general polynomial systems as well (see [HK2], [L]). In a Weyl dynamical
system X, HKZ factors are just the natural factors Xk described above.

Let, again, (X, µ, T ) be a (standard) Weyl system and P = {p1, . . . , pr} be a system
of integral polynomials with zero constant term. Since Xk−1 = X/Lk is a characteristic
factor for P , we have:

Theorem 0.1. (See Proposition 5.2 below.) Let k = W (P ) and let A0, . . . , Ar be measur-
able subsets of X independent of Xk−1. Then

lim
N→∞

1

N

N∑

n=1

µ
(
A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)
=

r∏

i=0

µ(Ai).

One can also show (see Lemma 5.3) that the (k − 1)st factor Xk−1 is “optimal” in this
theorem and cannot be replaced by Xk−2.

The next, k-dimensional factor-torus Xk = X/Lk+1 of X is characteristic for P in a
stronger sense:

Theorem 0.2. (See Proposition 5.5 below.) Let k = W (P ) and let A0, . . . , Ar be measur-
able subsets of X independent of Xk. Then

lim
N→∞

µ
(
A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)
=

r∏

i=0

µ(Ai).

Lemma 5.7 says that, again, Xk cannot be replaced by Xk−1 in this theorem.

Turning to the Vandermonde complexity, we have the following:
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Theorem 0.3. (See Proposition 5.9 below.) Let k = V (P ) and let Ai = Xk−1 × Ii,
i = 0, . . . , r, where I0, . . . , Ir are subsets of Lk of positive measure. Then

lim
N→∞

1

N

N∑

n=1

µ
(
A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)
> 0.

Again, Xk−2 does not work for this theorem, at least for a nonconnected Weyl system;
this follows from Proposition 6.5.

The Weyl and Vandermonde complexities induce a hierarchy on the set of all systems
of polynomials so that, applying the described dynamical method to a suitable Weyl sys-
tem, one constructs a set of integers which contains many configurations corresponding to
systems of smaller complexities and no configurations of a certain form corresponding to a
system of larger complexity. In order to give a more precise formulation of our result let us
first introduce some notions expressing the “largness” and the “regularity” of occurences
of polynomial configurations in a set of integers.

For a set of integers E, we will say that E has uniform density α and write UD(E) = α

if the limit limN→∞
|E∩ΦN |
|ΦN | exists and equals α for every Følner sequence {ΦN} in Z. For a

sequence of real numbers αn we will write UC-lim
n

αn = α is limN→∞
1

|ΦN |

∑
n∈ΦN

αn = α

for any Følner sequence {ΦN} in Z. Let E ⊆ Z have positive uniform density. Let
P = {p1, . . . , pr} be a system of integral polynomials. We will say that E is UC-positive
with respect to P (“UC” for “Uniform Cesáro”) if

UC-lim
n

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> 0,

that is, this limit exists and is positive. (In particular, this implies that there exists δ > 0
such that the set of n for which

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> δ

is syndetic, that is, has bounded gaps, in Z.)
We will say that E is UC-balanced with respect to P if

UC-lim
n

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

= UD(E)r+1.

(In particular, this implies that for any ε > 0 the set of n for which

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> UD(E)r+1 − ε

is syndetic in Z.)
Finally, we will say that E is balanced with respect to P if

lim
n→∞

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

= UD(E)r+1

(this implies that for any ε > 0 one has

UD
({

a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E
})

> UD(E)r+1 − ε

for all but finitely many n ∈ Z).
Our main combinatorial result is that using Weyl systems one can construct a set E

of integers with strong combinatorial properties:
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Theorem 0.4. (See Theorem 6.1 below.) Let {p1, . . . , pr} be a system of integral poly-
nomials with zero constant term and let k = V (p1, . . . , pr). There exists a set E ⊂ Z of
positive uniform density such that
(i) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
V (q1, . . . , qs) < k and any nonconstant integral polynomial h the set E is UC-positive with
respect to the system

{
q1(h(n)), . . . , qs(h(n))

}
;

(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < k, any nonconstant integral polynomial h and any integers c1, . . . , cs the
set E is UC-balanced with respect to the system

{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < k − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs

the set E is balanced with respect to the system
{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iv) there exist nonzero integers m and l such that E contains no configuration of the form{
a, a + p1(mn + l), . . . , a + pr(mn + l)

}
, a, n ∈ Z.

Remark. The reader may notice that the assertion (i) of Theorem 0.4 is “weaker” than
the assertions (ii) and (iii), since the “shifting” constants ci are absent in it. It is not clear
whether a “shifted” version of (i) is true; the methods employed in this paper do not allow
one to get such a result. (See the remark after Proposition 5.9 below.)

The integers m and l appearing in the formulation of Theorem 0.4 are not arbitrary
(for instance, l cannot be divisible by m because in this case the polynomial Szemerédi
theorem guarantees the existence of corresponding configurations). These m and l depend
on the system P = {p1, . . . , pr} (see Theorem 6.2). For the “linear” case pi(n) = in,
i = 1, . . . , r, all pairs (m, l) with m not dividing l suit; for the system P = {n, 2n, . . . , rn}
one has W (P ) = V (P ) = r, and we have

Theorem 0.5. (See Corollary 6.4 below.) For any r, m ≥ 2 there exists a set E ⊂ Z of
positive uniform density such that
(i) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
V (q1, . . . , qs) < r and any nonconstant integral polynomial h the set E is UC-positive with
respect to the system

{
q1(h(n)), . . . , qs(h(n))

}
;

(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < r, any nonconstant integral polynomial h and any integers c1, . . . , cs the
set E is UC-balanced with respect to the system

{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < r − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs

the set E is balanced with respect to the system
{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iv) E contains no arithmetic progressions of the form
{
a, a+(mn+ l), . . . , a+r(mn+ l)

}
,

a, n, l ∈ Z, with l not divisible by m.

Examples of calculation of the complexitites of systems of polynomials are given in
Section 4. Note that the minimal complexity V = W = 1 is achieved by linearly indepen-
dent systems of polynomials. Roughly speaking, more there are linear relations between
polynomials p1, . . . , pr and their powers pk

1 , . . . , pk
r , k ∈ N, higher is the complexity of the

system {p1, . . . , pr}, and more it will be difficult to see associated configurations in a given
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set of integers.
The paper is organized as follows. In Section 1 we introduce some linear algebraic

notation related to a system of polynomials. In Section 2 we define Weyl dynamical
systems and discuss their elementary properties. In Section 3 we introduce the Weyl
and the Vandermonde complexitites of a system of integral polynomials; in Section 4 we
describe their properties and give examples. In Section 5 we obtain measure-theoretical
results similar to Theorems 0.1 – 0.3. In Section 6 we prove (somehow more precise versions
of) Theorems 0.4 and 0.5.

1. Span and Rank of a system of polynomials

Let us first introduce some linear algebra notation. For a system of vectors(
a1,1...
ar,1

)
, . . . ,

(
a1,k...
ar,k

)
∈ R

r we define

span

(
a1,1 a1,2 ... a1,k...

...
...

ar,1 ar,2 ... ar,k

)
= span

(
a1,1...
ar,1

)
+ span

(
a1,2...
ar,2

)
+ . . . + span

(
a1,k...
ar,k

)

and, as usual,

rank

(
a1,1 a1,2 ... a1,k...

...
...

ar,1 ar,2 ... ar,k

)
= dim span

(
a1,1 a1,2 ... a1,k...

...
...

ar,1 ar,2 ... ar,k

)
.

Given r real-valued polynomials q1, . . . , qr with zero constant term, we will denote by

Span
(q1...

qr

)
the subspace of R

r spanned by the range of
(q1...

qr

)
:

Span
(q1...

qr

)
= span

{(
q1(x)

...
qr(x)

)
, x ∈ R

}
.

For polynomials qi,j , i = 1, . . . , r, j = 1, . . . , k, with zero constant term, we define

Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
= Span

(
q1,1...
qr,1

)
+ Span

(
q1,2...
qr,2

)
+ . . . + Span

(
q1,k...
qr,k

)

and

Rank

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
= dim Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
.

Clearly, we have

Lemma 1.1. The Span and Rank of a polynomial matrix

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
are invariant

under column operations (that is, multiplying a column by a nonzero constant or a nonzero
polynomial, and adding one column to another) on the matrix.

The following lemmas will be utilized below for finding the Span of a polynomial
matrix:
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Lemma 1.2. Let qi,j be polynomials with zero constant term and deg qi,j ≤ d for all i, j.
Then

(i) Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
is spanned by the values of

(
q1,1(x) q1,2(x) ... q1,k(x)

...
...

...
qr,1(x) qr,2(x) ... qr,k(x)

)
at any distinct

nonzero x1, . . . , xd ∈ R:

Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
= span

(
q1,1(x1) ... q1,k(x1) q1,1(x2) ... q1,k(x2) ... q1,1(xd) ... q1,k(xd)

...
...

...
...

...
...

qr,1(x1) ... qr,k(x1) qr,1(x2) ... qr,k(x2) ... qr,1(xd) ... qr,k(xd)

)
.

(ii) Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
is spanned by the coefficients of

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
: if qi,j(x) =

ci,j,1x + . . . + ci,j,dx
d, ci,j,l ∈ R, then

Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
= span

(
c1,1,1 ... c1,1,d c1,2,1 ... c1,2,d ... c1,k,1 ... c1,k,d...

...
...

...
...

...
cr,1,1 ... cr,1,d cr,2,1 ... cr,2,d ... cr,k,1 ... cr,k,d

)
.

(iii) Let h1, . . . , hl be linearly independent polynomials without constant term such that
q1, . . . , qr are their linear combinations: qi,j = bi,j,1h1 + . . . + bi,j,lhl, bi,j,t ∈ R. Then

Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
= span

(
b1,1,1 ... b1,1,l b1,2,1 ... b1,2,l ... b1,k,1 ... b1,k,l...

...
...

...
...

...
br,1,1 ... br,1,l br,2,1 ... br,2,l ... br,k,1 ... br,k,l

)
.

Proof. (i) follows from Lagrange’s interpolation formula for polynomials of degree ≤ d.
(ii) is a special case of (iii).

Here is the proof of (iii): for j = 1, . . . , k define Bj =

(
b1,j,1 ... b1,j,l...

...
br,j,1 ... br,j,l

)
. Then

Span

(
q1,j...
qr,j

)
= span

{(
q1,j(x)

...
qr,j(x)

)
, x ∈ R

}
= span

{
Bj

(
h1(x)

...
hl(x)

)
, x ∈ R

}

= Bj span

{(
h1(x)

...
hl(x)

)
, x ∈ R

}
= BjR

l = span Bj.

So,

Span

(
q1,1 q1,2 ... q1,k...

...
...

qr,1 qr,2 ... qr,k

)
=

k∑

j=1

Span

(
q1,1...
qr,1

)
=

k∑

j=1

span Bj = span(B1| . . . |Bk).

As a corollary, we get:

Lemma 1.3. Let qi,j be polynomials with zero constant term, let h be a noncon-

stant polynomial and let q̂i,j(x) = qi,j(h(x)) − qi,j(h(0)). Then Span

(
q̂1,1 ... q̂1,k...

...
q̂r,1 ... q̂r,k

)
=

Span

(
q1,1 ... q1,k...

...
qr,1 ... qr,k

)
.

8



Proof. It is enough to check this for k = 1, that is, to show that, for integral polynomials

qi with zero constant term, Span

(
q̂1...
q̂r

)
= Span

(q1...
qr

)
. It follows from Lemma 1.2(i) that

Span

(
q̂1...
q̂r

)
= Span

(
q1(x+h(0))−q1(h(0))

...
qr(x+h(0))−qr(h(0))

)
, and we have

span

{(
q1(x+h(0))−q1(h(0))

...
qr(x+h(0))−qr(h(0))

)
, x ∈ R

}
= span

{(
q1(x)−q1(h(0))

...
qr(x)−qr(h(0))

)
, x ∈ R

}

= span

{(
q1(x)−q1(0)...
qr(x)−qr(0)

)
, x ∈ R

}
= span

{(
q1(x)

...
qr(x)

)
, x ∈ R

}
= Span

(q1...
qr

)
.

2. Weyl dynamical systems

A Weyl system is a dynamical system (X, T ) where X is a compact commutative Lie
group (which can be thought of as the direct product of a torus and a finite commutative
group) and T is an affine unipotent transformation of X (that is, Tx = ϕ(x) + α where
α ∈ X and ϕ is an automorphism of X satisfying (ϕ − IdX)d = 0 for some d). A natural
example of a Weyl system is given by the system (X, T ) where X = T

l ×Z, T = R/Z and
Z is a finite abelian group, and

T (x1, . . . , xl, z) =
(
x1 + α1, x2 + m2,1x1 + α2, . . . , xl +

∑l−1
i=1 ml,ixi + αl, z + w

)
,

αi ∈ T, mj,i ∈ Z and w ∈ Z. Any closed subgroup M of X is, topologically, either a torus
or a union of finitely many tori, and is a single torus if connected. We will call a subtorus
of X any translate x + M of a closed connected subgroup M of X.

Clearly, the product of several Weyl systems is a Weyl system.
A Weyl system possesses a sequence of natural factors: for k = 1, . . . , d let Lk =

ker(ϕ − IdX)d−k+1 and Xk−1 = X/Lk; then the projection maps πk: X −→ Xk, k =
0, . . . , d − 1, commute with the action of T . Note that the factors Xk, k = 1, . . . , d, are
just the HKZ factors for the system (X, T ).

A Weyl system (X, T ) has good ergodic properties: if T is ergodic, then the orbit of
every point is uniformly dense in X; if T is not ergodic, then the closure of the orbit of
any point is a closed subgroup of X, and the orbit is well distributed in this subgroup.
Moreover, “polynomial orbits” of points, and even of subtori of X, also possess an analogous
property.

Let us be more precise. Recall that for a set E ⊆ Z we write UD(E) = α

if the limit limN→∞
|E∩ΦN |
|ΦN | exists and equals α for every Følner sequence {ΦN} in

Z, and for a sequence {βn}n∈Z of real numbers we write UC-lim
n

βn = β if the limit

limN→∞
1

|ΦN |

∑
n∈ΦN

βn exists and equals β for every Følner sequence {ΦN} in Z. For a

torus (or, more generally, a compact commutative Lie group) M we will denote by µM the
normalized Haar measure on M ; if M is a closed subgroup of X and x ∈ X, we will denote
by µx+M the image of µM by the translation by x. We will say that a sequence {xn}n∈Z
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(in a, potentially, “larger” space X ⊇ M) is well distributed in M if xn ∈ M for all n, and
for any continuous function f on M one has UC-lim

n
f(xn) =

∫
M

f dµM . More generally,

we will say that a sequence of tori {Dn}n∈Z is well distributed on M if Dn ⊆ M for all n,
and for any continuous function f on M one has UC-lim

n

∫
Dn

f dµDn
=
∫

M
f dµM .

Let P = {p1, . . . , pr} be a system of integral polynomials with zero constant term.
For a point y ∈ Xr we will denote by O(P, y) the orbit of y under the action of P , that

is, O(P, y) =

{(
T p1(n)

...
T pr(n)

)
y

}

n∈Z

. For a torus D ⊆ Xr we will denote by O(P, D) the orbit

of D under the action of P , that is, O(P, D) =
⋃

n∈Z

(
T p1(n)

...
T pr(n)

)
D. O(P, D) will stand

for the topological closure of O(P, D). We will also denote by P̂ the “extended system”

{0, p1, . . . , pr} and by O(P̂ , y) and O(P̂ , D) the orbits

{( IdX

T p1(n)

...
T pr(n)

)
y

}

n∈Z

and, respectively,

⋃
n∈Z

( IdX

T p1(n)

...
T pr(n)

)
D.

We have:

Proposition 2.1. Let (X, T ) be a Weyl system and let p1, . . . , pr be integral polynomials.
For any y = (x1, . . . , xr) ∈ Xr the closure M = O(P, y) of the orbit of y under the action
of P is a subtorus of Xr or a union of finitely many subtori of Xr. If M is a single

subtorus, the sequence

{(
T p1(n)

...
T pr(n)

)
y

}

n∈Z

is well distributed in M .

And, more generally,

Proposition 2.2. Let (X, T ) be a Weyl system and let p1, . . . , pr be integral polynomials.
For any subtorus D of Xr the closure M = O(P, D) of the orbit of D under the action of
P is a subtrous of Xr or a union of finitely many subtori of Xr. If M is a single subtorus,

the sequence Dn =

{(
T p1(n)

...
T pr(n)

)
D

}

n∈Z

is well distributed in M .

For a vector u ∈ R
d we will denote by u mod1 the image of u in T

d = R
d/Z

d. If N
is a rational subspace of R

d (that is, a subspace defined by linear equations with rational
coefficients), then N mod 1 is a subtorus of T

d.

Propositions 2.1 and 2.2 are corollaries of the following fundamental fact, which is a
direct consequence of the classical Weyl’s work on distribution modulo 1 ([We]).

Theorem 2.3. Let q1, . . . , qd be real-valued polynomials with zero constant term. If the

sequence

{(
q1(n)

...
qd(n)

)
mod 1

}

n∈Z

is not contained in a proper closed subgroup of T
d, then it

is well distributed in T
d.

Here is another corollary:
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Corollary 2.4. Let α1, . . . , αk be rationally independent elements of T and let qi,j , i =
1, . . . , k, j = 1, . . . , d, be integral polynomials with zero constant term. The sequence{(

q1,1(n)α1+...+qk,1(n)αk...
q1,d(n)α1+...+qk,d(n)αk

)}

n∈Z

is well distributed in the subtorus Span

(
q1,1 ... qk,1...

...
q1,d ... qk,d

)
mod1

of T
d.

Proof. Let L = Span

(
q1,1 ... qk,1...

...
q1,d ... qk,d

)
and let M = L mod1. For any i and any n ∈ Z,

(
qi,1(n)

...
qi,d(n)

)
∈ L, so

(
q1,1(n)α1+...+qk,1(n)αk...
q1,d(n)α1+...+qk,d(n)αk

)
∈ M for all n.

Assume that χ is a character on T
d (with values in the additive torus T),

χ(x1, . . . , xd) =
∑d

j=1 ajxj with a1, . . . , ad ∈ Z, such that χ

(
q1,1(n)α1+...+qk,1(n)αk...
q1,d(n)α1+...+qk,d(n)αk

)
= 0

for all n. Then, in T, we have

( d∑

j=1

ajq1,j(n)
)
α1 + . . . +

( d∑

j=1

ajqk,j(n)
)
αk = 0

for all n, and since α1, . . . , αk are rationally independent in T, we deduce that
∑d

j=1 ajqi,j(n)

= 0 for all n and for all i = 1, . . . , k. This implies that
∑d

j=1 ajqi,j = 0 for all i = 1, . . . , k,
and thus χ|M = 0.

We have established that the sequence

{(
q1,1(n)α1+...+qk,1(n)αk...
q1,d(n)α1+...+qk,d(n)αk

)}

n∈Z

is not contained

in a proper subgroup of M ; by Theorem 2.3, it is well distributed in M .

To achieve the goals formulated in the introduction, it will be sufficient to deal with
Weyl systems of a special form. A standard Weyl system (of depth d) is the system (X, T )
with X = T

d and

T (x1, x2, . . . , xd) =
(
x1 + α, x2 + x1, x3 + x2, . . . , xd + xd−1

)
, x = (x1, . . . , xd) ∈ X,

for an irrational α ∈ T. By [F2] Proposition 3.11, (X, T ) is ergodic. A quasi-standard
Weyl system of depth d is a system (X, T ) where X = T

d and

T (x1, . . . , xd) =
(
x1 + α1, x2 + m2,1x1 + α2, . . . , xd +

∑d−1
i=1 md,ixi + αd

)
,

with αi ∈ T, mj,i ∈ Z, α1 is irrational and mj,j−1 6= 0 for all j = 2, . . . , d. A quasi-standard
Weyl system is also ergodic. For a standard or a quasi-standard Weyl system the natural
factors Xk have form Xk = X/Lk+1 where Lk+1 =

{
(0, . . . , 0, xk+1, . . . , xd), xi ∈ T

}
.

Lemma 2.5. Any quasi-standard Weyl system is a factor, η: X̃ −→ X, of a standard Weyl
system (X̃, T̃ ) of the same depth; η has finite fibers and commutes with the projections πk,
k = 0, . . . , d − 1, onto the natural factors.
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Rather than formally proving this lemma we illustrate it on a simple example: the
quasi-standard Weyl system (T3, T ) where

T (x, y, z) = (x + α1, y + 2x + α2, z + 4x + 3y + α3)

is the factor of the standard Weyl system (T3, T̃ )

T̃ (x, y, z) = (x + α1, y + x, z + y)

via the factor map

(x, y, z) 7→ (x + a, 2y + x + b, 6z + 7y + x)

with a, b ∈ T satisfying 2a = α1 − α2 and 3b = −α1 + 2α2 − α3.

The following theorem (see [FK]) indicates that the standard Weyl system is, in a
sense, the most “complicated” one, so that dealing with it we do not loose any generality:

Theorem 2.6. Any ergodic connected Weyl system is a factor of a product of several
standard Weyl systems.

Disconnected Weyl system do not provide much novelty: any disconnected ergodic
Weyl system (Y, R) is a union Y = X(1)∪ . . .∪X(m) of m ≥ 2 isomorphic tori; R cyclically
permutes these tori and, for each i = 1, . . . , m, (X (i), Rm|X(i)) is a connected Weyl system.

3. Weyl and Vandermonde complexities

We fix a standard Weyl system (X, T ), where X = T
d and

T (x1, x2, . . . , xd) =
(
x1 + α, x2 + x1, x3 + x2, . . . , xd + xd−1

)
, x = (x1, . . . , xd) ∈ X,

with an irrational α ∈ T; we will always assume that d is large enough so that not in-
terfere in our further computations. For k = 0, . . . , d we define subtori Lk =

{
(0, . . . , 0,

xk, . . . , xd), xi ∈ T
}
⊂ T

d, Fk =
{
(0, . . . , 0, xk, 0, . . . , 0), xk ∈ T} ⊂ T

d, a factor torus
Xk = X/Lk+1, and let πk: X −→ Xk be the projection map. We will also denote by Fk the
image of Fk under πk, so that if we identify Xk with T

k, we identify Fk with the subgroup
Fk =

{
(0, . . . , 0, xk), xk ∈ T} of T

k.

Let now P = {p1, . . . , pr} be a system of integral polynomials with zero constant term.
One checks by induction that for any n ∈ Z,

Tn(x1, x2, . . . , xd) =
(
x1 + nα, x2 + nx1 +

(
n
2

)
α, . . . , xd +

∑d−1
i=1

(
n
i

)
xd−i +

(
n
d

)
α
)
.

For a polynomial p and k ∈ N we will write p[k] for
(

p
k

)
= 1

k!p(p − 1) . . . (p − k + 1), and

p[0] = 1. Let g(n) =

( IdX

T p1(n)

...
T pr(n)

)
, n ∈ Z. For x = (x1, x2, . . . , xd) ∈ X, the orbit O(P̂ , x̄) =
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{g(n)x̄}n∈Z ⊆ Xr+1 of the point x̄ =

(
x
x...
x

)
under the action of P̂ = {0, p1, . . . , pr} is








x1, x2, . . . , xd

x1 + p1(n)α, x2 + p1(n)x1 + p1(n)[2]α, . . . , xd +
∑d−1

i=1 p1(n)[i]xd−i + p1(n)[d]α
...

...
...

x1 + pr(n)α, x2 + pr(n)x1 + pr(n)[2]α, . . . , xd +
∑d−1

i=1 pr(n)[i]xd−i + pr(n)[d]α








n∈Z

(3.1)

By Corollary 2.4, when x1, . . . , xd and α are rationally independent in T, O(P̂ , x̄) is well
distributed (and hence, dense) in the subtorus




x1
x1...
x1

x2
x2
...

x2

......
xd−1
xd−1

...
xd−1

xd

xd
...

xd




+ Span




0 0 0 ... 0 0
p1 0 0 ... 0 0...

...
...

...
...

pr 0 0 ... 0 0
0 0 0 ... 0 0

p
[2]
1

p1 0 ... 0 0
...

...
...

...
...

p[2]
r pr 0 ... 0 0
......

......

......

......

......
0 0 0 ... 0 0

p
[d−1]
1 p

[d−2]
1 p

[d−3]
1 ... p1 0

...
...

...
...

...
p[d−1]

r p[d−2]
r p[d−3]

r ... pr 0
0 0 0 ... 0 0

p
[d]
1 p

[d−1]
1 p

[d−2]
1 ... p

[2]
1 p1...

...
...

...
...

p[d]
r p[d−1]

r p[d−2]
r ... p[2]

r pr




mod 1

of Xr+1 '
(
T

(r+1)
)d

(and is contained in this subtorus if x1, . . . , xd, α are rationally

dependent). The closure of the orbit O(P̂ , ∆Xr+1) of the entire diagonal ∆Xr+1 = {x̄, x ∈
X} of Xr+1 is therefore the subtorus

H = O(P̂ , ∆Xr+1) = Span Θd mod1 ⊆ Xr+1

where for each k ∈ N we define Θk as the (r + 1)k × 2k matrix

Θk =




1 0 ... 0 0 0 0 0 ... 0 0
1 0 ... 0 0 p1 0 0 ... 0 0...
...

...
...

...
...

...
...

...
1 0 ... 0 0 pr 0 0 ... 0 0
0 1 ... 0 0 0 0 0 ... 0 0

0 1 ... 0 0 p
[2]
1

p1 0 ... 0 0
...
...

...
...

...
...

...
...

...
0 1 ... 0 0 p[2]

r pr 0 ... 0 0
......

......

......

......

......

......

......

......

......
0 0 ... 1 0 0 0 0 ... 0 0

0 0 ... 1 0 p
[k−1]
1 p

[k−2]
1 p

[k−3]
1 ... p1 0

...
...

...
...

...
...

...
...

...
0 0 ... 1 0 p[k−1]

r p[k−2]
r p[k−3]

r ... pr 0
0 0 ... 0 1 0 0 0 ... 0 0

0 0 ... 0 1 p
[k]
1 p

[k−1]
1 p

[k−2]
1 ... p

[2]
1 p1...

...
...
...

...
...

...
...

0 0 ... 0 1 p[k]
r p[k−1]

r p[k−2]
r ... p[2]

r pr




.
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For k ≤ d, let Hk = πr+1
k (H) ⊆ Xr+1

k ; identifying Xk with T
k and Xr+1

k with
(
T

(r+1)
)k

,
we get

Hk = Span Θk mod1 ⊆ Xr+1
k . (3.2)

If we supress the 1-st and the (k + 1)-st columns from the matrix Θk+1, we obtain the

matrix

(
0

Θk

)
. Hence we have

Hk+1 ⊇ Span

(
0

Θk

)
mod 1. (3.3)

Assume now that for some k ≤ d one has F r+1
k ⊆ Hk. Using formula (3.3), this implies

that F r+1
k+1 ⊆ Hk+1, and of course F r+1

l ⊆ Hl for all l > k, which gives H ⊇ Lr+1
k . Let us

call the minimal k with this property the Weyl complexity of P and denote it by W (P ) or
W (p1, . . . , pr).

We note that the first component X of Xr+1 actually plays no role in determining
W (P ). For k ≤ d let

Λk =




p1 0 0 ... 0 0...
...

...
...

...
pr 0 0 ... 0 0

p
[2]
1 p1 0 ... 0 0
...

...
...

...
...

p[2]
r pr 0 ... 0 0
......

......

......

......

......
p
[k−1]
1 p

[k−2]
1 p

[k−3]
1 ... p1 0

...
...

...
...

...
p[k−1]

r p[k−2]
r p[k−3]

r ... pr 0

p
[k]
1 p

[k−1]
1 p

[k−2]
1 ... p

[2]
1 p1...

...
...

...
p[k]

r p[k−1]
r p[k−2]

r ... p[2]
r pr




.

The subtorus M = Span Λd mod1 ⊆ Xr is the (translated to 0) orbit of a “generic” point

x̄ of the diagonal ∆Xr under the action of P : M = O(P, x̄) − x̄ where x̄ =
(x...

x

)
and x is a

point of X whose coordinates and α are rationally independent. For k ≤ d let

Mk = πr
k(M) = Span Λk mod1 ⊆ Xr

k .

Then Hk = ∆X
r+1
k

⊕ ({0}×Mk) ⊆ Xk ×Xr
k . It follows that F r+1

k ⊆ Hk iff F r
k ⊆ Mk. Put

w0(P ) = 0 and for each k ∈ N let

wk(P ) = dimMk = Rank Λk

Since wk(P ) = wk−1(P ) + dim(Mk ∩F r
k ), we have F r

k ⊆ Hk iff wk(P )−wk−1(P ) = r. We
obtain:

Proposition 3.1. The Weyl complexity W (P ) equals the minimal k for which Mk ⊇ F r
k ,

and the minimal k for which wk(P ) − wk−1(P ) = r.
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We will now introduce one more parameter for our system P . Let τk be the projection
of X to Fk; we define the Vandermonde complexity of P , V (P ) or V (p1, . . . , pr), as the
minimal k for which τ r+1

k (H) = F r+1
k . Identifying the subtorus F r+1

k of Xr+1 with T
r+1

we have

τr+1
k (Hk) = Span




1 0 0 0 ... 0 0

1 p
[k]
1 p

[k−1]
1 p

[k−2]
1 ... p

[2]
1 p1...

...
...

...
...

...
1 p[k]

r p[k−1]
r p[k−2]

r ... p[2]
r pr


mod 1 = Span




1 0 0 ... 0 0 0
1 p1 p2

1 ... p
k−2
1 p

k−1
1 pk

1...
...

...
...

...
...

1 pr p2
r ... pk−2

r pk−1
r pk

r


mod 1.

Define vk(P ) = Rank

(
p1 p2

1 ... p
k−2
1 p

k−1
1 pk

1...
...

...
...

...
pr p2

r ... pk−2
r pk−1

r pk
r

)
, k ∈ N; then τ r+1

k (Hk) = F r+1
k iff τr

k (Mk) =

F r
k iff vk(P ) = r. We see that

Proposition 3.2. V (P ) equals the minimal k for which τ r
k (Mk) = F r

k , and the minimal
k for which vk(P ) = r.

4. Properties of Vandermonde and Weyl complexities and examples

We start with the Vandermonde complexity.

Lemma 4.1. For any system P = {p1, . . . , pr} of r integral polynomials with zero constant
term, V (P ) ≤ r.

Proof. We have

det

(
p1 p2

1 ... pr
1...

...
...

pr p2
r ... pr

r

)
=

r∏

i=1

(
pi ·

r∏

j=i+1

(pj − pi)
)
6= 0.

(This is the Vandermonde determinant, which explains our terminology.) Thus, the vectors(
p1(x)

...
pr(x)

)
, . . . ,

(
pr
1(x)
...

pr
r(x)

)
are linearly independent for all but finitely many x and so, vr(P ) = r.

Here are some properties of the Vandermonde complexity, which are clear from the
definition and Proposition 3.2:

Proposition 4.2. Let {p1, . . . , pr} be a system of integral polynomials with zero constant
term.
(i) If {q1, . . . , qs} ⊆ {p1, . . . , pr}, then V (q1, . . . , qs) ≤ V (p1, . . . , pr).
(ii) V (p1, . . . , pr) = 1 iff p1, . . . , pr are linearly independent.
(iii) If p1, . . . , pr are all linear, V (p1, . . . , pr) = r.
(iv) V is invariant under polynomial substitutions: for any nonzero integral polynomial h
with zero constant term, V

(
p1(h(x)), . . . , pr(h(x))

)
= V

(
p1(x), . . . , pr(x)

)
.

(v) For any nonzero integer m 6= 0, V (mp1, . . . , mpr) = V (p1, . . . , pr).
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Examples of computation of Vandermonde complexity.
Consider the system P = {x, 2x, x2}. Using the “coefficient method” from

Lemma 1.2(ii), we get

v1(P ) = Rank
( x

2x

x2

)
= rank

(
1 0
2 0
0 1

)
= 2

and

v2(P ) = Rank

(
x x2

2x 4x2

x2 x4

)
= rank

(
1 0 1 0
2 0 4 0
0 1 0 1

)
= 3,

so V (P ) = 2.
For the system P = {x, x2, x + x2, x + 2x2} we have

v1(P ) = Rank

( x

x2

x+x2

x+2x2

)
= rank

(
1 0
0 1
1 1
1 2

)
= 2

and

v2(P ) = Rank

(
x x2

x2 x4

x+x2 x2+2x3+x4

x+2x2 x2+4x3+4x4

)
= rank

(
1 0 1 0 0
0 1 0 0 1
1 1 1 2 1
1 2 1 4 4

)
= 4,

so V (P ) = 2.
For the system P = {x, x2, x + x2, x + 2x2, x + 3x2},

v1(P ) = Rank




x

x2

x+x2

x+2x2

x+3x2


 = rank

(
1 0
0 1
1 1
1 2
1 3

)
= 2,

v2(P ) = Rank




x x2

x2 x4

x+x2 x2+2x3+x4

x+2x2 x2+4x3+4x4

x+3x2 x2+6x3+9x4


 = rank

(
1 0 1 0 0
0 1 0 0 1
1 1 1 2 1
1 2 1 4 4
1 3 1 6 9

)
= 4

and

v3(P ) = Rank




x x2 x3

x2 x4 x6

x+x2 x2+2x3+x4 x3+3x4+3x5+x6

x+2x2 x2+4x3+4x4 x3+6x4+12x5+8x6

x+3x2 x2+6x3+9x4 x3+9x4+27x5+27x6


 = rank

(
1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 1
1 1 1 2 1 1 3 3 1
1 2 1 4 4 1 6 12 8
1 3 1 6 9 1 9 27 27

)
= 5,

so V (P ) = 3.

The Weyl complexity has properties similar to those of the Vandermonde complexity:

Proposition 4.3. Let {p1, . . . , pr} be a system of integral polynomials with zero constant
term.
(i) If {q1, . . . , qs} ⊆ {p1, . . . , pr}, then W (q1, . . . , qs) ≤ W (p1, . . . , pr).
(ii) W (p1, . . . , pr) = 1 iff p1, . . . , pr are linearly independent.
(iii) If all p1, . . . , pr are linear, W (p1, . . . , pr) = r.
(iv) For any nonzero integral polynomial h with zero constant term, W

(
p1(h(x)), . . . ,

pr(h(x))
)

= W
(
p1(x), . . . , pr(x)

)
.

(v) For any nonzero integer m, W (mp1, . . . , mpr) = W (p1, . . . , pr).
(vi) W (p1, . . . , pr) ≥ V (p1, . . . , pr).
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Proof. (i) is clear from the definition. (ii) and (vi) follow from Proposition 3.1. It follows
from formula (3.2) and Lemma 1.2(i) that for the system P (h) =

{
p1(h(x)), . . . , pr(h(x))

}

we have O(P̂ (h), ∆Xr+1) = O(P̂ , ∆Xr+1); this implies (iv). We postpone the proof of (iii)
and of (v).

Remark. The fact that W (P ) is finite for any system of integral polynomials P is a
consequence of the general study of HKZ factors, and will not be described here. W (P )
may be strictly larger than V (P ) as an example at the end of this section demonstrates.
An interesting question that we leave open is whether W (p1, . . . , pr) is always ≤ r.

The definition of the Weyl complexity via the standard Weyl system is, actually,
inconvenient for practical usage. We will modify it a little bit by replacing the standard
Weyl system by a quasi-standard one. Let (X, T ) be a quasi-standard Weyl system, let
Lk =

{
(0, . . . , 0, xk, . . . , xd)

}
, Xk = X/Lk+1, Fk =

{
(0, . . . , 0, xk)

}
⊆ Xk, πk be the

projection of X to Xk and τk be the projection of X to Fk, k = 1, . . . , d; let ∆Xr+1 ={(
x...
x

)
, x ∈ X

}
be the diagonal of Xr+1 and let x̄ be a “generic” point of the diagonal of Xr.

Let P = {p1, . . . , pr} be a system of integral polynomials with zero constant term and with

W (P ) ≤ k, let H = O(P̂ , ∆Xr+1) ⊆ Xr+1, M = O(P̂ , x̄)−x̄ ⊆ Xr, Hk = πr+1
k (H) ⊆ Xr+1

k

and Mk = πr
k(M) ⊆ Xr

k , k = 1, . . . , d. Let (X̃, T̃ ) be a standard Weyl system for which

(X, T ) is a factor, η: X̃ −→ X, as in Lemma 2.5, and let H̃, M̃, L̃k, F̃k, H̃k and M̃k,

k = 1, . . . , d, be the corresponding subtori of X̃r+1, X̃r, X̃, X̃k, X̃r+1
k and X̃r

k respectively.

Then for all k, Fk = η(F̃k), Hk = η(H̃k) and Mk = η(M̃k). So, H ⊇ Lr+1
k iff H̃ ⊇ L̃r+1

k ,

M ⊇ Lr
k iff M̃ ⊇ L̃r

k, Hk ⊇ F r+1
k iff H̃k ⊇ F̃ r+1

k , and Mk ⊇ F r
k iff M̃k ⊇ F̃ r

k . Since η has

finite fibers, dim Hk = dim H̃k and dim Mk = dim M̃k. We obtain that for computing the
Weyl complexity of the system {p1, . . . , pr} any quasi-standard Weyl system can be used:

Proposition 4.4. W (P ) equals the minimal k for which H ⊇ Lr+1
k , the minimal k

for which M ⊇ Lr
k, the minimal k for which Hk ⊇ F r+1

k , and the minimal k for which
Mk ⊇ F r

k ; wk(P ) = dim Mk for all k.

An analogous fact holds for the Vandermonde complexity:

Proposition 4.5. For any quasi-standard Weyl system, vk(P ) = dim τ r
k (M) for all k;

V (P ) equals the minimal k for which τ r+1
k (H) = F r+1

k and the minimal k for which
τr
k (M) = F r

k .

Proof. For any quasi-standard Weyl system (X, T ),

τr+1
k (H) = Span

(1 0 0 ... 0
1 hk(p1) hk−1(p1) ... h1(p1)...

...
...

...
1 hk(pr) hk−1(pr) ... h1(pr)

)
mod1,

where for each i = 1, . . . , k, hi is a polynomial of degree i with zero constant term. (Under
h(p) we understand the polynomial h(p(x)).) Performing suitable column transformations

of the last matrix and using Lemma 1.1, we come to Span

(1 0 0 ... 0
1 hk(p1) hk−1(p1) ... h1(p1)...

...
...

...
1 hk(pr) hk−1(pr) ... h1(pr)

)
=
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Span




1 0 0 ... 0
1 pk

1 p
k−1
1 ... p1...

...
...

...
1 pk

r pk−1
r ... pr


.

Similarly,

τr
k (M) = Span

(
hk(p1) hk−1(p1) ... h1(p1)...

...
...

hk(pr) hk−1(pr) ... h1(pr)

)
mod 1 = Span

(
pk
1 p

k−1
1 ... p1...
...

...
pk

r pk−1
r ... pr

)
mod 1.

(To clarify what we mean under “suitable column transformations” let us consider an
example. For the Weyl system (T3, T ) where

T (x1, x2, x3) =
(
x1 + α, x2 + 3x1, x3 + x2 + 2x1 + α

)
,

one checks that

Tn(x1, x2, x3) =
(
x1+nα, x2+3nx1+

3
2n(n−1)α, x3+nx2+

1
2 (3n2+n)x1+

1
2 (n3−n2+2n)α

)
,

n ∈ Z, and so,

τr
3 (M) = Span

(
1
2 (p3

1−p2
1+2p1)

1
2 (3p2

1+p1) p1...
...

...
1
2 (p3

r−p2
r+2pr) 1

2 (3p2
r+pr) pr

)
mod1 = Span

(
p3
1 p2

1 p1...
...

...
p3

r p2
r pr

)
mod 1.)

Now we may also get:

Proof of Proposition 4.3(v). Let (X, T ) be a standard Weyl system and m be a nonzero
integer. Put R = T m; (X, R) is then a quasi-standard Weyl system. Let P = {p1, . . . , pr}
be a system of integral polynomials with zero constant term and let mP = {mp1, . . . , mpr}.
Using an index to specify what transformation we consider, we have OR(P̂ , ∆Xr+1) =

OT (mP̂ , ∆Xr+1). Since the first orbit is responsible for W (p1, . . . , pr) and the second orbit
is responsible for W (mp1, . . . , mpr), these two numbers coincide.

Consider the quasi-standard Weyl system

T (x1, . . . , xd) =
(
x1 + α, x2 + 2x1 + α, . . . , xd +

∑d−1
i=1

(
d
i

)
xi + α

)
.

For n ∈ Z one has

Tn(x1, x2, . . . , xd) =
(
x1 + nα, x2 + 2nx1 + n2α, . . . , xd +

∑d−1
i=1

(
d
i

)
nixd−i + ndα

)
.

For this system,

Mk = Span Λ′
k mod 1 (4.1)
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where

Λ′
k =




p1 0 0 ... 0 0...
...

...
...

...
pr 0 0 ... 0 0

p2
1 2p1 0 ... 0 0
...

...
...

...
...

p2
r 2pr 0 ... 0 0
......

......

......

......

......
p

k−1
1 (k−1

k−2)p
k−2
1 (k−1

k−3)p
k−3
1 ... (k−1)p1 0

...
...

...
...

...
pk−1

r (k−1
k−2)pk−2

r (k−1
k−3)pk−3

r ... (k−1)pr 0

pk
1 ( k

k−1)p
k−1
1 ( k

k−2)p
k−2
1 ... (k

2)p2
1 kp1

...
...

...
...

...
pk

r ( k

k−1)pk−1
r ( k

k−2)pk−2
r ... (k

2)p2
r kpr




and by Proposition 4.4,

wk(P ) = dimMk = Rank Λ′
k (4.2)

for all k ∈ N. We will use this definition of the numbers wk(P ) in our computations.

Proof of Proposition 4.3(iii). If pi are linear, pi(x) = cix, i = 1, . . . , r, the formula
(4.1) takes form

Mk = span




c1 0 ... 0 0 ... 0 ... ... 0...
...

...
...

...
...

cr 0 ... 0 0 ... 0 ... ... 0

0 c2
1 ... 0 2c1 ... 0 ... ... 0

...
...

...
...

...
...

0 c2
r ... 0 2cr ... 0 ... ... 0

......

......

......

......

......

......
0 0 ... ck

1 0 ... ( k

k−1)c
k−1
1 ... ... kc1

...
...

...
...

...
...

0 0 ... ck
r 0 ... ( k

k−1)ck−1
r ... ... kcr




mod1

= span




c1 0 0 ... ... 0 ... 0...
...

...
...

...
cr 0 0 ... ... 0 ... 0

0 c2
1 c1 ... ... 0 ... 0

...
...

...
...

...
0 c2

r cr ... ... 0 ... 0
......

......

......

......

......
0 0 0 ... ... ck

1 ... c1...
...

...
...

...
0 0 0 ... ... ck

r ... cr




mod 1,

and one has F r
k ⊆ Mk iff k ≥ r.
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Examples of computation of Weyl complexity.
Consider the system P = {x, 2x, x2}. Using the formula (4.2) and Lemma 1.2(ii) we

get

w1(P ) = Rank
( x

2x

x2

)
= rank

(
1 0
2 0
0 1

)
= 2,

w2(P ) = Rank




x 0
2x 0
x2 0
x2 2x

4x2 4x

x4 2x2


 = rank




1 0 0 0 0
2 0 0 0 0
0 1 0 0 0
0 1 0 2 0
0 4 0 4 0
0 0 1 0 2


 = 4,

w3(P ) = Rank




x 0 0
2x 0 0
x2 0 0
x2 2x 0
4x2 4x 0
x4 2x2 0
x3 3x2 3x

8x3 12x2 6x

x6 3x4 3x2




= rank




1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 2 0 0 0 0
0 4 0 0 0 4 0 0 0 0
0 0 0 1 0 0 2 0 0 0
0 0 1 0 0 0 3 0 3 0
0 0 8 0 0 0 12 0 6 0
0 0 0 0 1 0 0 3 0 3


 = 7 = w2 + 3,

and thus, W (P ) = 3. (Recall that V (P ) = 2.)
In contrast, for the system P = {x, 2x, x3},

w1(P ) = Rank
( x

2x

x3

)
= rank

(
1 0
2 0
0 1

)
= 2,

w2(P ) = Rank




x 0
2x 0
x3 0
x2 2x

4x2 4x

x6 2x3


 = rank




1 0 0 0 0 0
2 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 2 0
0 4 0 0 4 0
0 0 0 1 0 2


 = 5,

and therefore, W (P ) = 2.
One can also check the following examples: let a, b, c, d ∈ Z with (a, b) 6= (c, d). Then

V (x, ax + bx2, cx + dx2) = 2 if at least one of b, d is nonzero;
W (x, ax + bx2, cx + dx2) = 2 when both b and d are nonzero, W (x, ax, cx + dx2) = 3.

5. Characteristic factors and large intersections

We begin this Section by a simple example of what we develop in the sequel. Let us
consider the quasi-standard Weyl system on X = T

4,

T (x1, x2, x3, x4) = (x1 + α, x2 + 2x1 + α, x3 + 3x2 + 3x1 + α, x4 + 4x3 + 6x2 + 4x1 + α),

where α ∈ T is irrational, and the system of polynomials P = {n, 2n, n2}, for which we
know that V (P ) = 2 and W (P ) = 3. Let A0, A1, A2, A3 be four measurable subsets of X
with positive measure. We have the following results:

(i) If the sets Ai do not depend on the first coordinate x1 (that is, each Ai = T × Ii with
Ii ⊆ T

3), then

UC-limµX

(
A0 ∩ T−nA1 ∩ T−2nA2 ∩ T−n2

A3

)
> 0.

(ii) If the sets Ai are independent of the algebra of subsets which depend only on x1, x2 (that
is, µT2(Ai∩Lx1,x2

) = µX(Ai), where Lx1,x2
= {(x1, x2)}×T

2, for almost all (x1, x2) ∈ T
2)

then

UC-lim µX

(
A0 ∩ T−nA1 ∩ T−2nA2 ∩ T−n2

A3

)
= µX(A0)µX(A1)µX(A2)µX(A3).
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(iii) If the sets Ai are independent of the algebra of subsets which depend only on x1, x2, x3

then

lim
n→∞

µX

(
A0 ∩ T−nA1 ∩ T−2nA2 ∩ T−n2

A3

)
= µX(A0)µX(A1)µX(A2)µX(A3).

It can be shown (see Lemmas 5.3 and 5.7 and Proposition 6.5 below) that in each of these
three statements, the hypothesis of the independence of the sets Ai of the corresponding
algebras cannot be weakened. Moreover, each of these results still holds if the variable n
is replaced by any nonconstant integral polynomial h(n) (see Propositions 5.12–5.14).

We now move to the general situation. During this section let P = {p1, . . . , pr} be a
system of integral polynomials with zero constant term.

Let X and X ′ be compact commutative Lie groups with normalized Haar measures µX

and µX′ thereon, and let π: X −→ X ′ be a surjective (and continuous) homomorphism.
Denote by Fz, z ∈ X ′, the fibers of π, Fz = π−1(z). For a function f ∈ L1(X), the
conditional expectation E(f |X ′) of f with respect to X ′ is the function on X ′ defined by

E(f |X ′)(z) =

∫

Fz

f dµFz
=

∫

F0

f(z + x) dµF0
(x).

(For f ∈ L2(X), E(f |X ′) is the orthogonal projection of f onto the subspace π∗(L2(X ′))
of L2(X).) We will consider E(f |X ′) as a function on X, as well as on X ′.

We say that a measurable set A ⊆ X is independent of X ′ if E(1A|X ′) = µX(A); this
is equivalent to saying that for almost all fibers Fz, z ∈ Z, of π one has µFz

(A) = µX(A).
If A1, . . . , Ar are subsets of X independent of X ′, then

∏r

i=1 Ai ⊆ Xr is independent of
(X ′)r.

We say that a measurable set B ⊆ X originates from X ′ if B = π−1(B′) for some
B′ ⊆ X ′. If B1, . . . , Br ⊆ X originate from X ′ then

∏r

i=1 Bi ⊆ Xr originates from (X ′)r.
If B is a closed subgroup of X that originates from X ′ then B = π−1(B′) for the subgroup
B′ = π(B) of X ′, and for any f ∈ C(X) one has

∫
B

f dµB =
∫

B′
E(f |X ′) dµB′ .

Let (X, T ) be a quasi-standard Weyl system. We will first show that if W (P ) ≤ k, then

Xk−1 is the characteristic factor for P . (Cf. [F1], §10 and [F3], p.54.) Put g(n) =

( IdX

T p1(n)

...
T pr(n)

)

and Dn = g(n)∆Xr+1 , n ∈ Z. By Proposition 4.4, the torus H =
⋃

n∈Z
Dn ⊆ Xr+1

contains Lr+1
k . Thus, H = (πr+1

k−1)
−1(Hk−1) so that H originates from Xr+1

k−1. Let f0, . . . , fr

be continuous functions on X and let f =
⊗r

i=0 fi (that is, f is the function on Xr+1

defined by f(x0, . . . , xr) = f0(x0) · . . . · fr(xr)). Since H originates from Xr+1
k−1, we have

∫

H

f dµH =

∫

Hk−1

E(f |Xr+1
k−1) dµHk−1

.

Since the sequence {Dn}n∈Z is well distributed in H, UC-lim
n

∫
Dn

f dµDn
=
∫

H
f dµH and

UC-lim
n

∫

Dn

E(f |Xr+1
k−1) dµDn

=

∫

H

E(f |Xr+1
k−1) dµH =

∫

Hk−1

E(f |Xr+1
k−1) dµHk−1

.
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For any z̃ = (z0, . . . , zr) ∈ Xr+1
k−1,

E(f |Xr+1
k−1)(z̃) =

∫

z̃+L
r+1
k

f0⊗. . .⊗fr dµz̃+L
r+1
k

=

r∏

i=0

∫

zi+Lk

fi dµzi+Lk
=

r∏

i=0

E(fi|Xk−1)(zi),

so E(f |Xr+1
k−1) =

⊗r

i=0 E(fi|Xk−1). For any n we have

∫

Dn

f dµDn
=

∫

∆
Xr+1

g(n)f dµ∆
Xr+1 =

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX ,

and similarly
∫

Dn

E(f |Xr+1
k−1) dµDn

=

∫

∆
X

r+1
k−1

g(n)E(f |Xr+1
k−1) dµ∆

X
r+1
k−1

=

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1
.

Thus,

UC-lim
n

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

= UC-lim
n

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1
.

Since continuous functions are dense in L∞(X) in L1-topology, we obtain that Xk−1 is a
characteristic factor for the system P :

Proposition 5.1. Let (X, T ) be a quasi-standard Weyl system, let W (P ) ≤ k and let
f0, . . . , fr ∈ L∞(X). Then

UC-lim
n

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

= UC-lim
n

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1
.

It now follows from Theorem 2.6 that Xk−1 is a characteristic factor for any (not only
quasi-standard) Weyl system.

Applying this proposition to the characteristic functions 1A0
, . . . , 1Ar

of subsets
A0, . . . , Ar of X independent of Xk−1 we get

Proposition 5.2. Let (X, T ) be a quasi-standard Weyl system, let W (P ) ≤ k and let
A0, . . . , Ar be measurable subsets of X independent of Xk−1. Then UC-lim

n
µX

(
A0 ∩

T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)
=
∏r

i=0 µX(Ai).

To be sure that Xk−1, the (k−1)-st natural factor of X, is the “optimal” characteristic
factor for a system of Weyl complexity k, we have to check that Xk−2 is not characteristic.
This is so indeed:
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Lemma 5.3. Let (X, T ) be a quasi-standard Weyl system of depth d ≥ k − 1 and let
W (P ) ≥ k. Then there exist functions f0, . . . , fr ∈ L∞(X) such that

UC-lim
n

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

6= UC-lim
n

∫

Xk−2

E(f0|Xk−2) · T p1(n)E(f1|Xk−2) · . . . · T pr(n)E(fr|Xk−2) dµXk−2
.

Proof. By Proposition 4.4, H does not contain Lr+1
k−1. Thus there exists x̃ =

(x0, x1, . . . , xr) ∈ Lr+1
k−1 \ H. For each i = 0, 1, . . . , r fix a nonnegative continuous function

fi on X such that fi(xi) > 0 and f0 ⊗ f1 ⊗ . . .⊗ fr|H = 0. The function f0 ⊗ f1 ⊗ . . .⊗ fr

is zero on g(n)∆Xr+1 for all n, thus

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX = 0

for all n. On the other hand, each function E(fi|Xk−2) is positive in a neighborhood of
the point 0 in Hk−2, so

∫

Hk−2

E(f0|Xk−2) ⊗ E(f1|Xk−2) ⊗ . . . ⊗ E(fr|Xk−2) dµHk−2
> 0.

Since the sequence {g(n)∆X
r+1
k−2

}n∈Z is well distributed in Hk−2, the last expression is equal

to

UC-lim
n

∫

Xk−2

E(f0|Xk−2) · T p1(n)E(f1|Xk−2) · . . . · T pr(n)E(fr|Xk−2) dµXk−2
.

In the case W (P ) < k, Xk−1 is characteristic for the system P in a stronger sense:

Proposition 5.4. Let (X, T ) be a quasi-standard Weyl system, let W (P ) < k and let
f0, . . . , fr ∈ L∞(X). Then

lim
n→∞

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

= lim
n→∞

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1
.

In particular, we obtain:

Proposition 5.5. Let (X, T ) be a quasi-standard Weyl system, let W (P ) < k and let
A0, . . . , Ar be measurable subsets of X independent of Xk−1. Then limn→∞ µX

(
A0 ∩

T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar

)
=
∏r

i=0 µX(Ai).

To prove Proposition 5.4 we need to show that if at least one of the functions
f0, . . . , fr ∈ L∞(X) is orthogonal to the subspace L2(Xk−1) of L2(X) then limn→∞

∫
X

f0 ·
T p1(n)f1 · . . . · T pr(n)fr dµ = 0. This follows from the following fact:
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Lemma 5.6. If f0, . . . , fr are characters on X of which at least one is orthogonal to
L2(Xk−1) then

∫
X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµ = 0 for all but finitely many n ∈ Z.

Proof. We may and, for simplicity, will assume that (X, T ) is a standard Weyl system:
X = T

d, T (x1, x2 . . . , xd) = (x1 + α, x2 + x1, . . . , xd + xd−1) (though the proof is the same
for any quasi-standard system). Let fi = exp

(
2πi(mi,1x1 + . . . + mi,dxd)

)
(∗), mi,j ∈ Z,

i = 0, . . . , r. Then

T pi(n)fi = exp
(
2πi(mi,1(x1 + pi(n)α) + mi,2(x2 + pi(n)x1 + pi(n)[2]α) + . . .

+mi,d(xd +

d−1∑

j=1

pi(n)[j]xd−j + pi(n)[d]α)
)
,

i = 0, . . . , r, and

f0 ·
∏r

i=1 T pi(n)fi = exp
(
2πi(x1

(
m0,1 +

∑r

i=1

∑d

j=1 mi,jpi(n)[j−1]
)

+x2

(
m0,2 +

∑r

i=1

∑d

j=2 mi,jpi(n)[j−2]
)

+ . . .

+xd

(
m0,d +

∑r

i=1 mi,d

)
+ α

∑r

i=1

∑d

j=1 mi,jpi(n)[j]
)
,

n ∈ Z. Thus,
∫

X
f0 ·T p1(n)f1 · . . . ·T pr(n)fr dµ = 0 whenever at least one of the coefficients

m0,1 +
∑r

i=1

∑d

j=1 mi,jpi(n)[j−1], m0,2 +
∑r

i=1

∑d

j=2 mi,jpi(n)[j−2], . . ., m0,d +
∑r

i=1 mi,d

is nonzero, that is, when N(n)m 6= 0 where m is the vector




m0,1...
mr,1

...
m0,d...
mr,d


 and N(n) is the matrix




1 1 ... 1 0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] 0 p1(n)[3] ... pr(n)[3] ... ... 0 p1(n)[d−1] ... pr(n)[d−1]

0 0 ... 0 1 1 ... 1 0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] ... ... 0 p1(n)[d−2] ... pr(n)[d−2]

0 0 ... 0 0 0 ... 0 1 1 ... 1 0 p1(n) ... pr(n) ... ... 0 p1(n)[d−3] ... pr(n)[d−3]

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 0 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1


,

n ∈ Z. Assume that N(n)m = 0 for infinitely many n ∈ Z. Since the condition N(n)m = 0
is polynomial in n, we then have N(n)m = 0 for all n ∈ Z. In particular, N(0)m = 0,

therefore (N(n) − N(0))m = 0 and

(
N(0)

N(n) − N(0)

)
m for all n ∈ Z. We have

N(0) =

(1 1 ... 1 0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0
0 0 ... 0 1 1 ... 1 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0...
...

...
...
...

...
...
...

...
...

...
...
...

...
0 0 ... 0 0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1

)
,

(∗) In the expression “2πi”, π is not a projection but 3.14 . . ., and i is not the index
appearing in the rest of the formula but

√
−1.
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so 


1 1 ... 1 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0
0 0 ... 0 1 1 ... 1 0 0 ... 0 ... ... 0 0 ... 0...
...

...
...

...
...

...
...

...
...

...
...

0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1

0 0 ... 0 0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] ... ... 0 p1(n)[d−1] ... pr(n)[d−1]

0 0 ... 0 0 0 ... 0 0 p1(n) ... pr(n) ... ... 0 p1(n)[d−2] ... pr(n)[d−2]

...
...

...
...

...
...

...
...

...
...

...
...

0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 0 p1(n) ... pr(n)
0 0 ... 0 0 0 ... 0 0 0 ... 0 ... ... 0 0 ... 0




m = 0

and thus (after erasing the r + 1 first columns, and the first and the last lines)




1 1 ... 1 0 0 ... 0 ... ... 0 0 ... 0
0 0 ... 0 1 1 ... 1 ... ... 0 0 ... 0...

...
...

...
...

...
...

...
...

0 0 ... 0 0 0 ... 0 ... ... 1 1 ... 1

0 p1(n) ... pr(n) 0 p1(n)[2] ... pr(n)[2] ... ... 0 p1(n)[d−1] ... pr(n)[d−1]

0 0 ... 0 0 p1(n) ... pr(n) ... ... 0 p1(n)[d−2] ... pr(n)[d−2]

...
...

...
...

...
...

...
...

...
0 0 ... 0 0 0 ... 0 ... ... 0 p1(n) ... pr(n)




m̃ = 0

for all n ∈ Z, where m̃ =




m0,2...
mr,2

...
m0,d...
mr,d


 ∈ R

(d−1)(r+1). After introducing the standard inner

product on the space R
(d−1)(r+1), we interprete this identity as the fact that the vector m̃

is orthogonal to the subspace

H = Span




1 0 ... 0 0 0 ... 0
1 0 ... 0 p1 0 ... 0...
...

...
...

...
...

1 0 ... 0 pr 0 ... 0
0 1 ... 0 0 0 ... 0

0 1 ... 0 p
[2]
1 p1 ... 0

...
...

...
...

...
...

0 1 ... 0 p[2]
r pr ... 0

......

......

......

......

......

......
0 0 ... 1 0 0 ... 0

0 0 ... 1 p
[d−1]
1 p

[d−2]
1 ... p1...

...
...

...
...

...
0 0 ... 1 p[d−1]

r p[d−2]
r ... pr




.

of R
(d−1)(r+1). Comparing this formula with the formula (3.2) we see that Hmod1 = Hd−1.

If W (p1, . . . , pr) ≤ k− 1 then H contains Lr+1
k−1, and thus H contains the subspace Lk−1 ={

(0, . . . , 0, u0,k−1, . . . , ur,k−1, . . . , u0,d−1, . . . , ur,d−1), ui,j ∈ R
}

of R
(d−1)(r+1). But if fi is

orthogonal to Xk−1 for some i then mi,j 6= 0 for some j ≥ k and thus m̃ is not orthogonal
to Lk−1.

The following lemma shows that the assumption W (P ) < k in Proposition 5.4 cannot
be weakened:
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Lemma 5.7. Let (X, T ) be a quasi-standard Weyl system of depth d ≥ k and let W (P ) ≥
k. Then there exist functions f0, . . . , fr ∈ L1(X) such that

lim
n→∞

∫

X

f0 · T p1(n)f1 · . . . · T pr(n)fr dµX

6= lim
n→∞

∫

Xk−1

E(f0|Xk−1) · T p1(n)E(f1|Xk−1) · . . . · T pr(n)E(fr|Xk−1) dµXk−1
.

Proof. In the notation of the proof of Lemma 5.6, if W (P ) ≥ k then H does not contain

Lr+1
k−1, and thus there exists a vector m̃ =




m0,2...
mr,2

...
m0,d...
mr,d


 ∈ Z

(d−1)(r+1) with mi0,j0 6= 0 for some

i0 and some j0 ≥ k and orthogonal to H. For the vector m =




0...
0

m0,2...
mr,2

...
m0,d...
mr,d




∈ Z
d(r+1) we then

have N(n)m = 0 for all n. Put fi = exp
(
2πi(mi,1x1 + . . . + mi,dxd)

)
, i = 0, . . . , r; then

f0·T p1(n)f1·. . .·T pr(n)fr = 1 for any n ∈ Z. On the other hand, since mi0,j0 6= 0 with j0 ≥ k,
we have E(fi0 |Xk−1) = 0, and thus E(f0|Xk−1)·T p1(n)E(f1|Xk−1)·. . .·T pr(n)E(fr|Xk−1) =
0 for all n ∈ Z.

We now turn to the Vandermonde complexity; let us assume that V (P ) ≤ k. To
simplify notation, assume also that X has depth k (that is, X = Xk = T

k). Let functions
fi ∈ L1(X), i = 0, . . . , r, be nonnegative, with

∫
X

fi dµX > 0, and independent of Xk−1 in
a very strong sense: assume that they only depend on the last, kth coordinate of X. Then

Proposition 5.8. If V (p1, . . . , pr) ≤ k then UC-lim
n

∫
X

f0·T p1(n)f1 ·. . .·T pr(n)fr dµX > 0.

Proposition 5.8 is equivalent to the following:

Proposition 5.9. Let V (p1, . . . , pr) ≤ k and let Ai = Xk−1 × Ii, i = 0, . . . , r, where
I0, . . . , Ir are subsets of Fk of positive measure. Then UC-lim

n
µX

(
A0 ∩ T−p1(n)A1 ∩ . . . ∩

T−pr(n)Ar

)
> 0.

Proof. We may assume that I0, . . . , Ir are open intervals in Fk ' T. Let A =
∏r

i=0 Ai.
Since τ r+1

k (H) = F r+1
k , there is a point x̃ ∈ H with τ r+1

k (x̃) ∈ I0 × . . . × Ir. Thus,
A ∩ H 6= ∅. Since A ∩ H is open in H, µH(A ∩ H) > 0. Since the sequence Dn is well
distributed in H,

UC-lim
n

µX

(
A0 ∩ T−p1(n)A1 ∩ . . .∩ T−pr(n)Ar

)
= UC-lim

n
µDn

(A∩Dn) = µH(A∩H) > 0.
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Remark. If a set A is independent of Xk−1 then so is the set T cA for any c ∈ Z; this implies
that the assertions of Proposition 5.2 and Proposition 5.5 remain true if the intersection
A0 ∩ T−p1(n)A1 ∩ . . . ∩ T−pr(n)Ar is replaced by A0 ∩ T−p1(n)−c1A1 ∩ . . . ∩ T−pr(n)−crAr

with arbitrary ci ∈ Z (see also Proposition 5.15 and Proposition 5.17 below). A similar
extension of Proposition 5.9 does not hold: one can construct an explicit example of a
system of integer polynomials P = {p1, . . . , pr} with V (P ) = 2, integers c1, . . . , cr, a quasi-
standard Weyl system (T2, T ) and intervals I0, . . . , Ir in T such that for Ai = T × Ii ⊆ T

2

one has
(
A0 ×

∏r

i=1 T−ciAi

)
∩ H = ∅.

We will now obtain further refinements of the preceding results by considering the sys-
tem of integral polynomials P (h) =

{
p1(h(n)), . . . , pr(h(n))

}
, where h is any nonconstant

integral polynomial. If h(0) = 0, by Proposition 4.3 the system P (h) has the same Weyl

complexity as P . Let, again, g(n) =

( IdX

T p1(n)

...
T pr(n)

)
, n ∈ Z; then even if h(0) 6= 0, we have:

Lemma 5.10. For any nonconstant integral polynomial h the sequence{
g(h(n))∆Xr+1

}
n∈Z

is well distributed in H.

Proof. By Proposition 2.2, the sequence g(h(n))∆Xr+1 , n ∈ Z, is well distributed in H if
it is dense in H. Let x be a “generic” point of X, that is, let the coordinates of x and the
elements αi ∈ T in the definition of the quasi-standard Weyl system be rationally indepen-
dent. Then the closure Hx = {g(n)x̄, n ∈ Z} ⊆ Xr+1 of the orbit of x̄ under g has form
x̄ + Span Q mod1 for some polynomial matrix Q. The closure Kx = {g(h(n))x̄, n ∈ Z} ⊆
Xr+1 of the orbit of x̄ under g(h) has form g(h(0))x̄ + Span

(
Q(h) − Q(h(0))

)
mod1. Since

g(h(0))x̄ ∈ Hx and Span
(
Q(h) − Q(h(0))

)
= Span Q by Lemma 1.3, we obtain Kx = Hx.

Hence, ⋃

n∈Z

g(h(n))∆Xr+1 =
⋃

x∈X

Kx =
⋃

x∈X

Hx = H.

We may now strengthen Proposition 5.1:

Proposition 5.11. Let W (P ) ≤ k and let f0, . . . , fr ∈ L∞(X). For any nonconstant
integral polynomial h one has

UC-lim
n

∫

X

f0 · T p1(h(n))f1 · . . . · T pr(h(n))fr dµX

= UC-lim
n

∫

Xk−1

E(f0|Xk−1) · T p1(h(n))E(f1|Xk−1) · . . . · T pr(h(n))E(fr|Xk−1) dµXk−1
.

Applying this to fi = 1Ai
, we get

Proposition 5.12. Let W (P ) ≤ k and let A0, . . . , Ar be measurable subsets of X inde-
pendent of Xk−1. For any nonconstant integral polynomial h one has

UC-lim
n

µX

(
A0 ∩ T−p1(h(n))A1 ∩ . . . ∩ T−pr(h(n))Ar

)
=

r∏

i=0

µX(Ai).

When W (P ) < k, Lemma 5.6 immediately implies:

27



Proposition 5.13. If W (P ) < k and A0, . . . , Ar are measurable subsets of X independent
of Xk−1, then for any nonconstant integral polynomial h one has

lim
n→∞

µX

(
A0 ∩ T−p1(h(n))A1 ∩ . . . ∩ T−pr(h(n))Ar

)
=

r∏

i=0

µX(Ai).

(We will no longer deal with functions on X but only with subsets of X, though our
statements can, of course, be easily reformulated in the language of functions.) Assuming
that X has depth k, directly from Lemma 5.10 we get

Proposition 5.14. Let V (P ) ≤ k and let Ai = Xk−1 × Ii, i = 0, . . . , r, where I0, . . . , Ir

are subsets of Fk of positive measure. Then for any nonconstant integral polynomial h,

UC-lim
n

µX

(
A0 ∩ T−p1(h(n))A1 ∩ . . . ∩ T−pr(h(n))Ar

)
> 0.

Let m ≥ 2 and Zm = Z/mZ. We will now investigate the non-connected Weyl system
(Y, R) where Y = X × Zm and R: Y −→ Y is defined by R(x, j) = (Tx, j + 1); for further
generality, we will also add, when possible, “shifting constants” ci in the formulation of
our results:

Proposition 5.15. Let W (P ) ≤ k, and let B be a measurable subset of Y independent
of Xk−1 × Zm. Then for any nonconstant integral polynomial h and any c1, . . . , cr ∈ Z,

UC-lim
n

µY

(
B ∩ R−p1(h(n))−c1B ∩ . . . ∩ R−pr(h(n))−crB

)
= µY (B)r+1.

Proof. Let B =
⋃

j∈Zm
(Aj × {j}). Then A0, . . . , Am−1 are independent of Xk−1, and

µX(A0) = . . . = µX(Am−1) = µY (B). Put Bj = Aj × {j}, j ∈ Zm.
For l ∈ {0, . . . , m − 1}, consider the system P (h(mn + l) =

{
p1(h(mn + l)) +

c1, . . . , pr(h(mn + l)) + cr

}
of polynomials in the variable n. For any i and j,

R−pi(h(mn+l))−ciBj ⊆ X × {j − di} for all n ∈ Z, where di = pi(h(l)) + ci mod m. Thus,
for j0, j1, . . . , jr ∈ Zm, if ji = j0 + di for all i = 0, . . . , r then by Proposition 5.12

UC-lim
n

µY

(
Bj0 ∩ R−p1(h(mn+l))−c1Bj1 ∩ . . . ∩ R−pr(h(mn+l))−cr Bjr

)

= 1
m

UC-lim
n

µX

(
Aj0 ∩ T−p1(h(mn+l))−c1Aj1 ∩ . . . ∩ T−pr(h(mn+l))−crAjr

)

= 1
m

UC-lim
n

µX

(
Aj0 ∩ T−p1(h(mn+l))(T−c1Aj1) ∩ . . . ∩ T−pr(h(mn+l))(T−crAjr

)
)

= 1
m

r∏

i=0

µX(T−ciAji
) = 1

m

r∏

i=0

µX(Aji
) = 1

m
µY (B)r+1,

and otherwise Bj0 ∩ R−p1(h(mn+l))−c1Bj1 ∩ . . .∩ R−pr(h(mn+l))−cr Bjr
= ∅ for all n. Thus,

UC-lim
n

µY

(
B ∩ R−p1(h(mn+l))−c1B ∩ . . . ∩ R−pr(h(mn+l))−cr B

)

=
∑

j0,...,jr∈Zm

UC-lim
n

µY

(
Bj0 ∩ R−p1(h(mn+l))−c1Bj1 ∩ . . . ∩ R−pr(h(mn+l))−cr Bjr

)

=
∑

j0∈Zm

UC-lim
n

µY

(
Bj0 ∩ R−p1(h(mn+l))−c1Bj0+d1

∩ . . . ∩ R−pr(h(mn+l))−cr Bj0+dr

)

= m · 1
m

µY (B)r+1 = µY (B)r+1.
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Since this is true for every l = 0, 1, . . . , m − 1, we get

UC-lim
n

µY

(
B ∩ R−p1(h(n))−c1B ∩ . . . ∩ R−pr(h(n))−crB

)
= µY (B)r+1.

Remark. A similar proof allows one to get a more general result:

Proposition 5.16. Let W (P ) ≤ k, and let B(0), . . . , B(r) be measurable subsets of Y
independent of Xk−1 × Zm. Then for any nonconstant integral polynomial h

UC-lim
n

µY

(
B(0) ∩ R−p1(h(n))B(1) ∩ . . . ∩ R−pr(h(n))B(r)

)
=

r∏

i=0

µY (B(i)).

(This proposition gives Proposition 5.15 if we apply it to B(0) = B and B(i) = R−ciB,
i = 1, . . . , r.) Same remark applies also to Proposition 5.17 and, with certain modifications,
to Proposition 5.18 below.

If in the proof of Proposition 5.15 we replace UC-lim by lim and Proposition 5.12 by
Proposition 5.13, we get

Proposition 5.17. If W (P ) < k and B is a measurable subset of Y independent of
Xk−1 × Zm, then for any nonconstant integral polynomial h and any c1, . . . , cr ∈ Z,

lim
n→∞

µY

(
B ∩ R−p1(h(n))−c1B ∩ . . . ∩ R−pr(h(n))−crB

)
= µY (B)r+1.

In the notation of Proposition 5.15, assume now that V (P ) ≤ k, X has depth k and
B =

⋃
j∈Zm

Bj =
⋃

j∈Zm
(Aj ×{j}) where each Aj has form Xk−1×Ij for Ij ⊆ Fk, j ∈ Zm,

of positive measure. Then, in the same way, we obtain from Proposition 5.14

Proposition 5.18. For any nonconstant integral polynomial h,

UC-lim
n

µY

(
B ∩ R−p1(h(n))B ∩ . . . ∩ R−pr(h(n))B

)
> 0.

6. Combinatorics

Let E ⊆ Z with UD(E) > 0 (that is, the uniform density UD(E) exists and is positive)
and let P = {p1, . . . , pr} be a system of integral polynomials (with not necessarily zero
constant term). For n ∈ Z, define

En =
{
a ∈ Z : a, a + p1(n), . . . , a + pr(n) ∈ E

}
= E ∩ (E − p1(n)) ∩ . . . ∩ (E − pr(n)).

We say that E is UC-positive with respect to P if UC-lim
n

UD(En) > 0; that E is UC-

balanced with respect to P if UC-lim
n

UD(En) = UD(E)r+1; and that E is balanced with

respect to P if limn→∞ UD(En) = UD(E)r+1.

29



Theorem 6.1. For any k ∈ N and any system {p1, . . . , pr} of integral polynomials with
zero constant term and with V (p1, . . . , pr) > k, there is a set E ⊂ Z of positive uniform
density such that
(i) for any system of integral polynomials {q1, . . . , qs} with zero constant term and with
V (q1, . . . , qs) ≤ k and any nonconstant integral polynomial h the set E is UC-positive with
respect to the system

{
q1(h(n)), . . . , qs(h(n))

}
;

(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) ≤ k, any nonconstant integral polynomial h and any integers c1, . . . , cs the
set E is UC-balanced with respect to the system

{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < k, any nonconstant integral polynomial h and any integers c1, . . . , cs the
set E is balanced with respect to the system

{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iv) there exist nonzero integers m and l such that E contains no configuration of the form{
a, a + p1(mn + l), . . . , a + pr(mn + l)

}
, a, n ∈ Z.

It is possible to characterize the pairs (m, l) that work for (iv). For fixed m and l,

consider the vectors uj = (u
(0)
j , . . . , u

(r)
j ) ∈ R

r+1, j = 0, . . . , m − 1, where u
(i)
j = 1 if

pi(l) ≡ j modm and u
(i)
j = 0 otherwise; we assume here p0 = 0. Let us say that the pair

(m, l) separates p1, . . . , pr on the level k if uj 6∈ Span




1 0 0 ... 0
1 p1 p2

1 ... pk
1...

...
...

...
1 pr p2

r ... pk
r


 for some j. This may

only be the case when k < V (p1, . . . , pr). On the other hand, for m large enough there
exists l such that 0, p1(l), . . . , pr(l) are all different modulo m, and then the pair (m, l)
separates p1, . . . , pr on the level k for all k < V (p1, . . . , pr).

Example. For the system {x, x2, x + x2, x + 2x2}, m = 2 and l = 1 we have u0 =

(
1
0
0
1
0

)

and u1 =

(
0
1
1
0
1

)
. Since

u0 6∈ Span




1 0
1 x

1 x2

1 x+x2

1 x+2x2


 = span

(
1 0 0
1 1 0
1 0 1
1 1 1
1 1 2

)
,

the pair (2, 1) separates x, x2, x + x2, x + 2x2 on the level 1.

For the same system and (m, l) = (3, 1) we have u0 =

(
1
0
0
0
1

)
, u1 =

(
0
1
1
0
0

)
, u2 =

(
0
0
0
1
0

)
,

and so, the pair (3, 1) also separates x, x2, x + x2, x + 2x2 on the level 1.

We may now strengthen Theorem 6.1:

Theorem 6.2. For any k ∈ N, any system {p1, . . . , pr} of integral polynomials with zero
constant term and with V (p1, . . . , pr) > k and integers m, l1, . . . , lν such that each of the
pairs (m, l1),. . .,(m, lν) separates p1, . . . , pr on the level k there is a set E ⊂ Z of positive
uniform density such that
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(i), (ii), (iii) as in Theorem 6.1;
(iv) E contains no configuration of the form

{
a, a + p1(mn + l), . . . , a + pr(mn + l)

}
,

a, n ∈ Z, with l ∈ {l1, . . . , lν}.
Example. Consider the system {x, 2x, . . . , rx}. The Vandermonde complexity of this

system equals r, and Span




1 0 0 ... 0
1 p1 p2

1 ... p
r−1
1

1 p2 p2
2 ... p

r−1
2...

...
...

...
1 pr p2

r ... pr−1
r


 = span




1 0 0 ... 0
1 1 1 ... 1
1 2 22 ... 2r−1

...
...

...
...

1 r r2 ... rr−1


 is the hyperplane de-

scribed by the equation
∑r

i=0(−1)i
(
r
i

)
u(i) = 0. For m = 2 and l = 1, the vector

u0 = (1, 0, 1, 0, . . . , 1or0) is not contained in this hyperplane, and thus the pair (2, 1)
separates the polynomials x, 2x, . . . , rx on the level r − 1. Actually, the following holds:

Lemma 6.3. For any r, m, l with l not divisible by m, the pair (m, l) separates the poly-
nomials x, 2x, . . . , rx on the level r − 1.

Proof. For any m and any l not divisible by m, the nonzero vectors ui corresponding to
these m, l and the system {x, 2x, . . . , rx} are




1
0...
0
1
0...
0
1
0...




,




0
1
0...
0
1
0...
0
1...




, . . .




0
0...
0
1
0...
0
1
0...




;

they are periodic with same distance b = m/ gcd(l, m) between “1”s. We therefore have
to check that for some j ∈ {0, . . . , b − 1} the number ej =

∑
0≤i≤r

i≡j mod b

(−1)i
(
r
i

)
is nonzero.

Let λ be a primitive root of unity of degree b; then we have

0 6= (λ − 1)r =

r∑

i=0

(−1)i
(
r
i

)
λr−i =

b−1∑

j=0

∑

0≤i≤r
i≡j mod b

(−1)i
(
r
i

)
λr−j =

b−1∑

j=0

ejλ
r−j ,

and thus one of ej must be nonzero.

Since V (x, 2x, . . . , rx) = r, we obtain:

Corollary 6.4. For any r, m ≥ 2 there is a set E ⊂ Z of positive uniform density such
that
(i) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
V (q1, . . . , qs) ≤ r − 1 and any nonconstant integral polynomial h, the set E is UC-positive
with respect to the system

{
q1(h(n)), . . . , qs(h(n))

}
;

(ii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) ≤ r − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs,
the set E is UC-balanced with respect to the system

{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;
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(iii) for any system {q1, . . . , qs} of integral polynomials with zero constant term and with
W (q1, . . . , qs) < r − 1, any nonconstant integral polynomial h and any integers c1, . . . , cs,
the set E is balanced with respect to the system

{
q1(h(n)) + c1, . . . , qs(h(n)) + cs

}
;

(iv) E contains no arithmetic progressions of the form
{
a, a+(mn+ l), . . . , a+r(mn+ l)

}
,

a, n, l ∈ Z, with l not divisible by m.

Let {p1, . . . , pr} be a system of integral polynomials with zero constant term and
with V (p1, . . . , pr) > k and let integers m, l1, . . . , lν be such that each of the pairs
(m, l1),. . .,(m, lν) separates these polynomials on the level k. Consider the system (Y, R)
introduced at the end of the previous section, namely, Y = X×Zm and R(x, i) = (Tx, i+1),
where (X, T ) is a quasi-standard Weyl system of depth k. We keep the notation of the
preceding section. Let, again, B =

⋃
j∈Zm

Bj =
⋃

j∈Zm
(Aj × {j}) where Aj = Xk−1 × Ij,

Ij are open intervals in Fk, j ∈ Zm. The dynamical reason for Theorem 6.2 being true is
the following proposition:

Proposition 6.5. The intervals Ij can be chosen so that B ∩ R−p1(mn+l)B ∩ . . . ∩
R−pr(mn+l)B = ∅ for all n ∈ Z and all l = l1, . . . , lν.

Proof. Let l be one of l1, . . . , lν Let di = pi(l) modm ∈ Zm, i = 0, . . . , r. Let uj =

(u
(0)
j , . . . , u

(r)
j ) ∈ R

r+1, j ∈ Zm, where u
(i)
j = 1 if di ≡ j and u

(i)
j = 0 otherwise. We have

U = span(uj , j ∈ Zm) mod 1 =
{
(t0, td1

, . . . , tdr
), tj ∈ T, j ∈ Zm

}
⊆ T

r+1.

Since (m, l) separates {p1, . . . , pr} on the level k, U is not contained in the subtorus
τr+1
k (H) of F r+1

k (where τk is, again, the projection of X to Fk, and where we identify Fk

with T). Hence, the preimage of τ r+1
k (H) in T

m under the mapping (t0, t1, . . . , tm−1) 7→
(t0, td1

, . . . , tdr
) ∈ F r+1

k is a proper subtorus of T
m. Thus, there exist elements tj ∈ T for

j ∈ Zm, such that not only (t0, td1
, . . . , tdr

) 6∈ τ r+1
k (H), but also (tσ(0), tσ(d1), . . . , tσ(dr)) 6∈

τr+1
k (H) for any permutation σ of Zm. Moreover, tj, j ∈ Zm, can be chosen so that this

will hold for each l = l1, . . . , lν. Put Ij = (tj − δ, tj + δ) ⊂ T = Fk, j ∈ Zm, where δ > 0 is
small enough to ensure Iσ(0) × Iσ(d1) × . . .× Iσ(dr) ∩ τ r+1

k (H) = ∅ for all σ, and, again, for
any choice of l ∈ {l1, . . . , lν}. Now define Aj = Xk−1 × Ij ⊂ X. Then for any permutation
σ of Zm, Aσ(0) × Aσ(d1) × . . .× Aσ(dr) ∩ H = ∅.

Let l ∈ {l1, . . . , lν}. Put Bj = Aj × {j} ⊂ Y , j ∈ Zm, and B =
⋃

j∈Zm
Bj. Let ∆Y r+1

be the diagonal in Y r+1. One has B ∩R−p1(mn+l)B ∩ . . .∩R−pr(mn+l)B = ∅ for all n ∈ Z

if Br+1 ∩
( IdY

Rp1(mn+l)

...
Rpr(mn+l)

)
∆Y r+1 = ∅ for all n ∈ Z. Let K =

⋃
n∈Z

( IdY

Rp1(mn+l)

...
Rpr(mn+l)

)
∆Y r+1 . Put

z̄ = (z, . . . , z) ∈ (Zm)r+1 and ∆z = ∆Xr+1 × z̄, z ∈ Zm. Then ∆Y r+1 =
⋃

z∈Zm
∆z and

K =
⋃

z∈Zm
Hz, where Hz =

⋃
n∈Z

( IdY

Rp1(mn+l)

...
Rpr(mn+l)

)
∆z, z ∈ Zm. By Lemma 5.10, for each

z ∈ Zm, Hz = H × (z, d1 + z, . . . , dr + z), and so

Br+1 ∩ Hz =
(
Bz × Bd1+z × . . .× Bdr+z

)
∩ Hz

=
((

Az × Ad1+z × . . .× Adr+z

)
∩ H

)
× (z, d1 + z, . . . , dr + z) = ∅.
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Example. Consider the polynomial system {x, 2x, 3x, 4x}. We have V (x, 2x, 3x, 4x) =
4, and the pair (2, 1) separates x, 2x, 3x, 4x on the level 3. (Indeed, the vectors

u0 = (1, 0, 1, 0, 1) and u1 = (0, 1, 0, 1, 0) are not contained in Span




1 0 0 0
1 x x2 x3

1 2x (2x)2 (2x)3

1 3x (3x)2 (3x)3

1 4x (4x)2 (4x)3


 =

span

(
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

)
.)

Consider the Weyl system (Y, R) where Y = X×Z2 with X = T
3 and R(x1, x2, x3, i) =

(x1 + α, x2 + x1, x3 + x2, i + 1) with an irrational α. For this system we have

τ5
3 (H) = Span




1 0 0 0
1 x x[2] x[3]

1 2x (2x)[2] (2x)[3]

1 3x (3x)[2] (3x)[3]

1 4x (4x)[2] (4x)[3]


 = Span




1 0 0 0
1 x x2 x3

1 2x (2x)2 (2x)3

1 3x (3x)2 (3x)3

1 4x (4x)2 (4x)3


 = span

(
1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

)
⊂ F 5

3 = T
5.

The space U = span{u0, u1} = span

(
1 0
0 1
1 0
0 1
1 0

)
=








t0
t1
t0
t1
t0


, t0, t1 ∈ T



 is not contained in

τ5
3 (H), thus we can choose t0, t1 ∈ T such that




t0
t1
t0
t1
t0


,




t1
t0
t1
t0
t1


 6∈ τ5

3 (H) (this is so when

t0 6= t1). Next we choose δ > 0 such that for I0 = (t0 − δ, t0 + δ) and I1 = (t1 − δ, t1 + δ)
one has

(
I0 × I1 × I0 × I1 × I0

)
∩ τ5

3 (H) = ∅ and
(
I1 × I0 × I1 × I0 × I1

)
∩ τ5

3 (H) = ∅.

For A0 = X2×I0 ⊂ X and A1 = X2×I1 ⊂ X we then have
(
A0×A1×A0×A1×A0

)
∩H = ∅

and
(
A1 ×A0 ×A1 ×A0 ×A1

)
∩H = ∅. Finally, we put B = (A0 ×{0})∪ (A1 ×{1}) ⊂ Y .

Let now K =
⋃



IdY

R2n+1

R2(2n+1)

R3(2n+1)

R4(2n+1)


∆Y r+1 ⊂ Y 5 = X5 × Z

5
2. Then K = H0 ∪ H1 where

H0 = H × {0, 1, 0, 1, 0} and H1 = H × {1, 0, 1, 0, 1}. Since

B5 ∩
(
X5 × {0, 1, 0, 1, 0}

)
=
(
A0 × A1 × A0 × A1 × A0

)
× {0, 1, 0, 1, 0}

and B5 ∩
(
X5 × {1, 0, 1, 0, 1}

)
=
(
A1 × A0 × A1 × A0 × A1

)
× {1, 0, 1, 0, 1},

we obtain B5 ∩ K = ∅. This implies B ∩ R−(2n+1)B ∩ R−2(2n+1)B ∩ R−3(2n+1)B ∩
R−4(2n+1)B = ∅ for all n ∈ Z.
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Proof of Theorem 6.2. In the notation of Proposition 6.5, take any point y ∈ Y . Since
(Y, R) is an ergodic Weyl system, it is uniquely ergodic and so, UD

({
a ∈ Z : Ray ∈ C

})
=

µY (C) for any open C ⊆ Y with µY (∂C) = 0. Define E =
{
a ∈ Z : Ray ∈ B

}
. Then

UD(E) = µY (B) > 0, and for any s ∈ N and a, c1, . . . , cs ∈ Z one has a, a+c1, . . . , a+cs ∈
E iff Ray, Ra+c1y, . . . , Ra+csy ∈ B iff Ray ∈ B ∩ R−c1B ∩ . . . ∩ R−csB.

Since B ∩R−p1(mn+l)B ∩ . . .∩R−pr(mn+l)B = ∅ for all n ∈ Z and l ∈ {l1, . . . , lν}, the
set E does not contain configurations of the form a, a + p1(mn + l), . . . , a + pr(mn + l).

Let {q1, . . . , qs} be a system of integral polynomials with zero constant term. Let
W (q1, . . . , qs) ≤ k, let h be a nonconstant integral polynomial and let c1, . . . , cs ∈ Z. By
Proposition 5.15

UC-lim
n

µY

(
B ∩ R−q1(h(n))−c1B ∩ . . . ∩ R−qs(h(n))−csB

)
= µY (B)s+1.

For n ∈ Z put En =
{
a ∈ Z : a, a + q1(h(n)) + c1, . . . , a + qs(h(n)) + cs ∈ E

}
. We have

UD(En) = µY

(
B ∩ R−q1(h(n))−c1B ∩ . . . ∩ R−qs(h(n))−csB

)
, and so, UC-lim

n
UD(En) =

µY (B)s+1 = UD(E)s+1.
If W (q1, . . . , qs) < k, then by Proposition 5.17 we obtain limn→∞ UD(En) =

µY (B)s+1 = UD(E)s+1.
Finally, let V (q1, . . . , qs) ≤ k, and let h be a nonconstant integral polynomial. Put

En =
{
a ∈ Z : a, a + q1(h(n)), . . . , a + qs(h(n)) ∈ E

}
, n ∈ Z. By Proposition 5.18,

UC-lim
n

UD(En) = UC-lim
n

µY

(
B ∩ R−q1(h(n))B ∩ . . . ∩ R−qs(h(n))B

)
> 0.
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