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MINOR IDENTITIES FOR QUASI-DETERMINANTS
AND QUANTUM DETERMINANTS

Daniel KROB'! and Bernard LECLERC ?

Abstract. We present several identities involving quasi-minors of noncommutative generic matrices. These

identities are specialized to quantum matrices, yielding g-analogues of various classical determinantal formulas.

1. Introduction

Defining a “good” noncommutative notion of determinant is a very old problem that
can be traced back to Cayley (cf [Ca]). There have been several attempts at this problem
since the beginning of this century. However it is only very recently that I.M. Gelfand and
V.S. Retakh made a major breakthrough by introducing the concept of quasi-determinant
which generalizes within a totally noncommutative framework the classical concept of
determinant (see [GR1], [GR2]). Their main idea was to abandon the multiplicativity of
commutative determinants and to focus on their properties with respect to inversion. It
also happens that quasi-determinants are very closely related to the representation aspect
of automata theory initiated by M.P. Schiitzenberger (cf [BR], [Sc] for instance). The
presentation we give here is indeed highly influenced by this point of view.

Quasi-determinants are defined for generic matrices with entries in the free skew field,
allowing therefore to work with them in arbitrary skew fields. Gelfand and Retakh de-
veloped their theory in the two seminal papers [GR1] and [GR2] where they obtained
a lot of noncommutative versions of classical results such as Cayley-Hamilton’s theorem,
Capelli’s identity, Gauss’ decomposition of a matrix, ... They gave in particular non-
commutative versions of several classical determinantal identities. They also showed that
various noncommutative determinants — quantum determinants, Berezinians, Dieudonné
determinants — can be expressed as products of quasi-determinants (see also Section 3.2).
It is therefore of major interest to investigate general identities satisfied by quasi-minors
in order to deduce from them identities for these other types of determinants.

In this article, we focus our interest on relating more strongly quasi-determinants and
quantum determinants. The recent development of quantum group theory has indeed led to
the discovery of noncommutative analogues for the main concepts of multilinear algebra (cf

[Sk], [RTF], [Ta], [Dr], [HH], [PW] for instance). In this picture, quantum determinants

play a major role. For example, the study of the quadratic identities satisfied by minors
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of a quantum matrix made it possible to define quantum deformations of Grassmann
and flag manifolds (c¢f [LR], [TT]). These identities are quantum analogues of the well-
known Pliucker and Garnir relations and of the straightening formula of classical invariant
theory. This raises the question of finding quantum analogues for other classical identities
of degree > 2. like Sylvester’s or Bazin’s, which are of great use in many problems of
commutative algebra. We present here such quantum identities as simple consequences of
general noncommutative identities for quasi-determinants.

The article is organized as follows. Its first part is devoted to recall several relations
between quasi-minors of the generic matrix. More precisely, we review in Sections 2.1 and
2.2 the definition and basic properties of quasi-determinants. We describe then in Section
2.3 noncommutative analogues of several classical theorems, including Cayley’s law of
complementaries, Muir’s law of extensible minors, Sylvester’s theorem, Bazin’s theorem
and Schweins’ series. Finally, these results are applied in Section 3 to quantum determinants
yielding quantum analogues of the same theorems.

2. Quasi-determinants
2.1. Definitions and notations

Let k be a field, let n be an integer and let A = {a;;, 1 < ¢,7 < n} be an alphabet of
order n?. Let k£ A} be the free skew field constructed on k and generated by A (cf [Co]
for details). The matrix A = (a;;)1<i,j<n 1s then called the generic matriz of order n. It is
useful to associate with A the automaton A which is the graph whose transition matrix is
A. In other words, A is the complete oriented graph constructed over {1,...,n} where the
edge relating ¢ to j is labelled by a;; for every ¢,5 € {1,...,n}.

ExaMPLE 2.1. — For n = 2, the automaton A is given below.
a2
a1 ( ( : az2
a2
Figure 2.1

One can now define the star of the matrix A as follows
+oco )
A*:(l—A)_lz Z A
i=0

The entries of A* have a simple and well-known automata-theoretic interpretation (see
[BR] or [Ei] for details). Indeed an easy induction on n shows that (A*);; is the sum of
all words labelling the paths that relate ¢ to j in A. Using this property, one can obtain in
particular the classical formula (see [Co] p. 27 for instance)

* * * * * *
< ain a2 ) _ < (a11 + a12 a3, as1) aiy arz (agg + az ajq arz) )

aby a1 (11 + a1z a3y ag1)* (a9 + a2 ajy a12)*

(2.1)

a1 422

Let us prove for instance that the above equality holds for entries of order 11. Thus we must
show that the entry of order 11 in the matrix of the right side of relation (2.1) represents



the set of words labelling a path from 1 to 1 in the automaton A of Figure 2.1. Indeed such
a path can be decomposed as a sequence of paths going from 1 to 1 in A without using 1
as an intermediate state. But these last paths are obviously equal to a1 + @12 a3, a21. Since
the star of a set L of words is the set that consists in arbitrary sequences of words of L,
this explains the entry of order 11 in formula (2.1). The same kind of interpretation also
holds clearly for the other entries.

Using appropriate substitutions, formula (2.1) gives in fact a recursive definition of the
star of a generic matrix of any order and shows that the entries of A* still belong to k£ A #.
Let us now connect the star and the inverse operations. According to a result of Cohn (see
[Co] p. 89), we can define an involutive field automorphism w of k£ A% by setting

1-— (2794 if 2 Ij

wlaiy) = { —a;; i i
for every 1 < ¢,7 < n. This involution clearly maps the generic matrix A on [, — A. Hence
we have w(A™!) = A* and conversely w(A*) = A™!. We can now give the following result,

which shows that the generic matrix has always an inverse that can be constructed by
means of recursive formulas.

ProposiTION 2.2. — Let P, Q) and R, S be two partitions of {1,...,n} such that |P| = |R|

and |Q| =|S|. Let us decompose the generic matriz A of order n as
R S
AP ( Apr  Aps )
Q AQR AQS
Then the inverse of A s recursively given by
P Q
PET ( (Apr — ApsAgsAqr)™ —AppAps(Ags — AqrAppAps) ™! )
s \ —AgsAqr(Apr — ApsAgsAqr)™" (Ags — AgrAppAps)™!

Proof. — The use of appropriate permutation matrices reduces the proof to the case
P = R and @) = S. Using substitutions, we can even reduce it to the case |P| = |Q| = 1.
Then the above formula is just the image by w of formula (2.1). 0

Let us denote by AP? the matrix obtained from A by deleting the p-th row and the ¢-th
column. Let also &,y = (ap1,. ., Gpgs -y apn) and 1y = (@1gy .., Gpgy - - -5 ng). Applying
now Proposition 2.2 with P = {¢} and R = {p}, we get

(A7 )pg = (apg — Epg(AP) " 1pg )1 (2.2)

for every 1 < p,q < n, where {,, is understood as a row matrix and 7,, as a column matrix.
Formula (2.2) therefore expresses in a symmetric way the inverse of the generic matrix A.
Now the following definition makes sense.

DerINITION 2.3. — (Gelfand — Retakh; [GR1]) The quasi-determinant |A|,, of order pq
of the generic matriz A is the element of kLAY defined by

|Alpy = apq — &pg (qu)_l Nlpg = Qpq — Z Upj ((qu)_l)ji Qigq -
1ED,JFY



NotaTiON 2.4. — It is convenient to adopt the following more explicit notation
a1 Ce a1q Ce ain
|A|pq = |apm Upq Apn
Ap1 oo lpg  oe. Gy
NoTEs 2.5. — 1. Quasi-determinants are here only defined for generic matrices. However

this is not a real restriction since one can clearly transport the above definition to invertible
matrices with entries in an arbitrary skew field using substitutions. In fact, one can even
work in a noncommutative ring when A?? is an invertible matrix.

2. The involution w is the tool that connects quasi-determinants and automata theory.
The relations between these theories already appeared in the proof of Proposition 2.2.

ExampLE 2.6. — For n = 2, there are 4 quasi-determinants :
a1z ~1 ay -1
= a11 — Q12099 G271 , = Q12 — 411 Ggq G22 ,
a1 0422 a1 0422
a1n  diz| a amala 11 d12 | _ a anala
= G321 — G2 a75 A11 , = G322 — G321 G171 G12 .
22 21

Let us finally give some notations that will be used throughout this paper. Let P, () be
subsets of {1,...,n} of the same cardinality. We shall denote by AP? the matrix obtained
by removing from A the rows whose indices belong to P and the columns whose indices
belong to Q. We also set Apg = AT @, where P and @ are the complements of P and
in {1,2,...,n}. Finally, if a;; is an entry of some submatrix AP? or Apg, we shall denote
by |AP?|;; or |Apgli; the corresponding quasi-minor.

2.2. Fundamental properties

We shall now recall the main properties of quasi-determinants. Most of the results in
this subsection are due to Gelfand and Retakh (cf [GR1], [GR2]). We shall often use in

the sequel quasi-determinants of non-generic matrices, following Note 2.5.1.
2.2.1. The inverse matrix
The following result is just a rewriting of formula (2.2) and Definition 2.3.

ProposITION 2.7. — (Gelfand — Retakh; [GR1]) Let A be the generic matriz of order

n and let B = A™" = (byg)i<pq<n be its inverse. Then one has |Al,, = b,' for every
1 <p,g<n

NoTes 2.8. — 1. It follows from Proposition 2.7 that |A|,, = (—1)?*? detA/det A*? when
k is a commutative field. Thus quasi-determinants may be regarded as noncommutative
analogues of the ratio of a determinant to one of its principal minors.
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2. If A is an arbitrary invertible matrix, one can show that the above relation also holds

for every p, ¢ such that b,, # 0 (cf [GR1], [GR2]).

As a consequence of Proposition 2.7, we can now give the following formula
|A|pq = Qpq — Z Upj |qu|i_j1 Qg (23)
i#p,IFg
which is also just a rewriting of Definition 2.3. However formula (2.3) is very useful since
it may be considered as a recursive definition of quasi-determinants.

2.2.2. Permutation of rows and columns

ProposiTION 2.9. — (Gelfand — Retakh; [GR1]) A permutation of the rows or columns
of a quasi-determinant does not change its value.

Proof. — Let 0 € &,, and let P, be the associated permutation matrix. Then we have

[Py AP ;ql = (B AP g = (P AT PTY)gp = (A_l)a(q)o(p) = |A|;(1p)0'(q)

o (e

for every 1 < p,q < n, according to Proposition 2.7. U
ExampLE 2.10. — As an application of Proposition 2.9, we have for instance
ail  Gi2 di3 a1 G2z d23 Gz Q21 G33
Q21 G2z Q23| = | G111 d12 G13| = 012 0411 413
aszy a33 ds1] a3z G33 ass ass

2.2.3. Elementary operations on the rows or columns

ProposiTiON 2.11. — (Gelfand — Retakh; [GR1]) If the matriz B is obtained from the
matriz A by multiplying the p-th row on the left by A, then

Bl = {)\|A|pq for k=p,
ke |Alg, for kE#p.
Simalarly, if the matriz C 1s obtained from the matriz A by multiplying the g-th column on
the right by p, then
_[|Alpgpu for I=q,
Ol = { |Al,; for [ #q.
Finally, if the matriz D 1s obtained from A by adding to some row (resp. column) of A its
k-th row (resp. column), then |D|,q = |Alyq for every p # k (resp. ¢ # k).

Proof. — The two first properties are easily proved by induction on n using relation
(2.3). Let us now show the final property for row addition for instance. Let D be obtained
from A by adding its k-th row to its [-th row. Let then M = [, + Ej; where Ej; denotes
the matrix whose unique non-zero entry is the [k-th entry which is equal to 1. Clearly
D = MA. Using Proposition 2.7, we get

|D|;q1 = (D_l)qp = (A_IM_I)qp = Aq_pl = |A|;q1



for every p # k, since multiplying a matrix by M on the right does only change its k-th
column. []

2.2.4. Homological relations

The following proposition gives important relations between quasi-minors of a matrix
that are called homological relations. Its proof is based on technical computations mainly
using Proposition 2.2. We omit it here, rather refering to [GR2] where a sketch of proof
may be found.

ProposiTiON 2.12. — (Gelfand — Retakh; [GR1]) The quasi-minors of the generic
matriz A are related by the following relations :

|Alij (JA k)™ = —|Ala (JAY )™t
(AR ]a) 71 Al = —(|A7 k)71 Al -

ExampLE 2.13. — The following example illustrates Proposition 2.12.
—-1|G11 a2 ai3 -1 (G111 Q12 0413
aix;  di2 a a a1 di2 a 7
21 22 23 | = — 21 22 23
a31 a2
a3z |d33 a3z  A33

2.2.5. Expansion by a row or column

ProposITION 2.14. — For quasi-determinants, there holds the following analogue of the
classical expansion of a determinant by one of its rows or columns :

|A|pq = Qpg — Z Upj (|qu|kj)_1 |Apj|kq )

J#q
|Alpg = apg — Z |A2q|pl(|qu|il)_1 (ig
1#p
for every k # p and [ # q.
Proof. — Let us prove for instance the first relation. By Proposition 2.7, we have
I= E Up,j |A|;j1
7=1

One now gets the desired row expansion by multiplying on the right this last expression
by |A|,, and using the first homological relations given by Proposition 2.12. 0

ExampLE 2.15. — Let n = p = ¢ = 4. Then Proposition 2.14 gives us

G117 ai12 G413 dig -1

a1 a2 a13 a11; di1z2 dig
Gg1 G2 d23 G4 |
= U44 — Q43| 021 (G322 G323 Gg1 d22 024
(31 a3z (33 0434
31 a3z |433 a31 d3zz |434

(41 Qa2 (43 |044



11 a1z 0413 G117 di13  d14 G111 G122 413 a1z a13  G14
— Q42 | Q21 d22 0423 (g1 A3 G4 | — d41 | G21 G2 (23 Gz A3  U24
asi ass asz1 G33 [034 aszy a33 a3z a33 [G34

2.3. Minors identities for quasi-determinants

In this section, we give the noncommutative analogues of several classical theorems. The
reader is referred to [Le] for a review of these theorems in the commutative case.

2.3.1. Jacobi’s ratio theorem

In the commutative case, Jacobi’s ratio theorem (cf [Ja], [Tu] or [Bo] Exercise III. 11.
9) states that each minor of the inverse matrix A™' is equal, up to a sign factor, to the
ratio of the corresponding complementary minor of the transpose of A to det A. In the
noncommutative case, we have the following analogue of this theorem.

THEOREM 2.16. — (Gelfand — Retakh; [GR1]) Let A be the generic matriz of order
n, let B be its inverse and let ({¢}, L, P) and ({7}, M, Q) be two partitions of {1,2,...,n}
such that |L| = |M| and |P| = |Q|. Then there holds :

|BMu{j},LU{i}|ji = |APU{i}7QU{j}|i_j1 :

Proof. — Using appropriate permutation matrices allows to reduce the proof to the case
t=73, L =M and P = (). The image by w of the relation to be proved is then equal to
[(A*)pugiyeogli = [T — A)pugy ol - (2.4)

According to Definition 2.3, we have
(A" Logiyeogali = (A7) — (A)in((A") L) ™ (A% -
Using now Proposition 2.7, we get
(1 — A)pugiy,putlit = (I = Apugiy,puty) ™ )i = ((Aispiop) )i -

Therefore we have to prove that

(A%)ii = (A7) ((A*) L)~ (A" = ((Aswpiup) )i -
Applying Proposition 2.2 to the matrix I — A, we find that

((A)pp)™ ' =1 — Arr — Apup(Aiupiopr)*AiupL -
Thus the identity to be checked may also be written
(A*)ii + (A")in(Arp+ Ariop(Aiupior) Aiopn) (A" )i = ((Aiwpior) )i + (A%)in (A%) i . (2.5)
Let us now notice that one has

(A*)ri = (Arr + Arop (Aiwpior)* Aivrr) (A% i + (A + Arioe (Aiwpior)* Aivpy) -

Indeed this relation just expresses that the set of the paths going from L to ¢ in the
automaton A whose transition matrix is A, can be decomposed in the two disjoint sets



consisting respectively in the paths using an intermediate state belonging to L and in the
paths using no such a state. Using now this last relation, we can rewrite relation (2.5) in
the following equivalent way

(A%)ii = (A%)ir, (ALi + Apiup (Aiwpior)” Aiors) + ((Aiwpior) )i

which expresses again an obvious decomposition of the set of paths going from ¢ to ¢ in A.
This ends therefore our proof. 0

Exampre 2.17. — Take n = 5,1 =3, j =4, L = {1,2}, M = {1,3}, P = {4,5} and
@ = {2,5}. Theorem 2.16 shows that

-1
a3z ass bir bz bis

G4 OG44 Q45| = 531 532 533

G52 OG54 Us5 541 542

2.3.2. Cayley’s law of complementaries

In the commutative case, Cayley’s law of complementaries assumes the following form.
Let I be an identity between minors of the generic matrix A. If every minor is replaced
by its complement in A (multiplied by a suitable power of det A), a new identity I¢ is
obtained, which is said to result from [ by application of the law of complementaries
(cf [Mu] and also [Bo] Exercise III. 11. 10). In the noncommutative case, we have the
following analogue of this law.

THEOREM 2.18. — Let I be an identity between quasi-minors of the generic matriz A of

order n. If every quasi-minor |Armli; tnvolved in I 1s replaced by |Aﬁu{j},fu{i}|j_il: where
L={1,2,...,n}—L and M = {1,2,...,n}—M, there results a new identity I°.
Proof. — Applying identity I to A™! gives identity /° by means of Theorem 2.16. 0
ExampLE 2.19. — Let n = 3 and let [ be the identity
1@ a _ _
o} 31— gl — aslagy (1)
azz 433

By means of the law of complementaries, one can deduce from I the new identity /¢ :
-1

a1  Giz2 ai3 -1 a1 a2 Gi13||dix diz2 A3
G11 a1z .
a1 Qa2 a3 a = | a1 Qa2 aG23 agy Q23
21 22
a3z (33 a3z G33|| as1 a4z 0433

-1

2.3.3. Muir’s law of extensible minors

Let us first recall Muir’s law of extensible minors in the commutative case (cf [Mul]
and also [Bo] Exercise III. 11. 11). Let B be a square matrix of order n + p, let



A = Bpg, C = BP? where P, () are two subsets of {1,...,n + p} of cardinality n
and let [ be an identity between minors of A. When every minor |Ay y| involved in [ is
replaced by its eztension |By 5 gl (multiplied by a suitable power of the pivot [C] if the
obtained identity is not homogeneous), a new identity I” is obtained, which is called an
extenstonal of I. A similar rule holds in the noncommutative case.

THEOREM 2.20. — Let B be the generic matriz of order n+p, let A = Bpg where P, ()
are subsets of {1,...,n+p} of cardinality n and let I be an identity between quasi-minors
of A. If every quasi-minor |Ar ali; involved in I is replaced by its extension |By 5 rrugliis
a new identity 1Y is obtained which is called an extensional of I. The submatriz Bpg 1s
called the pivot of the extension.

Proof. — As shown by Muir, Theorem 2.20 results from two successive applications
of Theorem 2.18. Indeed, a first application of the law of complementaries to identity [
transforms it into an other identity /¢ between quasi-minors of A. But quasi-minors of
A may be seen as quasi-minors of B and identity /¢ may be seen as an identity between
quasi-minors of B. A new application to I¢ of the law of complementaries, but taking now
the complements relatively to B, yields identity I%. 0

ExampLE 2.21. — The following identity results clearly from proposition 2.9 :

-1 -1 -1
ai;  Giz ai13 a11  G1z2 413 ai; a2 a13

aiy Gz dz3| -+ aiz|dn a3 | -+ aiz|ax az [az3 =0 (7).
a31 a3z 433 (31 G32 A33 31 dz2 433

An extensional of identity [ is, for example, the following identity that illustrates Theorem

1.3 of [GR2] :

-1
a11 a1z G413 dig4 415

aig Q15 Qg2 G23 G24 G35
G41 Q44 G45|| G31 d32 dA33 G34 0435
G51 Q54 Q55| G41 Q42 (43 Gg4 G435
G51 dsz2 0Gs3 G54 U353

G113 di12 G113 di14 QG315
a14 Q15| 021 a3 Q24 G235
+ | aq2 aqq4 a45||a31 a3z a3z A34 0435
Gz O34 055||041 Gq2 043 (44 G453

(51 ds2 d53 G54 Uss

G113 di12 G13 U414 Q15
G13| Q14 G15||0G21 (G2 |U23] G4 A2

+ | a4z aa4 a45||a31 a3z A33 d34 435 =0 (]E) .
Gs3 Us4 G55||041 G4 A43 Ggq G453
Gs1 432 G33 Us4 G55
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2.3.4. Sylvester’s theorem

Another important application of Muir’s law of extensible minors is the noncommutati-
ve version of Sylvester’s theorem. As in the commutative case, it is obtained by applying
Theorem 2.20 to the complete expansion of a quasi-determinant.

THEOREM 2.22. — (Gelfand — Retakh; [GR1]) Let A be the generic matriz of order
n and let P,Q be two subsets of {1,...,n} of cardinality k. For i € P and j € Q, we set
bij = |ApugiyQuijtli; and form the matriz B = (bij)ieﬁ,jea of order n—k. Then one has

|A Im — |B|lm

for every Il € P and m € Q.

ExampPLE 2.23. — Let us take n = 3, P = @ = {3} and [ = m = 1. Applying Muir’s law
to the expansion of |A( 2y (1,2)]11

aiz -1
= a11 — G12 099 A21 ,
(g1 G322
we get the identity
a1z a3 -1
a U a3 a13 23 23
21 22 23| = -
a31  a3s3 a3z 433 || d3z2 433 31 033
31 432
a3 a3
|l @31 das3 a3z @33
azs a3
(3  A33 a3z ass

which is the simplest instance of Sylvester’s theorem for quasi-determinants.

Note also that Sylvester’s theorem furnishes a recursive method for evaluating quasi-
determinants since it allows for instance to reduce the computation of a quasi-determinant
of order n to the computation of a quasi-determinant of order n — 1 composed of (n — 1)?
quasi-determinants of order 2. As one can easily check, this clearly leads to a cubic algo-
rithm for computing quasi-determinants.

NoTe 2.24. — We presented here Sylvester’s theorem as a simple consequence of
Theorem 2.20. This was not the method originally followed by Gelfand and Retakh in
[GR1]. In fact, Sylvester’s theorem for quasi-determinantsis just a rewriting of Proposition
2.2 and can therefore be directly obtained from it as the reader will easily check.

2.3.5. Bazin’s theorem

Sylvester’s theorem expresses a relation between (quasi-)minors of a square matrix.
Bazin’s theorem deals with maximal (quasi-)minors of a rectangular matrix. In fact, in
both commutative and noncommutative cases, these theorems are equivalent and each one
may be deduced from the other by specialization to a suitable matrix.
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We introduce some notations. Let A be a matrix of order nx2n. Then, for every subset P
of cardinality n of {1,...,2n}, we denote by Ap the square submatrix of A whose columns
are indexed by P. In the sequel, we also index all quasi-minors of order Px() of a matrix by
their relative indices in P x (). We can now state Bazin’s theorem for quasi-determinants.

THEOREME 2.25. — Let A be the generic matriz of order nx2n and let m be an integer in
{1,...,n}. For 1 <i,j <n, we set b; = |Ayj 41, . ntiztntitl,..2n}|m; and form the matriz
B = (bij)i<ij<n. Then we have

|Blei = |Afns1,...20} montk |A{l,...,l—l,l—}—l,...,n,n—l—k}|7;jn_|_k A,y

ml

for every integers k,[ in {1,....,n}.

Proof. — Let us consider the 2n x 2n matrix C' defined by
Ap oy Aptr,2n
O =
( OTL ]TL ’

where [, and 0, denote respectively the unit and zero matrix of order n. Applying
Sylvester’s theorem to this matrix with Cyy .} (n41,.,2:} @s pivot, we now get
A] A{n—l—l,...,?n}

Chass = (| )
[l 0] 1<i,j<n

where u; denotes for every integer ¢ the row vector whose only non-zero entry is the :-th
entry equal to 1. Developping on the last row every quasi-determinant involved in the
above identity and using then Proposition 2.11, we easily obtain

Clatit = = A,z g Bl (26)
On the other hand, it easily follows from Propositions 2.2 and 2.7 that

Un+i kl

7’L

|C|r,;_|1_k7[ = _(A{_ll,,n} A{l,...,n},{n—l—l,...,?n})l,n—l—k = - E |A{1,,n}|;ll Ajntk -

J=1
Using Definition 2.3, this last relation can be rewritten in an equivalent way as

Ap oy Angr
u [0]

Expanding now this quasi-determinant on the last row, we get the identity

|C|;ik,z =

|C|T_L.|1_k,z = —|Apn,n ;} | A =101k} [ mont b

from which, comparing it to relation (2.6), we can immediately conclude. [

ExampLE 2.26. — Let n = 3 and £ = [ = m = 1. Let us adopt more appropriate
notations, writing for example |2[4]5| instead of |M{;45}|14. Bazin’s identity says then that

Lh6|| [2156] [BF6|
MH6[ |2U6| [BU6|| = 56| |23~ [IR3] .
M35 245  |BRS|
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2.3.6. Schweins’ series

“Schweins found an important series, in 1825, for the quotient of two n-rowed deter-
minants which differ only in one column. This series is of great use in many branches of
algebra and analysis, and many interesting cases arise by treating one column as a column
of the unit matrix” (cf [Tu]). Here is an example of Schweins’ commutative series.

(abcd)1234 _ (abc)lgg(abed)1234 —|— (ab)lg(aed)lgg —|— Cll(ed)lg —|— é

(abce)1234 (Gb€)123(abce)1234 (Ge)lz(ab€)123 61(a€)12 €1

?

aq €1 dl
where for instance (aed)1z3 denotes the determinant |a; ey da|.
a3z €3 d3

Schweins’ series is still valid in the noncommutative case. Keeping the notations of 2.3.5,
let us first note that, according to the homological relations, one has for instance in the
case of the generic matrix A of order 3 x6 :

|14123|1_31 |A124]14 = |A123|2_31 | A124]24 = |/4123|§31 | A124]34 -

This common value will be denoted for short by [12[3]7!|12[4]]. We can now state Schweins’
series for quasi-determinants. For convenience, we limit ourselves to the case of quasi-
determinants of order 3 and 4, the general case being easily induced from these.

THEOREM 2.27. — The mazimal quasi-minors of a 3x6 generic matriz satisfy the relation
123~ [12(4]] = [1213))~*[12[5]| [23/5]| = 23[4] +
125031~ 1| 25(6] |35[6]|~* |35[4]| + |563]~*|56(4]| .
The mazimal quasi-minors of a 4x8 generic matriz satisfy the relation
|123[4]| 7 [123[5]] = |123[4]]~*|123[6]]|234[6] ~* |234[5]|
+1236[4]| 71| 236[T||346[7]| " |346[5]| + |36 7]~ [3678)|[4678]| "' [467[5]| + [6784] " |[6785] .

Proof. — Let us take again the notations of Example 2.26. Applying Bazin’s theorem
for n = 2 to the matrix (4513), we get :

413 of
@ - 0 B = [ | = e aE

Multiplying the above relation on the left by |1[3] 7!, using then Muir’s law by extending the
obtained identity on the second column, one now easily obtains with the help of Proposition
2.9 the relation

128~ (120 = [123)]*12(5] [2305) = [23{4] + [25B]|~"[254])

for quasi-determinants of order 3. Schweins’ series for order 3 results from two applications
of this lemma. The general case is similar. 0

As noted by Turnbull, interesting corollaries are obtained by specialization to a parti-
cular matrix some columns of which are columns of the unit matrix. Let us mention the
following, which for convenience is stated for order 3 and 4 only.
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THEOREM 2.28. — The quasi-minors of a 3 x4 generic matriz satisfy the relation
-1 -1
ai; diz2  a13 a1 a1z dig 11 a1z 413 11 a13 Q14
Gg1 d22 0423 Gg1 U2 Q24 | = |U21 d22 0423 Gg1 d23 (24
G31 a3z |33 G31 a3z |G34 31 a3z |G33 (31 433 |G34
ai1 a3 13 G414 -1
az azs

The quasi-minors of a 4 X 5 generic matriz satisfy the relation

-1

G11 412 ai13 dig 11 di12 ai13 dis
(g1 A2 423 d24 (g1 d22 d23 d2s
31 d32 433 d34 31 d3z2 433 dadA3s
aq1 Q42 G43 [Qqq aq1 Q42 G43
-1
ai;  ai2 d13 414 a1 a2 di14 dis -1
ai; a1z G14 a1 414 Q15
| @21 G292 dA23 (a4 G21 d22 d24 G253
= + a2 a2  ay ag QG4 0435
31 dz2 433 434 31 a3z 434 435
a31 G3z [G34 as1 Q34
aq1 Gq2 0A43 [G44q aq1 Qg2 Q44
-1
a1 Gi14 14 Q15 -1
+ + a4 a15 .
a1 G4
Proof. — Let us prove for instance the first relation, the general case beeing similar. We
consider the 3 x 6 matrix
0 0 a1 a2 a3 aig
M: 1 0 a1 a9 a3 a4

0 1 a3 as; ass ass

Using Proposition 2.12, we easily get the following relation between quasi-minors of M :

_ a a a a
123) 1 [123]] [235) 7! 23d]) = agg any | 0 1 BT
a3 a3
_ _|%3 diz | d13 d14
as az3
Arguing in the same way, one can also obtain the relation
-1
ann a1z 413 ann a1z G4
25|_1 25@| |35@|_1|35| = —|az1 az a3 ag1 G3 0G4
az1  aszz 433 31 a3z |G34

between quasi-minors of M. The desired relation now becomes an obvious consequence of
the first identity of Proposition 2.27 as easily checked. 0

The last result is exactly the analogue for quasi-determinants of the commutative
example given above. However, it looks more natural this way.
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3. Quantum determinants

In this section we derive from the previous theorems on quasi-determinants the corres-
ponding identities for quantum determinants.

3.1. Definitions and notations

We first review the definitions of quantum matrices and determinants. The reader is
referred to [RTF], [Ta] or [Ma] for further details. Consider the coordinate ring of the
manifold of quantum rectangular m x n matrices. It is the polynomial C[q, ¢ !]-algebra
generated by mn symbols a;; subject to the following relations

aipa; = ¢ tagay,  for k <, Akl = q_la]-kaik for ¢ < 7,
aga;r = ajray  for e < g, k<l
apaj —ajaip = (¢ —q)agaj fori<j, k<.
In such a situation, we say that A = (a;;) is a quantum m xn matriz. Note that the
transpose of a quantum m xn matrix is a quantum n xm matrix. Let P = {¢1,..., 4} and

Q = {j1,---,Jx} be two subsets of {l,...,m} and {1,...,n} of same cardinality k. The
quantum minor of A indexed by P and () is defined by

—{(o
dety Apg = E (—q) ( )aiu’o@) s gy
oESy

where S) is the symmetric group on {l,...,k} and {(o) denotes the length of the
permutation o. In particular, for m = n = k, one obtains the quantum determinant det, A
of the quantum square matrix A = (a;;). The following theorem summarizes some basic
and well-known properties of quantum matrices and quantum determinants.

THEOREM 3.1. — (1) Let A = (a;)1<ij<n be @ square nxn quantum matriz. Let us then
set S(A) = (wij)i<ij<n where
aij = (—q)'™" dety (A”)
denotes for every 1 <u,j5 <n the quantum cofactor of a;;. Then, one has
A S(A)=S5(A) A=det, A. 1, (3.1) .
Moreover the matriz S(A) 1s also a quantum matriz for the parameter ¢~ .

(1) Let A = (aij)i<ij<n be a square nxn quantum matriz. The quantum determinant
dety A commutes with each generator a;;.

We refer the reader to [Me] for a g-analogue of Binet-Cauchy formula, which generalizes
the multiplication formula for quantum determinants. Note that (i) amounts to the
expansion of det, A by one of its rows or columns. More generally there exists also a
g-analogue of Laplace expansion for quantum determinants. Identity (3.1) also shows that
by adjoining to the symbols a;; the new symbol ¢ submitted to the relations

tdet,A=det,At=1,

the matrix A becomes invertible in the C|q, ¢~ ']-algebra generated by ¢ and the a;;. This
algebra is therefore called the ring of coordinates of the quantum linear group. The matrix
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A1 = ¢S5(A) is called the inverse of the quantum matrix A. It is also a quantum matrix

for the parameter ¢~1.

3.2. Quantum determinants and quasi-determinants

We shall now consider the connection between quantum determinants and quasi-
determinants. As recalled in section 2.1, quasi-determinants are noncommutative analogues
of the ratio of a determinant to one of its principal minors. Thus if the entries a;; of a
matrix A belong to a commutative field, one has the following expression of det A in terms
of quasi-determinants

ail a19 . a1p a1 a19 . A1p
co. a9y
a9 a99 Ce a9y a9 a9 e aopn . . .
[£7%) e App
apl apn2 . App dp1 [£7%) . App

The following theorem provides an analogue of this formula for quantum determinants.
THEOREM 3.2. — (Gelfand — Retakh; [GR1]) Let A = (aij)1<ij<n be @ quantum nxn
matriz. In the skew field generated by the a;j, one has
detq A= |A|11 |A11|22 vow Opp

and the quasi-minors in the right-hand side commute all together. More generally, let
c=11...1, and T = j1...J, be two permutations of S,. There holds

dety A= (=q) DAy [AD 5, o i, (32)

and the quasi-minors in the right-hand side commute all together.

Proof. — By Proposition 2.7, the quasi-determinants of the quantum n xn matrix A are
the inverses of the entries of A™' = (det, A)~' S(A). Hence we have
dety A = (—q)77 |Al;j dety A = (—q)" ™ det, AV |Al;; (3.3) .

Using an induction on n, relation (3.2) immediately follows. Let us now prove that the
quasi-determinants involved in (3.2) commute all together. For simplicity, we only argue
here in the case 1y = j; =1, ... ,2, = j, = n. Using an induction on n, we can reduce the
problem to prove that |A|;; commutes with A2z, ..., @u,. Using relation (3.3), it suffices
to show that |Al;; commutes for every 1 <i <n — 1 with det, Ay, ;... But relation
(3.3) and Theorem 3.1 (ii) show that this is equivalent to ask that det, A’ commutes with
dety Ag,. 311,y for every 1 <1 < n and this last property is true according to Theorem
3.1 (ii) applied to A'. il

ExampLE 3.3. — For n = 2, we have
-1 -1 -1
detq A= (Clu — Q12099 Cl21) Gg9 = (—Q) (a12 — U11G9; a22) (D)1

=(—q) (a2 — Cl226l1_216l11) arz = (ag2 — Cl21611_116l12) an .

Note that the parameter ¢ no longer appears in the first and fourth expression.
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3.3. Minor identities for quantum determinants
3.3.1. Jacobi’s ratio theorem

Recall that Jacobi’s theorem states that each minor of the inverse matrix A™' is equal,
up to a sign factor, to the ratio of the corresponding complementary minor of the transpose
of A to det A. For quantum determinants, we have the following quantum analogue.

THEOREM 3.4. — Let A be a quantum n xn matriz, let P = {17 < ... < i}, @ =
{h<...<nh P=Auyn <...<ty}and Q = {jps1 < ... < ju}, let 0 =11...1, and
T=71...Jn and let detq—1A]371Q be one of the quantum minors of its inverse A71. We have

det -1 A;}Q = (—q)" =) det, ADP (det, A)~" .

Proof. — It suffices to express det - AIZ}Q as a product of quasi-determinants by means of
Theorem 3.2 and to apply to each quasi-determinant Jacobi’s Theorem 2.16. Then, using
Theorem 3.2 a second time, we get our result. 0

ExaMPLE 3.5. — Let A" = (b;;)1<ij<5 and take n =5, P = {1,3,4} and @ = {1,2,3}.

Then Theorem 3.4 gives us the following relation

b1 bz bis a a
by bsy bsz| = (—gq)? a“ a45 (det, A)~' .
bar  bay bas| 2 Ty

q

3.3.2. Cayley’s law of complementaries

For quantum determinants, we obtain the following analogue of Cayley’s law of comple-
mentaries (see also Section 2.3.2).

THEOREM 3.6. — Let I be a polynomial identity with coefficients in Clg, ¢ '] between
quantum minors of the quantum n xn matriz A. If every minor det, Apg involved in I
is replaced by its complement det, A9 multiplied by (det, A)~' and if, in addition, the
substitution ¢ — ¢~' is made in the coefficients of I, there results a new identity 1°.

Proof. — Let us apply identity I to the transpose of the matrix A™!, which is a ¢~!-
quantum matrix. Identity /¢ is then obtained by means of Theorem 3.4. U

ExampLE 3.7. — Take n = 4 and consider the following identity (see Proposition 3.13)

a11  di2 1 a1 di2
23 = ¢ ~a33

(g1 d22

q a1 a2,

Applying Cayley’s law for quantum determinants, we get

G111 ai12 Q14 G111 a1z G14
az3z d3q _ az3z d3q IC
a a a31 G322 G34| = (¢ (G317 G32 0a34 a a ( )
43 44 | a a a a a a 43 44 |

41 42 44 41 42 44

q q
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3.3.3. Muir’s law of extensible minors

From Cayley’s law for quantum determinants is deduced the following quantum analogue
of Muir’s law as in the case of quasi-determinants.

THEOREM 3.8. — Let A be a (n+p)x(n+p) quantum matriz, let B be the nxn quan-
tum matriz Apg where P, Q) are subsets of {1,...,n + p} of cardinality n and let I be
a polynomial identity with coefficients in Clq,q™'] between quantum minors of B. When
every quantum minor dety By involved in I is replaced by its extension dely Ay 5 g
(multiplied by a suitable power of the pivot det, Apg if the identity is not homogeneous),

a new identity 1Y is obtained, which is called an extensional of I.
ExampLe 3.9. — Take n =2, p =2, P ={2,4}, @ ={2,3} and consider the identity

a92a23 = ¢ ' agzag; (1)

which may be regarded as an identity between minors of Aj423. Applying Muir’s law, we
get the following identity /¥

11 ai12 414 11 a13 Qa14 a1 ai13  di4 ai;  ai2 G4

_ -1 E
Gg1 Q22 424 Gg1 G23 d24| = (q Gg1 G223 024 Gg1 A2 G4 (] ) .
31 a3z 434 q (31 a3z (34 p 31 433 0434 p 31 dz2 (34 p

3.3.4. Sylvester’s theorem

An important consequence of Muir’s law is the quantum analogue of Sylvester’s theorem.

THEOREM 3.10. — Let A be a quantum nxn matriz and choose a quantum kxk minor
det, Apg (the pivot of the extension). For i € P and j € Q, set by; = det, Apugyguiy) and
form the matriz B = (b;;),5 ;cg- Then B 1s a quantum (n—k)x (n—k) matriz, and there
holds

det, B = det, A (det, Apg)"~*~1 .

Proof. — B is a quantum matrix in view of Muir’s law. Indeed the commutation relations
for the b;; are nothing but the commutation relations for the a;; extended by the pivot
det, Apg (see Example 3.9). Now, applying Muir’s law to the complete expansion of the
quantum minor AP? yields Sylvester’s theorem, the term (det, Apg)" *~! in the right-hand
side being an homogeneity factor. 0

Exampre 3.11. — Let n =3, k=1, P =@ = {3}. Sylvester’s theorem gives then

ai;  a13 a1z a13
a a a
aszr  assl|, a3z azs|, 1 12 13
a a a a = |d21 Gz G23| G33 .
22 23 21 23
G31 a3z (433 p
a3z 433 31 as3

q q°q
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NoTE 3.12. — Sylvester’s quantum theorem can also be directly obtained from the
noncommutative corresponding Theorem 2.22. using the same method than in the proof

of Theorem 3.4.

3.3.5. Bazin’s theorem

In the commutative and noncommutative cases, Bazin’s theorem may be obtained by
applying Sylvester’s theorem to a special matrix some rows of which are rows of the unit
matrix. However this method can no longer be used for quantum determinants, since the
unit matrix is not a quantum matrix. We shall therefore go back to quasi-determinants
and deduce the quantum analogue of Bazin’s theorem from its noncommutative version
(Theorem 2.25). The proof requires several lemmas of independent interest, describing
commutation relations obeyed by certain minors of a quantum matrix.

Let A = (b;5)1<i,j<n be a non-necessarily quantum square matrix of order n with entries
in Clq, ¢ *](a;;). We then denote
Al = Z (—Q)g(g) bla(l) bna(n) .
0ESy
If A a quantum matrix, this expression is just the quantum determinant of A. Note also
that there exists an expansion of |A|, along the last row, but not in general along the other
rows, given as in the usual quantum case by

n

Al = D0 (—g) T A ] b

i=1

We may now give two lemmas, required in the proof of Bazin’s quantum theorem.

LeMMA 3.13. — Let A = (aij)1<ij<n be a nxXn quantum matriz and let A(k) denote the
matriz obtained from A by replacing by 0 all entries a,; with 3 > k. We have then the
following expansion of |A(k)|,

AR, =" (=) " THA Y (B) g a1y + Y (=) A anoyy -

i<k i>k

Proof. — Expand first |A(k)|, along the last row. Expand again along the last row all the
quantum determinants that appear in this expansion. Using quantum relations, grouping
terms according to powers of ¢ and applying Theorem 3.1 (i) allows then easily to get our
lemma. []

LeMMA 3.14. — Let A = (a45)1<ij<nt1 be @ (n+1)x(n+1) quantum matriz. Then, using
the notations of Lemma 3.13, one has

det, At Any1j — Anyrj dety At = (q_l _Q) (_Q)n+2_j |A(J)|q .

Proof. — Expand det, A"*17 along the last row. Applying the basic quantum relations
to this expansion, we can then obtain the desired relation by means of an induction and

of Lemma 3.13. []

From now on, A = (a,;) denotes a quantum n x m matrix with n < m. The quantum
maximal minor formed on the columns j; < ... < j, is written for short [j1,...,u],-
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ProposiTioN 3.15. — Consider an increasing sequence of integers 1 < j3 < ... < j, <
k < m. For every 1, we have the following commutation relation

(1 Jnlg@ir = ¢ ik [J1-- - Jnlq -

Proof. — For simplicity, we may suppose that 57 = 1, ..., 7, = n and k = n 4+ 1. Set
then B = [1,...,n]. Expand det, B along the last row and apply the quantum relations
to the expansion of the product (det, B)a,4+1; obtained in this way. Using an induction,
Lemma 3.14 and Theorem 3.1, one can prove that

[L...n]gantr,; = ¢ angr (L. 0],
Using the fact that the transpose of a quantum matrix is still a quantum matrix with the
same quantum determinant, it is now easy to conclude. 0

An immediate corollary of Proposition 3.15 is the following result.

ProprosiTioN 3.16. — Consider two increasing sequences of integers 1 < 77 < ... <
Jn <mand 1 <k < ... <k, < m and suppose that for some s € {0,...,n}, one has
ks < 71 < Jn < ksy1. Then we have

I P L Y Pl LY PR R A P

ExampLE 3.17. — Let A be a 2 x4 quantum matrix. We have
[12], [34], = q? [34], [12],, [14], [23], = [23], [14], .
We can now state Bazin’s theorem for quantum determinants.

THEOREM 3.18. — Let J = {j1 < ... < jn} and K = {k1 < ... < k,} be two subsets of
{L,...m} such that j, < k1. Then the matriz B, = (bst)i1<s,t<n defined by

bst = [Jt, (K\ ks)]y, for 1 <s,t<n,
18 a quantum nXxXn matriz and we have

detq Bn = q(g) [.]1 . Jn]q [kl e kn]’g_l :

Proof. — The proof is by induction on n > 2. For n = 2, one can check by means of
Pliicker relations for quantum determinants (described for example in [TT]) that

= (Gl ikl

is a quantum matrix, with quantum determinant det, By = ¢ [j172], [k1k2],. Using Theorem
3.8, it follows that every 2x2 submatrix of B, is a quantum matrix, and therefore that B,
is itself a quantum n xn matrix for every n > 2. Assume now that

n—1

detq Bn—l = q( 2 ) []1 .. -jn—l]q [kl Ca kn_l]g_Z

for all sequences J and K of cardinality n—1 satisfying the hypothesis of Theorem 3.18.
From Theorem 3.2, it results that
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dety, B, = |Bp|un dety B .
Now Muir’s law and the induction hypothesis show that
detq B,Zn = q(”; ) []1]2 . -jn—l kn]q [k‘lkg . kn]n—Z .

q

On the other hand, expanding all entries of | B, |, according to Theorem 3.2, using then
Proposition 2.6 and applying finally Bazin’s theorem for quasi-determinants, one obtains

Bl = (k1. knlg [71d2 - 1 knlyt n -2 dnlg -
The required result follows now from Muir’s law, which shows that
U1 dale gz dnmiknly = 478 gz Jnoaknl - nlo s
and from Proposition 3.13. U
ExampLe 3.19. — Take n = 3, J = {1,2,3} and K = {4,5,6}. In this case, Bazin’s

theorem reads as follows

[145], [245], [345],
[146], [246], [346],| = ¢° [123], [456]? .
[156], [256], [356],

q

3.3.6. Schweins’ series

Using Theorem 3.2, Schweins’ series for quasi-determinants, as given by Theorems 2.20
and 2.21, is readily turned into the following quantum analogues. Here again identities
are stated for quantum determinants of order 3 and 4 only, the general case being easily
understood from these.

THEOREM 3.17. — The mazimal minors of a 3 X 6 quantum matriz satisfy the relation
[123]71[124], = [123];1[125],[235],"[234], + [253],"[256],[356] " [354], + [563], ' [564], .
The mazimal minors of a 4 X 8 quantum matriz satisfy the relation
[1234] 71 [1235], = [1234]1[1236],[2346] " [2345],
+(2364], 1 [2367],[3467] 1 [3465], + [3674]; 1 [3678],[4678], 1 [4675], 4 [6784] 1 [6785], .

THEOREM 3.18. — The minors of a 3 X 4 quantum matriz satisfy the relation
-1
11 di12 413 a11  di2 G4
(g1 d22 423 Gg1 22 G4
31 a3z 433 9 G31 d3z2 (34 9
-1
a1 a1z ais a1 a3 G14 —
. 11 G12 a1 a13
= |d21 (G322 G323 Gg1 d23 (24
a1 A, a1 a3,
G31 a3z G33 p G31 d33 (34 p
-1
a1z a13 a1z di4 -1
+ 11 13
a1 @z, (g3 24

q



-1

The mainors of a 4 x 5 quantum matriz satisfy the relation

-1

a1 a1z a1z  0G14 a1 ai2 G13 dis
(g1 Q22 A3 G4 (g1 d22 G3 d2s
31 a3z A33 (34 31 dz2 G33 435

Q41 Q42 (43 G441, [G41 G42 043 G435,

G117 di12 a3 0414 11 A2 G114 di1s -1
ai11 a1z Gi13 a1 a1z 414
__|@21 ag22 G23 G24 Gg1 d22 d24 (35
= Gg1 d22 (23 Gg1 d22 (24
(31 a3z A33 34 (31 d3z2 G34 435
31 a3z 433 q a31 a3z 434 q
Q41 Q42 (43 d44 |, 41 42 d44 G435,
-1
aix; a1z G4 a1 dia Qa1s -1
a1 diz 11 di4
+ a1 a2 dg g1 Q24 0435
a1 G, a1 G241,
31 a3z (34 q 31 d34 0435 q
G113 Q14 G14 Q15 a1
14
a1 G241, Q24 Q25 ],
+ -1

4. Conclusion

We have investigated some noncommutative analogues of classical determinantal identi-
ties. Our strategy was to study first the most general case, that is, the case of the generic
matrix over the free skew field. In this situation the quasi-determinants of Gel’fand and
Retakh satisfy many formulas similar to the commutative case : Sylvester’s theorem, Ja-
cobi’s ratio theorem [GR1], Cayley’s law of complementaries, Muir’s law of extensible
minors, Bazin’s theorem, Schweins’ series.

Then, considering the case of the quantum group A,(GL(n)) and using the expression of
its quantum determinant in terms of quasi-determinants [GR1], we derived some quantum
analogues of the same theorems.

We mention that the same approach applies also to the quantum determinants of the
Yangians Y (gl,,) and Y,(g¢l,,). This will be developped in a forthcoming paper.
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