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1 Introduction

A large part of the classical theory of symmetric functions is fairly independent of their
interpretation as polynomials in some underlying set of variables X. In fact, it X is sup-
posed infinite, the elementary symmetric functions Ax(X) are algebraically independent,
and what one really considers is just a polynomial algebra K[A1, A,,...], graded by the
weight function w(Ay) = k instead of the usual degree d(Ay) = 1.

Such a construction still makes sense when the A, are interpreted as noncommuting
indeterminates and one can try to lift to the free associative algebra Sym = K (A, Ay, .. .)
the expressions of the other classical symmetric functions in terms of the elementary ones,
in order to define their noncommutative analogs (Section 3.1). Several algebraic and lin-
ear bases are obtained in this way, including two families of “power-sums”, corresponding
to two different noncommutative analogs of the logarithmic derivative of a power series.
Moreover, most of the determinantal relations of the classical theory remain valid, pro-
vided that determinants be replaced by quasi-determinants (¢f. [GR1], [GR2] or [KL]).

In the commutative theory, Schur functions constitute the fundamental linear basis
of the space of symmetric functions. In the noncommutative case, it is possible to define
a convenient notion of quasi-Schur function (for any skew Young diagram) using quasi-
determinants, however most of these functions are not polynomials in the generators Ay,
but elements of the skew field generated by the Ax. The only quasi-Schur functions which
remain polynomials in the generators are those which are indexed by ribbon shapes (also

called skew hooks) (Section 3.2).

A convenient property of these noncommutative ribbon Schur functions is that they
form a linear basis of Sym. More importantly, perhaps, they also suggest some kind of
noncommutative analog of the fundamental relationship between the commutative theory
of symmetric functions and the representation theory of the symmetric group. The role
of the character ring of the symmetric group is here played by a certain subalgebra 3, of
its group algebra. This is the descent algebra, whose discovery is due to L. Solomon (cf.
[So]). There is a close connection, which has been known from the beginning, between
the product of the descent algebra, and the Kronecker product of representations of the
symmetric group. The fact that the homogeneous components of Sym have the same
dimensions as the corresponding descent algebras allows us to transport the product of
the descent algebras, thus defining an analog of the usual internal product of symmetric
functions (Section 5).

Several Hopf algebra structures are classically defined on (commutative or not) polyno-
mial algebras. One possibility is to require that the generators form an infinite sequence
of divided powers. For commutative symmetric functions, this is the usual structure,
which is precisely compatible with the internal product. The same is true in the noncom-
mutative setting, and the natural Hopf algebra structure of noncommutative symmetric
functions provides an efficient tool for computing in the descent algebra. This illustrates
once more the importance of Hopf algebras in Combinatorics, as advocated by Rota and

his school (see e.g. [JR]).

This can be explained by an interesting realization of noncommutative symmetric
functions, as a certain subalgebra of the convolution algebra of a free associative algebra
(interpreted as a Hopf algebra in an appropriate way). This algebra is discussed at length
in the recent book [Re| by C. Reutenauer, where one finds many interesting results which



can be immediately translated in the language of noncommutative symmetric functions.
We illustrate this correspondence on several examples. In particular, we show that the
Lie idempotents in the descent algebra admit a simple interpretation in terms of non-
commutative symmetric functions. We also discuss a certain recently discovered family
of idempotents of ¥, which appear quite naturally when interpreted as noncommuta-
tive symmetric functions, and explain to a large extent the combinatorics of Eulerian
polynomials.

The algebra of commutative symmetric functions has a canonical scalar product, for
which it is self-dual as a Hopf algebra. In the noncommutative theory, the algebra of
symmetric functions differs from its dual, which, as shown in [MvR], can be identified
with the algebra of quasi-symmetric functions (Section 6).

Another classical subject in the commutative theory is the description of the transition
matrices between the various natural bases. This question is considered in Section 4.
It is worth noting that the rigidity of the noncommutative theory leads to an explicit
description of most of these matrices.

We also investigate the general quasi-Schur functions. As demonstrated in [GR1] or
[GR2], the natural object replacing the determinant in noncommutative linear algebra is
the quasi-determinant, which is an analog of the ratio of two determinants. Similarly,
Schur functions will be replaced by quasi-Schur functions, which are analogs of the ratio
of two ordinary Schur functions. The various determinantal expressions of the classical
Schur functions can then be adapted to quasi-Schur functions (Section 3.3). This proves
useful, for example, when dealing with noncommutative continued fractions and orthog-
onal polynomials. Indeed, the coefficients of the S-fraction or J-fraction expansions of
a noncommutative formal power series are quasi-Schur functions of a special type, as
well as the coefficients of the typical three-term recurrence relation for noncommutative
orthogonal polynomials.

A rich field of applications of the classical theory is provided by specializations. As
pointed out by Littlewood, since the elementary functions are algebraically independent,
the process of specialization is not restricted to the underlying variables z;, but can be
carried out directly at the level of the Ay, which can then be specialized in a totally arbi-
trary way, and can still be formally considered as symmetric functions of some fictitious
set of arguments. The same point of view can be adopted in the noncommutative case,
and we discuss several important examples of such specializations (Section 7). The most
natural question is whether the formal symmetric functions can actually be interpreted
as functions of some set of noncommuting variables. Several answers can be proposed.

In Section 7.1, we take as generating function A(¢) = 3, Ay t* of the elementary sym-
metric functions a quasi-determinant of the Vandermonde matrix in the noncommutative
indeterminates z1, z3, ..., x, and x = ¢~'. This is a monic left polynomial of degree n
in x, which is annihilated by the substitution & = x; for every ¢ = 1, ... n. Therefore the
so-defined functions are noncommutative analogs of the ordinary symmetric functions of n
commutative variables. They are actually symmetric in the usual sense. These functions
are no longer polynomials but rational functions of the z;. We show that they can be
expressed in terms of ratios of quasi-minors of the Vandermonde matrix, as in the classical
case. We also indicate in Section 7.2 how to generalize these ideas in the context of skew
polynomial algebras.



In Section 7.3, we introduce another natural specialization, namely

—

AMt)= ] (T+tae) = (14 tx,) (1 + twp1) (1 + twp_z) - (1 + tay)

1<k<n

This leads to noncommutative polynomials which are symmetric for a special action of
the symmetric group on the free associative algebra.

In Section 7.4, we take A(t) to be a quasi-determinant of I + tA, where A = (a;) is
a matrix with noncommutative entries, and [ is the unit matrix. In this case, the usual
families of symmetric functions are polynomials in the a;; with integer coefficients, and
admit a simple combinatorial description in terms of paths in the complete oriented graph
labelled by the entries of A. An interesting example, investigated in Section 7.5, is when
A = E, = (e;;), the matrix whose entries are the generators of the universal enveloping
algebra U(gl,). We obtain a description of the center of U(gl,) by means of the symmetric
functions associated with the matrices £y, Ey — I, ..., F, —(n — 1)I. We also relate
these functions to Gelfand-Zetlin bases.

Finally, in Section 7.6, other kinds of specializations in skew polynomial algebras are
considered.

The last section deals with some applications of quasi-Schur functions to the study
of rational power series with coefficients in a skew field, and to some related points of
noncommutative linear algebra. We first discuss noncommutative continued fractions, or-
thogonal polynomials and Padé approximants. The results hereby found are then applied
to rational power series in one variable over a skew field. One obtains in particular a
noncommutative extension of the classical rationality criterion in terms of Hankel deter-
minants (Section 8.5).

The n series A(t) associated with the generic matrix of order n (defined in Section 7.4)
are examples of rational series. Their denominators appear as n pseudo-characteristic
polynomials, for which a version of the Cayley-Hamilton theorem can be established
(Section 8.6). In particular, the generic matrix posesses n pseudo-determinants, which
are true noncommutative analogs of the determinant. These pseudo-determinants reduce
in the case of U(gl,) to the Capelli determinant, and in the case of the quantum group
G L,(n), to the quantum determinant (up to a power of ¢).

The theory of noncommutative rational power series has been initiated by M.P. Schut-
zenberger, in relation with problems in formal languages and automata theory [Sc|. This
point of view is briefly discussed in an Appendix.

The authors are grateful to C. Reutenauer for interesting discussions at various stages
of the preparation of this paper.



2 Background

2.1 Outline of the commutative theory

Here is a brief review of the classical theory of symmetric functions. A standard reference

is Macdonald’s book [McD]. The notations used here are those of [LS1].

Denote by X = {xy, x5, ... } an infinite set of commutative indeterminates, which
will be called a (commutative) alphabet. The elementary symmetric functions Ai(X) are
then defined by means of the generating series

MX )= S P AX) = T (1+2it) . (1)

E>0 i>1

The complete homogeneous symmetric functions Si(X) are defined by

o(X,t)= St 8(X)= [[(1—at)™", 2)

E>0 i>1

so that the following fundamental relation holds
a(X,t) = MX,—1)"". (3)
The power sums symmetric functions 1x(X) are defined by

B(X 1) = Y T (X)) = Y wi(L—at)™h (4)

E>1 i>1

These generating series satisfy the following relations

B(X,t) = % log o(X,t) = —% log M(X, —t) (5)
d

5 o(X ) = o(X, 1) $(X,1) (6)
d

= AL 1) = (X 1) A(X, 1) (7)

Formula (7) is known as Newton’s formula. The so-called fundamental theorem of
the theory of symmetric functions states that the Ag(X) are algebraically independent.
Therefore, any formal power series f(t) = 1 + Y5, axt* may be considered as the spe-
cialization of the series A(X,?) to a virtual set of arguments A. The other families of
symmetric functions associated to f(t) are then defined by relations (3) and (5). This
point of view was introduced by Littlewood and extensively developped in [Lil]. For
example, the specialization S, = 1/n! transforms the generating series o(X,t) into the
exponential function e’. Thus, considering o(X,t) as a symmetric analog of €', one can
construct symmetric analogs for several related functions, such as trigonometric functions,
Eulerian polynomials or Bessel polynomials. This point of view allows to identify their
coefficients as the dimensions of certain representations of the symmetric group [F1][F2].
Also, any function admitting a symmetric analog can be given a ¢g-analog, for example by
means of the specialization X = {1,¢,q?% ... }.



We denote by Sym the algebra of symmetric functions, i.e. the algebra generated over
Q by the elementary functions. It is a graded algebra for the weight function w(Ax) = &,
and the dimension of its homogeneous component of weight n, denoted by Sym,,, is equal
to p(n), the number of partitions of n. A partition is a finite non-decreasing sequence of
positive integers, [ = (17 <13 < ... <1,). We shall also write [ = (1%12%2 ...}, «a,, being
the number of parts ¢, which are equal to m. The weight of I is |I| = Y 1 i, and its length
is its number of (nonzero) parts (1) = r.

For a partition [, we set
W= g A= ATAT e ST= P S
For I € Z7, not necessarily a partition, the Schur function Sy is defined by

St = det (Sip+h-h)1<h i< (8)

where S; = 0 for 5 < 0. The Schur functions indexed by partitions form a Z-basis of Sym,
and one usually endows Sym with a scalar product (-, ) for which this basis is orthonormal.
The ! form then an orthogonal Q-basis of Sym, with (!, 1) = 1%1 ;1222 ay! - -+ Thus,
for a partition I of weigth n, n!/(x! %) is the cardinality of the conjugacy class of S,
whose elements have ay, cycles of length £ for all k € [1,n]. A permutation o in this class
will be said of type I, and we shall write T'(0) = 1.

These definitions are motivated by the following classical results of Frobenius. Let
CF(S,) be the ring of central functions of the symmetric group S,. The Frobenius
characteristic map F : CF(S,) — Sym,, associates with any central function ¢ the
symmetric function

_ 1 o) T — Y
Ao = L= X i

where £(1) is the common value of the {(o) for all o such that T'(o) = 1. We can also
consider F as a map from the representation ring R(S,) to Sym, by setting F([p]) =
F(x,), where [p] denotes the equivalence class of a representation p (we use the same
letter F for the two maps since this does not lead to ambiguities). Glueing these maps
together, one has a linear map

F : R:=R(S,) — Sym,

n>0

which turns out to be an isomorphism of graded rings (see for instance [McD] or [Zel]).
We denote by [I] the class of the irreducible representation of S, associated with the
partition I, and by x; its character. We have then F(x;) = Sy (see e.g. [McD] p. 62).

The product *, defined on the homogeneous component Sym,, by

F(lpl @ [n]) = Fxoxa) = F(lp]) * F(In]) (9)

and extended to Sym by defining the product of two homogeneous functions of different
weights to be zero, is called the internal product.

One can identify the tensor product Sym @ Sym with the algebra Sym(X,Y") of poly-
nomials which are separately symmetric in two infinite disjoint sets of indeterminates X

7



and Y, the correspondence being given by F @ G — F(X)G(Y). Denoting by X 4+Y the
disjoint union of X and Y, one can then define a comultiplication A on Sym by setting
A(F) = F(X +Y). This comultiplication endows Sym with the structure of a self-
dual Hopf algebra, which is very useful for calculations involving characters of symmetric
groups (see for instance [Gei], [Zel], [ST] or [Th]). The basic formulas are

(FlFQFT)*G:MT[(F1®FQ®®FT)*ATG] 5 (10)
where p, denotes the r-fold ordinary multiplication and A" the iterated coproduct, and
A'(F+G)=A"(F)«A"(G) . (11)

It will be shown in the sequel that both of these formulas admit natural noncommutative
analogs. The antipode of the Hopf algebra Sym is given, in A-ring notation, by

w(F(X)) = F(=X) . (12)
The symmetric functions of (—X) are defined by the generating series
AN=X,1) = (X, —1) = \(X, 0] (13)

and one can more generally consider differences of alphabets. The symmetric functions
of X —Y are given by the generating series

MX = Y ) = A(X, 1) A=Y, 1) = M(X, ) oY, —t) . (14)

In particular, ¥, (X — Y) = ¢p(X) — (V).
There is another coproduct 6 on Sym, which is obtained by considering products
instead of sums, that is

§(F) = F(XY) . (15)

One can check that its adjoint is the internal product :
(6F, P& Q) =(F, P+Q). (16)

This equation can be used to give an intrinsic definition of the internal product, i.e.
without any reference to characters of the symmetric group. Also, one can see that two
bases (Ur), (Vy) of Sym are adjoint to each other iff

(XY, 1) = 3 U(X)Vi(Y) . (17)

For example, writing o(XY,1) = [I; o(Y, ;) and expanding the product, one obtains
that the adjoint basis of S’ is formed by the monomial functions y.

2.2 Quasi-determinants

Quasi-determinants have been defined in [GR1] and further developed in [GR2] and [KL].
In this section we briefly survey their main properties, the reader being referred to these
papers for a more detailed account.



Let K be a field, n an integer and A = {a;;, | <i,57 < n} an alphabet of order n?
i.e. aset of n? noncommutative indeterminates. Let K ¢ A # be the free field constructed
on K and generated by A. This is the universal field of fractions of the free associative
algebra K(A) (cf. [Co]). The matrix A = (aij)1<i j<n is called the generic matriz of order
n. This matrix is invertible over K £ A #.

Let AP? denote the matrix obtained from the generic matrix A by deleting the p-th row
and the g-th column. Let also &, = (ap1, .-, Gpgy - -y Gpn) and pg = (@1gy ooy Gpgy -+ Gng)-

Definition 2.1 The quasi-determinant |A|,, of order pq of the generic matriz A is the
element of K £ A% defined by

|Alpy = apq — &pg (qu)_l Npg = Qpq — Z Upj ((qu)_l)ji Qig -
1#ED,IFq

It is sometimes convenient to adopt the following more explicit notation

alq e a1q e dip
|Alpyg = |ap1 oo [Gpg] -+ Gp
Gp1 ... Qpg P

Quasi-determinants are here only defined for generic matrices. However, using substitu-
tions, this definition can be applied to matrices with entries in an arbitrary skew field.
In fact, one can even work in a noncommutative ring, provided that A?? be an invertible
matrix.

Example 2.2 For n = 2, there are four quasi-determinants :

a2 -1 a1 -1

= a11 — Q120499 421 , = a12 — G11 097 422 ,
g1 Q22 ag1 Q22
a11 G12| a amata 11 G412 | _ a ana-ta

= Q21 — A2 Gy A171 , = Q22 — 421 Gy Q12 -
a2 az1

The next result can be considered as another definition of quasi-determinants (for
generic matrices).

Proposition 2.3 Let A be the generic matriz of order n and let B = A" = (bpy)1<pg<n

be its inverse. Then one has |A|,, = b;pl for every 1 < p,q < n.

It follows from Proposition 2.3 that |A],, = (—1)P*?det A/det A?? when the a;; are
commutative variables. Thus quasi-determinants are noncommutative analogs of the ratio
of a determinant to one of its principal minors. If A is an invertible matrix with entries
in a arbitrary skew field, the above relation still holds for every p,q such that b,, # 0.
Another consequence of Proposition 2.3 is that

|A|pq = Qpg — Z Qpj |qu|i_jl Qiq
1#£p,J#£q

which provides a recursive definition of quasi-determinants.



Let I be the unit matrix of order n. The expansions of the quasi-determinants of I — A
into formal power series are conveniently described in terms of paths in a graph. Let A,
denote the complete oriented graph with n vertices { 1,2,...,n}, the arrow from 7 to j
being labelled by a;;. We denote by P;; the set of words labelling a path in A,, going from
i A simple path is a
path such that ks # 2, j for every s. We denote by SP;; the set of words labelling simple
paths from ¢ to j.

v to g, t.e. the set of words of the form w = a;, apk, Gryry - - - Gk

Proposition 2.4 Let i, j be two distinct integers between 1 and n. Then,

I—Ali=1-> w, [T-A[j'=> w . (18)
SPii Pji

Example 2.5 For n = 2,
—a12

_ P
1 =1—a; — E G129 Uy G271 -
—a2 — G332

p20

As a general rule, quasi-determinants are not polynomials in their entries, except in
the following special case, which is particularly important for noncommutative symmetric
functions (a graphical interpretation of this formula can be found in the Appendix).

Proposition 2.6 The following quasi-determinant is a polynomial in its entries :

ai1  G12 413 ...
—1 g9 U923 e Aonp
0 =1 as3 e : = a1n+ Z 15y Ajy 41345 Qgo+1gs -+ Qjptln - (19)
: .. 1<51 <j2 <...<jp<n
. . . Up—1n
0 ... 0 =1 au,

We now recall some useful properties of quasi-determinants. Quasi-determinants be-
have well with respect to permutation of rows and columns.

Proposition 2.7 A permutation of the rows or columns of a quasi-determinant does not
change its value.

Example 2.8

G111 G122 413 a1 U2 A3 G2 Gz1 0423
(g1 Gz G23| = |04G11 G12 0G13|= |d12 d11 413

a3y (33 a3y (33 a32 as33

One can also give the following analogs of the classical behaviour of a determinant with
respect to linear combinations of rows and columns.

Proposition 2.9 If the matriz B is obtained from the matriz A by multiplying the p-th
row on the left by A, then

B :{)‘|A|pq for k=p,
I |Alg, for k#p.

10



Similarly, if the matriz C is obtained from the matriz A by multiplying the g-th column
on the right by p, then

|C| l:{|A|qu for [ =¢q,
b |Al,; for 1#q.

Finally, if the matriz D is obtained from A by adding to some row (resp. column) of A
its k-th row (resp. column), then |D|,, = |Alyq for every p # k (resp. q # k).

The following proposition gives important identities which are called homological re-
lations.

Proposition 2.10 The quasi-minors of the generic matriz A are related by :
Al (1A"5) ™ = =1 Ala (JAY )"
(1A% )7 AL = = (1A% k)7t Al -

Example 2.11

—-1|0G11 0«12 G413 -1 (@11 di12 a413

a1 a1z a a a ay; a1z a a 7
21 22 23 - 21 22 23
asy  [asg] a3 a1 [d22) 43y G3p Qss

The classical expansion of a determinant by one of its rows or columns is replaced by
the following property.

Proposition 2.12 For quasi-determinants, there holds :

|A|pq = Qpg — E apj(|qu|kj)_l |Apj|kq )
J#q

|Alpg = apg — E |Aiq|pl (|qu|il)_1 Giq
1#Ep
for every k #p and | # q.

Example 2.13 Let n = p = g = 4. Then,

a1 a2 a3 414 -1
ai; a2 413 ai; G122 414
G21 d22 d23 G24 |
= Q44 — Q43| 021 G2 423 ag1 G2 0G24
(31 dA3z2 433 3434
a31 d32 |G33 a31 G32 |U34
(41 A42 043 |044
-1 -1
ai11  di12 G413 a1 ai13  di4 G111 G122 413 G12 a13 d14
— Q42 |d21 d22 (23 a1 a3 A4 | — Q41| G21 G2 423 Gz d23 A4
asy ass a3y a3z [G34 asy  ass asy a3z  [d3q

Let P, () be subsets of {1,...,n} of the same cardinality. We denote by AF? the
matrix obtained by removing from A the rows whose indices belong to P and the columns
whose indices belong to (). Also, we denote by Apg the submatrix of A whose row indices
belong to P and column indices to Q. Finally, if a;; is an entry of some submatrix AP%
or Apg, we denote by |AP?|;; or |Apgl;; the corresponding quasi-minor.

Here is a noncommutative version of Jacobi’s ratio theorem which relates the quasi-
minors of a matrix with those of its inverse. This identity will be frequently used in the
sequel.

11



Theorem 2.14 Let A be the generic matriz of order n, let B be its inverse and let
({z}, L, P) and ({5}, M,Q) be two partitions of {1,2,...,n} such that |L| = |M| and
|P| = |Q]|. Then, one has

|BMu{j},LU{i}|ji = |APU{i}7QU{j}|i—jl :

Example 2.15 Take n = 5,1 = 3, j = 4, L = {1,2}, M = {1,3}, P = {4,5} and
Q = {2,5}. There holds

-1
ass as3s b1 b1z b3
Qg2 Gaqa  Qg5| = |b31 b3z ba3

as2 Q54 Ass 541 542

We conclude with noncommutative versions of Sylvester’s and Bazin’s theorems.
Theorem 2.16 Let A be the generic matriz of order n and let P, () be two subsets of
[1,n] of cardinality k. For i ¢ P and j ¢ Q, we set b;; = |Apugiyguiiyli; and form the
matriz B = (bij)i¢pj¢q of order n — k. Then,

|Alim = |Blim
for every 1 ¢ P and every m ¢ Q.

Example 2.17 Let us take n =3, P =@ = {3} and [ = m = 1. Then,

a3 a13
@iz 13 a a a a

31 33 32 33
dg1 G2 A3 @ a y a

[G22] 23 [G21] 23
a31 a3z 433

a3z  G33 a31 433

Let A be a matrix of order nxp, where p > n. Then, for every subset P of cardinality
n of {1,...,p}, we denote by Ap the square submatrix of A whose columns are indexed

by P.

Theorem 2.18 Let A be the generic matriz of order n x2n and let m be an integer in
{L...,n}. For 1 < 1,57 < n, we set bjj = |Agjnt1, . nti-i,ntitl,...2n}|mj and form the
matriz B = (b;j)i1<i j<n. Then we have

|Blit = A, 2ntlmontk 1AQ =141, nnt k) mmak 1AL 0} |

for every integers k.1 in {1,... n}.

Example 2.19 Let n =3 and k =1 =m = 1. Let us adopt more appropriate notations,
writing for example |2[4]5] instead of |M{345y|14. Bazin’s identity reads

16| |[2h6] |B56]
Th6| |246| |BU6|| = |456| |23~ 123 .
M5 [2B5]  [BM5]

We shall also need the following variant of Bazin’s theorem 2.18.

12



Theorem 2.20 Let A be the generic matriz of order nx(3n —2) and let m be an integer
in {1,...,n}. Forl <1,5 <n, wesel ¢;; = |Afjntintitt,... 2nti-2}|m; and form the matriz

C = (¢ij)i<ij<n- Then we have

.....

Example 2.21 Let n =3, m = 1, and keep the notations of 2.19. Theorem 2.20 reads

Du5]] [2M5] [BM5
56| 256 [BI56| | = [45G]) 23] " [T23] - (20)
D7) |267] |Bl67]

Proof — We use an induction on n. For n = 2, Theorem 2.20 reduces to Theorem 2.18.
For n = 3, we have to prove (20). To this end, we note that the specialization 7 — 4 gives
back Bazin’s theorem 2.18. Since the right-hand side does not contain 7, it is therefore
enough to show that the left-hand side does not depend on 7. But by Sylvester’s theorem
2.16, the left-hand side is equal to

‘|45| 2W5[| | [215 |45|H|56| 13156 56|  [256]
56| |256] 2b6| 36| | | 1267 [[B67]|l ||d67]] |2I67]

= [45[6]] | 25061/~ [[T125] — |4506]] |256]| " | 26305 |20316| " [126] ,

which is independent of 7. Here, the second expression is derived by means of 2.18 and
Muir’s law of extensible minors for quasi-determinants [KL]. The general induction step
is similar, and we shall not detail it. a

-1
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3 Formal noncommutative symmetric functions

In this section, we introduce the algebra Sym of formal noncommutative symmetric
functions which is just the free associative algebra K (A1, Ay, ...) generated by an infinite
sequence of indeterminates (Ag)r>1 over some fixed commutative field K of characteristic
zero. This algebra will be graded by the weight function w(A) = k. The homogeneous
component of weight n will be denoted by Sym,,. The A; will be informally regarded
as the elementary symmetric functions of some virtual set of arguments. When we need
several copies of Sym, we can give them labels A, B,... and use the different sets of
indeterminates Ag(A), Ax(B),... together with their generating series A(A, 1), A\(B,1),...,
and so on. The corresponding algebras will be denoted Sym(A), Sym(B), etc.

We recall that a composition is a vector I = (i1,...,1) of nonnegative integers, called
the parts of 1. The length I(I) of the composition [ is the number k of its parts and the
weigth of [ is the sum || =3 ¢; of its parts.

3.1 Elementary, complete and power sums functions

Let t be another indeterminate, commuting with all the Aj. It will be convenient in the
sequel to set Ag = 1.

Definition 3.1 The elementary symmetric functions are the Ay themselves, and their
generating series is denoted by

At) = D tF A =1+ > A, (21)

E>0 E>1

The complete homogeneous symmetric functions Sy, are defined by

o(t):= > t"Sp=A-t)". (22)

k>0

The power sums symmetric functions of the first kind W, are defined by
O(t) = Y Iy, (23)

k>1

d ¢
= alt) = o(t) ¥(1) (24)

The power sums symmetric functions of the second kind ® are defined by
k Pk ‘
olt)=exp( > t"—), (25)
k>1 k

or equivalently by one of the series

®(t) := Ztk%zlog(l—{—z Spth) (26)
E>1 E>1

N p(t):= > tF o = d d(t) = d logo(t) . (27)
= di di

14



Although the two kinds of power sums coincide in the commutative case, they are
quite different at the noncommutative level. For instance,

1
(I)g - \Ilg —|— 1 (\I/l \IJQ - \IIQ \Ill) . (28)

The appearance of two families of power sums is due to the fact that one does not have a
unique notion of logarithmic derivative for power series with noncommutative coefficients.
The two families selected here correspond to the most natural noncommutative analogs.
We shall see below that both of them admit interesting interpretations in terms of Lie
algebras. Moreover, they may be related to each other via appropriate specializations (cf.

Note 5.14).
One might also introduce a third family of power sums by replacing (24) by

d
= ot) = () o) |

but this would lead to essentially the same functions. Indeed, Sym is equiped with several
natural involutions, among which the anti-automorphism which leaves invariant the Aj.
Denote this involution by F' — F*. It follows from (22) and (26) that one also has
St = Sk, 9} = P4, and,

with (1) = 355, 571 U5,
Other involutions, to be defined below, send Ay on £S5. This is another way to handle
the left-right symmetry in Sym, as shown by the following proposition which expresses

¥(t) in terms of A(?).

Proposition 3.2 One has

d ¢
= g At = 9(t) A=) (29)

Proof — Multiplying from left and right equation (24) by A(—t), we obtain

A1) (35 90) M0 =t (o) ot = 600 20

But one also has

O

These identities between formal power series imply the following relations between
their coefficients.

15



Proposition 3.3 Forn > 1, one has

n n

S F Sk A= > (1) AL Sk =0, (30)
k=0 k=0
n—1 n—1
Z Sk \Iln_k = nSn 5 Z (—1)n_k_1 \Iln_k Ak = nAn . (31)
k=0 k=0

Proof — Relation (30) is obtained by considering the coefficient of " in the defining
equalities o(t) A(—t) = A(—=t) o(t) = 1. The other identity is proved similarly from rela-
tions (24) and (29). O

In the commutative case, formulas (30) and (31) are respectively called Wronski and
Newton formulas.

It follows from relation (26) that for n > 1

b, =nS5,+ Z C;y

11+ Fim=n,m>1

(32)

where ¢;, ;. are some rational constants, so that Proposition 3.3 implies in particular

that Sym is freely generated by any of the families (S%), (V%) or (®4). This observation
leads to the following definitions.

Definition 3.4 Let [ = (i1,...,1,) € (N*)* be a composition. One defines the products
of complete symmetric functions

n

ST =8, 8, ...5:, . (33)
Similarly, one has the products of elementary symmetric functions

A=Ay Ay, oA (34)
the products of power sums of the first kind

v=w, U, .0, (35)
and the products of power sums of the second kind

=0, 0, ... (36)

n *

Note 3.5 Asin the classical case, the complete and elementary symmetric functions form
Z-bases of Sym (i.e. bases of the algebra generated over Z by the A;) while the power
sums of first and second kind are just Q-bases.

The systems of linear equations given by Proposition 3.3 can be solved by means of
quasi-determinants. This leads to the following quasi-determinantal formulas.

16



Corollary 3.6 For every n > 1, one has

S1
25,
353

Ay A, Ans
Ao Ay Ao A
Sn = (_1)n—1 0 /XO L/\n_g i/\n—Z ,
0 0 Ao Aq
St So 0 . 0
Sy S So 0
Ap= (=)' 5% S 5 01,
Sn—l Sn—2 Sl
v, Uy U,
-1 \III \I}n—Q LI}n—l
nS,=0 =2 V, 3 WV, 5 ,
0 0 —-n+1 W
v, 1 0 0
v, v,y 2 0
n A, U v, v,y 01,
\I}n—l an—? \Ill
SO 0 0 A/\1 21/\2 (n — 1)An—1
S1 So 0 Ao Ay Apsg
SQ Sl 0 = 0 A/\O /\n_3
Sl 0 0 L/\O

Sn—l Sn—?

An—l
An—2

Ay

(40)

Proof — Formulas (37) and (38) follow from relations (30) by means of Theorem 1.8 of
[GR1]. The other formulas are proved in the same way.

O

Note 3.7 In the commutative theory, many determinantal formulas can be obtained from
Newton’s relations. Most of them can be lifted to the noncommutative case, as illustrated

on the following relations, due to Mangeot in the commutative case (see [LS1]).

(-)"'nS, =

(2n —2) A4

2N
4 A,

(2n—=3)A2 (2n—4)A,3
(n — 1) A/\n_l

1
3N

17

0 0

2 Ao 0
(n—1)A

(n - 2) L/\n_Q ll\l

. (42)



To prove this formula, it suffices to note that, using relations (31), one can show as in the
commutative case that the matrix involved in (42) is the product of the matrix

Uy 1 0 ... 0

-V, v,y 2 ... 0

‘I’ = \IIS —\Ilz \Ill . 0
(-, (=129, (-1)" 2,5, ... ¥

by the matrix A = (Aj_i)o<i j<n—1. Formula (42) then follows from Theorem 1.7 of [GR1].

Proposition 3.3 can also be interpreted in the Hopf algebra formalism. Let us consider
the comultiplication A defined in Sym by

AP =100, +V,®1 (43)

for k > 1. Then, as in the commutative case (cf. [Gei] for instance), the elementary and
complete functions form infinite sequences of divided powers.

Proposition 3.8 For every k > 1, one has

k k
A(Sk) =Y Si®@ 8, A(Ay) =) Ai®@ A .

Proof — We prove the claim for A(Sy), the other proof being similar. Note first that
there is nothing to prove for k¥ = 0 and k¥ = 1. Using now induction on k£ and relation
(31), we obtain

k %

kA(Sk): (S ®Sz ]\I}k Z—I_SZ ]\I;k Z®S)

|
—

o
Il
=}

J=0

k-1 k-1

Z ZSZ ]\I;k 7 Z ZSZ J\I;k i S

=0 ]:

o,

k—

= > (S;®(k—j)Sk—j) + ]S(k—j)sk—j@@sj: k Xk:(sg@&c—j)-

—

=0

By

We define an anti-automorphism w of Sym by setting
w(Sk) = A (44)
for £ > 0. The different formulas of Corollary 3.6 show that
wW(Ap) =Sk, w(W) = (=11, .

In particular we see that w is an involution. To summarize:

18



Proposition 3.9 The comultiplication A and the antipode &, where @ is the anti-auto-
morphism of Sym defined by

O(Sk) = (=) Ay, k>0, (45)
endow Sym with the structure of a Hopf algebra.
The following property has some interesting consequences.

Proposition 3.10 The Lie algebra generated by the family (@) coincides with the Lie
algebra generated by the family (Vy). We shall denote it by L(V). Moreover the difference
). — Wy, lies in the Lie ideal L*(V) for every k > 1.

Proof — In order to see that the two Lie algebras L(¥) and L(®) coincide, it is sufficient
to show that @ lies in L(V¥). According to Friedrichs’ criterion (¢f. [Re] for instance),
we just have to check that @ is primitive for the comultiplication A. Using (26) and
Proposition 3.8, we can now write

> 2 = log (> A(Sk)tF) =log(UV), (46)

k>1 k>0

where we respectively set U = 37;5o (1 @ Sk) t* and V = ko (Sk ® 1)t*. Since all
coefficients of ' commute with all coefficients of V', we have log(UV) = log(U) + log(V)
from which, applying again (26), we obtain

k
Ztk

k>1

L 100
=2 " —

k>1

iiJ 1
T (47)

k>1

as required. The second point follows from the fact that ®, — W, is of order at least 2 in
the W;, which is itself a consequence of (32). a

Example 3.11 The first Lie relations between ®; and Wj are given below.

1 1
o ="y, O, =V, (1)3:\113_1_1[\1;17\1/2], (I)4=\I’4+§[\I’1,\I’3],

3
O; = U5 + g[\Ill,\Il4] +

1 1
—I-—8 [[W1, Wy, Wyl + i1 ([[Wa, Wy, Wa], ¥4 ] .

1 1
Tl (U, W3] + ) (W, [Uy, Us]]

It is worth noting that, according to Proposition 3.10, the Hopf structures defined by
requiring the ®; or the W, to be primitive are the same. Note also that the antipodal
property of @ and the fact that

APp) =100, +0,®1 (48)

show that we have

w(®) = (=11 oy . (49)

19



3.2 Ribbon Schur functions

A general notion of quasi-Schur function can be obtained by replacing the classical Jacobi-
Trudi determinant by an appropriate quasi-determinant (see Section 3.3). However, as
mentioned in the introduction, these expressions are no longer polynomials in the gene-
rators of Sym, except in one case. This is when all the subdiagonal elements a;4, ; of their
defining quasi-determinant are scalars, which corresponds to Schur functions indexed by
ribbon shaped diagrams. We recall that a ribbon or skew-hook is a skew Young diagram
containing no 2 x 2 block of boxes. For instance, the skew diagram © = [/J with
I1=1(3,3,3,6,7) and J = (2,2,2,5)

is a ribbon. A ribbon © with n boxes is naturally encoded by a composition I = (iy,...,1,)
of n, whose parts are the lengths of its rows (starting from the top). In the above example,
we have I = (3,1,1,4,2). Following [MM], we also define the conjugate composition I~
of I as the one whose associated ribbon is the conjugate (in the sense of skew diagrams)
of the ribbon of I. For example, with I = (3,1,1,4,2), we have I~ = (1,2,1,1,4,1,1).

In the commutative case, the skew Schur functions indexed by ribbon diagrams possess
interesting properties and are strongly related to the combinatorics of compositions and
descents of permutations (c¢f. [Ge], [GeR] or [Re] for instance). They have been defined
and investigated by MacMahon (¢f. [MM]). Although the commutative ribbon functions
are not linearly independent, e.g. Ri2 = Ry, it will be shown in Section 4 that the
noncommutative ones form a linear basis of Sym.

Definition 3.12 Let [ = (i1,...,1,) € (N*)" be a composition. Then the ribbon Schur
function Ry is defined by

Siv Sivtin Sivtinbis -
So Si Sistiz oo Oiattin
Rr=(-1)"" 10 S Si s Sligttin (50)
0 0 0 o S;

Asin the commutative case, we have S, = R, and A,, = Ri» according to Corollary 3.6.
Moreover, the ribbon functions R(yx ,,_j) play a particular role. In the commutative case,
they are the hook Schur functions, denoted Sk ,,_). We shall also use this notation for
the noncommutative ones.

We have for the multiplication of ribbon Schur functions the following formula, whose
commutative version is due to MacMahon (¢f. [MM]).

Proposition 3.13 Let [ = (i1,...,%,) and J = (j1,...,Js) be two compositions. Then,
R Ry = Ry + Rry
where I>J denotes the composition (t1,...,%—1,%+J1,72,.-.,Js) and [-J the composition

(T1y ey ry J1ye vy Js)-
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Proof — Using the above notations, we can write that R; is equal to

Si ... So oo St | 1Sh Sitin oo Sitotie
(_1)k—1 SO L Si2+...+’ik_1 0 e Sig-}—...-}—ik_l SO SZ . SZz-}--I—Zk
0o ... Sir_y 0 ... 0 0

= Ry i) (Si, — R, ) B inasinatin))

i1k
the first equality following from the homological relations between quasi-determinants of
the same matrix, and the second one from the expansion of the last quasi-determinant
by its last row together with the fact that the second quasi-determinant involved in this
relation is equal to 1. Hence,

RrR, = Rro, + Ry . (51)

Thus, the proposition holds for ¢(J) = 1. Let now J = (j1,...,7,) and J' = (J1, ..., Jn-1)-
Then relation (51) shows that

Ry=RypR;, — Rjnj, .
Using this last identity together with induction on ¢(.J), we get
Ry R; = Ry R, + Riyr Rj, — Rro(grejn) — Brimjn)
and the conclusion follows by means of relation (51) applied two times. a

Proposition 3.13 shows in particular that the product of an elementary by a complete
function is the sum of two hook functions,

A/Xk Sl = lel —I‘ le—1(1+1) . (52)

We also note the following expression of the power sums ¥, in terms of hook Schur
functions.

Corollary 3.14 For every n > 1, one has

|
—

U, = (=1)* Ryknpy -

0

x~
Il

d
Proof — The identity A(—t) — o(t) = 9 (t) implies that

dt
n—1
U= > (=) (n—k)Ay Sues (53)
k=0
and the result follows from (52). O

Let us introduce the two infinite Toeplitz matrices

S = (Sj—i)i,jzo , A= ((_1)j_i Aj—i) ) (54)

1,20
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where we set S, = Ay = 0 for k& < 0. The identity A\(—t) o(t) = o(t) AM(—t) = 1 is
equivalent to the fact that A S = S A = I. We know that the quasi-minors of the
inverse matrix A™! are connected with those of A by Jacobi’s ratio theorem for quasi-
determinants (Theorem 2.14). Thus the ribbon functions may also be expressed in terms
of the Ay, as shown by the next proposition.

Proposition 3.15 Let I € N™ be a composition and let I™ = (j1,. .., jm) be the conjugate
composition. Then one has the relation

A A

Ajm—Q‘I’jm—J +]m s

jm jm—l +jm
Ao A]'m—1 1ij—2 +im—1 s A]'1 +otim—1
Ry = (—1)m_1 0 Ao 1ij—2 st A]'1+---+]'m—2
0 0 0 e Aj
Proof — This formula is obtained by applying Jacobi’s theorem for quasi-determinants
(Theorem 2.14) to the definition of R;. O

Corollary 3.16 For any composition I, one has

w(R[) = R[~.

3.3 Quasi-Schur functions

We shall now consider general quasi-minors of the matrices S and A and proceed to the
definition of quasi-Schur functions. As already mentioned, they are no longer elements of

Sym, but of the free field K £ 51, S, ... generated by the S;.

Definition 3.17 Let [ = (i1,%2,...,%,) be a partition, i.e. a weakly increasing sequence
of nonnegative integers. We define the quasi-Schur function Sy by setting

S Sam o
y Siy— S; A PR
Sr=(-pt | T v
Sil —n+1 Sig—n+2 ct e Sln

In particular we have S; = S;, Sy = A; and Sli(n_i) = Ryi(n—)- However it must be
noted that for a general partition I, the quasi-Schur function S; reduces in the commuta-
tive case to the ratio of two Schur functions S;/Sy, where J = (i3 —1,05—1,... 4,1 —1).
One can also define in the same way skew Schur functions. One has to take the same
minor as in the commutative case, with the box in the upper right corner and the sign
(—1)"~*, where n is the order of the quasi-minor. The ribbon Schur functions are the only
quasi-Schur functions which are polynomials in the Si, and they reduce to the ordinary
ribbon functions in the commutative case. To emphasize this point, we shall also denote
the quasi-Schur function S;/; by Syy; when I/J is a ribbon.

Quasi-Schur functions are indexed by partitions. It would have been possible to define
more general functions indexed by compositions, but the homological relations imply

22



that such functions can always be expressed as noncommutative rational fractions in the
quasi-Schur functions. For instance

s | S ISl |[SEl Sa| _ Sz [Sd| 1o & o-t
=g 5| TS, 8| T|s, s 0 ST oS5

Definition 3.17 is a noncommutative analog of the so-called Jacobi-Trudi formula.
Using Jacobi’s theorem for the quasi-minors of the inverse matrix as in the proof of
Proposition 3.15, we derive the following analog of Naegelbasch’s formula.

Proposition 3.18 Let [ be a partition and let I™ = (j1,...,J,) be its conjugate partition,
i.e. the partition whose diagram is obtained by interchanging the rows and columns of the

diagram of I. Then,

A/ij A/ij_l_l PP /\jp-}—p—l

v L/\]'p_l_l L/\jp_l e L\jp_l +p—2

Aj1 —p+1 Aj1 -p+2 .- Aj1

Let us extend w to the skew field generated by the Si. Then we have.

Proposition 3.19 Let I be a partition and let I™ be its conjugate partition. There holds

w(S[) = S[~ .
Proof — This is a consequence of Proposition 3.18. O

We can also extend the * involution to the division ring generated by the S;. It follows
from Definition 2.1 that S7 is equal to the transposed quasi-determinant

S’i Sin+1 N Sin—l—n—l
Sk n—1 S’in_l—l Sin—l “ . Sin—l‘l‘n—Q
57 =1(-1) . : . :
Siv—n+1 Si—nt2 .- Siy

In particular, if 1 = n*

is invariant under *.

is a rectangular partition, the quasi-Schur function indexed by [

In the commutative case, Schur functions can also be expressed as determinants of
hook Schur functions, according to a formula of Giambelli. This formula is stated more
conveniently, using Frobenius’ notation for partitions. In this notation, the hook




is written (BJa) := 1° (a + 1). A general partition is decomposed into diagonal hooks.
Thus, for the partition [ = (2,3,5,7,7) for instance, we have the following decomposition,
where the different hooks are distinguished by means of the symbols x, e and <.

*x|®

x| 0[O
*|O[OO]O
x| o|o|ojo(o|e@
AR R R d R d R d Bt

It is denoted (134 | 256) in Frobenius’ notation. We can now state.

Proposition 3.20 (Giambelli’s formula for quasi-Schur functions) Let I be a partition
represented by (B1... 0k | a1...ax) in Frobenius’ notation. One has

S(rler)  S(orlaz) S(6rlen)
& _ [Pl S S(alens)
1= ) ) )
S(ﬁkbl) S(ﬁk|a2) s S(ﬁk|ak)
Proof — This is an example of relation between the quasi-minors of the matrix S. The

proposition is obtained by means of Bazin’s theorem for quasi-determinants 2.18. It is
sufficient to illustrate the computation in the case of I = (2,3,5,7,7) = (134 | 256). We

S S ...

..... Sip-1 Sipm1 oo- Siga
le2l3l4| = : : .. :
Siy—a Sipma oo Siga
Using this notation, we have
Say Sas Sale) 0124[7)]  [012410]]  |0124[LI])
Sy Sy See) | = 102347 0234[10] |0234[11]| | ,
Sum Sam [Sare) 1123407 |1234[00) [|123400)

= [011234] [[0R247 10|~ [247 10 [I1)| = |247 10 [I1]| = Sass77

the second equality following from Bazin’s theorem. a

There is also an expression of quasi-Schur functions as quasi-determinants of ribbon
Schur functions, which extends to the noncommutative case a formula given in [LP]. To
state it, we introduce some notations. A ribbon © can be seen as the outer strip of a
Young diagram [D. The unique box of ©® which is on the diagonal of D is called the
diagonal box of ©. The boxes of © which are strictly above the diagonal form a ribbon
denoted ©F. Similarly those strictly under the diagonal form a ribbon denoted ©~.
Given two ribbons © and =, we shall denote by ©1t& =~ the ribbon obtained from ©
by replacing ©~ by =7. For example, with ©® and = corresponding to the compositions
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I=1(21,1,3,2,4), J = (1,3,3,1,1,2), ©F corresponds to (2,1,1,1), =~ to (1,1,1,2)
and OT& =" to (2,1,1,3,1,1,2). Given a partition 7, we can peel off its diagram into
successive ribbons ©,, ..., 0, the outer one being 0, (see [LP]). Using these notations,
we have the following identity.

Proposition 3.21 Let I be a partition and (©,,...,04) its decomposition into ribbons.
Then, we have

Se, S@j&@; e of&e,
3 S@j&@; Se, e of Loy
Sr=
Se);f&e); Se);f&e); ce Se,
Proof — The two proofs proposed in [LP] can be adapted to the noncommutative case.

The first one, which rests upon Bazin’s theorem, is similar to the proof of Giambelli’s
formula given above. The second one takes Giambelli’s formula as a starting point, and
proceeds by a step by step deformation of hooks into ribbons, using at each stage the
multiplication formula for ribbons and subtraction to a row or a column of a multiple of
an other one. To see how it works, let us consider for example the quasi-Schur function
Sozs. Tts expression in terms of hooks is

RIQ R15
Ri1z

Subtracting to the second row the first one multiplied to the left by R; (which does
not change the value of the quasi-determinant) and using the multiplication formula for

5235 =

ribbons, we arrive at a second expression

Rl? R15
Ry,

Now, subtracting to the second column the first one multiplied to the right by R; we
finally obtain

5235 =

S Ris Rias
235 =
Ry ’
which is the required expression. a
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4 Transition matrices

This section is devoted to the study of the transition matrices between the previously
introduced bases of Sym. As we shall see, their description is rather simpler than in the
commutative case. We recall that Sym is a graded algebra

Sym = EB Sym,,

n>0

Sym, being the subspace of dimension 2"~! generated by the symmetric functions S7,
for all compositions I of n.

The description of the transition matrices can be abridged by using the involution w.
Note that the action of w on the usual bases is given by

W) = AT, WA = 5T, w(W!) = (O (el) = (—1)D 9T,

where we denote by I the mirror image of the composition I, i.e. the new composition
obtained by reading [ from right to left.

We shall consider two orderings on the set of all compositions of an integer n. The first
one is the reverse refinement order, denoted <, and defined by [ < J iff J is finer than
I. For example, (326) < (212312). The second one is the reverse lexicographic ordering,
denoted <. For example, (6) < (51) < (42) < (411). This ordering is well suited for the

indexation of matrices, thanks to the following property.

Lemma 4.1 Let C,, denote the sequence of all compositions of n sorted by reverse lexi-

cographic order. Then,
Cn = (1D0n_1 s 1-On—1)

where 1>C,_1 and 1.C,_1 denote respectively the compositions obtained from the compo-
sitions of Cp,_1 by adding 1 to their first part and by considering 1 as their new first part,
the other parts being unchanged.

Note 4.2 Writing S7 = S; S77', Lemma 4.1 proves in particular that

(S1)" = > Bi, (56)

[I|=n

a noncommutative analogue of a classical formula which is relevant in the representation
theory of the symmetric group (the left hand side is the characteristic of the regular repre-
sentation, which is thus decomposed as the direct sum of all the ribbon representations).
This decomposition appears when the regular representation is realized in the space H,
of S,-harmonic polynomials, or, which amounts to the same, in the cohomology of the
variety of complete flags (more details will be given in Section 5.2).

For every pair (Fy), (G1) of graded bases of Sym indexed by compositions, we denote
by M(F, ), the transition matrix from the basis (F7) with |/| = n to the basis (G) with
|7| = n indexed by compositions sorted in reverse lexicographic order. Our convention is
that the row indexed by [ contains the components of F} in the basis (G ).
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4.1 S and A
The matrices M (S, A),, and M(A,S), are easily described. With the choosen indexation,

they appear as Kronecker powers of a simple 2 x 2 matrix.
Proposition 4.3 For every n > 1, we have

_1 1 )®(n—1)

Aﬂ&A%:Aﬂ&S%:(O |

Proof — The defining relation o(—t) A(t) = 1 shows that

o(—1)=(1- 3 At =14 3 (~DF (X At

i>1 E>1 i>1

Identifying the coefficients, we get

Sk — Z (_1)I(J)—k AJ7

|J|=k

so that
SI — Z (_1)I(J)—|I| AJ 7

JrI

for every composition /. The conclusion follows then from Lemma 4.1. Applying w to
this relation, we see that the same relation holds when S and A are interchanged. a

Example 4.4 For n = 2 and n = 3, we have

2 11
M(S,A)y = M(A, S), = 2(-11>,
11 0 1

3 21 12 111
3 /1 —1 -1
M(S,A)s=M(A,S)3= 21 [0 -1 0
1210 0 -1
1mr\o o o

As shown in the proof of Proposition 4.3, we have

ST — Z (_1)€(J)—|I| A 7 Al = Z (_1)€(J)—|I| g7 7

JrI JrI

for every composition /. Hence the matrices M(S,A), = M(A,S), are upper triangular
matrices whose entries are only 0, 1 or —1 and such that moreover the non-zero entries
of each column are all equal.
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4.2 S and VU

Before describing the matrices M (S, ¥),, and M (W, S),, let us introduce some notations.
Let I = (%1,...,%y) be a composition. We define 7,([) as follows

In other words, w,(I) is the product of the successive partial sums of the entries of
the composition /. We also use a special notation for the last part of the composition
by setting Ip(I) = ¢,,. Let now J be a composition which is finer than I. Let then
J = (J1,...,Jm) be the unique decomposition of J into compositions (.J;);=1, such that
|Jp| =1y, p=1,...,m. We now define

mu(J, 1) = H mu(Ji)
=1
Similarly, we set
ip(J, 1) =TI ip() .
=1
which is just the product of the last parts of all compositions J;.

Proposition 4.5 For every composition I, we have

1
SI — } : \IJJ 7

Ul =3 () =D g1y ST

JrI

Proof — The two formulas of this proposition are consequences of the quasi-determinantal
relations given in Corollary 3.6. Let us establish the first one. According to relation (39)
and to basic properties of quasi-determinants, we can write

v, v, ... V¥, 4

-1 v, ... ¥,, v, 4

q}n—S an—?
nS, = 0 -1 5 5
v
0 0 ... -1 !

n+1

But this quasi-determinant can be explicitely expanded by means of Proposition 2.6

S, = v’ (58)
. 0
Taking the product of these identities for n = ¢1,19,...,1,,, one obtains the first formula

of Proposition 4.5. The second one is established in the same way, starting from relation
(41) which expresses W,, as a quasi-determinant in the S;. O
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Note 4.6 One can also prove (58) by solving the differential equation o'()

in terms of iterated integrals. This yields

o(t)P(t)

=1+ [t g+ [t [t i)+ [do [t [Tt e+

and one obtains relation (58) by equating the coefficients of " in both sides of (59).

The matrices M (W, 5), have a simple block structure.

Proposition 4.7 For every n > 0, we have

<M(\Il7 S)n—l —I' An—l
0

where A,, is the matriz of size 2" defined by
A — <]2n—2

0
M(WV, S)o denoting the empty matriz.

MV, S5), =

0
MV, S),-1

).

Proof — This follows from Proposition 4.5 and Lemma 4.1.

Example 4.8 For n = 2 and n = 3, we have

2 11 2
M(S, W), = 2 (1/2 1/2) , M(¥,5),= 2 (2
nmyvo 1 11 \0
3 21 12 111 3
3 /1/3 1/6 1/3 1/6 3 /3
M(S,W)s= 21| 0 1/2 0 1/2|, M¥,S)s= 21 [0
1210 o 1/2 1/2 12 |o
mr\yo o 0 1 111 \0o
4.3 S and o

Let I = (i1,...,im

As in the preceding section, decompose J

We first introduce some notations.
be a finer composition.

(59)
O
11
_1)7
1
21 12 111
-1 -2 1
2 0 -1
0 2 -1
0 0 1

) be a composition and let J

= (J1,...,Jm) into

compositions with respect to the refinement relation J = I, i.e. such that |J,| = ¢, for

every p. Then, we set

- 1]
=1

which is just the product of the lengths of the different compositions .J;. We also denote

by # (1) the product of all parts of I. We also set

sp(l) =L m(l)=m! i1 ...ty -
and .
sp(J, 1) = 1:[ sp(J;) .

The following proposition can be found in [GaR] and in [Re].
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Proposition 4.9 For every composition I, we have

1)
ol — (_1)£(J)—£(I) 7( §7
by D)
1
SI — (I)J
JZEI sp(J, 1)

Proof — Using the series expansion of the logarithm and the defining relation (26) yields
o, = _1)U)-1 n I

|J|=n

from which the first part of the proposition follows. On the other hand, the series expan-
sion of the exponential and the defining relation (25) gives

1
o7 |
|£n Sp(J)

which implies the second equality. a

Sy =

Note 4.10 It follows from Proposition 4.9 that the coefficients of the expansion of S, on
the basis ®! only depend on the partition o(/) = (1™ 2™2 ... p™») associated with /. In

fact, one has

3p(]):<m1+"'+mn) ™ on™ my!om, !,

my, ... , My
which shows that 1/sp(l) is equal to the usual commutative scalar product (S, , ¥, (r))
divided by the number of compositions with associated partition o (7).

Example 4.11 For n = 2 and n = 3, we have

2 11 2 11
M(S,®);= 2 /1/2 1/2\ , M(®,5):= 2 /2 -1\,
11 ( 0 1 ) 11 (o 1 )
321 12 111 321 12 111
3 /1/3 1/4 1/4 1/6 3 /3 =3/2 -3/2 1
M(S,®)s=21] 0 1/2 0 1/2|, M(®,S)s=21 [0 2 0 -1
210 0 1/2 1/2 1210 0 2 -1
mr\o o o 1 11 \o 0 0 1

Note 4.12 One can produce combinatorial identities by taking the commutative images
of the relations between the various bases of noncommutative symmetric functions. For
example, taking into account the fact that ¥ and ® reduce in the commutative case to the
same functions, one deduces from the description of the matrices M (S, V) and M(S, ®)

that
1 1

D ERETi

o(J)=I

the sum in the left-hand side being taken over all compositions corresponding to the same
partition [.
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4.4 S and R
The matrices M(S, R), and M(R,S), are given by Kronecker powers of 2 x 2 matrices.

Proposition 4.13 For every n > 1, we have

1 0 ®(n—1)
MR =(, 1) (60)
1 0)%¢
M(R, S), = <_1 1) . (61)
Proof — 1t is sufficient to establish the second relation, since one has

<1 0)‘1 B ( 1 0)

11 C\=1 1/

Going back to the definition of a ribbon Schur function and using the same technique as
in the proof of Proposition 4.5, one arrives at

RI — Z (_l)f(J)—f(I) SJ,
I>J

for every composition /. The conclusion follows again from Lemma 4.1. a

Example 4.14 For n = 2 and n = 3, we have

2 11 2 11
M(S, R)2 = 2 <1 0) , M(R,S), = 2 (1 0) :
11\1 1 11\-1 1
3 21 12 111 3 21 12 111
3 1 0 0 0 3 1 0 0 0
M(S,R)s= 21 [1 1 0 0|, M@RS)s= 21 -1 1 0 0
2 {1 0 1 0 12 | -1 0 1 0
1M \1 1 1 1 m\yTr -1 -1 1
It follows from the proof of Proposition 4.13 that
ST = Ry, Ri=Y (—1)D-) g7 (62)

IJ IJ

for every composition /. This is the noncommutative analog of a formula of MacMahon ( cf.
[MM]). These formulas are equivalent to the well-known fact that the Mdbius function
of the order < on compositions is equal to p<(I,J) = (=)= 5f [ = J and to
p<(1,J)=0if I < J.
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4.5 A and ¥

The matrices relating the two bases A and ¥ can be described similarly to the matrices
relating S and W with the only difference that the combinatorial descriptions reverse left
and right.

Proposition 4.15 For every composition I, we have

1
AI — (_1)|I|—£(J) - - q;J 7
JXE:I mu(J, 1)
DS (- p(J, 1) A .
I
Proof — 1t suffices to apply w to the formulas given by Proposition 4.5. O

The block structure of M (W, A), is also simple.

Proposition 4.16 Forn > 2,
M(\I}, A)n — <_An—1 - M(\I;7 A)n—l $n—1)n_1 )

where A, is the matriz of size 2! defined by

_ An—l An—l
4= (" M(¥, A),_ )

with Ay = (1) and M; = (1).

Proof — This follows from Propositions 4.7 and 4.3 using the fact that

M(U,A), = M(, S), M(S, A),,

Example 4.17 For n = 2 and n = 3, one has

2 11 2 11
M(W,A)y = 2 (—2 1) , M(AV), = 2 (—1/2 1/2) :
1m\o 1 11\ o 1
3 21 12 111 3 21 12 111

3 /3 =2 -1 1 3 /1/3 —1/3 —1/6 1/6
MW,A)3=21 10 -2 0 1|, MAY)3=21[0 -1/2 0 1/2
210 0 -2 1 121 0 0 —1/2 1/2
1mr\o o o 1 11\ o 0 0 1
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4.6 A and @

The matrices relating A and ® are again, due to the action of w, essentially the same as
the matrices relating S and ®.

Proposition 4.18 For every composition I, we have

ol — Z (_1)|I|—£(J) w([) AJ7

i1 (J, 1)
1
AI — (_1)|I|—£(J) - (I)J
JZEI sp(J, 1)
Proof — 1t suffices again to apply w to the relations given by Proposition 4.9. O
Example 4.19 For n = 2 and n = 3, we have
2 11 2 11
M(A, @), = 2 (—1/2 1/2) , M(®,A);= 2 (—2 1) :
11 0 1 1m\o 1
21 12 111 3 21 12 111

3
3 /3 1 3 /1/3 —1/4 —1/4 1/6
M(@®,A)s;=21 [0 =2 0 1]|,MA®)z=21(0 -1/2 0 1/2
12 |0 1 121 0 0 —1/2 1/2
111 \0 1 111\ 0 0 0 1

4.7 Aand R
The matrices M (A, R) and M (R, A) are again Kronecker powers of simple 2 x 2 matrices.

Proposition 4.20 For every n > 1, we have

0 1\%"Y 1 1\%0Y
M(A,R)n:<1 1) , M(R,A)n:<1 0) .

Proof — This follows from Propositions 4.13 and 4.3, since
M(AR), = M(A,S), M(S,R), and M(R,A), = M(R,S), M(S,A), .

Another possibility is to apply w to the formulas (62). a
Note 4.21 Proposition 4.20 is equivalent to the following formulas

M= Ry, Ri=)>Y (—1)UIHDIpT, (63)
I-J~ I~>7J
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Example 4.22 For n = 2 and n = 3, we have

2 11 2 11

M(A,R)zz 2 /0 1N\ , M(R,A)QZ 2 /=1 1Yy,

11 (1 1) 11 ( 1 0)
321 12 111 3 21 12 111
3 /0 0 0 1 3 /1 -1 -1 1
MARs=21[0 0 1 1|, MRAs=21|-1 0 1 0
1210 1 0 1 21-1 1 0 0
1mr\1r 1 1 1 1mr\1+r o 0 0

4.8 V¥ and R

Let I = (¢1,...,%,) and J = (j1,...,Js) be two compositions of n. The ribbon decompo-
sition of [ relatively to J is the unique decomposition of I as

]:]1.]2.....15, (64)

where [; denotes a composition of length j; for every : and where e stands for - or v
as defined in the statement of Proposition 3.13. For example, if I = (3,1,1,3,1) and
J =(4,3,2), we have

I'=(31)-(12)»(11),

which can be read on the ribbon diagram associated with I:

[o]©

NEREE

* |0
O

For a pair I,J of compositions of the same integer n, let (Iy,..., 1) be the ribbon
decomposition of [ relatively to J as given by (64). We define then psr(I,.J) by

I et (L) =s .
psr(1,J) = { (—1) . if every I; is a hook

otherwise

We can now give the expression of W/ in the basis of ribbon Schur functions.

Proposition 4.23 For any composition I,

U= %" psr(LI)Ry . (65)
|J|=n
Proof — This follows from Corollary 3.14 and Proposition 3.13. O

The block structure of the matrix M (W, R),, can also be described.
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Proposition 4.24

A, —M(V,R),_,
M(V,R), = <M(\Il Jnet M(EII,R)BLA ) 7

?

where A, is a matriz of order 2", itself given by the block decomposition

o= G o)
"TA\M(Y,R)sy M(U,R),_y)

Proof — The result follows from Proposition 4.23 and from Lemma 4.1. O

The structure of the matrix M(R, ¥),, is more complicated. To describe it, we intro-
duce some notations. For a vector v = (v1,...,v,) € Q", we denote by v[z, j| the vector
(Vi Vi1, .- ,0;) € Q7. We also denote by © the vector obtained by reading the entries
of v from right to left and by v.w the vector obtained by concatenating the entries of v
and w.

Proposition 4.25 1) One can write M(R, V), in the following way

1 [ A(RY), A(R,U),
M(R, V), = — ( _é(&g})n BER, \I/;n )

n.

where A(R, W), and B(R,W¥), are matrices of order 2"~% whose all entries are integers
and that satisfy to the relation

A(R,U),, + B(R, W), =n M(R,¥),_; .

Hence M(R, V), is in particular completely determined by the structure of B(R,V),.
2) The matriz B(R, ®),, can be block decomposed as follows

_ B(00o)

— B 5 (goo)

_BT(LO) _5(001)

B B7(;01) .
B(R,®)n = _pglowy (66)

— B 5 (;O)

B _§(011)

B B7(;11)

where (B, _y 4 are square blocks of order 277177

denoted here B((fll """ Z] n)) These blocks statisfy the two following properties.

.....

~ Every block B((Z]JJ """ ])) of order 2 x 2 has the structure

..... in



for some integers p,q € 7.

- = For every (i1,...,1,) and (j1,...,Js), let us consider the rectangular matriz
C (({117’.'.'.'7’2.]:)) defined as follows
_ pliteds0)
Oltesis) — | gliteaie) B(zl ..... in)
(i1, 0orir) (i1 0emin) B((;l ..... ?‘550) .

LOBE ) = (LO(=BE ) - LOBE ")) — Lo -

Note that these recursive properties allow to recover all the block structure of B(R, V),
from the last column of this matriz.

4) Let 'V, be the vector of order 2"? corresponding to the last column of B(R, V),
read from bottom to top. The vector V, is then determined by the recursive relations

Va[l,2F] + Vo [28 + 1,284 = < bt ) Vi1, 281 VA1, 2817

forke{l,....n—4}, and

Vo, 278+ Vo [2r 3 + 1,22 =n V,_; .

Example 4.26 Here are the first vectors V,, from which the matrix M (R, ¥), can be
recovered:

Vo=(1), Va=(12),Vi=(1353), Va=(1496916114),

Ve=(15 14 10 19 35 26 10 14 40 61 35 26 40 19 5) .
For n = 2,3, 4 the matrices relating ¥/ and R;.

2 11 2 11
MW, R)y= 2 /1 -1\, MRVY)= 2 /1/2 1/2Y\ ,
11 (1 1 ) 11 (-1/2 1/2)
3 21 12 111 3 21 12 111
3 /1 -1 1 3 /1/3 1/6 1/3 1/6
MW,R)s=2111 1 -1 —1|, M(R,¥)s=21|-1/3 1/3 —-1/3 1/3|,
211 -1 1 -1 12 | -1/3 —1/6 1/6 1/3
1mr\1 1 1 1 1\ 13 —-1/3 —1/6 1/6
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4 31 22 211 13 121 112 1111
4 1 0 0o 0 -1 0 1 -1
31 1 1 0 0 -1 -1 1 1
2 (1 -1 1 -1 -1 1 =1 1

MW,Ry= 21111 1 1 1 -1 -1 =1 =11,

B3l1 0o -1 1 1 0 =1 1
11T 1 -1 =1 1 1 =1 -1
m2f{1r -1r 1 -1 1 -1 1 -1
mir\y1 11 1 1 1 1 1

4 31 22 211 13 121 112 1111
4 /4 1/12  1/8 1/24  1/4  1/12 1/8 1/

31 | —-1/4 1/4 —1/8 1/8  —1/4 1/4  —1/8 1/8
22 | —1/4 —1/12 1/8 5/24  —1/4 —1/12 1/8 5/24
M(R,¥), = 211 /4 —1/4 —1/8 1/8 /4 —1/4 —1/8 1/8
13 | —1/4 —1/12 —1/8 —1/24 1/12 1/12  5/24 1/8

1210 | 1/4  —1/4 1/8 —1/8 —1/12 1/12 —5/24 5/24
12 | 1/4  1/12 —1/8 —=5/24 —1/12 —1/12 1/24  1/8
111\ —1/4  1/4  1/8  —1/8 1/12 —1/12 —1/24 1/24

4.9 & and R

The first row of M(®, R),, is given by the following formula, which is equivalent to Corol-
lary 3.16 of [Re] p. 42.

Proposition 4.27 The expansion of ®,, in the basis (Ry) is given by

-1 LI)-1
0, = ¥ UV Ry

e (o)

Let 1,.J be two compositions of the same integer n and let [ = ([q,..., 1) be the
ribbon decomposition of [ relatively to J as given by relation (64). Define phr(1,.J) by

setting
s (_1)6([2')—1
phr(L,0) = [T i
=1 (f(fz‘)—l)

We can now give the expression of ®! in the basis of ribbon Schur functions.

Corollary 4.28 For every composition I, one has

o' = > phr(J,1) Ry . (67)
|J|=n
Proof — This is a simple consequence of Propositions 4.27 and 3.13. O

On the other hand, the structure of the matrix M (R, ®),, is more intricate.
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Proposition 4.29 1) Let D(S,,®) be the diagonal matriz constructed with the elements
of the first row of M(R, ®),,, i.e. the diagonal matriz whose entry of index (1,1) is 1/sp(I)
according to Proposition 4.9. Then we can write in a unique way

M(R,®), = N(R,®),, D(S,,®)

where N(R,®),, is a matriz of order 2"~" whose all entries are integers.

2) The matriz N(R,®), can be block decomposed as follows

A (000)
AL0) _ 2(000)
A;O) A((?Ol)
— A _ ;; 001)
N(R,®), = A((:Llo)
APY _ ;; 010)
—A;O) A (?11)
—APY _2(011)

weay

for every r € {1,...,n—=2}. This shows in particular that the matrizv N(R,®), is com-
pletely determined by its last column.

3) Let LC(R,®),, be the row vector of order 2"~" which corresponds to the reading of
the last column of N(R,®), from top to bottom and let V, be the vector of order 272
defined in the statement of Proposition 4.25. Then, one has

LC(R,®),=V,.V, .
Thus LC(R,®),, and hence all the matric M(R, ®),,, can be recovered from V.

Example 4.30 The matrices relating R; and ®' for n = 2,3,4 are given below.

2 11 2 11
M(®,R);= 2 /1 -1\, MR, Q)= 2 /1/2 1/2Y\,
11 (1 1 ) 11 (-1/2 1/2)
3 21 12 111 3 21 12 111
3 /1 —1/2 —1/2 1 3/ 1/3 1/4 1/4 1/6
M(®,R)s=21 |1 1 -1 -1, M(R,®)s=21 | -1/3 1/4 —1/4 1/3 ]|,
211 -1 1 -1 12 | =1/3 —1/4 1/4 1/3
11\1 1 11 11\ 1/3 —1/4 —1/4 1/6
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4 31 22 211 13 121 112 1111

4 1 -1/3 —-1/3 1/3 -1/3 1/3 1/3 -1
31 11 =12 —1/2 —=1/2 —1/2 1 1
2 |11 -1 1 -1 -1 1 -1 1
M(®,R),= 211 | 1 1 1 1 —1 -1 -1 =11,
1311 —1/2 —1/2 1 1 —1/2 —1/2 1
1211 1 -1 -1 1 1 -1 -1
1211 -1 1 -1 1 -1 J
mir\1 1 1 1 1 1 1 1

4 31 22 211 13 121 112 1111
1 /4 16 1/8 1/12  1/6  1/12  1/12  1/24

31 [ -1/4 1/6 —-1/8 1/6 —1/6 1/6 —1/12 1/8
22 | —-1/4 —-1/6 1/8 1/6 —1/6 —1/12 1/6 5/24
M(R,®)s = 211 /4 —-1/6 —1/8 1/12  1/6 —1/6 —1/6 1/8
13 | —1/4 —-1/6 —1/8 —1/12 1/6  1/6 1/6  1/8

121 | 1/4 —-1/6 1/8 —1/6 —1/6 1/12 —1/6 5/24
12 | 14 1/6 -1/8 —1/6 —1/6 —1/6 1/12 1/8
111\ —1/4 1/6 1/8 —1/12 1/6 —1/12 —1/12 1/24

410 & and U

The problem of expressing ®,, as a linear combination of the W/ is a classical question of
Mathematical Physics, known as the problem of the continuous Baker-Campbell-Hausdorff
exponents [Mag|[Wil][BMP][MP]. The usual formulation of this problem is as follows. Let
H(t) be a differentiable function with values in some operator algebra, and consider the
solution E(t;t0) (the evolution operator) of the Cauchy problem

{ ZE(t;t0) = H(1)E(t; o)
E(to;to) =1

The problem is to express the continuous BCH exponent (t;1), defined by E(t;t) =
exp Q(t; o) in terms of H ().
or

Here we merely consider the (equivalent) variant Frie E(t)H(t) with tg = 0, and we
set E(t) =o(t), H(t) = (1), Q(t) = O(1).

The first answer to this question has been given by W. Magnus [Mag]. His formula
provides an implicit relation between ®(¢) and (), allowing for the recursive computation
of the coefficients ®,,. ;From our point of view, it rather gives the explicit expression of
V., in terms of the ®!. Following [Wil], we shall derive this formula from an identity of
independent interest:

Lemma 4.31 The derivative of o(t) = exp ®(t) is given by

i ®(t) (1—u)®(t) u®(t) 7.
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®(®) in powers of ®(t), we have

Proof — Expanding o(t) = e

- g - p S
o), O(t)°
_T%:O r—l—s—l—l) E«!) Q i!) ’

and using the integral representation

rls!

1
m:B(T+1,S+1):/()(1—U) U du

we find

|
7,520 5.

:/ 1= @/ (1)u2(O) gy
0

To obtain an expression for ¥,,, we observe that Lemma 4.31 can be rewritten

o'(t) = o) / =0 ' (1)en W gy |

0
so that )
b= [ e (et
0

_ /01 > %@(tyq)'(t) ™ Yo (t) du

o (_1)T r+s [ Y s
_%Oi(wsﬂ)!( ' )cp(t)cp(t)cp(t) .

tn—l

Extracting the coefficient of , we finally obtain:

Proposition 4.32 The expansion of ¥,, in the basis (®) is given by

W) R — 1 or
g o Mot

|K|=n | =

Using the symbolic notation

{®i - @iy, F} = ad jad @y, - - ad &, (F) = [@s, [04, [ [Py, , F].. ]]]

Zr?

and the classical identity

:{€a7b}v

(69)



we can rewrite (69) as

1y T
o= e vy - {10 v

>0 (n+1)!
which by inversion gives the Magnus formula:
(1) B, .
v ()= {5 w0} = T By ) (70

the B, being the Bernoulli numbers.

As already mentioned, formula (70) permits the recursive computation of the @, in
terms of iterated integrals. There exists, however, an explicit expression of this type,
which is due to Bialynicki-Birula, Mielnik and Plebariski [BMP] (see also [MP]). We shall
here only state a version of this result, postponing the discussion to section 5.5, where
the formalism of the internal product will be needed.

Recall that an index ¢ € {1,2,...,n — 1} is said to be a descent of a permutation
o €8, ifo(i) > o(i + 1). We denote by d(o) the number of descents of the permutation
o.

Theorem 4.33 (Continuous BCH formula) The expansion of ®(t) in the basis (U!) is
given by the series

t tr—1
q)(t):Z/odtl---/o dtrzsj
oEDS,

r>1

(-1

r

r—1\ !
(d(a)) (o) - Ptoq)) - (71)

Thus, the coefficient of W1 = W, ... W, in the expansion of ®, is equal to

1 tr—1 (—1)d(g) r—1 ! i1—1 i —1
n/o dtl"'/o dir 3 — d(o)) et

G’EST

Example 4.34 Here are the transition matrices corresponding to the two bases ¥ and
®, up to the order n =14

2 11
MU, ®); = M(®, W)= 2 /1 0\ ,
11 <o 1)
3 21 12 111 3 21 12 111
3 /1 1/4 —1/4 0 3 /1 —1/4 1/4 0
MU, ®);3=21 |0 1 0 0, M®T);=21[0 1 0 0],
1210 0 10 210 o0 1 0
111 \o 0 0 1 1r\o 0 0 1
4 31 22 211 13 121 112 1111
4 1 1/3 0 1/12 —1/3 —1/6 1/12 0
31 fo 1 0 1/4 0 —1/4 0 0
210 0 1 0 0 0 0 0
M,®)y= 21100 0 0 1 0 0 0 0| .
310 0 0 o0 1 1/4 —1/4 0
2000 0 0 0 0 1 0 0
1210 o0 0 0 0 0 1 0
1miir\o o o0 0 0 0 0 1

41



22 211 13 121 112 1111

31

4

OO OO o oo
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TN =Y
—

M(®, V)= 211
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5 Connections with Solomon’s descent algebra

Let us denote by Des (o) the descent set of a permutation o, and for each subset A C
{1,...,n — 1}, consider the element

Doa= Y o eK[S,)].
Des(o)=A

It has been shown by Solomon (¢f. [So]) that the subspace of K[S,] generated by the

elements D_4 is in fact a subalgebra of K[S,]. More precisely, there exist nonnegative
integers d$ 5 such that

D_yD_p= > di D,
C

for A,B C {1,...,n — 1}. This subalgebra is called the descent algebra of S, and is
denoted by ¥,. A similar algebra can be defined for any Coxeter group (cf. [So]).

The dimension of ¥, as a vector space is obviously 2"7!  that is, the same as the
dimension of the space Sym,, of noncommutative formal symmetric functions of weight
n. This is not a mere coincidence : there is a canonical isomorphism between these two
spaces, and we shall see below that the whole algebra Sym can be identified with the
direct sum X = @,,5o 2, of all descent algebras, endowed with some natural operations.

5.1 Internal product

Subsets of [n—1] = {1,...,n—1} can be represented by compositions of n in the following
way. To a subset A = {a1 < ay < ... < ag} of [n — 1], one associates the composition
c(A)=1=(t1,...,tk41) = (a1,a2 — a1,..., a5 — Ag—1,n — ag) .

A permutation compatible with a ribbon diagram of associated composition [ (i.e. yield-
ing a standard skew tableau when written in the diagram) has then for descent set ¢='(1).
It is thus natural to define a linear isomorphism « : ¥, — Sym,, by setting

Oé(D:A) = Rc(A) .

This allows us to define an algebra structure on each homogeneous component Sym,,
of Sym by transporting the product of ¥,. More precisely, we shall use the opposite
structure, for reasons that will become apparent later. The so-defined product will be
denoted by *. Hence, for F,G € Sym, , we have

F+G=ala™(G)a ! (F)).

We then extend this product to Sym by setting F'« G = 0 it F' and G are homogeneous
of different weights. The operation * will be called the internal product of Sym, by
analogy with the commutative operation of which it is the natural noncommutative analog.
Indeed, let us consider another natural basis of ¥, constituted by the elements

Dca= Y D-p.
BCA

Then, according to formula (62),
a(Dca) = S,
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where I = ¢(A) (see also [Re]). Remark that in particular
a(ed) =S,

so that for ' € Sym,,
FxS,=5,«F=F,

and that
a(w,) = Ay,

where w,, denotes the maximal permutation (nn —1 -+ 1) = D_p ,_1] of S,. Finally the
multiplication formula for Dca Dcp (¢f. [So]) can be be rewritten as follows.

Proposition 5.1 For any two compositions [ = (i1,...,1,) and J = (j1,...,7,), one has

St«sl= 35 sM (72)

MeMat(I,J)

where Mat(1,.J) denotes the set of matrices of nonnegative integers M = (m;;) of order
p X q such that 3, m.s = 1, and Y., m,s = j5 for r € [1,p] and s € [1,¢], and where
M
S :Smn Smn Smlp qul...qup .
It is well known that the same formula holds for commutative symmetric functions. In
this case, a product of complete functions S’ is the Frobenius characteristic of a permu-
tation representation (see [JK]). Thus the passage to commutative symmetric functions
transforms the noncommutative *-product into the ordinary internal product (this is not
surprising, since the descent algebra was originally introduced as a noncommutative ana-
log of the character ring in the group algebra).

It is thus natural to identify Sym with the direct sum ¥ = @,,v¢ 2, of all descent al-
gebras. The ordinary product of Sym then corresponds to a natural product on ¥, which
we will call outer product. In fact ¥ can be interpreted as a subalgebra of the convolution
algebra of a free associative algebra (considered as a Hopf algebra for the standard comul-
tiplication making the letters primitive). More precisely, it is the subalgebra generated
by the projectors g, onto the homogeneous components K, (A) of the free algebra K(A)
(¢f. [Re]). The convolution product, denoted * in [Re], corresponds then to the ordinary
product of noncommutative symmetric functions, and the composition of endomorphisms
to the internal product. This construction has been recently extended to the case of any

graded bialgebra by Patras (¢f. [Pal).

The noncommutative internal product satisfy some compatibility relations with the
ordinary product, similar to those encountered in the commutative case. For example one
has the following identity, whose commutative version is a fundamental tool for calcula-
tions with tensor products of symmetric group representations (see [Ro], [Li2] or [Th]).

Proposition 5.2 Let Fy, F,, ..., F,,G € Sym. Then,
(FlFQFT)*G: Hr [(Fl & - ®FT)*ATG]

where in the right-hand side, p, denotes the r-fold ordinary multiplication and * stands
for the operation induced on Sym®" by *.
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Proof — The formula being linear in each of its arguments, it is sufficient to establish it
in the case where the F; and GG are products of complete functions. When the Fj are of

the form Fj, = S;, and G = S7 = S, S, -+ S;,, the formula
(SiySiy -+ 8i,) % ST = iy (S, @+ @ 8,) # A7 (73)

is equivalent to the multiplication formula (72). Next, let 1% = (igk),igk), o ,i;’?) for
every k =1,...,r, and consider the transformations

w (ST @@ 81« ATG]

= [ S (8" Gy @ (8™ # Gy @ @ (877 # Gw}

(@)

(using Sweedler’s notation for A”()

= fir [E /Ln1<(SZ'(11) ®-- @ Sm)* A™ G(1)) ®--® /Lnr<(52-<r> ® @ Sm)* A”TG(T))
(G) 1 1 nr

(by application of formula (73))

= NTO(Nn1®' . .@Mm) [<Si§1) R Si(nl) ® Si(f’) Q- R® Si(nr)) * (A”l Q- ® ATLT-) o ATG:|

= Un |:<S’i(11) Q- ® 52&1) Q- ® Sigr) Q- ® Sigf)) * ANG]
(by associativity and coassociativity, with N =ny 4+ --- +n,)

e CREC Lt Py el

Example 5.3 To compute S22 x S?3, one has to enumerate the matrices with row sums
vector [ = (2,1,2) and column sums vector J = (2,3), which yields

5212 * 523 — 25212 + 52111 + 51112 + 511111 .

Applying Proposition 5.2 and taking into account the fact that Sp* F' = F for F' € Sym,,
and Sy * ' = 0 otherwise, we obtain as well

2 1 1 1 1 2
N[(Sﬂ@SQ)*ASQS]:Nl(521®52)*{ (*@14+5"0S'+1®57%) x H

(SP@1452S5T+S5TR5?7+11® 53

_ [(521 ®52) " (521 ®S2 —|—512®SH —|—53®52)]
_ 9 g212 + G112 + gl + G211 _ 212, ¢23
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Example 5.4 One can recognize the involution n : F' — F % A(1) by computing the
products ST+ \(1). If I = (41,...,1%,),

ST ML) =, [(S;, @ - @ 8:,) * (ML) @ --- @ A(1))]

- L/XZ'J A/\Z'Q st L/\Z'T - L/\I .

Hence, 5 is the involutive automorphism whichs sends S; to Ax. One can check that its
action on ribbons is given by

U(R[) = R[ * )\(1) = RI—N . (74)

The involution F'+— A(1) * F' is more easily identified in terms of permutations. Since
the descent set of ow is the complement in {1,...,n — 1} of the descent set of o, one sees
that it is the antiautomorphism

)\(1) * R[ = R[~ = w(R[) .

Other properties of the internal product can be lifted to the noncommutative case.
For example, in [At], Atkinson defines maps ¢; : Sym, — Sym; ®Sym, ®---®Sym,,
by setting

er(F) = (5, @ 5, @ -+ @ Si, ) % AT(F) (75)

and shows that they are algebra homomorphisms for the internal product. He then uses
them to construct a simplified version of the representation theory of the descent algebra
(the first theory was due to Garsia and Reutenauer (¢f. [GaR])). The fact that these
maps are homomorphisms is equivalent to the following important property whose proof
may be adapted from Atkinson’s paper.

Proposition 5.5 The iterated coproduct A™ is a homomorphism for the internal product
from Sym into Sym®”. In other words, for F,G € Sym

N(FxG)=ANFxNG .

In the commutative case, Sym, endowed with the internal product is interpreted as
the representation ring R(S,) of the symmetric group, and Sym; ® Sym;, ® --- ® Sym;,
as the representation ring of a Young subgroup S; = S;, x S;, x --- x S;,. With this
interpretation, the maps ey correspond to the restriction of representations from S,, to Sj.

The following consequence is worth noting. Remark that it follows from the structure
theory of Hopf algebras and from Proposition 3.10 that Sym is the universal enveloping
algebra of the free Lie algebra L(W) constituted by its primitive elements.

Corollary 5.6 The internal product preserves the primitive Lie algebra L(¥) of Sym.
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5.2 Lie idempotents

A Lie idempotent is an idempotent of the group algebra K[S,] which acts as a projector
from the free algebra K(A) onto the free Lie algebra L(A) (for the right action of the
symmetric group on words). It turns out that most of the Lie idempotents which have
been encountered up to now are elements of the descent algebra (¢f. [BBG] or [Re]).
In this section, we show that these elements appear quite naturally in the theory of
noncommutative symmetric functions.

In the commutative case, the products of power sums ! are idempotent (up to a
scalar factor) for the internal product. The noncommutative case is more complicated,
but the simplest noncommutative internal products of power sums already lead to two
interesting Lie idempotents.

Proposition 5.7 For alln > 1, one has ¥, * ¥, =nV¥, .

Proof — Recall that the generating series for the W, is given by

bty = Y 0, = A1) o'(1)

n>1

and that Ay(t) = ¥(t) @ 1 + 1 @ (). Then, using the fact that W; * ¥; = 0 for ¢ #

and applying Proposition 5.2, we can write

Do (wy) W W) = () x (y) = p[(A(—2) @ o'(2)) * ($(y) © 1+ 1® ¥(y))]

n>1

= p[(A(—2z) * 1) @ (o'(x) * (y))]

(since o'(z) has no term of weight 0)
= Y na™ S x| DDy = Y (ay) R,
n>1 n>1 n>1

the last equality following from the fact that S, * F' = F' for F' € Sym,,. a

This proposition is in fact equivalent to Dynkin’s characterization of Lie polynomials
(see e.g. [Re]). Indeed, recall that the standard left bracketing of a word w = zq25-- -z,
in the noncommuting indeterminates z; is the Lie polynomial

Ly(w) = [+ [[[x1, x2), @3], xa], . . ., T0]

In terms of the right action of the symmetric group S,, on the homogeneous component
K, (A) of degree n of the free associative algebra K(A), defined on words by

L1Xg " Tp "0 = Ts(1) Lo(2) """ Lo(n) »

one can write
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where 6,, is an element of Z[S,]. It is not difficult to show that 6, is in fact in X, and
that one has (¢f. [Gal)

n—1

O, = > (-1)"D_p1o.sy -

k=0
To see this, one just has to write the permutations appearing in the first §; as ribbon
tableaux and then to use induction. For example,
2 3

3
0s = [[1,2],3] = 123 — 3~ 19 + i

and it is clear that when expanding 6, = [03,4] one will only get those (signed) tableaux
obtained from the previous ones by adding 4 at the end of the last row, minus those
obtained by adding 4 on the top of the first column. Thus, in terms of noncommutative
symmetric functions, we have from Corollary 3.14

al0,) =, ,

so that Proposition 5.7 becomes Dynkin’s theorem : 62 = n#,, or more explicitely, a
noncommutative polynomial P € K(X) is a Lie polynomial iff L,,(P) = nP.

The same kind of argument works as well for the power sums of the second kind ®,,.

Proposition 5.8 For everyn > 1, one has &, x®, =nd,

Proof — Using the generating series
(=D 2 k
ZCD — =logo(t) = Z . (tSy + 125, 4+ -+)
n>1 k>1
we have

o) o= Y TV (s a4 e a)

n>1

But, using Proposition 5.2, one has for n > 1

(xS + 2*Sy + -+ )" * B(y [(Z 1“521) - ® (Z "EZ"SM) * A”q)(y)] =0,

21>1 ’anl

since ®(y) is primitive and 3,5, 2'S; has no term of weight zero. Thus, using again the
fact that S, is a unit for the internal product on Sym,,, we get

O(x) * O(y) = (Z ”65) * (Z y%) = > (zy)

i>1 i>1 i>1

(}% O(zy) .

O

The element eg] = o !(®,/n) is thus an idempotent of the descent algebra ¥,. In
terms of permutations, the formula ¢(¢) = log (1 4 (¢S + t*Sy + - - -)) shows that
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(compare with [Re] p. 66-67). This idempotent is also a projector onto the free Lie
algebra. One way to see this is to compute the products ®, * ¥,, and ¥, * ®, and to use
Dynkin’s characterization of Lie polynomials.

Proposition 5.9 For everyn > 1, one has (i) ¥, «®, =n®, and (i) ¢, *V, =nV, .

Proof — (i) Using Proposition 5.2 and the fact that ®(y) is primitive for A, we have
P(x)* d(y) = (M=z) o'(2)) * @(y) = p[(M—2) ®o'(2)) * (2(y) ® 1 + 1 @ (y))]

=o'(z)*x @(y) =y > (ay)"' @, .

n>1

(ii) As above, one can write

As already mentioned in Note 4.2, ribbon Schur functions appear in the commutative
theory as the characteristics associated to a certain decomposition of the regular repre-
sentation of S,,. To give a precise statement, we need the notion (due to MacMahon, cf.
[MM]) of major index of a permutation. Let o € S,, have descent set

Des(o) ={dy,...,d,} C{l,...,n—1}.

Then, by definition, maj(c) = d; + - - + d,. We also define the major index of a compo-
sition I to be the major index of any permutation with descent composition /. That is,
if I = (il, ig, Ce ,‘ém), then

maj(l)=(m—1)i1+(m—2)ig+ -+ 1 .

Now, if H,, C Cl[z1,...,z,] denotes the vector space of S,-harmonic polynomials, and H~
its homogeneous component of degree k, it is a classical result that its graded characteristic
as a S,-module is given by

F(H) = Y q’“f(Hi)=(q)nSn< 2 ) , (76)

k>0 l—gq

where as usual (¢), = (1 —¢)(1 —¢*)--- (1 — ¢"), the symmetric functions of X/(1 — q)
being defined by the generating series

o (% t) = [ o(X,t¢") . (77)

k>0

On the other hand, it is also known that

(¢)n S (1%) = Y ™R, (78)

|Cl=n
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where the sum runs over all the compositions C of n, so that
F(HY) = Y Rc. (79)
maj (C)=k

It is therefore of interest to investigate the properties of the noncommutative symmetric
functions K, (q) defined by

K.(q)= > ¢ Re . (80)
|Cl=n

These functions can be seen as noncommutative analogs of the Hall-Littlewood functions
indexed by column shapes Q(11..1)(X/(1 = ¢); ¢) (¢f. [McD]). One can describe their

generating function

in the following way.

Proposition 5.10 One has

—

= Z ( Z qn1i1+n2i2+~~~+nrir ) SI
I ny1>ng>...>nr >0
— Z qmaj(I) ( Z (qil)ml (qig)mg (qir)mr ) SI
1 mi>mg>...2mys2>0
maj (I)

=3 ! st

Let F,,(¢) be the term of weight n in this series. We want to show that (¢),F.(¢) = K,.(q).
Working with subsets of [n — 1] = {1,...,n — 1} rather than with compositions of n, we

can write
(@ Fulg) = Y S f(a)

AC[n—1]
where f(A Hq H (1 —¢°), so that
€A sgA
AC[n—1] BgA BC[n—1] ADB

But, denoting by A the complementary subset of A in [n — 1] and by X(A) = maj(c(A))
the sum of all elements of A, we see that

F(A) = ¢"W ( (—1)1 %@ ) = (1)1 g=(4u0)

CCA CCA

20



= Y (EFMEE)

BDA

It follows now by Mdbius inversion in the lattice of subsets of [n — 1] that

Z f(A) — qE(B) — qmaj (c(B)) 7

ADB

as required. a

This factorization of k(¢) shows in particular that k(q) is grouplike for A, which is
well suited for computing internal products of the form F'*k(¢) by means of Proposition
5.2. For example, with J = (j1,...,m), we have

ST xk(g) = 1 [(S;, @ @ 5;,) * (k(q) @ - @ k(q))]

K (q)-- K;,(q)
(D (@

and we obtain :

Proposition 5.11 Let J = (j1,...,Jm) be a composition of n. Then one has

n

k= | KK ) )
J1sJ2s s ]m q

Denote by «,(¢) the element of C[¢][S,] such that a(x,(q)) = LK, (q) € Cl¢] ® Sym.
Let ¢ € C be a primitive nth root of unity. It has been shown by Klyachko (¢f. [KI]) that
kn(C) is a Lie idempotent. To derive this result, we begin by considering the specialization
at ¢ = ( of the multinomial coefficient in Proposition 5.11, which shows that ST+ K, (¢) =0
as soon as {(I) > 1. Hence, we get

% * K,(() =logo(l) * K, (()

n

-y HW( S Sk EL(O)) = Y STeK(C) = Ka(C) |
oI)=r

721 " (D=1

from which it follows that the range of the associated endomophism &,(() of C,(A) is
contained in the free Lie algebra. To show that x,(() is indeed an idempotent, we must
prove that £,(() * ®, = ®,,. As observed in [BBG], it is possible to get a little more.

Proposition 5.12 For every n > 1, one has K,(q) * ®, = (¢)n-1 P .
Proof — Let kn(q) = o(¢V 1) o(¢V2%) -+ o(1). According to Proposition 5.2, we have
kn(g) * @ = ux [(o(¢" ) @ 0(¢" ) @--- @ (1)) x AVG,]

— (¢ 4D i) 0,

by primitivity of ®,,, and taking now the limit for N — oo, we find k(¢)*®,, = (1—¢")"'®,,,
whence K, (q)* ®, = (¢)n_1Pn. O

Taking into account the fact that ({),—1 = n, we obtain Klyachko’s result.
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Corollary 5.13 Let ¢ be a primitive nth root of unity. Then, the element k,(() of C[S,]
defined by

0= L3 e,

UESn

is a Lie idempotent.

Note 5.14 The previous results show that it is natural to define noncommutative sym-
metric functions of the alphabet ﬁ A by setting

1 K, (q)
S, (—— A) = )
(1 —q ) (q)n
It can be shown that |
lim (1—¢ )‘I’n(ﬁ A) = ®,(A),

which shows that the two families of noncommutative power sums are closely related.

Recall that the Witt numbers £, (k) are defined by

Ca(k) = = 37 pu(d) k7

n d|n

p being the usual Mobius function. We can then give the following simple characteri-
zation of Lie idempotents of the descent algebra in terms of noncommutative symmetric
functions.

Theorem 5.15 A symmelric function J,, € Sym,, is the image under o of a Lie idem-
potent of X, tff it has the form
Jn = i\Iln + F,

n
where F, € L*(V) = [L(V), L(V)]. Thus, the Lie idempotents form an affine subspace
in X,. The dimension of this affine subspace is dy =1 forn =1 and d,, = (,,(2) — 1 for
n > 2.

Proof — This will once more follow from Proposition 5.2. First, we see that W1+ W, =0
when ((I) > 2. Hence F, * ¥, = 0 for every F,, € L*(¥) N Sym,,. Since F,, is primitive,
we also have
U, «F,=p[(M-1)@d(1)*(F, @14+ 1R F,)]
=ul0+1® (1) *x F,)]=nkF,

since ¢/(1) has no term of weight zero. So, for F,, € L*(¥) N Sym,, and J, = %\I/n + F,,
one has ¥, xJ, = nJ, and J, * ¥, = ¥,,, which shows that J, is the image of a Lie
idempotent.

Conversely, suppose that ¥, x.J, = nJ, and J,*¥,, = ¥,.. Defining F, by the relation
J, = %\Iln + F,, we see that F,, must satisfy F, * ¥,, = 0, so that F,, must be of degree
> 2 in the generators Wy, and that ¥, * F,, = n F,, which implies that £, is primitive.
Indeed, Proposition 5.5 shows that

A(nFn) = AV, xAF, = (\Iln®1—|—1®\pn)*( Z F(1)®F(2) )
(F)
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=V, F,)®R14+1® (Y, * F,)
since any element G € Sym satisfies AG =GR 1+1QG+ 3, P, ® Q;, where P; and );
are of weight > 1.

The formula for the dimension follows from the Poincaré-Birkhoff-Witt theorem ap-
plied to the Lie algebra L(V) endowed with the weight graduation. If h, := dim L,(¥),
where L, (W) is the subspace of elements of weight n, then

1—t < 1 )h"
1—-2t S \l—t)

Taking logarithms and applying M6bius inversion, one finds h,, = £,(2). a

Note 5.16 The fact that the dimension of the homogeneous component L, (V) of weight
n of the Lie algebra L(W¥) is [,,(2) for n > 2 can be combinatorially interpreted. For n > 2,
there is an explicit bijection between L, (¥) and the homogeneous component L, (a,b) of
degree n of the free Lie algebra L(a,b) on a two letters alphabet. This bijection follows
from Lazard’s elimination theorem (see [Bo]) which says in particular that the K-module
L(a,b) is the direct sum of two free Lie algebras

L(a,b)=Ka® L({(ada)"-b, n>0}) .

The desired bijection is obtained by considering the Lie morphism from L(W¥) into L(a, b)
mapping ¥, onto (ad a)” - b for n > 1.

Let us define a quasi-idempotent of a K-algebra A as an element © of A such that
7w -7m = k7 for some constant £k € K. Using this terminology, we can restate Theorem
5.15 in the following way.

Corollary 5.17 Let w, be an homogeneous element of Sym,. The following assertions
are equivalent:

1) 7, is the image under o of a Lie quasi-idempotent of %,,.
2) w, belongs to the Lie algebra L(W).

3) w, is a primitive element for A.

5.3 Eulerian idempotents

The generating series corresponding to other interesting families of idempotents also have a
simple description in terms of noncommutative symmetric functions. Consider for example
the coefficient of " in the expansion of o(1), that is, the series

(st - x e

Y

k>1 n>r
where, using again the notation # (1) =iy -+ i,
I
pn_ 1 ¢
" I=n(D)=r (1)



It can be shown that the elements el’l = a=(E) are idempotents of ¥,,, called Eulerian
idempotents. They have been introduced independently by Mielnik and Plebariski [MP]
as ordering operators acting of series of iterated integrals and by Reutenauer (¢f. [Re86])
as projectors associated with the canonical decomposition of the free associative algebra
interpreted as the universal enveloping algebra of a free Lie algebra. They also appear
in the work of Gerstenhaber and Schack (¢f. [GS1]), where they are used to provide a
Hodge-type decomposition for the Hochschild cohomology of a commutative algebra.

Here is a simple argument, due to Loday (¢f. [Lodl] or [Lod2]), showing that the el’]
are indeed idempotents. Starting from the definition of EI, i.e. o(1) = exp B, we have
for any integer p

[1]\k
(1) = explp ) = 30 EEE = 5 (3

k>0

(setting B! = 1). Now, denoting by SP! the term of weight n in o(1)?, that is

= s

[Z|=n,£(1)<p

we have

Sel = pEM 4+ p’EP 4 - 4 pr B (84)

so that the transition matrix from the ST[f] to the ET[Lj] is the Vandermonde matrix over
1,2,...,n, and hence is invertible. Using the easily established fact that

57[59] " 57[3] — 57[1pq] (85)

(see below), one deduces the existence of a decomposition EM x EUl = Y q.. EIm
Substituting this relation in (85) by means of (84), one obtains that the coefficients a;jn,
must satisfy the equation
> P aijm = (pg)"
1<i,j<n
whose only solution is a;;,, = 0 except for : = 7 = m in which case a;; = 1. Note also
that equation (84) with p = 1 shows that the sum of the el is the identity of ¥,, so that

the el*l form a complete family of othogonal idempotents.

Equation (85) is an instance of a quite general phenomenon. Indeed, in any Hopf
algebra A with multiplication g and comultiplication A, one can define Adams operations
PP by setting ¥F(x) = p, o AP(x) (see [GS2] or [Lod3]). When we take for A the alge-
bra Sym of noncommutative symmetric functions, these Adams operations are given by
YP(F) = [o(1)?] * F. Indeed, using Proposition 5.2, we have

[o(D) ]+ F = pp[(0(1) @ --- @ (1)) ¥ APF] = p, 0 AP(F) = ¢*(F)

since o(1) is the unit element for *. This shows that o(1)? % ¢(1)? = o(1)?, which is
equation (85). In this particular case, the Adams operations can be interpolated into a
one-parameter group : for any scalar z # 0, one can define ¥*(F) = o(1)* * F.

;From (85) we see that the SI¥ generate a commutative *-subalgebra of Sym,, which
is of dimension n according to (84). We shall call it the Fulerian subalgebra and denote
it by E,. The corresponding subalgebra of ¥, will also be called Eulerian, and will be
denoted by &,.
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Example 5.18 ;From (84) we have Sl x Ell = p' Ell 5o that the minimal polynomial
of Sl is flPl(z) := [Ti<ien(z — pi). In [GS1], Gerstenhaber and Schack proved directly
that the minimal polynomial of s, := a~*(SZ — SI) was f4(z — 2), and then obtained
the Eulerian idempotents by Lagrange interpolation, that is by setting

=TI i =2)7 (52 = A
ii

where \; = 2'—2. More precisely their idempotents are the images of those presented here
by the automorphism of Q[S,,] defined on permutations by ¢ — sgn (o)o.

5.4 Eulerian symmetric functions

The commutative ribbon Schur functions are known to be related to the combinatorics of
Eulerian and Euler numbers. These numbers count sets of permutations with constrained
descents. To such a set, one can associate the sum of its elements in the descent algebra,
and interpret it as a noncommutative symmetric function. In fact, most of the formulas
satisfied by these numbers and their commutative symmetric analogs are specializations
of identities at the level of noncommutative symmetric functions.

5.4.1 Noncommutative Eulerian polynomials

Let us recall that the Eulerian number A(n, k) is defined as the number of permutations
in S, with exactly k — 1 descents. Thus, A(n,k) is equal to the number of standard
ribbon-shaped Young tableaux, whose shape is encoded by a composition with exactly &
parts, so that A(n, k)/n! is the image by the specialization S; — 1/¢! of the symmetric
function (introduced by Foulkes in [F2]) :

A(n, k)= > R;. (86)
[I|=n
oI)=k
These symmetric functions remain meaningful (and can in fact be better understood) in
the noncommutative setting.

Definition 5.19 Lett be an indeterminate commuting with the S;. The noncommutative
Eulerian polynomials are defined by

A1) = kz_j  ( mz_j Br)= Y A(n k)t (87)
ﬁ([)_—nk =t

One has for these polynomials the following identity, whose commutative version is
due to Désarménien (see [De]).

Proposition 5.20 The generating series of the A,(t) is

Aty = S A ) =1 —t) (1 —to(l—1)"" . (88)

n>0
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Proof — Using Proposition 4.13, it is not difficult to see that

n— Sn Sn
Z tg([)R — ¢ (1 1)®(n—1) < 1 O>®( 1) ( : ) — (1=t ¢ ®(n—1) ( : )
= Y =t (1=t t) |

[I|l=n Sl" Sl"

which means that
SO R =Y (1)t DD gl (89)
[I|=n [I|=n

Hence,

Aty = > PO R, = S (- §II=AD 10 g1

Loy Y toy .
An=Y (;5) [ u-vs) =% (+5) (0-n-1)
i>0 L=t i>1 i>0 =1
t -1
= (1_1T(U(1_t)_1)) :
O
Let us introduce the notation A*(t) = (1 —¢)~" A, (t). Using (89), we see that
+ )
A(t) = S A=Y <—) st
n>0 1 =1
This last formula can also be written in the form
1 k
Aty = > (—) (Si+So+Ss+--)F (90)
& \T
o 1 A1)
Tie) & oo o

We can also prove equation (90) directly as follows. Writing ¢/(1 — ¢) = «, the right-

hand side is
Z SI xﬁ([) — Z Iﬁ([) ( Z RJ)
I

T J<I
— Z Ry ( Z 21D ) = Z RJIK(J)(1+$)IJI—K(J)
J J<I J
(using the bijection between compositions I of n = |J| and subsets of {1,2,...,n — 1}

and the fact that reverse refinement corresponds to inclusion)

+4(J)

1 \n—4J .
ZXJ:RJ (1—t)f<J>'<1—t) RIS

n>0

It is not difficult to show, using these identities, that most classical formulas on Eule-
rian numbers (see e.g. [FS]) admit a noncommutative symmetric analog. Several of these
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formulas are already in the literature, stated in terms of permutations. The following
ones have a rather simple interpretation in the noncommutative setting : they just give
the transition matrices between several natural bases of the Fulerian subalgebras.

First, expanding the factors (1 —¢)~("*1) in the right-hand side of (91) by the binomial
theorem, and taking the coefficient of ¥ in the term of weight n in both sides, we obtain

:fj(”“) (n,k—1) | (92)

=0

an identity due to Loday, which shows in particular that the noncommutative Eulerian
functions also span the Eulerian subalgebra. Similarly, one has

A(
(1_ n—}—l_ Ztk

k>0

so that

— Y -1y (n ! L) ste=il (93)

1=0 L

Another natural basis of the Eulerian subalgebra E,, is constituted by the elements

ME = 3 g (94)
[I|l=n(I)=k

Indeed, putting @ = t/(1 —t), we have

= s S A () S A

k>0 n>0

so that

doow Z (1+2)" An,j) . (95)
k=1 7=1
Another kind of generating function can be obtained by writing
oy =1 (st a0 = X (1) i
k>0 k
Comparing with o(1)* = exp (z EM), it follows that
SR EH - s (T g
k=1 k=1 k

One obtains similarly the following expansion of the E" on the basis A(n,7), which is a
noncommutative analog of Worpitzky’s identity (see [Ga] or [Lodl]) :

T

S oFEH = 2:; (r —ot 1) A(n,i) . (97)

k=1 n
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5.4.2 Noncommutative trigonometric functions

The Euler numbers (not to be confused with the Eulerian numbers of the preceding
section), defined by

Z E, o tan x + sec

n>0 n!
can also be given a combinatorial interpretation (see [An]) which is again best understood
in terms of symmetric functions (see [F'1], [F2] or [De]). As shown by D. André, F, is equal
to the number of alternating permutations of S, (¢ is alternating if o1 < 02 > 05 < ...).
An alternating permutation is thus the same as a skew standard tableau of “staircase
ribbon” shape, i.e. a ribbon shape indexed by the composition Cyy, = (2F) = (2,2,...,2)
if n =2k or Cypyy = (2%1) = (2,2,...,2,1) if n = 2k + 1. So the staircase ribbons provide
symmetric analogs of the F, /n!. As in the preceding section, it is possible to replace
the commutative ribbons by the noncommutative ones. In fact, most of the important
properties of the tangent numbers FEy;11 are specializations of general identities valid for
the coefficients of the quotient of an odd power series by an even one. Such identities can
also be given for noncommutative power series, but one has to distinguish between right
and left quotients. The existence of a noncommutative interpretation of trigonometric
functions has been first observed by Longtin (¢f. [Lon], see also [MaR]).

Definition 5.21 The noncommutative trigonometric functions associated to the noncom-
mutative generic series o(l) = 3,50 Spt" are

i>0 i>0
SEC =(COS)™", TAN,=SIN-(COS)™", TAN,=(COS)™'-SIN .
Definition 5.22 The noncommutative Euler symmetric functions are defined by
T =Ry o Tiha = Raany o Tily = Renyy -

These symmetric functions give, as in the commutative case, the expansion of the
secant and of the tangent :

Proposition 5.23 One has the following identities :

SEC =1+ > T, (98)
n>1
TAN, = Y. 1., TAN, = Y 10, . (99)
n>0 n>0
Proof — The three identities being proved in the same way, we only give the proof for

the SEC function. In this case, it is sufficient to prove that

(Z (-1)2’322») (1+ 3 RQJ) =Y (-1)'Ryu + Y. (=1)'Ry Ry =1. (100)

i>0 i>1 i>0 i>0,5>1
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But, according to Proposition 3.13,

Ry 9i + Ryjp29i-1 when j > 2

R ZR j —
n { Rai2 + Raiyo when 7 =1

for ¢ > 1. Hence the product in the left-hand side of relation (100) is equal to

Z Rzz +ZR2J+Z R222+R22+2)+ Z (R222J+R22+22J 1),

>0 i>1 >1 1>1,7>2

which can be rewritten as follows

I — Ry + Z Ry + Z R?z? + Z RQZ 20— Z (_1)2'}%%2]

7>1 >1 1>1,7>2 1>2,7>1
=1-FRy + Z Ry + Z Rm 20— Z (_1)2'}%%2]
i>1 1>1,7>1 1>2,7>1
- 1 — RQ + Z RQ] — Z R272] - 1 .
i1 i1

It can also be convenient to consider the symmetric hyperbolic functions

COSH=Y_ Sy, SINH=Y Syu, SECH=(COSH)™

i>0 i>0
TANH, = SINH - -SECH and TANH,=SECH- -SINH .

Then, arguing as in the proot of Proposition 5.23, one can check by means of Proposition
3.13 that one has the following expansions :

SECH =1+ Y (—1)" Ty,

n>1

TANH = Y (-1)"T{,, and TANH,= Y (-1)"T{),, .

n>0 n>0

As an illustration of the use of these functions let us consider the sums of hooks
n—1
H, = E Ryx oy (101)
k=0

In the commutative case these functions appear for example as the moments of the sym-
metric Bessel polynomials (see [Le], [LT]). Here, we compute the inverse of their gener-
ating series :

Proposition 5.24 Let H = 3,5 H, with Hy = 1. Then, one has

H'=1-Y (-1, =1 -TANH, .

n>0
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Proof — Since | —-TANH, = COSH™*(COSH — SINH ), the identity to be proved is

equivalent to '
( Z (_1)2Ri) (1‘|‘ Z le,l) = E Ry; >

i>0 k>0,0>1 j>0

which can be rewritten as

YS(=D'Ri+ Y (-)'RiRug= Y R (102)

i>0 k,i>0,0>1 j>0
But Proposition 3.13 shows that

Rk + Riyy10—1;  when k>1

R; Ryx ;=
18 { R+ Ry when £ =0

Hence the left-hand side of equation (102) can be rewritten in the following way

SR+ Y. Rug+ Y (—D) (Ru+Ri)+ Y. (=1 (Rigry+ Rigrar1y)

i>0 £>0,0>1 iI>1 ik, I>1

which is itself equal to

SR+ Y R+ Y. () R+ Y (—1) Ry

i>0 £>0,0>1 i>1 i>1
. 1
+ (—1)2 R’i,lk,l + Z (—1)2 Ri71k7l .
ik I>1 i>2,k>0,0>1

Using now the fact that one has

> (=1)" Riyy = — > Ry

iI>1 k>1

and

Z (_1)iRi,1k,l: Z (_1)iRi,1k,l_ Z Rﬂv,m

ik, >1 i>2,k,1>1 E>2,0>1

it is easy to see that this last expression is equal to

1= > Rypr+ >, Ri+ > R+ >, (1) Ry + > (—1)' Ry = > Ry .

i>0 I>1 >1 iI>1 i>2,1>1 i>0

5.5 Continuous Baker-Campbell-Hausdorff formulas

In this section, we shall obtain the main results of [BMP] and [MP] by means of compu-
tations with the internal product and noncommutative Eulerian polynomials. To explain
the method, we first treat the problem of the continuous BCH exponents (¢f. Section
4.10).

For us, the problem is to express ®(¢) in terms of the U!. The starting point is to
write

B(t) = ®(1) * o) (103)



using o(t) as a reproducing kernel, and expressing it in the form

o) =1+ Y [ty [T g ln)

r>1

The problem is thus reduced to the computation of ®(1) % ¢(¢,)- - (t1), which is given
by the following lemma:

Lemma 5.25 Let Fi,..., F, be primitive for A. Then,

O(1)* (Fy---F) =Y i (;(—0)1)‘ Foay  Fogry -

That is, if ¢, = el = a=1(®, /1),
O(1) x (Fy--- ) = (Fy--- ) - ¢,

the right action of a permutation o € S, on Fy---F, being as usual (Fy---F,) -0 =
Foqy + For).-

Proof — Since ®(1) = log(1 + (o(1) — 1)),

and by Proposition 5.2
(o) = 1w (R ) = e (o) = )% 3 FyoooFy @ By Fug,

where the sum runs over all decompositions {1,....r} = A;U---U Ay into disjoint subsets
A; ={a} <...<a,}. This expression is equal to

Yo By Fogy s

so that

O(L)* (Fy--F) = (Fy--- F) - Y

Using the step function

and the notations

O, =00t —1t;), Op=0,24+05+-+0,_1,,
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formula (71) can be rewritten in the form of [MP]

Z/ /dt1 ) (T(;Tl) 11/;(t7,)---¢(t1) (104)

r>1

which can be converted into a Lie series by means of Dynkin’s theorem, since we know
that ®(¢) is in the Lie algebra generated by the W;, that is,

Z/ /dtl ) (T(;Tl) T wwy, (0

r>1

where {(t,) -+ 6(0)} = ad g(t,) - ad $(t2) (1),

Looking at the proof of Lemma 5.25, one observes that the argument only depends of
the fact that ®(1) is of the form g(o(1) — 1), where g(t) = 3,50 gnt” is a power series in
one variable. More precisely, one has the following property, which allows for a similar
computation of any series of the form g(o(t) — 1).

Lemma 5.26 Let g(t) = 3,50 9.1" € K[[t] be a formal power series in one variable,
G(t) := glo(t) = 1) = X0 Gat", G, € Sym,,, and v, := a(G,) € X,. Then, if the

series Fy, ..., F, are primitive elements for A,

G(1)* (Fy - F,) = (Fy - F.) -7, .

O
Using o(t) as reproducing kernel as in (103), one obtains:
Corollary 5.27 The cxpression of G(t) in the basis W' is given by
tr—1
=3 [ [T () wn)
r>0
O

In particular, with ¢g(t) = (1 4 ¢)*, one finds

— 13 [ [ e (00 () - (106)

r>1 k>0

where the el are the Eulerian idempotents. Using the expression of Eulerian idempotents
on the basis of descent classes and changing the variables in the multiple integrals, one
can as above get rid of the summations over permutations by introducing an appropriate
kernel.

As explained in [BMP] and [MP], such a transformation is always possible, and to find
the general expression of the kernel associated to an arbitrary analytic function ¢(t), we
just have to find it for the particular series
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since by the Cauchy integral formula

G(t) = Lf;:o Z_(Ldz )

27 o(t)—1)

Using Corollary 5.27, we have

F,(t) = “ar T (L) - (1
()= 3 [t [ ot vit)
where the v, = a(F,,) are given by
A, (L
SNF., = | _ 1 1 =3 (z+1)
S0 w—(e()-1) z+1 1—(z+1)te(l) S1—(z+ 17
B 24 1\ 1 B (z 4 1)HI=AD-1)
_%%J( z ) An <Z+1) _EI: ZII+1 By

(by formula (91)). Thus,

1 - (o2
T > (z+ )0
UEST
and . .
E) =Y [ [ dnedte —z(z 41 b(t) - (n)
oo 0 z
so that |
Glt) = 5— }ézo 9(2)F.(t)dz
t t
=X [ [t Kolg)(t 1) k) (h)
r>0 0 0
the kernels being given by
orogl®)

(z+1)%dz . (107)

271 Jz=0 2711
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6 Duality

As recalled in section 2.1, an important feature of the algebra Sym of commutative sym-
metric functions is that it is a self-dual Hopf algebra (for the coproduct A and the standard
scalar product). Moreover, the commutative internal product * is dual to the second co-
product ¢ : F' — F(XY), and the two bialgebra structures are intimately related (e.g.
each coproduct is a morphism for the product dual to the other one).

Such a situation cannot be expected for the noncommutative Hopt algebra Sym. A
reason for this is that A is cocommutative, and cannot be dual to a noncommutative
multiplication. One has thus to look for the dual bialgebra Sym™ of Sym. It follows from
a recent work by Malvenuto and Reutenauer (¢f. [MvR]) that this dual can be identified
with another interesting generalisation of symmetric functions, that is, the algebra ngm
of quasi-symmetric functions, whose definition is due to Gessel (see [Ge]).

6.1 Quasi-symmetric functions

Let X = {21 < 23 < 23 < ...} be an infinite totally ordered set of commuting indeter-
minates. A formal series f € Q[[X]] is said to be quasi-symmetric if for any two finite
sequences y; < Yz < ... < yr and z1 < 29 < ... < z; of elements of X, and any exponents
i1,%2, ..., € N, the monomials y! y% - - yff and 291 22 ... Z;f have the same coefficient
in f.

The quasi-symmetric series (resp. polynomials) form a subring denoted by ngm
(resp. Qsym) of Q[[X]], naturally graded by the graduation (Qg;mn) (resp. (Qsym,))
inherited from Q[[X]]. A natural basis of Qsym,, is then provided by the quasi-monomial
functions, defined by '

M= > wi'ylwd
Y1 <Y2<...<VYg
where [ = (1,...,1) is any composition of n. In particular, the dimension of Qsym,, is
271 = dim Sym,. Another convenient basis, also introduced in [Ge] is constituted by
the functions
Fr=> M,
I
which we propose to call quasi-ribbons.

Let Y be a second infinite totally ordered set of indeterminates and denote by X+Y
the ordered sum of X and Y, i.e. their disjoint union ordered by z < y for x € X and
y € Y, and by the previous orderings on X and Y. Using the standard identification
Qsym ® Qsym = Q@m(X,Y) (series which are separately quasi-symmetric in X and
Y) defined by f ® g = f(X)g(Y), Malvenuto and Reutenauer (¢f. [MvR]) defined a
coproduct v on ngm by setting

1(f) = f(X+Y) (108)

for f € ngjm They show that le;m becomes then a Hopf algebra, with antipode v
given by

v(Fr) = (=) Fpe (109)

where C'™ is the conjugate composition. These operations, when restricted to Sym C

Qsym, coincide with the usual ones. That is, when f is a symmetric function, v(f) =

f(X+Y)and v(f) = f(—X).
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As shown in [Ge], the other coproduct 6 of Sym can also be extended to Q@m Define
X xY to be XY endowed with the lexicographic ordering, i.e z1y; < xays iff 1 < x5 or
r1 = x5 and y; < yo. The extension of § to Qsym is then defined by setting

8(f) = fF(XxY)

for f € Qsym.

6.2 The pairing between Sym and Qsym

It has been shown in [Ge] that the dual space Qsym’ endowed with the product adjoint to

0 is anti-isomorphic to the descent algebra ¥.,,. The dual Hopt algebra Q@m* of the whole
algebra of quasi-symmetric series has been recently identified in [MvR]. If one introduces
a pairing between Qsym and Sym by setting

(My, S7) =615 (110)

for every compositions I,.J, the results of [Ge|] and [MvR] which are relevant for our
purposes can be summarized in the following theorem.

Theorem 6.1 1. The pairing (110) induces an isomorphism of Hopf algebras, given
by (S7)* — My, between the dual Sym* of Sym and the Hopf algebra Qsym of
quasi-symmetric series (or equivalently, an isomorphism between the graded dual
Sym™" and the polynomial quasi-symmetric functions Qsym). More precisely, one
has for f,g € Qsym and P, € Sym

(f, PQ)={(1f, P2Q) (111)

(fg. P)=(f©g,AP) (112)
(f,@wP)={(vf,P). (113)

2. Moreover, the coproduct 6 of ngm is dual to the internal product * of Sym:
(0f , PRQ)=(f, P+Q) . (114)
3. The quasi-ribbons are dual to the ribbons, i.e. (Fi, Ry) = 61;.
4. The antipode v of Qsym is given by vFg = (=D Fon.
5. Let 7 be any permutation with descent composition D(7) := ¢(Des7) = C. Then,

oFc = Z FD(r) ®FD(0) . (115)

OT=T

6. If g € ngm is a symmetric function, then

(g9, Rc) = (g, Re) (116)

where, in the right-hand side, Re stands for the commutative ribbon Schur function.

In other words, g = Y. (9, Rc) Fe.
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The pairing (110) can be better understood by means of an analog of the classical
Cauchy formula of the commutative theory. Let A be a virtual noncommutative alphabet,
and X a totally ordered commutative alphabet as above. Then, one can define the
symmetric functions of the noncommutative alphabet XA by means of the generating

series
—

o(XA. )= ] o(A ), (117)

rzeX

the above product being taken with respect to the total order of X. The expansion of
this infinite product leads at once to the relation

AXAD) = 3 M) S(A) (118)

Expanding each S? on the ribbon functions, one obtains the following identities :

A(XA 1) = 3 M) (2 Ro)) = 32 (3 Mi(X)) Ro(4) = 3 Fo(X) RaA).

J<I I-J
(119)
More generally, for any basis (Uy) of Sym with dual basis (V;) in Qsym, one has

o(XA,1) Z Vi(X . (120)

This property can be used to describe the dual bases of the various bases of Sym. Also,
the proof of Proposition 5.10 can be interpreted as a computation of the specialization
X ={1,q,4¢% ...} of the quasi-symmetric functions M; and FJ.

66



7 Specializations

In this section, we study several interesting cases of specialization of the symmetric func-
tions defined in Section 3. In particular, we exhibit two realizations of the specialization
Ar = 0 for & > n by functions of n noncommuting variables which are symmetric in an
appropriate sense. We also consider extensions of the theory to skew polynomial rings,
and another kind of specialization associated with a noncommutative matrix. The use
of these matrix symmetric functions is illustrated by some computations in the universal
enveloping algebra U(gl(n, C)).

In some cases, it is of interest to consider specializations of general quasi-Schur func-
tions. On these occasions, the word specialization means ‘specialization of the free field
K £S5 %= K< 50,51, S2, ... #’, that is, a ring homomorphism 7 defined on a subring
R, of K £ S # containing Sym such that any element of R, not in the kernel of n has an
inverse in R,. For more details on the category of fields and specializations, see [Co].

7.1 Rational symmetric functions of n noncommutative vari-
ables

We fix n noncommutative indeterminates =y, z2, ..., z,, the variable ¢ still being a com-
mutative indeterminate. We set x = ¢!, In the commutative case, the quasi-determinant

r ... 1

T T, X
2 2 2

] x

reduces to the polynomial
(z—a1)(x—a2) ... (x—a,)=t"" (L —ta) (L —taz) ... (1 —ta,).

In the noncommutative case, basic properties of quasi-determinants imply that g(x) is
again a monic (left) polynomial of degree n, which vanishes under the substitution « =

z;, 1= 1,..., n. In fact, according to a theorem of Bray and Whaples [BW], if the z; are
specialized to n pairwise nonconjugate elements ¢; of a division ring, then the polynomial
|
¢ Cn T
g(.I) = cf ci x?
o
is the only monic polynomial of degree n such that ¢g(¢;) =0, ¢ = 1,..., n. Moreover,

g(z) has no other (right) roots, and any polynomial A(x) having all the ¢; as roots is right
divisible by g¢(z), that is, h(z) = g(x) g(z) for some polynomial g.

Thus we are led in the noncommutative case to the following definition.
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Definition 7.1 The elementary symmetric functions Ag(xq,...,x,) are defined by

r ... 1

Ty ... x, 1
S Apley, .., x) (=) =2 w1777
k20 f f f

In other words we specialize the symmetric functions of Section 3 by setting

1 ... 1 "
1 ... x, 1
A—t) = o AU S Al I (121)

The expansion of the quasi-determinant A(—t) by its last row gives the following result.

Proposition 7.2 For 0 < k < n, we have

1 . 1 1 1!
x?f—k—l o n—.k—l ok .—k
Ap(@1,. . ) = (—1)k_1 x?—kﬂ o xg—k-l—l *fl. T xn.
w,,lz'_l wg_l xl—l xz—l
and Ag(x1,...,2,) =0 for k > n.
Example 7.3 For n = 2, we obtain
I U R - o
Ai(ay, 22) = 22 [ e = (a3 —ai)(ez — 1), (122)
_ L1 22 1 - (.2 -1 -1 ¢
As(z1,22) = 22 P = (25 —zqxa)(a] 2y — 1) . (123)

It is not immediately clear on the expression (123) that Ag(zq, x1) = Ag(xq, x2). How-
ever, one has the following proposition.

Proposition 7.4 The Ay(x1,...,x,) are symmetric functions of the noncommutative
vartables xy, xa, ..., x,, that is, they are invariant under any permutation of the xy.

Proof — By Proposition 2.7, a quasi-determinant is invariant by any permutation of its
columns. Thus, the generating series (121) is a symmetric function of #1, ..., z,. Hence,

its coefficients are symmetric. O

We shall now compute the complete symmetric functions Si(z1, ..., ,).
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Proposition 7.5 For every k,n > 0, we have

1: 1 IO O
Si(xy, ... x,) = e o : : . 124
(e =] e e || E (124)

1
Zkt1 - T R
xy o xr k+1 ! n

Proof — Denote temporarily the right-hand side of (124) by Si(z1,...,z,). To prove
that Sg(z1,...,2,) = Sg(z1,...,,), it is sufficient to check the identity

51($1,---,$n) Eg(l’l,...,l’n) En_l(;l:l,...,xn) _‘?n(l’l,...,l’n)‘

So($1,...,$n) gl(l’l,...,l’n) §n—2(~1;17---7$n) §n—1(x17---7$n)
0 So(l’l,...,l’n) Sn_g(l’l’...,.ﬂn) Sn_g(.fl,...,fl?n)
0 0 §0(~1;17---7$n) gl(.ﬂl,...,l’n)

= (=1 A (21,0, 2,) .

This will follow from a slightly generalized form of Bazin’s theorem for quasi-determinants.

The computation is illustrated on an example. Take n = k£ = 3 and denote for short by

|¢1i2[3]| the quasi-minor _

ry oz

|611,2| = fCZf fCZQQ CC?
xlf’ :l:é3

Then one has

($1,$2,$3) §_2($1,...,$n) ES($17$27x3 |01| |01| |01|
(1173327503) 51(551,12,13) 52(17171727353) = |01| |01| |01| |01|_1
0 SO(I1,$2,$3) 51(5171,562,353) 0 |01| |01|

235] [125) [015]
= | (23] 12 [OIE]| 01" = |34(E0|[2B4 [ 012 012"
233 [123] |01

~—

Sy
So

= |12||@12|_1 = A3($1,$2,I3) .

Here, the second equality is obtained by multiplying the columns of the quasi-minors from

the right by suitable powers of x1, x5, 3. The third equality follows from Theorem 2.20.
O

More generally, one can express a quasi-Schur function Sy(zi,...,z,) as the ratio of
two quasi-minors of the Vandermonde matrix. This may be seen as a noncommutative
analog of the classical expression of a Schur function as a ratio of two alternants.

Proposition 7.6 (Cauchy-Jacobi formula for quasi-Schur functions)
Let I = (i1,...,%y) be a partition of length m < n. Set

($1y0..58,) = (0,1,...on—=1)+(0,...,0,00,. .. ,0m) ,
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Then,
-1
zh zh
1 s . .
Ty T}
o m—1 . . tn—m41 [
SI(’C17 7;ETL) el (—1) : xl ;Enn m+1
S E .
7" Ty :
Proof — The proof is similar to the proof of Proposition 7.5. O

Of course all the formulas of Section 3 may be applied to the symmetric functions of
T1,...,x, defined in this section. This is worth noting since a direct computation may
be quite difficult even in the simplest cases. For example it is a good exercise to check by
hand the formula

(23 —2}) (22— 1) (25 —2]) (22 —21) 7" = (23— a}) (22 —21) 7 +(2y —wizo)(ay 22— 1) 7",

that iS, Sl($17 $2)2 = SQ($17 $2) + Ag(fﬂl, :CQ).

7.2 Rational (s,d)-symmetric functions of n» noncommutative
variables

We present here a natural extension of the case studied in Section 7.1. We fix in the same
way n noncommutative variables x,...,z,. Let K be the skew field generated by these
variables, s an automorphism of K and d a s-derivation of K. Consider an indeterminate
X such that
Xk=s(k)X +dk)

for every k € K. The polynomial algebra obtained in this way is denoted K[X,s,d]. Lam
and Leroy have defined in this framework a notion of Vandermonde matrix associated
with the family (x;) which allows to extend the results of Section 7.1 to this more general
context. Let us first give the following definition.

Definition 7.7 ([LL]) Let k be an element of K. Its (s,d)-power P, (k) of order n is then
inductively defined by

Pok)=1 and Pur(k) = s(Po(k)) k + d(Po(k)) .

This definition is motivated by the following result. Let f(X) = 5, f; X' be a
polynomial of K[X,s,d]. Then there exists a unique polynomial ¢(¢) such that

F(X) = () (X —a) + 3 i)

This shows in particular that 3°; f; P;(a) is the good “evaluation” of f(X) for X = @ and
hence that P,(a) really plays the role in the (s, d)-context of the n-th power of a.

We can now introduce the elementary (s,d)-symmetric functions (defined in [LL])
which are given by the following specialization of the series A(%).
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S OAC @y, ) (<)

k>0

1
T

Py(xy)

P(a1)

Definition 7.8 The elementary symmetric functions A;:’d)

Ty

Py(z,)

Po(e)

(Il,...

, &) are defined by

"
tn—l
tn—?

Expanding the quasi-determinant by its last column, we get the following result.

Proposition 7.9 For every k € [0,n], we have

L/\E{;&d)(ttl, Ce

and Agf’d)(:cl, .

1

(-1

, Tn)

Pu(ar)

Pn—k—l (CEl) e
Pn—k—l—l (CEl) e

Pn—k—l (In)
Pn—k—}—l (In)

Polen)

y&n) = 0 for every k > n.

1 1 -1
Poslzr) ... [Porle)
Poy(21) oo Por(en)

Example 7.10 For n = 2, we obtain the following elementary symmetric functions

A§S7d)($1, CL’Q) =

Ags’d) (.171, $2) =

Again, Proposition 2.7 shows immediately that the A}

1

€1

1

s(xy) 1 + d(zq) ‘5(;1:2) zo + d(;ﬁg)“

Z2

s(z1) @y +d(wy)  |s(xg) 2o + d(wz)\‘

(Svd)

under any permutation of the noncommutative variables z;.

(.Il,...

-1

(s(xg) xy — s(zy) 2y + d(zy — 1)) (22 —21) 7",

1 1
1
1 -
1 9

(s(x2) Tg + d(xa) — s(@1) 29 — d(z1) 27 22) (1 — 27" 29) ™"

,T,) are invariant

Using the same method as in Section 7.1, it is also possible to derive the following
quasi-determinantal expression of the complete (s, d)-symmetric functions.

Proposition 7.11 For ecvery k > 0, we have

S]£57d)($1, e

1

£

L) =

P, (”01)
Pn—l—k—l (”01)

! 1
Ty 1
Pn—Q(In) :
P,_q(:
Pn—l—k—l(:cn) l(rl)
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We mention that there also exists a (s, d)-version of the Cauchy-Jacobi formula 7.6,
obtained by substituting the (s, d)-powers Pj(z;) to the ordinary powers 7.

Let us now define the (s, d)-conjugate k' of k € K by l € K as follows
K =s(DkI™ +d)17" .

We then have the following result (¢f. [LL]) which shows that the defining series of the
elementary (s, d)-symmetric functions can be factorized in K[X, s, d].

Proposition 7.12 Let (y;) and (z;) be the two families of elements of K defined by
1 . 1 1 . 1

1 Tk 1 T
ZEp = . : ’ Yk

Pes(z) ... [Poa(en) . Pe()

Then the following relations hold in K[X, s, d]

S A ey, o) (CX) = (X — ) o (X —ait) = (X —al) ... (X — i) .

k13
k>0

Proof — We shall only establish the first identity, the second one being proved in the
same way. Before going further, let us define the polynomial V (x4, ..., z,, X) of K[X,s,d]
as follows

1 1 1
Ve, ..., 2, X) = 1::1 1:: :
P.(z1) ... Pux,)

The desired relation will then follow from the following more explicit lemma.
Lemma 7.13 The following relation holds in K[X,s,d] :

Vi(ey, ..o xn, X) = V(g2 oo™ X ) (X —aq) .

bl n

Proof — Let us first recall the following formula which holds in K[X, s, d]
X" — Po(k) = (X" 4 o+ XV s(Pik) + .+ s(Po(k)) (X — k) | (125)
for every k € K. We also need the easily checked formula
(Paga(k) = Poga (1) (k = )" = KO0 (P (k) = P() (k= )7 + s(Pa(1) , (126)

which holds for every k.l € K. Let us now apply Sylvester’s noncommutative identity to
the quasi-determinant V (z1,...,z,, X) with the entry (1,1) as pivot. We get

1 1 1 1 ‘
T T
Ve, ...,xn, X) = : : ;
‘ 1 1 ‘ 1 1
P.(x1) |Pn(z2) P, (x1)
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which can be rewritten as

Ty — I T, — I X —x
Vien... e X) = Py(x2) jPQ(.:El) oo Py(zy) :—PQ(.I’l) X —:]DQ(.I’l)
P.(x3) = Po(z1) ... Pulzn)— Pu(x1) ‘X”—P—n(ml)‘

Using now relations (125) and (126) and basic properties of quasi-determinants, we obtain
that the last quasi-determinant is equal to

1 1 1
527 4 os(xy) Lo @i 4 os(a) X + s(xq)
ra(a2) ra(zy,) X2+ X s(x1) + s(Pa(z1)) (X — ),
(@) e (o) TP

where we set r;(z;) = L@ File) (Pi(z;) — Pi(z1)) (x; — x1)™ + s(P(P;(z1)) for every

J
2,7. Now, appropriate linear combinations of columns will cast this expression into the

required form. a

Turning back to the proof of Proposition 7.12, we see that it will follow from the last
lemma by induction on n. Indeed, the identity to be shown is a simple consequence of
the fact that (k)™ = k™ for every k,l,m € K. O

Example 7.14 For n = 2, we have in K[X, s, d]
X2 = AP (1, 20) X + AP (@1, 29) = (X — 251752) (X — 2g) = (X — a2271) (X — 1)
Thus, by expanding the right-hand side, one has

[Xg.Sd)(-fly T3) = a7 4 s(wg) +d(xg) = 23277 4 s(xq) + d(2q) ,

Tro—I

(s,d) _ T1—T _
Ay (xq, 20) = a2 2y = 1 .

More generally, one obtains in this way expansions of the quasi-determinantal formula
of Proposition 7.9 which look like the familiar commutative expression of the elementary
symmetric functions, especially in the case when d = 0.

7.3 Polynomial symmetric functions of n» noncommutative va-
riables

In this section, we fix n noncommutative indeterminates x1, ..., x, and we specialize
the formal symmetric functions of Section 3 by setting

Ap(z1,. . 2,) = Z Tiy Tiy oo Ty

21>22>>2k
That is, we take,
(—
A(t) = H (L+tar) = (T4 tay) (L +txr) (1 +tap_g) -+ (1 +tz1), (127)
1<k<n
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t being a commutative indeterminate. The generating series for the complete functions is
thus

—

ct)=A-=t)""= J[ (I—tap)™ =1 —ta) " (1 —taz)™ - (1 —tx,)”"  (128)

so that the complete symmetric functions specialize to

Sk(x1,. .., 2,) = E Tiy Tiy oo. Tip

i1 <ip<...<ig

The ribbon Schur functions then specialize according to the next proposition. We first
introduce some vocabulary. Let w = z;, ... z;, be a word. An integer m is called a descent
of wif 1l <m<k—1and 2, > t,41.

Proposition 7.15 Let J = (j1,...,jn) be a composition of m. The ribbon Schur function
Ry specializes to

Ry(xy,...,x,) = Z Ty oo Ty, (129)
the sum running over all words w = z;, ...x;, whose descent set is evactly equal to
{0+, o it Gk )

Proof — Denote temporarily by R; the polynomials defined by (129). It is clear that
they satisfy the two relations

Flk = A/\k(.fl, .. '7$TL) 5

Ry Rk = Rjorc + Ryx

But these relations characterize the ribbon Schur functions (see Section 3.2). Therefore
Ry = Ry(zy1,...,x,) for any composition .J. O

Example 7.16 Let X = {x1, x3, x3}. Then
Ao(X) =221 + 2321 + 2322,

2 2 2
So(X) =a] + w122+ vy 23+ 5 + 23 + 25
2 2 2
Rip(X)=axpai o120+ 221 23+ 232 + 321 23 + T2y 3 + 325 + T3 T2 T3,

2 2 2
Ruy(X)=zizo01+ 2501 + 123201 + 2020321 + 2521 + T 2302 + T2 2325 + 522 .

The functions defined in this section are not invariant under permutation of the varia-
bles x;. However, they are still symmetric, i.e. invariant under an action of the symmetric
group on the free algebra Z(X) different from the usual one. This action, defined in [LS2],
is compatible with Young tableaux considered as words in the free algebra. For various
applications such as standard bases or Demazure’s character formula see [LS3]. We recall
the algorithmic description of the action of simple transpositions.

Consider first the case of a two-letter alphabet X = {z1,22}. Let w be a word on
X. Bracket every factor x5 x; of w. The letters which are not bracketed constitute a
subword w; of w. Then, bracket every factor x; x; of w;. There remains a subword wj.
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Continue this procedure until it stops, giving a word wy, of type wy = ] z5. The image
of w under the transposition ¢ = 015 is by definition the word w? in which wj, is replaced
by w{ = zj 2}, and the bracketed letters remain unchanged.

Let us give an example, denoting for short w = z;, ...x;, by ¢1...2;. Choose
w=122212111121222.
The successive bracketings of w give
r2eEeneEeynL121)222,

and ws = 11222, Then w] = 11122 and w? = 122212111121122. Returning
now to a general alphabet X = {zj,z5...,2,}, one defines the action of the simple
transposition o; of z; and x;4; on the word w, by the preceding rule applied to the
subword w restricted to {z;, z;11}, the remaining letters being unchanged. For example
the image by o3 of the word w =2131421343 isw? =2131421243.

It is proven in [LS2] that w — w’ extends to an action of the symmetric group on
Z(X), t.e. that given a permutation p and a word w, all factorizations of y = oo’...0"
into simple transpositions produce the same word ((w?)?"...)°" denoted w*. We can now
state the following proposition.

Proposition 7.17 The polynomial symmetric functions defined above are invariant un-
der the previous action of the symmetric group.

Proof — By definition, for any word w and any permutation p, w* and w have the same
descents. Therefore the ribbon Schur functions are invariant under this action, and the
result follows from the fact that these functions constitute a linear basis of Sym:. a

Denoting by SYM(X,) the algebra of polynomial symmetric functions of X, =
{x1,...,2,}, one can see that the algebra Sym of formal symmetric functions can be
realized as the inverse limit in the category of graded algebras

Sym =~ lim SYM(X,)
with respect to the projections F'(x1,...,%p, Cpi1y- .-y Tpiq) — F(x1,...,25,0,...,0).
One can thus realize Sym as SY M (X), where X is an infinite alphabet. Note also that
the homogeneous component of weight k£ of SY M(X,,) has for dimension

dim SY My(X,) = > (k_.l)

1<i<n t

which is equal to the dimension of the space of quasi-symmetric functions of weight &
in n variables, and the duality between quasi-symmetric functions and noncommutative
symmetric functions still holds in the case of a finite alphabet.

Note 7.18 The ribbon Schur functions defined in this section are particular cases of
the noncommutative Schur polynomials defined in [LS2] as sums of tableaux in the free
algebra. However these noncommutative Schur polynomials do not belong in general to
the algebra (or skew field) generated by the elementary symmetric functions Ax(X).
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7.4 Symmetric functions associated with a matrix

In this section, we fix a matrix A of order n, with entries in a noncommutative ring.
Recall first that in the commutative case, one has

n

det(I+tA) = > Ap(a)t*, (130)
k=0
det( —tA)™ = Y Si(a)t*, (131)
k>0
d k-1 Q¢
— — (log (det(I —tA))) = > Ui(a)t (132)
dt k>1

where « is the set of eigenvalues of A. Formula (131) is commonly known as MacMahon’s
master theorem.

Replacing in (130) the determinant by a quasi-determinant, we arrive at

[+ tA];; = det(I + tA) (det(I +4%)) " = 3 Ay(a—a') (133)

k=0

where o — o' denotes the difference in the sense of A-rings of o and the set o' of eigenvalues
of A%. We decide to take identity (133) as a definition when the entries of A no longer
commute.

Definition 7.19 Let A be a matriz of order n (with entries in an arbitrary ring), and
a fized integer between 1 and n. The elementary symmetric functions Agp(oy) associated

with A (and ©) are defined by

+oo
|]—}—tA|“ = Z Ak(ai) tk .

k=0

The others families of noncommutative symmetric functions of A are defined accord-
ingly by their generating functions

Z Sk(ai)tk = |] — tA|i_il

k>0

S @) 5 = — Llog (17— 1Al |
1 dt

S Wil 157 = |1 — 1Al 11— 1A

k>1

The specializations of the elementary, complete, power sums (of first or second kind)
and ribbon functions are polynomials in the entries of A, which can be combinatorially
interpreted in terms of graphs.

Proposition 7.20 Let A be the complete oriented graph associated with the matriz A
(cf. Section 2.2). Then,

76



1. Sk(a;) ts the sum of all words labelling paths of length k going from i to v in A.

2. (=) Ayp(ay) is the sum of all words labelling simple paths of length k going from
i toiin A.

3. Ui(a;) is the sum of all words labelling paths of length k going from i to ¢ in A, the
coefficient of each path being the length of the first return to 1.

4. ®r(ay) is the sum of all words labelling paths of length k going from i to v in A, the
coefficient of each path being the ratio of k to the number of returns to .

N

Let I be a composition of k. Then (—1)"1)=1 Ry(«;) is the sum of all words labelling
paths of length k going from i to i in A such that every return to i occurs al some
length IT + ...+ I7 with j € [1,...,r] (where we set I~ = (I7);=1,).

Proof — The graphical interpretations of Ay and Sy follow from Proposition 2.4. The
interpretation of W, results then from the formula

k
U, = Z (—1)]_1j A]’ Sk_]' .
7=1

Similarly, the interpretation of @ follows from the formula

| &

Y Ay A

i14etij=k

Py = ; (=1

)

which is a particular case of Proposition 4.18. Finally, the interpretation of R; follows

from (63). O

Example 7.21 For a matrix A = (a,;) of order n = 3, we have
Al(al) = 51(041) = q’l(al) = (I)l(a1) =da1 ,

AQ(al) = 311(041) = —a12 21 — A130431 ,
Sa(a) = Ry(ay) = Gfl + ai2 a1 + a3 as; ,
Uy(ay) = Py(ay) = afl +2a12a01 +2aizas;

A3(Oé1) = R111(061) = a12 22 A1 + @12 G23 A31 + G13 G32 G271 + A13 A33 A37
Ss(a1) = Rs(ay) = Cl:fl + a11 @12 G21 + A11 @13 A31 + d12 A1 A11 + G12 G2 A2y
+aq2 ag3 asy + a3 a3q a1 + @13 asz Aoy + A3 a3z dsy
Us(ag) = Cl:fl + @11 a12a91 + a11 a1z azy + 2 a12 azy a1 + 3 a1z azg axn

+3 a2 ags asy + 2a13 a3y a11 + 3 a3 asg az + 3 a1z azzas;

3 .
Os(a) = aj; + = ar arz az + B ai1 a1z ds; + 3 G12 Q21 Q11 + 3 a1 Gz Aoy

2
+3aip az3as + 3 @13 a3y a11 + 3 a1z asy az + 3 a3 aszzas;

312(061) = —Q12 0310411 — Q12022 A1 — 12 G23d31 — (13031011 — G130d320d21 — G130A330431 ,

R21(041) = —a11 012021 — 11 G13 0431 — Q12 G d21 — G12 U23031 — G130d32 021 — (13033 G3]1 .
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Note 7.22 It follows from Proposition 7.20 that the generating series of the functions
Sk(ei), Ag(e;) or Wi(ey) are all rational in the sense of automata theory (¢f. Section 9).
Moreover the automata which recognize these series can be explicitely described and have
no multiplicities.

For example, the minimal automaton which recognizes the generating series of the
functions Wy (eyq) is given, for n = 2, by

a1
@22
@22
N a
& 21
a1
@22
@12 a21
O
@22

On the other hand, Proposition 7.20 also shows that the generating series of the family
() is not rational (¢f. [BR] or [Eil] for more details).

7.5 Noncommutative symmetric functions and the center of

Ulgl,)
In this section, we illustrate the results of Section 7.4 in the particular case when A =
E, = (eij)ij=1,, the matrix of the standard generators of the universal envelopping

algebra U(gl,). Recall that these generators satisfy the relations
€5, ert] = Ojneq — Ouien; -

The Capelli identity of classical invariant theory indicates that the determinant of the
noncommutative matrix £, makes sense, provided that one subtracts 0, 1, 2, ... n—1 to
its leading diagonal (see [Tu] for instance). Thus one defines

€11 €12 e €in
det F. — €21 €992 — 1 e €on
€nl €n2 ven Epp—n+1
= 3 (=" 1 (o2 = 8o2)2) «- - (€opyn — (= Déo(nyn) -

oESK

This is better understood from the following well-known result (see [Ho]).

Theorem 7.23 The coefficients of the polynomial in the variable t

1+ teq telg o tein
det (I 1 LE,) = t€.21 1+ t(e.gg -1) ) te.gn
te;ﬂ te;ﬂ .. 14+ t(em.— n+1)
= ; (=) (o)1 + tea@n) - (Boguyn + teamyn = (0= Déo(uyn)) -

generate the center Z(U(gl,)) of U(gl,,).
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It is shown in [GR1] and [GR2] that the Capelli determinant can be expressed as a
product of quasi-determinants. More precisely, one has

Theorem 7.24 Keeping the notation of Theorem 7.23, det (I +tFE,) can be factorized in
the algebra of formal power series in t with coefficients in U(gl,)

det(I +tE,) =

1—|—t(€11—n—|—1) teln
1 —|— t(en — 1) t€12 ‘ . .

(1 T tell) t€21 1 + t(egg — 1)

te'nl ‘1+t(em.—n—}—1)‘

and the factors in the right-hand side commute with each other.

Note 7.25 Theorem 7.24 is stated in [GR2] in its formal differential operator version.
The above version is obtained by using the classical embedding of U(gl,) into the Weyl

0
algebra K|zj, EP ,1 <, j < n] of order n* defined by
Lij

€ij — Z Tikp 77—

We adopt the following notations. We write for short F,, = E,, — (m — 1) =
(fij)1<ij<m, and we put A = F,,, ¢ = m in Definition 7.19, the symmetric functions thus
obtained being denoted by Ag(e€,,). In other words, by Proposition 7.20, the polynomials
A(€y) are given by

Ak(em) = (_1)k_1 Z fmh fi1 i v fik—1m :

lgil ..... ’ik_lsm—l

aT}]k

Combining now the two previous theorems we arrive at the following result, concerning
the symmetric functions associated with the matrices v, Fr — I, ..., E, — (n — 1)1.

Theorem 7.26 The symmetric functions Ag(ey) for k > 0 and 1 < m < n generate
a commutative subalgebra in U(gl,). This algebra is the smallest subalgebra of U(gl,)
containing the centers Z(U(gly)), Z(U(gly)),..., Z(U(gl,)).

Proof — Let Z denote the subalgebra of U(gl,,) generated by Z(U(gl,)), ..., Z(U(gl,)).
This is of course a commutative algebra. Set

1—|—t(€11—m+1) telm

At €m) Z tF Ar(en) = : : :

te;nl ‘1—}—t(emm.—m+1)‘

By Theorem 7.23 and Theorem 7.24, one sees that the coefficients of the formal power
series in ¢

An(t) =AMt e) M, €2) .. A2, €m)

generate the center Z(U(gl,,)). Therefore the symmetric functions Ag(e,,) with & > 0
and 1 < m < n generate a subalgebra of U(gl,,) containing Z. Conversely, the polynomial
Am—1(t) being invertible in Z[[t]], there holds

Mt €m) = A (D)7 AL (1)
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Hence the symmetric functions Ag(€,,) belong to Z, which proves the theorem. a

As a consequence, the center of U(gl,,) may be described in various ways in terms of the
different types of symmetric functions associated with the matrices £y, Ko —1, ..., E, —

(n—1)1.

Corollary 7.27 The center Z(U(gl,)) is generated by the scalars and either of the fol-
lowing families of formal symmetric functions

1. A;Cn) = E A (e1) ..o Ay (€n) , for 1 <k <n,
it tin=k

2.5M="3 Sia)... S.(a), forl<k<n,
i1+...+in=k

3. \Ilggn) = Z Uilen), forl <k <n.

1<m<n

Proof — The functions A;Cn) are nothing else but the coefficients of the polynomial in ¢
det (I +tFE,), which generate Z(U(gl,,)) according to Theorem 7.23. Since we are in fact
(n)

in a commutative situation, the functions S,(Cn) and LI}EC”) are related to the functions A}
by the basic identities (3) and (5), and thus also generate Z(U(gl,,)). a

Example 7.28 The center of U(gl;) is generated by 1, \1153), \1153), \Ilﬁf), where
\P§3):€11+€22—1—|—633—2,
\11(23) = 631 + (e22 — 1)2 +2ey1 €12+ (€33 — 2)2 +2e31 €13+ 2esp €93,
\1123) = 6?1 + (e22 — 1)3 + (€22 — 1) ez e12 4+ 2ea1 €12 (€22 — 1) + 3 ez (€11 — 1) €12
+(ess — 2)3 + (€33 — 2) €31 €13 + (€33 — 2) €32 €25 + 2 €31 €13 (€33 — 2) + 2 €32 €93 (€33 — 2)

+3 €31 €12 €23 + 3 €32 €91 €15 + 3 esr (€11 — 2) €13 + 3 ez (€22 — 2) €23 .

The results of this section are strongly connected with Gelfand-Zetlin bases for the
complex Lie algebra gl,,. Recall that each irreducible finite-dimensional gl,-module V' has
a canonical decomposition into a direct sum of one-dimensional subspaces associated with
the chain of subalgebras

gh Cgly C...Cyl,.

These subspaces V,, are parametrized by Gelfand-Zetlin schemes p = (155 )1<j<i<n in such
a way that for every m =1, 2, ..., n, the module V,, is contained in an irreducible g/,,-
module with highest weight (gm1, fim2, - -, fimm). Since each irreducible representation
of gl,,_1 appears at most once in the restriction to ¢l,,_; of an irreducible representation
of gl,,, this set of conditions defines V, uniquely (¢f. [GZ]). Moreover, the integers p;;
must satisfy the condition p;; > pi—1; > pij41 for all ¢, .

Another characterization of the subspaces V,, given by Cherednik [Ch] (see also Nazarov
and Tarasov [NT]) is the following. The V, are exactly the eigenspaces of the smallest
subalgebra Z of U(gl,) containing the centers Z(U(gly)), ..., Z(U(gl,)). Taking into

account Theorem 7.26, this description translates into the following proposition.
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Proposition 7.29 Let x, be a non-zero vector of the one-dimensional subspace V, para-
metrized by the Gelfand-Zetlin scheme p = (pij)i<j<i<n. Set vij = pij —j + 1 and
vi = {va, ..., vi} (with vo = ). For every F € Sym and every m = 1,2, ..., n, z,
is an etgenvector of the noncommutative symmetric function F(ey). The corresponding
etgenvalue s the specialization of F' to the alphabet of commutative vartables v, — vy _q
(in the sense of A\-rings) :

Flem)x, = F(Vy — Vme1) Ty -

The eigenvalues associated with different p being pairwise distinet, this characterizes com-
pletely the subspaces V.

Proof — Since the Wy generate Sym, it is enough to prove the proposition in the case
when F' = Wy, It results from Proposition 7.20 that
Ui(em) =

Z Qg (emh - (m - 1)5mi1) (eiliz - (m - 1)5i1i2) s (eik—ﬂn - (m - 1)5ik—1m) )

lgil,...,ik_lgm
where the a;, ;,_, are integers and «,,. ., = 1. Thus, denoting by N,, the subalgebra of
gl spanned by the elements e;;, 1 <1 < 7 < m, we see that
Yo U(g) = D (eji—i+ 1)t €Ulgln) N, (134)
1<j<m 1<j<m

By Corollary 7.27, 371 << Vi(¢;) belongs to Z(U(gl,)), and therefore acts as a scalar
on any irreducible gl,,-module. By definition, x, belongs to the irreducible ¢/,,-module
with highest weight (fm1, fm2, -+, fimm), and we can compute this scalar by acting on
the highest weight vector, which is annihilated by N,,. Therefore, we deduce from (134)
that

Z Wi(ej) zy, = Z (Hmj —J + 1)k z, = Uiy, ,

1<j<m 1<j<m

and by difference,

Uilem) 2y = (Ve(vm) — Yi(vme1)) 20 = Yi(Vim — Vim—1) T,

O

Example 7.30 Let V be the irreducible gls-module with highest weight (5,3,2). Con-

sider the GZ-scheme
) 3 2

n= 4 2

The action of the operator
Us(es) = (ess — 2)3 + (e33 — 2) €31 €13 + (€33 — 2) €32 €93 + 2 €31 €13 (€33 — 2)

+2e35 €93 (€33 — 2) + 3 es1 €12 €23 + 3 esz €21 €13+ 3 ez (€11 — 2) €13+ 3 ez (€22 — 2) €33

on the weight vector z, is given by

Ws(es)wy = [5°+ (3= 1)°+ (22 —4° = (2 - 1)*| 2, = 68, .
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7.6 Twisted symmetric functions

Let K be a skew field, let s be an automorphism of K and let (SZ»(S))Z'ZO be a family of
K. Let then K[X, s] be the K-algebra of twisted polynomials over K, i.e. of polynomials
with coefficients in K where the variable X satisfies to

Xk=sk)X (135)
for every k € K. Let now o(t) be the formal power series defined by
o)=Y (8P xiyt
=0

The symmetric functions S, = SZ-(S) X' defined using this generating function belong to
K[X, s]. It is however more interesting to define twisted symmetric functions which belong

to the smallest s-stable algebra generated by the family SZ»(S).

Definition 7.31 The twisted symmetric functions S(), A &) wls) R(Is) are the ele-

ments of K defined by
SO =5, X7, AP = A, X", 00 =0, X, 0O =w, X, R =R x

n

The quasi-determinantal formulas of Section 3.1 can be easily adapted to take care of
the present situation.

Proposition 7.32

S S
s(S67) s(S1) o s(S) s(SE2)
A = (-0 (S L sA(SE) S(S) |, (136)
0 0 Loty snmt(sle)y
Al AP Al Al
(AP s(Ay o s(AlY,) sl
SP= (=1t 0 SAF) 2l Ay |, (18)
O O Sn—l(Aés)) n—l(Ags))
g1 (S{S)) g1 (S(()S)) 0 0
s228) s RSY) S 0
U = (=11 [sm3(355)) 5388y sy L 0 . (138)
n S S8, s\, s17




Proof — We only give the proof of the first formula, the other relations being proved in
the same way. According to Corollary 3.6, we have

sWx gl xr gl xnt TG0 xn
s W x gl xn-2 glo) xn-1
AL X™ = (1)1 |0 DRI € R G
0 0 ... S sl x

Multiplying on the left the k-th row by X*~1 and using relation (135), we get

sOx s xr L 5 xm S0 X
s(SEN X s(SPyxr L s(SWyxmt o 58y xn
DX (|0 X L (X (s X
0 0 LSy xSy X
Multiplying on the right the k-th column by X%, we obtain (136). a

Using the same method, one can also give suited versions of the other determinantal
identities given in Section 3. It is also interesting to notice that one can generalize these
results to the case when the variable ¢ satisfies a relation of the form

th=s(k)t+d(k)

for every scalar k € K, s being an automorphism of K and d a s-derivation. In such a
case, one must consider that the S; are the coefficients of the Laurent series ;5 S;t7".
In this framework, it is then easy to adapt the results given here, using formulas which
can be found in [LL] or [Kr] for instance.
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8 Noncommutative rational power series

In this section, we demonstrate that noncommutative symmetric functions provide an
efficient tool for handling formal power series in one variable over a skew field. Special
attention is paid to rational power series, and to the problem of approximating a given
noncommutative power series F'(¢) by a rational one, the so-called Padé approximation
(Section 8.2). Particular Padé approximants can be obtained by expanding F(t) into a
noncommutative continued fraction of J-type or of S-type (Sections 8.1 and 8.4). The
sequence of denominators of the partial quotients of a J-fraction is orthogonal with respect
to an appropriate noncommutative scalar product, and it satisfies a three-term recurrence
relation (Section 8.3). The systematic use of quasi-Schur functions enables one to derive
all these results in a straightforward and unified way.

These topics gave rise to an enormous literature in the past twenty years, as shown by
the 250 titles compiled by Draux in his commented bibliography [Dr]. We shall indicate
only a few of them, the reader being referred to this source for precise attributions and
bibliographical informations.

Interesting examples of noncommutative rational power series are provided by the
generating series o(t, ;) of the complete symmetric functions associated with the generic
matrix of order n defined in Section 7.4. Their denominators appear as noncommutative
analogs of the characteristic polynomial, for which a version of the Cayley-Hamilton theo-
rem can be established. In particular, the generic matrix posesses n pseudo-determinants,
which are true noncommutative analogs of the determinant. These pseudo-determinants
reduce in the case of U(gl,,) to the Capelli determinant, and in the case of the quantum
group G'L,(n), to the quantum determinant (up to a power of ¢).

8.1 Noncommutative continued S-fractions

Continued fractions with coefficients in a noncommutative algebra have been considered
by several authors, and especially by Wynn (¢f. [Wy]). The convergence theory of these
noncommutative expansions is discussed for example in [Fa]. As in the commutative
case, many formulas can be expressed in terms of quasi-determinants. In this section, we
give the noncommutative analog of Stieltjes continued fractions in terms of quasi-Schur
functions, and specialize them to the noncommutative tangent defined in Section 5.4.2.

Let a = (Gi)izo be a sequence of noncommutative indeterminates. We can associate
with it two types of continued S-fractions, which are the series defined by

1
ag 1 =ag(l+art(l4+.. . +ap1t(l4+a,t(14+..)7") .. )7

1+Cl1t

1
1+a,t —
' (139)
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and by

1

1

- Glt—|—1

ao=((..((..+ D) e t+ 1) g t+.. .+ 1)ty t+ 1) ag .

The partial fractions of these infinite continued fractions admit quasi-determinantal
expressions [GR2]. Thus, the n-th convergent of (139) is equal to

aqt

-1 1
ap | : '

0

0

0
Clgt
-1

0

0
0
1  aut
-1 1

-1

1
-1
0
0

G,Qt 0
1 agt
-1

0

[0]

0
1 apt

-1 1

1
-1
0
0

alt 0
1 Clgt
-1

0

Iﬁ[ -1

0
1 aut

-1 1

where the two quasi-determinants of the right-hand side are polynomials in ¢ whose ex-

pansion is given by Proposition 2.6.

The following result expresses the coefficients of the noncommutative continued frac-

tion expansion of a formal power series as Hankel quasi-determinants, that is, from the

viewpoint of noncommutative symmetric functions, as rectangular quasi-Schur functions.

Indeed, as illustrated in Section 7, any noncommutative formal power series F'(t) may

be seen as a specialization of the generating series o(t) = Y450 Sk t* of the complete
symmetric functions Sy. With this in mind, the Hankel quasi-determinants associated

as in the commutative case with F(t) appear as the specializations of the quasi-Schur

functions indexed by rectangular partitions of the form m”.

Proposition 8.1 Let o(t) = Y450 Sk t* be a noncommutative formal power series. Then

one has the following expansion of o(t) into a left S-fraction:

where 15, =

(n™) and Iznqq = (n"Th).

1

L4 (=) S Sy t ——

Note 8.2 Throughout this section, we relax for convenience the assumption Sy = 1 made

above, and we only suppose that Sy # 0.

Proof — Let us introduce the series p(t) defined by

o(t) = So ?p(t) )

1
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That is,
L= M(=1) S

/ = Z (_1)n—1 An—}—l SO tn .

n>0

p(t)

Denote by a, (o) the n-th coefficient of the Stieltjes-type development in right continued
fraction of o(t). According to the definition of p,

tn1(0) = an(p) (140)

for n > 0. We prove by induction on n that

an(a) = (_1)n SI:LI an+1
for every n > 0. This is clear for n = 0, 1, and the induction step is as follows. We only
indicate the case n = 2m, the odd case being similar. According to relation (140) and to

the induction hypothesis, we have

a2m11(0) = dam(p) = AL Apgs (141)
where we set
(=)™t Apy1 So (1) A™P2ESy L.
A = (_1)m Am SO (_1)m—1 Am—}—l SO e —Agm_l SO
—Al SO A2 SO e (_1)m—1 Am_|_1 SO
and
(“1)™ 1 Apyr So (—1)mA™2S,
A (=1)"™ Ay So (=)™ Ay So - Ao, So
m+1 — . . . .
0 —A Sy coe (=)™ AL So

Using now basic properties of quasi-determinants and Naegelbasch’s formula for quasi-
Schur functions, we get

Mot Ass
Ap Amrt e Aa

So = Spmir = Spyir -
Al AQ e Am—}—l

Arguing in the same way, we have

Amsr Ay ..

A, A1 ... Agr 5 .
Am-l—l - — . :+ .. . SO - S(m+1)m+1 = S]2m+2 .
0 Ay | v
The conclusion follows from these last two formulas and from formula (141). O

Applying w to the formula given by Proposition 8.1, we get immediately the following
one.
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Corollary 8.3 Let o(t) = Y450 Sk t* be a noncommutative formal power series. Then
one has the following expansion :

o(t) = So

1
SpH (=1t +1

1 .
i an+1

where Iy, = (n™) and Iy,41 = (nT).

The action of w may also be interpreted in another way in order to obtain the deve-
lopment in continued fraction of the inverse of a formal power series.

Corollary 8.4 Let o(t) = Y450 Sk t* be a noncommutative formal power series. Then
one has the following expansion :

1
L4+ (=) St Sy, t —

where Jy, = (n") and Jynp1 = ((n+ 1)").

We apply now these results to the noncommutative tangent defined in 5.4.2. If we set
Si(B) = 2(;)_1(14) (A and B being merely labels to distinguish between two families of
formal symmetric functions), so that

to(B;t?) = TAN(A;t) = Y T8 (A) ¢+
n>0
we can, using Propositions 8.1 and 3.21, identify the coefficients of the continued fraction
expansion of the tangent in terms of staircase quasi-Schur functions. For example, one

has (") ) )
: e I i SO S
SSSS(B): T5(T) T7(T) Tér) = Tsr T7T T9T
L I
Ry Ryg Ri222 5
= | Ri32 Rz Ri2222 =5123456(A)7
Riz22  Rizoo

the last equality following from Proposition 3.21.

This identity may be seen as a particular case of the following proposition, which
expresses more general quasi-determinants in the T2(:L)+1 as quasi Schur-functions (indexed
by skew partitions). Let pi denote the staircase partition (1,2,...,k).
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Proposition 8.5 Let [ = (i1,...,1,) be a partition, such that iy > n—1. Set N = i, +n.
Then one has

S1(B) = Spiya(A) (142)
where J is the partition whose diagram is obtained by removing from the diagram of py,

n successive ribbon shapes indexed by the compositions

DR S IS DA
Proof — This follows from Bazin’s theorem for quasi-determinants. a

Example 8.6 Take I = (2,3,4) so that N = 7. The ribbon shapes to be extracted
from the diagram of p; are 12, 12°) 1. Hence, J = (2,5), as illustrated by the following
picture.

o[x[x[o]¢]

*+[*[olo
*+[*[olo

o

o

Thus, So34(B) = S1234567/25(A)'
We end this Section by considering the specialization
S;i— 0, fore>n.

In this case the continued fraction for TAN, (A, ) terminates, and by means of the recur-
rence formulas given in [GR2] for computing its numerator and denominator, one obtains

Proposition 8.7 Suppose that S; = 0 for @ > n. Then the complete functions S;, 1 < n
may be expressed as rational functions of the staircase quasi Schur functions S,;, 1+ < n.
Namely, writing for short ¢; = Sp_il Spiry for 1 <2< n and ¢; =0 fort > n, one has

Pit1
SQ = Z (& 54 = Z CiCjy2 56 = Z CiCjy2 Chtdq 5 -
1<i 1<y 1<i<i<k
-1 -1 -1
Sl 53 = Z C; o, Sl 55 = Z C; Cita , Sl 57 = Z CiCjy2 Cltd 5 -
2<i 2<i<j 2<i<i<k

Proposition 8.7 may be regarded as a noncommutative analog of a classical question
investigated by Laguerre and Brioschi. The problem was to express any symmetric poly-
nomial of n indeterminates as a rational function of the power sums of odd degree Vo541
(¢f. [Lag], [Po]). Foulkes gave a solution by means of Schur functions. Indeed, in the
commutative case, the only Schur functions belonging to the ring Q[Wq, VU3, W5, .. ] are
the one indexed by staircase partitions p,, so that Laguerre’s problem is equivalent to
expressing a symmetric polynomial of n indeterminates as a rational function of the stair-
case Schur functions (¢f. [F3]). Note that in the noncommutative setting, this no longer
holds. For example

Sio=Rip=—1/3U% —1/6 0" +1/6 0> +1/3 0!
does not belong to Q[Wy, W3, Vs, ...]. The fact that the symmetric functions depend only

on n variables is replaced in Proposition 8.7 by the condition S; = 0 for : > n.
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8.2 Noncommutative Padé approximants

The classical Padé approximant is the ratio of two determinants, in which all columns,
except for the first ones, are identical. In the commutative case, these determinants can
be interpreted as multi Schur functions (see [La]). One obtains a noncommutative analog
by replacing determinants by quasi-determinants. Here the problem is to approximate a
noncommutative formal series

F(t)=So+ Sit+ Sat* + ...+ S, 1"+ ... | (143)

where the parameter ¢ commutes with the S;, by a rational fraction Q(¢)™'P(¢) up to
a fixed order in t. This kind of computation appears for instance in Quantum Field
Theory ([Be], [GG]), F being in this case a perturbation series, or in electric networks
computations [BBJ.

Proposition 8.8 Let So, S1,...,Smen be noncommutative indeterminates, and let t be
an indeterminate commuting with the S;. We set Ci(t) = So+ S1t+---+ S t*? (Cr(t) =0
if k<0), and

Cm(t) Sm—l—l T Sm—l—n
tCn_1(t S R
Py =| O e S (144
" Om—n(t) Sm—n—l—l T Sm
Sm—}—l T Sm—l—n
t Sm e Sm—}—n—l
Qn(t) =1 . : , : (145)
" Sm—n—}—l e Sm

Then we have

Proof — Expanding Q),(¢) by its first column and multiplying to the right by So+ 51 ¢+
-4+ S, t™F", one obtains for the terms in t* with & < m + n the following expression :

Sma1 0 Smin S R He

Sranct St St ] | Stz S St s
S S .5 S 8 .. s
Swer 0 S
T T E AR
0 S o S
since the coefficients of the t* with k& > m are zero, the corresponding quasi-determinants
having two identical columns. a

89



Definition 8.9 The Padé approzimants of the noncommutative series (143) are the ra-
tional functions

[m/n] = Qn(t)™" Pn(t) .
We have for instance
[1/1] - (1 - SQ Sl_l t)_l (So —|— (Sl—SQ SI_ISO) t) - So —|— Slt —|— SQ t2 —|— O(tS) .

Applying the * involution (¢f. 3.1, 3.3, and 8.3 below), one obtains the equivalent expres-
sion [m/n] = R, (t) T,.(¢t)~", where

tCmo1(t) .. 1"Cry(t)

Ro(t) = S”f“ Sm . Smﬁ”“ : (146)
Smen Swinct e S
t "

T,(t) = S’f“ Sm o Sm‘:”“ . (147)
Soen Sminct oo S

Thus one also has
[1/1] = (So —|— (Sl — SOSI_ISQ)t)(l — SI_ISQt)_l .

This last remark may be interpreted as an effective proof of the fact that the ring of
polynomials in one indeterminate with coefficients in a skew field is an Ore domain. For,
given two polynomials P(t) and ((t) of respective degrees m and n with no common left
factor, and assuming @(0) # 0, one has

where R(t)T(t)~" is the Padé approximant [m/n] of the power series Q(t)~* P(t).

8.3 Noncommutative orthogonal polynomials

Motivated by formula (145), we consider in this section the sequence of polynomials

Sn e SQn—l
Sn— e S e ] n—1
ra(a) = | e (148)
SO e Sn—l 1

in the commutative variable z. In the case when the S; commute with each other, 7, () is
none other than the sequence of orthogonal polynomials associated with the moments S;.
Thus, when the S; belong to a skew field, these polynomials may be regarded as natural
noncommutative analogs of orthogonal polynomials. They are indeed orthogonal with
respect to the noncommutative scalar product to be defined now. This scalar product is
a formal analog of the matrix-valued ones used for example in [GG] and [BB].
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Let R be the ring of polynomials in the commutative indeterminate =, with coefficients
in the free field K £ Sp, S1, 52, ... #. Recall that this field is endowed with a natural
involution F' — F™* defined as the anti-automorphism such that S; = 5; for all . This
involution is extended to R by putting

(z):z

In particular, we have

Sn—l Sn SQn—l
)= o g s,
1 x

We define a scalar product (., .) in R by
(Zaiwi, ij:z:j> = Zaisiﬂ' by .
This product satisfies the following obvious properties
{aapi(x) + azpa(x), q(2)) = ar (pr(x) , q(2)) + a2 (pa(z), q(2))
(p(z), Braa(z) + Baqa(2)) = (p(e), q1(2)) B7 + (p(z) ; ¢2()) 55
{g(z), p(z)) = {p(z), q(2))",
(zp(z), q(z)) = (p(z), z q(z)) ,

from which one deduces, by means of 2.12, that

(ma(z), 2') = Swni,  (2*, mal2)) = Siny

for ¢« > n, and that ' '
(mn(2), a') = (2", ma(2)) = 0

fore=0,1, ..., n— 1. Hence we obtain

Proposition 8.10 The sequence of polynomials m,(x) satisfies (w,(x), 7n(x)) = 0 for
n#m. O

As in the commutative case, the sequence 7, () follows a typical three term recurrence
relation that we shall now explicit. Set

x 7w, (x) = Z aggn) () .

0<k<n+1
It follows from 8.10 that
(@ 7a(2), m(2)) = af (mi(x) , m(2)) = ) (me(x), 2*) = af" St .
On the other hand, if k¥ < n — 2,
(@ 7mn(@), mr(2)) = (7a(2), 2 () = 0
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and a/;gn) =0for k=0, 1,...,n—2. The polynomials 7x(x) being monic, it is clear that

(n)

a,¢; = 1, and it remains only to compute al™ and aff_)l. We have

(£ 7u(2), Tt (0)) = (al2) , € Taca(@)) = (male), ") = Sy |

and, also, by expanding the quasi-determinant =, (z) by its last column,

(£ 7a(2), (@) = (@, (@) = S ayimtn Sy 7al2))

G Crk S—1 &
= Sn"(n-l—l) - S(n_1)n—1n S(n—l)" Syt .

Hence we obtain

Proposition 8.11 The noncommutative orthogonal polynomials 7, (x) satisfy the three
term recurrence relation

Fat1(2) = (& = Sy Sbes Syt Sy al@) + Spnss Sy mca(2) = 0 (149)

forn >1. a

Applying the * involution to (149), we get a similar recurrence for the polynomials
7 (x), namely

W;_}_l(.f) —W;(x) (.:U - S,;nl+1 STL"(TL-I—I) —I‘ S(_nl_l)n S(n—l)”_ln) —I‘ S'(_nl_l)n Snn+1 Wn_l(:l?) = 0 (150)

Note also that the symmetric function Sytn(n-u) — S(*n—l)”—ln S(_nl_l)n Snn+1 being equal to

the scalar product (x 7,(z), 7,(2)), it is invariant under the * involution, which gives the
following interesting identity

S;"(n+1) - S(*n—l)"—ln S’(_nl_l)n Sn""'l = Sn"(n-l—l) - Sn"+1 S(_nl_l)ns(n—l)"—ln .

8.4 Noncommutative continued .J-fractions
In this section we consider continued fractions of the type

1

by (151)

x —ay+ by I
T —az+ bs

1

1
x_an—l'bn—l—l—

In the commutative case, these fractions are called J-fractions, and their connexion with
orthogonal polynomials and Padé approximants is well-known (¢f. [Wal). As observed by
several authors (see e.g. [GG] [BB], and [Dr] for other references) similar properties hold
true when (a;) and (b;) are replaced by two sequences of noncommutative indeterminates.
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Denote by p,(z) ¢,(x)™! the n-th partial quotient of (151):

1
T —ai+ by

T —ay+ bs
1

T —da,

It is convenient to put also pg = 0, ¢o = 1. The polynomials p,(z) and ¢,(z) then satisfy
the three term recurrence relation [GR2], [BR]

Prn+1 = Pn ($ - an—}—l) + Prn-1 bn—}—l , gn+1 = 4n (:E - an—}—l) + gn—1 bn—}—l (152)
Comparing with (150), we are led to the following result

Theorem 8.12 Let S; be a sequence of noncommutative indeterminates. The expansion
of the formal power series 3 ;5o Sk z7*1 into a noncommutative J-fraction is equal to

1
by i (153)
T —ar + by
1
1
T — ay + bn—}—l -
where ay = Sy, by = So, and
Gy = S’(_nl_l)n S(n—l)"—ln - S'(_nl_g)n—l S(n—Z)"—z(n—l) )
b S n 1 S?’L 1
forn > 2. The n-th partial quotient p,(x)q ( )~ is given by
Sn—l T SQn—Q SQn—l
o(z)=| : : , 154
Pn(2) S .. s S (154)
0 o CRIaSkam R DpC) Skat Y
Sn_1 Sz Som—1
() = : , 155
qn(2) 5 P (155)
1 T/,n—l

and one has

Pa() gu()™ = Soa™ 4o 4 Sppq 272 4 O™

Proof — This is just a matter of properly relating the results of the previous sections. We
first prove that the numerator and denominator of the n-th convergent of (153) admit the
quasi-determinantal expressions (154) and (155). To this aim we denote temporarily by
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P,(x), g,(x) the right-hand sides of (154) and (155), and we check that these polynomials
satisfy the recurrence relations (152). The relation for g,(z) is none other than (150)
(with the necessary change of notations). Since g, = ¢o and §; = ¢1, we deduce that

G, = ¢ for all n. The same argument is applied to p,(z). Indeed, it results from (146),
(147) and Proposition 8.8 with ¢t = z™!, m = n — 1, that

u(x) = (D Ska™ ") qul2) + O(@™*"7") |

k>0

which shows that p,(z) satisfies the same recurrence relation as ¢,(z). Since p; = p;, and
Py, = p2 as one easily checks, we get that p, = p, for all n, and the rest of the theorem
follows. O

8.5 Rational power series and Hankel matrices

Denote by K[[t]] the ring of formal power series in t with coefficients in the skew field K.
A series F'(t) = Y 4so Sit¥ in K[[t]] is said to be rational iff it is a rational fraction, that
is, iff there exists polynomials P, @ in K[t] such that F(t) = Q(t)~' P(t).

We begin by extending to the noncommutative case the classical characterization of
rational series by means of Hankel determinants. With every series F'(t) = 3 ;5o Sk t* in
K[[t]] is associated an infinite Toeplitz matrix S = (S;_;); j>0. The quasi-minors of S are
conveniently seen as specializations of quasi-Schur functions and we shall still denote them
by S, the series F being understood. In particular, the quasi-Schur functions indexed by
rectangular partitions correspond to Hankel quasi-determinants.

Proposition 8.13 The series F(t) is rational iff S is of finite rank. More explicitely,
F(t) = Q7' (t) P(t) where P(t) and Q(t) have respective degrees m and n, and no common
left factor, iff the submatrix

S’m Sm—l—l s S’m+n—1
R Sn%_l S?n = Sm+’n_2
Sm—n—}—l Sm—n—|—2 L Sm

is invertible and S(m+1)n(m+p) =0 for every p > 1. ) and P are then given by formulas
(145) and (144).

Proof — Suppose that R is invertible. Then one can define () and P by formulas (145)
(144), and the same computation as in the proof of Proposition 8.8 shows that

QU F(t)=P®) + X Smtryrimin t™ .
pz1
Hence, if S(m+1)n(m+p) = 0 for p > 1, one obtains F(t) = Q~'(¢) P(t). Conversely, if F(t)
is rational, one can write F'(¢) = Q~*(t) P(t) with Q(0) = 1, P and @ having no common
left factor, that is, P and () of minimal degree. Therefore, if deg() = n, degP = m, we
have, setting Q(¢) = Yg<;cn bi ',

ZbiST_Z-:(), er—I—l, (156)

0<i<n
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which shows that the matrix R has rank less or equal to n. This rank cannot be less than
n, otherwise P and () would not be of minimal degree. Therefore R is invertible, and the
relation S(m+1)n(m+p) = 0 follows from (156). O

The coefficients S; of a rational series F'(t) = Q~'(¢) P(t) satisfy many remarkable
identities. The following result may be seen as a natural analog of the factorization for-
mulas for Schur polynomials in two finite sets of commutative variables given in [BeRe].
The reader is referred to [Pr| for algebro-geometric applications of these important rela-
tions in the commutative case.

We denote by (I, m”™ + J) the partition whose Young diagram is

[ -
I

-— 5

T

- 1N —

Proposition 8.14 Let F(t) = Q7*(t) P(t) be a rational series, and assume that P(t) and
Q(t) have respective degrees m and n, and no common left factor. Let I be a partition
whose largest part is less or equal to m, J be a partition whose length is less or equal to
n, and 1, j be integers. There holds

v v 51 S

S(li,m"-}—J) = S(1i7mn) Sm" S(mn+J) 5 (157)

St mni) = Strmmy Spon Stmntiy - (158)

m

Replacing each quasi-Schur function Sy by the Young diagram of H, relations (157)
and (158) are pictured as follows

T I
' o
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The proof of Proposition 8.14 is a consequence of the next Lemma, valid for generic
quasi-Schur functions and of independent interest.

Lemma 8.15 Let H = (hy, ..., h,) be a partition, and j, k be two integers with k < hy.
Then,
(k,H S k, H) S
‘H G| T S(ha41,ha1, by 1, hrti) - (159)
+J
Proof — This is a simple consequence of Bazin’s theorem. a

Proof of Proposition 8.14 — Let K denote the partition obtained from I by removing its
first part. The hypothesis imply that, in the specialization to the series F', the quasi-Schur
functions S L, (m+1)(m+p)) are sent to 0, for any p > 1 and any partition L whose largest
part is less or equal to m + 1. Therefore, putting H = (K, m”) in (159), we get

S(I,m"-}-j) = S(I,m") S(_]le'n) S(K,m"-}—j) ;

and formula (158) follows by induction on the length of I. Formula (157) may be proved
similarly, or derived directly from (158) by means of the involution w. O

8.6 The characteristic polynomial of the generic matrix, and
a noncommutative Cayley-Hamilton theorem

In this section, we illustrate the results of Section 8.5 on a fundamental example, namely
we take F(t) to be the generating series o(t, ;) = Yoo Si(i)t* = |I — tA];" of the
complete symmetric functions associated with the generic n x n matrix A, and its i-th
diagonal entry a;; (¢f. Section 7.4). We first prove that this series is rational.

Proposition 8.16 For the generic n x n matriz A = (a;;), there holds
O‘(t,ozi) = Qi(t)_l Pz(t) ,

Q; and P; being polynomials of degree n and n — 1 without left common factor, with
coefficients in the free field generated by the entries a;; of A. Moreover, assuming the
normalizing condition ();(0) = P;(0) = 1, the polynomials Q;(t), Pi(t) are unique.
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Proof — Let v, denote the i-th row vector of A*. In other words, the sequence vy is
defined by vg = (0, ..., 1, ..., 0) (the entry 1 is at the i-th place) and, for £ > 0, by
vp41 = v A. The v, may be regarded as vectors in K £ A #", which is at the same time

a left and right n-dimensional vector space on the free field K £ A %. Hence, there exists
scalars Ag, A1, ..., A, in K £ A ¥ such that one has

)\0‘Uo+)\1‘01+...+)\n‘vn:0. (160)

Multiplying (160) from the right by A7, and using the fact that the i-th component of vy,
is equal to Si(«;), one obtains the relations

S A Sprilar) =0, j20, (161)

0<p<n

which shows that the rank of the Hankel matrix S(«;) is finite, equal to n. More precisely,

we have,
Sn(az) e Sgn_l(ozi) S]‘+n(ai)
: h : : =0, >0, (162)
Sl(ai) Ce Sn(az) Sj+1 (Ozz)
So(eg) ... Spo1(ap) Si(ay)
and the conclusion follows from Proposition 8.13. O

Let A% denote the (n — 1) x (n — 1) matrix obtained by removing the i-th row and
column of A. As was explained in the introduction of Section 7.4, the series o(t, ;)
is a noncommutative analog of det(I — tA")/det(I — tA), that is, of the ratio of the
characteristic polynomial of A* to the characteristic polynomial of A (up to the change of
variable u = t~1). Therefore, we can regard the polynomials Q;(t) of Proposition 8.16 as
natural analogs of det(/ —tA). This is supported by the fact that these polynomials give
rise to a form of the Cayley-Hamilton theorem for the generic noncommutative matrix.

For instance, when n = 2, the two polynomials Q1(%), Q2(t) are given by
Q1(t) =1 = (a11 + arpax al_gl)t + (a12 a2 Gl_gl a11 — G2 az) t*, (163)
Q2(t) =1 — (a2 + az ax Clg_ll)t + (az1 a1 %_11 27 — G321 A12) . (164)
Writing for short Q;(t) = 1 — tr;(A)t + det;(A) ¢? for i = 1, 2, one can check that

A2_(tr1(§A) tm(()A)) M (detB(A) detg(A)):()’ (165)

the Cayley-Hamilton theorem for the generic matrix of order 2. The general result is as
follows. Set

Qi)=Y (~1) LAy, (166)

0<i<n
LA 0
Lj(A) = : : , (167)
0 {(a)

for every 1 <1 < n.
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Theorem 8.17 The generic noncommutative matriz A satisfy the following polynomial
equation, the coefficients of which are diagonal matrices with entries in K £ A ¥

Y. (1Y Li(A)A =0, (168)

0<j<n

Proof — One has to check that the i-th row vector of the left-hand side of (168) is zero.
But this is exactly what is done in the proof of Proposition 8.16. Indeed, keeping the
notations therein, the coefficients L;Z)(A) of

Sn(az) e S;)n_l(ai)

Ql(t) B Sl (Oéz) . Sn(ozz) tn:_l ’ (169)

So(O!Z) Ce Sn_l(a/i) t"
form a system of solutions A; for the linear system (161), and therefore satisfy (160). O
Due to the significance of the polynomials Q);(t), we shall give different expressions

of them. The first expression, already encountered, is formula (169). Expanding this
quasi-determinant by its last column, we compute the coefficients

Sn(OéZ) e Sgn_l(ozi) Sn_l(Oéi) o Sgn_Q(ozi)
7 . n—k—1 S;H_l‘(ozi) e S]H_n(oq) ) ) R
LL(A) = (Lt o g ) o) o Bemalad]) 021
SO(.ai) - Sn_l‘(ai) So(eg) oo Spoa(aew)

Recalling that (¢, ;) = A(—t,a;)"", we obtain by means of (144) the following ex-
pressions in terms of the elementary symmetric functions A;(«;)

Blefo il S Sl dnla) e et
Qi(t) = : : : . (170)
(" Ao(ar) + (=0 Ar(es)  Asla) oo Aufa)
A(e;) Angi(es) oo Agpoi(ay)
T B A S (171)
Mein(as) Asas) oo An(ar)

Also, as shown in the Proof of 8.16, Q;(¢) can be expressed in terms of the entries of A,
(k)

that we denote by a;;". Indeed, one has

aff) alf) o af)
i(t) = : : : : . 172
Qill) ag) ag) . aﬁ}b) A (172)
ag) agg) e agg) "
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One can recognize in (172) the exact noncommutative analog of Krylov’s expression for
the characteristic polynomial of a matrix (¢f. [Gan]). Thus we find again that, when
specialized to the commutative generic matrix, all the polynomials @;(¢) reduce to the
familiar characteristic polynomial (up to the change of variable v = ¢7*). In particular,
the leading coeflicients of the Q;(¢) provide n noncommutative analogs of the determinant,
that we shall call the n pseudo-determinants of the generic n x n matrix A, and denote
by det;(A),¢ = 1,..., n. They admit the following quasi-determinantal expressions,
obtained from (171) and (172)

An(az) An_|_1(0zi) Ce Al\zn_l(ai)
L/Xn_ (8 L/\n (8% ... A n—2\ Q0
det;(A) = 1:( ) ( ) T f( ) , (173)
Zl\l(ai) A'I\Q(QZ') Ce An(ozl)
o) e e
det;(A) = (—1)"*| : : 174
( ) ( ) agf) o ag?) agz) ( )
all ... e all)

We shall illustrate the results of this section on two important examples, namely, the
case of the Lie algebra gl,,, and the case of the quantum group GL,(n).

Example 8.18 We take A to be the matrix F, of standard generators of U(gl,) (cf.
Section 7.5). In this specialization, the pseudo-determinants det;( £, ) are all equal to the
Capelli determinant. More precisely, we have, using the notations of 7.5

1——t(€11—k7l——1) ——t612 e ——teln
—te 1—t(egy+n—-2) ... —teqy,

Qi) = det(l — (B, + (1) =| (aztn=2) oo tem |
—ten —tens . 1—te,,

for all = 1,...,n. Let Q(u) = u" Q;(u™') = det(ul — (E, + (n — 1)I)) denote the
characteristic polynomial of E,. By Theorem 8.17, Q(E,) = 0. Consider an irreducible
finite-dimensional gl,-module V' with highest weight A = (A1, ..., A,). It follows from
Section 7.5 that the coefficients of Q(u) belong to the center of U(gl,), and act upon V
as the elementary symmetric fonctions of the commutative variables \y +n — 1, Ay +n —
2, ..., A\y. Therefore, if we denote by E} = (eﬁ?)) the matrix whose (¢, j)-entry is the
image of e;; in the module V', we find that

II (B, —(x+n—k)=0,

1<k<n

the so-called characteristic identity satisfied by the generators of gl,,.

Example 8.19 Here, A is taken to be the matrix A, = (a;;) of the generators of the
quantum group G'L,(n). Recall that the a;; are subject to the following relations
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;L0 = q_laﬂaik for k < l, a;pa; = q_lajkaik for 1 < j,
1G5, = Q104 for 7 < j, k< l,
;0] — G0, = (q_l—q) Q105 for 7 < j, k<.

In this specialization, the pseudo-determinants det;(A,) are all equal, up to a power of ¢,
to the quantum determinant

aiq a19 . A1p
a a P a
21 22 2n — (_ )_g(g) i a
. . . . q 1]0—(1) st Nio(n) *
oESH
[P %] [E7%) . Apn q

The other coefficients of the Q;(t) also specialize to polynomials in the a;;, and one
recovers the quantum Cayley-Hamilton theorem proved by Zhang in [Zh]. For instance,
when n = 3, one obtains

+ (q_l

and for n = 2, the Cayley-Hamilton theorem assumes the form

Q1(t) =1 — (a1 + ¢ raze + ¢ lass) t

a11  aiz —1|@G11 dis _9 | @G22 d23

a31 a33 a3z 433

a1 a1z 413
2 -2 3
" —q a1 azy ass| t7,
(g1 G322 q

? asz1 G432 a33

q

-1/2 0 -1
_ q _ q
Az - (q1/2a11 +q 1/26122) ( 0 q1/2) A, + (a11a22 — ¢ 16Z126121) ( 0 q) =

In view of these examples, some questions arise naturally. The coefficients L;i)(A)

involved in the Cayley-Hamilton theorem for the generic noncommutative matrix A are
fairly complicated expressions in terms of the entries a;; of A, involving inverses a

thus belonging to the skew field generated by the a;;. Moreover, the L;Z)(A) depend on the
index ¢z, that is, the coefficients of the noncommutative characteristic polynomial are no
longer scalars but diagonal matrices. It seems to be an interesting problem to investigate

the following classes of matrices.

and

1. The matrices A for which the coefficients L;i)(A) are polynomials in the entries a;;.

2. The matrices A for which the coefficients L;i)(A) do not depend on 2.

As shown by the previous examples, the matrix F, of generators of U(gl,) belongs to
both classes, while the matrix A, of generators of GL,(n) belongs to the first one.
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9 Appendix : automata and matrices over noncom-
mutative rings

Identities between quasi-determinants can often be interpreted in terms of automata. We
present here the basic notions of this theory. More information can be found for instance
in the classical references [BR] or [Eil].

Let K be a field and let A be a noncommutative alphabet. A K -automaton of order
n over A is a triple A = (I, u, F') where

1. I is a row vector of K", called the initial vector,

2. p is a monoid morphism from the free monoid A* into M, (K),
3. F a column vector of K™, called the final vector.

One can represent graphically an automaton by a labeled graph (also denoted .A) which
is defined by

e the set of vertices of A is [1,n] (they are called the states of A),

o for every 7,5 € [1,n]| and for every a € A, there is an arrow going from ¢ to j and

labeled by p(a);; a,
e for every vertex ¢ € [1,n], there is an arrow pointing on ¢ and labeled by I,

e for every vertex ¢ € [1,n], there is an arrow issued from ¢ and labeled by F;,

with the convention that one does not represent an arrow labelled by 0. In other words,
the generic form of the graph A is the following

L~ p(a)i; a N I;

F; F;

Note that the graph can be identified with the automaton since it encodes both the vectors
I, F and the matrices (p(a))sea which completely define the morphism p. The behaviour
of A is the formal noncommutative power series over A defined by

A= > (Ipw)Flw € K<<A>> .

weA*
The behaviour of A has a simple graphical interpretation. For every path 7= (¢1,...,%,41)
in the graph A going from #; to 7,41 and indexed by the word w = a; ... a,, we define

the cost ¢(7) by
C(ﬂ-) = Ii1 :u(al)h RIS Ill’(an)in7in+1 Fin+1 .
In other words, the cost of a path is just the product of the elements of k& that index the

different arrows it encounters on its way. Defining the cost c4(w) of a word w relatively
to A, as the sum of the costs of all paths indexed by w in A, we have by definition,

A= E ca(w)w .

wEA*

101



It is not difficult to show that

A=1-( X waa)

a€A

where the star M* of a matrix M is defined by
M=(I-M)"'= > M". (175)

n>0
It follows that

I- ( > ;L(a)a) F= > culw)w .
acA weA*

A series f € K << A >> is said to be recognizable if there exists a K-automaton A
over A for which f = A. On the other hand, one can also define a notion of rational
noncommutative series in K << A >>. A series [ € K << A>> is rational in the sense
of automata theory if it belongs to the subalgebra K,,; << A >>, which is the smallest
subring of K << A >> which contains K < A > and which is closed under inversion of
formal series. One then has the following fundamental theorem of Schiitzenberger (1961)

(see [BR] or [Eil] for a proof).
Theorem 9.1 A series f € K << A>> s rational if and only if it is recognizable.

The link between this notion of rationality and the one considered in Section 8 of the
present paper is provided by a result of Fliess ([F1], see also [Ca]): when the free field is
realized as the subfield of the field of Malcev-Neumann series over the free group F/(A)
generated by the K-alpgebra of F/(A), one has K,;; << A>>= K<< A>>N K £ A¥.

For our purposes, we need only the following particular case. We take A = {a;;, 1 <
i,7 < n}and p(a;;) = E;j, where E;; denotes the n x n matrix with only one nonzero
entry equal to 1 in position ¢, . The graph A is then the complete oriented graph on n
vertices, the arrow from ¢ to 7 being labelled by a;;. Thus, for n = 2, the graph A is for
instance

a2
ay (| ) (:) a2
(D)1

Denoting also by A the n x n matrix (a,;), we then have
A=TA"F .

In particular, taking all the entries of I and F' equal to zero with the exception of one
equal to 1, one obtains a graphical interpretation for any entry of the star of a matrix.
That is, denoting by P;; the set of words associated with a path from ¢ to j, one has

(A*)” = Z w .

wePij
This leads to the classical formula (see e.g. [BR])

* * * * * *
( a1 a2 ) o ( (a11 + a1z a3y ag1) aly ars (azg + ag ajy a12) )

aby a2 (@11 + a2 a5y a21)* (a9 + a2 afy a12)*

(176)

ag1 G322
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Indeed, the entry (1,1) of the matrix in the right-hand side of (176) represents the set of
words labelling a path from 1 to 1 in the automaton A associated with the generic matrix
of order 2. Here, the star of a series s in the a;; with zero constant coefficient is defined,
as in (175), by setting s* = 3,50 s™.

Observe that formulas (2.2) are exactly the images of (176) under the involutive field
automorphism ¢ of K £ A% defined by

o 1— (2273 if 2 :j
t(a;j) = { Cay it i (177)
(see [Co] p. 89), which maps the generic matrix A on I — A, so that «(A*) = A~

As an illustration, let us sketch an automata theoretic proof of Proposition 2.6. The
quasi-determinant in the left-hand side of (19) can be written as

Uan
a3n

D = G1p — (Clll a1y ... Can_l) (]n—l - M)_l . 5 (178)
GApp,

where M denotes the strictly upper triangular matrix defined by

0 a2 ... A2np-1

0 0 v G331
M =

o 0 ... 0

Relation (178) shows that D is essentially equal to the behaviour of the automaton A4,,_4
defined by

o the set of states of 4, 1 is 1,2,...,n—1,
e the only edges in A,_; go from ¢ to j with ¢ < j and are labeled by a;41 ;,

e cach state ¢ is equiped with an initial and a final arrow, respectively labeled by ay;
and by a;41 .

We give below the automaton A4, which illustrates the general structure of A4,,.

G234
/ a93 \
@35
a1 Y 99 /L 33 . (g4 /\ 14
O, 2 3 &)
azs C112/4 Q45 ‘YIS \\Gss
G34
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It is now clear that

D =ay,+ E ay; ( Z words labelling paths from ¢ to 7 in A,—1) aj41, ,

1<J

which is the right-hand side of (19).

104



References

[An]
[At]

[BB]

[BeRe]

[BBG]

D. ANDRE, Sur les permutations alternées, J. Math. Pures Appl., 7, (1881), 167-184.

M.D. ATKINSON, Solomon’s descent algebra revisiled, Bull. London Math. Soc., 24,
(1992), 545-551.

S. Basu and N. K. Bosk, Matriz Stieltjes series and network models , STAM J.
Math. Anal., 14, (1983), 209-222.

A. BERELE and A. REGEV, Hook Young diagrams with applications to combinatorics
and to representation theory of Lie superalgebras, Adv. in Math. 64, (1987), 118-175.

F. BERGERON, N. BERGERON and A.M. GARrsiA, Idempotents for the free Lie al-
gebra and gq-enumeration, in Invariant theory and tableaux, D. Stanton ed., IMA
Volumes in Mathematics and its Applications, Vol. 19, Springer, 1988.

J. BERSTEL and C. REUTENAUER, Ralional series and their languages, EATCS
Monographs on Theoretical Computer Science, Vol. 12, Springer, 1988.

N. BOURBAKI, Groupes et algébres de Lie, Chap. 2 et 3, Hermann, 1972.

D. BEessis, Padé approximants in Quantum Field Theory, in Padé approzimants and
their applications , P.R. Graves-Morris Fd., Academic Press, New York, 1973.

I. BIALYNICKI-BIRULA, B. MIELNIK and J. PLEBANSKI, Ezplicit solution of the
continuous Baker-Campbell-Hausdorff problem, Annals of Physics 51, (1969), 187-
200.

U. Bray and G. WHAPLES, Polynomials with coefficients from a division ring, Can.
J. Math. 35, (1983), 509-515.

G. CAUCHON, Séries de Malcev-Neumann sur le groupe libre el questions de ratio-
nalité, Theoret. Comp. Sci., 98, (1992), 79-97.

1.V. CHEREDNIK, A new interpretation of Gelfand-Tzetlin bases, Duke Math. J., 54,
(1987), 563-577.

P.M. Coun, Skew field constructions, London Math. Soc. Lect. Notes Series, 27,
1977.

J. DESARMENIEN, Fonctions syméiriques associées a des suiles classiques de nombres,
Ann. Sci. Ec. Norm. Sup. 4° série, 16, (1983), 271-304.

A. DrAUX, Bibliographie, Publication ANO-145, Université de Lille, 1984.
S. EILENBERG, Aulomata, languages and machines, Volume A, Academic Press, 1973.

W. FAIR, Noncommulative continued fractions, SIAM J. Math. Anal., 2, (1971),
226-232.

M. Friess, Sur le plongement de Ualgébre des séries rationnelles non commutatives
dans un corps gauche, C. R. Acad. Sci. Paris, 271, (1970), 926-927.

D. Foata and M.P. SCHUTZENBERGER, Théorie géométrique des polynéomes
eulériens, Lecture Notes in Math., 138, Springer, 1970.

105



[GR1]

[GR2]

[GZ]

[GS1]

[GS2]

[GeR]

H.O. FouLkes, Tangent and secant numbers and represenlalions of symmetric
groups, Discrete Math., 15, (1976), 311-324.

H.O. FouLkEs, Fulerian numbers, Newcomb’s problem and representations of sym-
metric groups, Discrete Math., 30, (1980), 3-49.

H.O. FouLkEs, Theorems of Polya and Kakeya on power-sums, Math. Zeitschr. 65,
(1956), 345-352.

F. R. GANTMACHER, The theory of matrices, Chelsea 1959.

A.M. Garsia, Combinatorics of the free Lie algebra and the symmelric group, in
Analysis, et cetera ..., Jirgen Moser Festschrift, Academic press, New York, (1990),
309-82.

A.M. GARsIA and C. REUTENAUER, A decomposition of Solomon’s descent algebra,
Advances in Math., 77, (1989), 189-262.

L. GEISSINGER, Hopf algebras of symmelric functions and class functions, in Combi-
natoire et représentations du groupe symétrique, D. Foata ed., Lect. Notes in Math.,
579, Springer, (1977), 168-181.

I.M. GELFAND and V.S. RETAKH, Determinants of matrices over noncommulative
rings, Funct. Anal. Appl., 25, (1991), 91-102.

I.M. GELFAND and V.S. RETAKH, A theory of noncommutative determinants and
characteristic functions of graphs, Funct. Anal. Appl., 26, (1992), 1-20; Publ. LACIM,
UQAM, Montreal, 14, 1-26.

I. M. GELFAND and M. L. ZETLIN, Finile-dimensional representations of the uni-
modular group, Dokl. Akad. Nauk SSSR, 71, (1950), 825-828.

M. GERSTENHABER and D. SCHACK, A Hodge-lype decomposition for commulalive
algebra cohomology, J. Pure Appl. Alg., 48, (1987), 229-247.

M. GERSTENHABER and D. ScHACK, The shuffle bialgebra and the cohomology of
commutative algebras, J. Pure Appl. Alg., 70, (1991), 263-272.

1. GESSEL, Multipartite P-partilions and inner product of skew Schur functions, Con-
temporary Mathematics, 34, (1984), 289-301.

I. GesseL and C. REUTENAUER, Counting permulalions with given cycle structure
and descent set, J. Comb. Theory A, 64 (1993), 189-215.

S. Gra¥Frl and V. GRECCHI, Matriz moments methods in pertubation theory, boson
quantum field models, and anharmonic oscillators, Commun. Math. Phys., 35, (1974),
235-252.

R. Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc., 313,
(1989), 539-570.

G. D. James and A. KeErRBER, The representation theory of the symmeltric group,
Addison-Wesley, 1981.

S.A. Joni and G.C. Rota, Coalgebras and algebras in Combinatorics, Stud. Appl.
Math., 61, (1979), 93-139.

106



[LT]

[Lil]

[Li2]

[Lod1]

[Lod2]

[Lod3]

[Lon]

[McD]

A.A. KruvacHKko, Lie elements in the tensor algebra, Siberian Math. J. 15 (1974),
1296-1304.

D. KroB, Some examples of formal series used in non-commultative algebra, Theor.
Comput. Sci., 79, (1991), 111-135.

D. KroB and B. LEcLERC, Minor identities for quasi-determinants and quantum
determinants, preprint LITP 93.46, Paris, 1993.

E. LAGUERRE, Sur un probléeme d’algébre, Bull. Soc. Math. France 5, 1877, 26-30.

T.Y. Lam and A. LeErOY, Vandermonde and Wronskian malrices over division rings,
J. Algebra, 119, 2, (1988), 308-336.

A. LascouX, Inversion des matrices de Hankel, Linear Algebra Appl., 129, (1990),
77-102.

A. Lascoux and P. PrRaGACZ, Ribbon Schur functions, Europ. J. Combinatorics, 9,
(1988), 561-574.

A. Lascoux and M.P. SCHUTZENBERGER, Formulaire raisonné de fonctions
symélriques, Publ. Math. Univ. Paris 7, Paris, 1985.

A. Lascoux and M.P. SCHUTZENBERGER, Le monoide plavique, in “Noncommuta-
tive structures in algebra and geometric combinatorics” (A. de Luca Ed.), Quaderni
della Ricerca Scientifica del C. N. R., Roma, 1981.

A. Lascoux and M.P. SCHUTZENBERGER, Keys and standard bases, in “Invariant
theory and tableaux” (D. Stanton Ed.), Springer, 1990.

B. LEcLERC, Powers of staircase Schur functions and symmetric analogues of Bessel
polynomials, Proceedings of the 5-th Conference on Formal Power Series and Algebraic
Combinatorics (A. Barlotti, M. Delest, R. Pinzani, Eds.), Firenze 1993, 315-328.

B. LecLERC and J.-Y. THIBON, Analogues symétriques des polynomes de Bessel,
C.R. Acad. Sci. Paris, 315, (1992), 527-530.

D.E. LirrLewoob, The theory of group characters, Clarendon Press, Oxford, 1940;
274 ed. 1950.

D.E. LirtLEwooD, The Kronecker product of symmelric group representations, J.
London Math. Soc., 31, (1956), 89-93.

J. L. Lopay, Opéralions sur ’homologie cyclique des algébres commutalives, Invent.
Math., 96, (1989), 205-230.

J. L. Lopay, Série de Hausdorff, idempolents eulériens el algébres de Hopf, Exposi-
tiones Math., 12, (1994), 165-178.

J. L. Lopay, Cyclic homology, Springer, 1992.

A. LONGTIN, Une combinatoire non commutalive pour Uétude des nombres sécants,
Combinatoire Enumérative, P. Leroux and G. Labelle Eds., Montréal 1985, Lect.
Notes in Math., 1234, Springer, (1986), 246-266.

1.G. MACDONALD, Symmelric funclions and Hall polynomials, Oxford Math. Mono-
graphs, Oxford University Press, 1979.

107



[MaR]

[MvR]

[MP]

[NT]

[Re86]

P.A. MacMaunon, Combinatory analysis, Cambridge University Press, 1915, 1916;
Chelsea reprint, 1960.

W. MaAcNuUs, On the exponential solution of differential equations for a linear oper-
ator, Comm. Pure Appl. Math. VII, (1954), 649-673.

R. ManNTACI and C. REUTENAUER, Noncommulalive generaling functions for de-
scents in classical Weyl groups, LITP Internal Report 93.20, Paris, 1993.

C. MALVENUTO and C. REUTENAUER, Dualily belween quasi-symmelric funclions
and the Solomon descent algebra, preprint UQAM, Montréal, 1993.

B. MIELNIK and J. PLEBAXNSKI, Combinatorial approach to Baker-Campbell-
Hausdorff exponents, Ann. Inst. Henri Poincaré, Section A, vol. XII, (1970), 215-254.

M. Nazarov and V. TArASoOV, Yangians and Gelfand-Zellin bases, Preprint RIMS,
Kyoto, 1993.

F. PaTrAS, L’algebre des descentes d’une bigébre graduée, Preprint Max Planck Inst.
MP1/93-9, 1993.

G. POLYa, Remarques sur un probléme d’algébre éludié par Laguerre, J. Math. Pur.
Appl. 31, 1951, 37-47.

P. Pracacz, Algebro-geometric applications of Schur §- and P-polynomials, in Top-
ies in Invariant Theory ;M. P. Malliavin Ed., Springer Lecture Notes in Math., 1478,
1991.

C. REUTENAUER, Theorem of Poincaré-Birkhoff-Witl, logarithm and representa-
tions of the symmelric group whose order are the Stirling numbers, in Combinatoire
énumérative, Proceedings, Montréal 1985 (G. Labelle and P. Leroux Eds.), Lecture
Notes in Math., 1234, Springer, (1986), 267-284.

C. REUTENAUER, Free Lie algebras, Oxford University Press, 1993.
G. DE B. ROBINSON, Represenlalion theory of the symmetric group, Edinburgh, 1961.

T. ScHarr and J.-Y. THIBON, A Hopf algebra approach to inner plethysm, Adv. in
Math., 104, (1994), 30-58.

M.P. SCHUTZENBERGER, On the definition of a family of automata, Information and
Control, 4, (1961), 245-270.

L. SoromonN, A Mackey formula in the group ring of a Cozetler group, J. Algebra,
41, (1976), 255-268.

J.-Y. THIBON, Hopf algebras of symmelric functions and lensor producls of symmet-
ric group representations, Internat. J. of Alg. Comp., 1, (1991), 207-221.

H. W. TUrNBULL, The theory of delerminants, matrices and invariants, Dover, New-
York, 1960.

H. S. WALL, Analytic theory of continued fractions, Chelsea, 1973.

R.M. WiLcox, FEzponential operaltors and parameter differentiation in Quantum
Physics, J. Math. Phys. 8, (1967), 962-982.

108



M.C. WoLr, Symmelric functions of non-commutalive elements, Duke Math. J., 2,
(1936), 626-637.

P. WynN, Continued fractions whose coefficients obey a non commulalive law of
multiplication, Arch. Rat. Mech. Anal., 12, (1963), 273-312.

A. V. ZELEVINSKY, Representalions of finile classical groups, a Hopf algebra ap-
proach, Lect. Notes in Math., 869, Springer, 1981.

D. P. ZELOBENKO, Compact Lie groups and their representations, Amer. Math. Soc.
Transl. of Math. Mono., vol. 40, Providence, 1973.

J.J. ZuANG, The quantum Cayley-Hamzillon theorem, preprint, 1991.

109



