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THERMAL CONDUCTIVITY FOR A MOMENTUM

CONSERVATIVE MODEL

GIADA BASILE, CÉDRIC BERNARDIN, AND STEFANO OLLA

Abstract. We introduce a model whose thermal conductivity diverges
in dimension 1 and 2, while it remains finite in dimension 3. We consider
a system of oscillators perturbed by a stochastic dynamics conserving
momentum and energy. We compute thermal conductivity via Green-
Kubo formula. In the harmonic case we compute the current-current
time correlation function, that decay like t−d/2 in the unpinned case
and like t−d/2−1 if a on-site harmonic potential is present. This implies
a finite conductivity in d ≥ 3 or in pinned cases, and we compute it
explicitely. For general anharmonic strictly convex interactions we prove
some upper bounds for the conductivity that behave qualitatively as in
the harmonic cases.

1. Introduction

The mathematical deduction of Fourier’s law and heat equation for the
diffusion of energy from a microscopic Hamiltonian deterministic dynamics
is one of the major open problem in non-equilibrium statistical mechanics
[6]. Even the existence of the thermal conductivity defined by Green-Kubo
formula, is a challenging mathematical problem and it may be infinite in
some low dimensional cases [13]. Let us consider the problem in a generic
lattice system where dynamics conserves energy (between other quantities
like momentum etc.). For x ∈ Z

d, denote by Ex(t) the energy of atom x. To
simplify notations let us consider the 1-dimensional case. Since the dynamics
conserves the total energy, there exist energy currents jx,x+1 (local functions
of the coordinates of the system), such that

d

dt
Ex(t) = jx−1,x(t) − jx,x+1(t) (1)

Another consequence of the conservation of energy is that there exists a fam-
ily of stationary equilibrium measures parametrized by temperature value
T (between other possible parameters). Let us denote by < · >=< · >T
the expectation of the system starting from this equilibrium measure, and
assume that parameters are set so that < jx,y >= 0 (for example if total
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momentum is fixed to be null). Typically these measures are Gibbs measure
with sufficiently fast decay of space correlations so that energy has static
fluctuation that are Gaussian distributed if properly rescaled in space. Let
us define the space-time correlations of the energy as

S(x, t) =< Ex(t)E0(0) > − < E0 >
2 .

If thermal conductivity is finite, S(x, t) should be solution of the diffusion
equation (in a proper large space-time scale) and thermal conductivity (TC)
can be defined as

κ(T ) = lim
t→∞

1

2tT 2

∑

x∈Z

x2S(x, t). (2)

By using the energy conservation law (1), time and space invariance (see
section 3), one can rewrite

κ(T ) = lim
t→∞

1

2tT 2

∑

x∈Z

〈(
∫ t

0
jx,x+1(s)ds

)(
∫ t

0
j0,1(s

′)ds′
)〉

=
1

T 2

∑

x∈Z

∫ ∞

0
〈jx,x+1(t) j0,1(0)〉 dt

(3)

which is the celebrated Green-Kubo formula for the thermal conductivity
(cf. [17]).

One can see from (3) why the problem is so difficult for deterministic
dynamics: one needs some control of time decay of the current-current cor-
relations, a difficult problem even for finite dimensional dynamical systems.
Furthermore in some one–dimensional systems, like Fermi-Pasta-Ulam chain
of unpinned oscillators, if total momentum is conserved by the dynamics,
thermal conductivity is expected to be infinite (cf. [13] for a review of nu-
merical results on this topic). Very few mathematically rigorous results exist
for deterministic systems ([15, 8]).

In this paper we consider stochastic perturbations of a deterministic
Hamiltonian dynamics on a multidimensional lattice and we study the cor-
responding thermal conductivity as defined by (3). The stochastic pertur-
bations are such that they exchange momentum between particles with a
local random mechanism that conserves total energy and total momentum.

Thermal conductivity of Hamiltonian systems with stochastic dynamical
perturbations have been studied for harmonic chains. In [5, 7] the stochastic
perturbation does not conserve energy, and in [3] only energy is conserved.
The novelty of our work is that our stochastic perturbations conserve also
momentum, with dramatic consequences in low dimensional systems. In fact
we prove that for unpinned systems (where also the Hamiltonian dynamics
conserve momentum, see next section for a precise definition) with harmonic
interactions, thermal conductivity is infinite in 1 and 2 dimensions, while
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is finite for d ≥ 3 or for pinned systems. Notice that for stochastic per-
turbations of harmonic systems that do not conserve momentum, thermal
conductivity is always finite [7, 3].

This divergence of TC in dimension 1 and 2 is expected generically for
deterministic Hamiltonian non-linear system when unpinned. So TC in our
model behaves qualitatively like in a deterministic non-linear system, i.e.
these stochastic interactions reproduce some of the features of the non-
linear deterministic hamiltonian interactions. Also notice that because of
the conservation laws, the noise that we introduce is of multiplicative type,
i.e. intrinsically non-linear (cf. (6) and (7)). On the other hand, purely
deterministic harmonic chains (pinned or unpinned and in any dimension)
have always infinite conductivity [15]. In fact in these linear systems energy
fluctuations are transported ballistically by waves that do not interact with
each other. Consequently, in the harmonic case, our noise is entirely respon-
sable for the finiteness of the TC in dimension 3 and for pinned systems.
Also in dimension 1 and 2, the divergence of TC for unpinned harmonic
systems is due to a superdiffusion of the energy fluctuations, not to bal-
listic transport (see [2, 12] where this behavior is explained with a kinetic
argument).

For anharmonic systems, even with the stochastic noise we are not able
to prove the existence of thermal conductivity (finite or infinite). If the
dimension d is greater than 3 and the system is pinned, we get a uniform
bound on the finite size system conductivity. For low dimensional pinned
systems (d = 1, 2), we can show the conductivity is finite if the interaction
potential is quadratic and the pinning is generic. For the unpinned system
we have to assume that the interaction between nearest-neighbor particles
is strictly convex and quadratically bounded at infinity. This because we
need some informations on the spatial decay of correlations in the stationary
equilibrium measure, that decay slow in unpinned system [9]. In this case,
we prove the conductivity is finite in dimension d ≥ 3 and we obtain upper
bounds in the size N of the system of the form

√
N in d = 1 and (logN)2

in d = 2 (see Theorem 3 for precise statements).
The paper is organized as follows. Section 2 is devoted to the precise

description of the dynamics. In section 3, we present our results. The
proofs of the harmonic case are in section 4 and 5 while the proofs of the
anharmonic case are stated in section 6. The final section contains technical
lemmas related to equivalence of ensembles.

Notations : The canonical basis of R
d is noted (e1, e2, . . . , ed) and the

coordinates of a vector u ∈ R
d are noted (u1, . . . ,ud). Its Euclidian norm

|u| is given by |u| =
√

(u1)2 + . . . + (ud)2 and the scalar product of u and
v is u · v.

If N is a positive integer, Z
d
N denotes the d-dimensional discrete torus of

length N and we identify x = x + kNej for any j = 1, . . . , d and k ∈ Z.
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If F is a function from Z
d (or Z

d
N ) into R then the (discrete) gradient of F

in the direction ej is defined by (∇ejF )(x) = F (x+ej)−F (x) and the Lapla-

cian of F is given by (∆F )(x) =
∑d

j=1 {F (x + ej) + F (x − ej) − 2F (x)}.

2. The dynamics

In order to avoid difficulties with definitions of the dynamics and its sta-
tionary Gibbs measures, we start with a finite system and we will define
thermal conductivity through an infinite volume limit procedure (see sec-
tion 3).

We consider the dynamics of the system of length N with periodic bound-
ary conditions. The atoms are labeled by x ∈ Z

d
N . Momentum of atom x is

px ∈ R
d and its displacement from its equilibrium position is qx ∈ R

d. The
Hamiltonian is given by

HN =
∑

x∈Zd
N





|px|2
2

+W (qx) +
1

2

∑

|y−x|=1

V (qx − qy)



 .

We assume that V and W have the following form:

V (qx − qy) =
d
∑

j=1

Vj(q
j
x − qjy), W (qx) =

d
∑

j=1

Wj(q
j
x).

and that Vj ,Wj are smooth and even. We call V the interaction potential,
andW the pinning potential. The case whereW = 0 will be called unpinned.

We consider the stochastic dynamics generated by the operator

L = A+ γS . (4)

The operator A is the usual Hamiltonian vector field

A =
∑

x

{px · ∂qx
− ∂qx

HN · ∂px
}

while S is the generator of the stochastic perturbation and γ > 0 is a
positive parameter that regulates its strength. The operator S acts only on
the momentums {px} and generates a diffusion on the surface of constant
kinetic energy and constant momentum. This is defined as follows. If d ≥ 2,
for every nearest neighbor atoms x and z, consider the d − 1 dimensional
surface of constant kinetic energy and momentum

Se,p =

{

(px,pz) ∈ R
2d :

1

2

(

|px|2 + |pz|2
)

= e ; px + pz = p

}

.

The following vector fields are tangent to Se,p

Xi,j
x,z = (pjz − pjx)(∂pi

z
− ∂pi

x
) − (piz − pix)(∂

pj
z

− ∂
pj
x

).
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so
∑d

i,j=1(X
i,j
x,z)

2 generates a diffusion on Se,p (see [11]). In d ≥ 2 we define

S =
1

2(d − 1)

∑

x

d
∑

i,j,k

(

Xi,j
x,x+ek

)2

=
1

4(d − 1)

∑

x,z∈Zd
N

|x−z|=1

∑

i,j

(

Xi,j
x,z

)2

where e1, . . . , ed is canonical basis of Z
d.

Observe that this noise conserves the total momentum
∑

x px and energy
HN , i.e.

S
∑

x

px = 0 , S HN = 0

In dimension 1, in order to conserve total momentum and total kinetic
energy, we have to consider a random exchange of momentum between three
consecutive atoms (because if d = 1, Se,p has dimension 0), and we define

S =
1

6

∑

x∈T1
N

(Yx)
2

where

Yx = (px − px+1)∂px−1
+ (px+1 − px−1)∂px + (px−1 − px)∂px+1

which is vector field tangent to the surface of constant energy and momen-
tum of the three particles involved.

The corresponding Fokker-Planck equation for the time evolution of the
probability distribution P (q,p, t), given an initial distribution P (q,p, 0) is
given by

∂P

∂t
= (−A+ γS)P = L∗P . (5)

where L∗ is the the adjoint of L with respect to the Lebesgue measure.

Let {wi,jx,y; x,y ∈ T
d
N ; i, j = 1, . . . , d; |y − x| = 1} be independent stan-

dard Wiener processes, such that wi,jx,y = wi,jy,x. Equation (5) corresponds
to the law at time t of the solution of the following stochastic differential
equations:

dqx = px dt

dpx = −∂qx
HN dt + 2γ∆px dt

+

√
γ

2
√
d− 1

∑

z:|z−x|=1

d
∑

i,j=1

(

Xi,j
x,zpx

)

dwi,jx,z(t)

(6)
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In d = 1 these are:

dpx = −∂qxHN dt +
γ

6
∆(4px + px−1 + px+1)dt

+

√

γ

3

∑

k=−1,0,1

(Yx+kpx) dwx+k(t)
(7)

where here {wx(t), x = 1, . . . , N} are independent standard Wiener pro-
cesses.

Defining the energy of the atom x as

Ex =
1

2
p2

x + W (qx) +
1

2

∑

y:|y−x|=1

V (qy − qx)

the energy conservation law can be read locally as

Ex(t) − Ex(0) =

d
∑

k=1

( Jx−ek,x([0, t]) − Jx,x+ek
([0, t]) )

where Jx,x+ek
([0, t]) is the total energy current between x and x + ek up to

time t. This can be written as

Jx,x+ek
([0, t]) =

∫ t

0
jx,x+ek

(s) ds+Mx,x+ek
(t) (8)

In the above Mx,x+ek
(t) are martingales that can be written explicitly as

Itô stochastic integrals

Mx,x+ek
(t) =

√

γ

(d− 1)

∑

i,j

∫ t

0

(

Xi,j
x,x+ek

Ex

)

(s) dwi,jx,x+ek
(s) (9)

In d = 1 these martingales write explicitly as

Mx,x+1(t) =

√

γ

3

∫ t

0

∑

k=−1,0,1

(Yx+kEx) dwx+k(t) (10)

The instantaneous energy currents jx,x+ek
satisfy the equation

LEx =
d
∑

k=1

(jx−ek ,x − jx,x+ek
)

and it can be written as

jx,x+ek
= jax,x+ek

+ γjsx,x+ek
. (11)

The first term in (11) is the Hamiltonian contribution to the energy current

jax,x+ek
= −1

2
(∇V )(qx+ek

− qx) · (px+ek
+ px)

= −1

2

d
∑

j=1

V ′
j (q

j
x+ek

− qjx)(pjx+ek
+ pjx)

(12)
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while the noise contribution in d ≥ 2 is

γjsx,x+ek
= −γ(∇ek

p2)x (13)

and in d = 1 is

γjsx,x+1 = − γ∇ϕ(px−1, px, px+1)

ϕ(px−1, px, px+1) =
1

6
[p2
x+1 + 4p2

x + p2
x−1 + px+1px−1 − 2px+1px − 2pxpx−1]

In the unpinned case (W = 0), given any values of E > 0, the uniform
probability measure on the constant energy-momentum shell

ΣN,E =







(p,q) : HN = NE ,
∑

x∈Zd
N

px = 0,
∑

x∈Zd
N

qx = 0







is stationary for the dynamics, and A and S are respectively antisymmetric
and symmetric with respect to this measure. For the stochastic dynamics,
we believe that these measures are also ergodic, i.e. total energy, total mo-
mentum and center of mass are the only conserved quantities. Notice that,
because of the periodic boundary conditions, no other conserved quantities
associated to the distortion of the lattice exist. For example in d = 1 the
total length of the chain

∑

x(qx+1 − qx) is automatically null.
In the pinned case, total momentum is not conserved, and the ergodic

stationary measures are given by the uniform probability measures on the
energy shells

ΣN,E = {(p,q) : HN = NE } .
In both cases we refer to these measures as microcanonical Gibbs mea-

sures. We denote by < · >N,E the expectation with respect to these micro-
canonical measures.

We will also consider the dynamics starting from the canonical Gibbs
measure < · >N,T with temperature T > 0 defined on the phase space

(R2d)Z
d
N by

< · >N,T =
e−HN/T

ZN,T

dq dp.

To avoid confusions between these measures we restrict the use of subscript
E for the microcanonical measure and subscript T for the canonical measure.

3. Green-Kubo formula and statement of the results

In the physical literature several variations of the Green-Kubo formula (3)
can be found ([13, 7]). As in (3), one can start with the infinite system and
sum over all x ∈ Z

d. One can also start working with the finite system with
periodic boundary conditions and sum over x ∈ ΛdN where ΛdN is a finite
box of size N and take the thermodynamic limit N → ∞ (before sending
the time to infinity). In the finite case there is a choice of the equilibrium
measure. If < · > is the canonical measure at temperature T , one refers
to the derivation à la Kubo. If < · > is the microcanonical measure at
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energy ENd, one refers to the derivation à la Green. Because of to the
equivalence of ensembles one expects that these different definitions give
all the same value of the conductivity, provided that temperature T and
energy E are suitably related by the corresponding thermodynamis relation.
Nevertheless a rigorous justification is absent in the literature.

In the sequel we will consider the microcanonical Green-Kubo formula
(noted κ) and the canonical Green-Kubo formula (noted κ̃) starting from
our finite system.

In the harmonic case we work out the microcanonical Green-Kubo version
that we compute explicitly. Similar computations are valid (with less work)
for the canonical version of the Green-Kubo formula and will give the same
result. In the anharmonic case equivalence of ensembles is less developed
and we deal only with the canonical version of the Green-Kubo formula.

The microcanonical Green-Kubo formula for the conductivity in the di-
rection e1 is defined as the limit (when it exists)

κ1,1(T ) = lim
t→∞

lim
N→∞

1

2T 2t

∑

x∈Zd
N

EN,E [Jx,x+e1
([0, t])J0,e1

([0, t])] (14)

where EN,E is the expectation starting with the microcanonical distribution
< · >N,E , and the energy E = E(T ) is chosen such that it corresponds to
the thermodynamic energy at temperature T (i.e. the average of the kinetic
energy in the canonical measure). In the harmonic case T = E .

Similarly the canonical version of the Green-Kubo formula is given by

κ̃1,1(T ) = lim
t→∞

lim
N→∞

1

2T 2t

∑

x∈Zd
N

EN,T [ Jx,x+e1
([0, t])J0,e1

([0, t]) ] (15)

when this limit exists. Here EN,T indicates the expectation with respect to
the equilibrium dynamics starting with the canonical measure < · >N,T at
temperature T . These definitions are consistent with (2)-(3) as we show at
the end of this section.

Our first results concern the (α, ν)-harmonic case:

Vj(r) = αr2, Wj(q) = νq2, α > 0, ν ≥ 0 (16)

Theorem 1. In the (α, ν)-harmonic case (16), the limits defining κ1,1 and
κ̃1,1 exist. They are finite if d ≥ 3 or if the on-site harmonic potential is
present (ν > 0), and are infinite in the other cases. When finite, κ(T ) and
κ̃(T ) are independent of T , coincide and the following formula holds

κ̃1,1(T ) = κ1,1(T ) =
1

8π2dγ

∫

[0,1]d

(∂k1ω)2(k)

ψ(k)
dk +

γ

d
(17)
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where ω(k) is the dispertion relation

ω(k) =



ν + 4α

d
∑

j=1

sin2(πkj)





1/2

(18)

and

ψ(k) =

{

8
∑d

j=1 sin2(πkj), if d ≥ 2

4/3 sin2(πk)(1 + 2 cos2(πk)), if d = 1
(19)

Consequently in the unpinned harmonic cases in dimension d = 1 and 2,
the conductivity of our model diverges. In order to understand the nature
of this divergence we define the (microcanonical) conductivity of the finite
system of size N as

κ1,1
N (T ) =

1

2T 2tN

1

Nd
EN,E









∑

x∈Zd
N

Jx,x+e1
([0, tN ])





2

 (20)

where tN = N/vs with vs = limk→0 |∂k1ω(k)| = 2α1/2 the sound velocity.
This definition of the conductivity of the finite system is motivated by the
following consideration: ∇kω(k) is the group velocity of the k-mode waves,
and typically vs is an upper bound for these velocities. Consequently tN is
the typical time a low k (acoustic) mode takes to cross around the system

once. One defines similarly κ̃1,1
N (T ) by

κ̃1,1
N (T ) =

1

2T 2tN

1

Nd
EN,T









∑

x∈Zd
N

Jx,x+e1
([0, tN ])





2

 (21)

We conjecture that κN (resp. κ̃N ) has the same asymptotic behavior
as the conductivity defined in the non-equilibrium stationary state on the
open system with thermostats at the boundary at different temperature, as
defined in eg. [3, 6, 15].

With these definitions we have the following theorem:

Theorem 2. In the harmonic case, if W = 0:

(1) κN ∼ N1/2 if d = 1,
(2) κN ∼ logN if d = 2.

In all other cases κN is bounded in N and converges to κ.
Same results are valid for κ̃N .

In fact we show that, in the harmonic case, we have

lim
N→∞

κ̃1,1
N (T )

κ1,1
N (T )

= 1 (22)

This is a consequence of equation (51) that one can easily check is also valid
if the microcanonical measure is replaced by the canonical measure.
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In the anharmonic case we cannot prove the existence of neither κ̃1,1(T )
nor κ1,1(E), but we can establish upper bounds for the canonical version of
the finite size Green-Kubo formula (21). Extra assumptions on the poten-
tials V and W assuring a uniform control on the canonical static correlations
(see (86-89)) have to be done. In the unpinned case W = 0, (89) is valid as
soon as V is strictly convex. In the pinned case W > 0, (86) is “morally”
valid as soon as the infinite volume Gibbs measure is unique. Exact assump-
tions are given in [4], theorem 3.1 and theorem 3.2. In the sequel, ”general
anharmonic case” will refer to potentials V and W such that (86) (or (89))
is valid.

Theorem 3. Consider the general anharmonic case. There exists a constant
C (depending on the temperature T ) such that

• For d ≥ 3,
(1) either W > 0 is general
(2) or if W = 0 and 0 < c− ≤ V ′′

j ≤ C+ <∞ for any j,
then

κ̃1,1
N (T ) ≤ C.

• For d = 2, if W = 0 and 0 < c− ≤ V ′′
j ≤ C+ <∞ for any j, then

κ̃1,1
N (T ) ≤ C(logN)2.

• For d = 1, if W = 0 and 0 < c− ≤ V ′′ ≤ C+ <∞, then

κ̃1,1
N (T ) ≤ C

√
N.

• Moreover, in any dimension, if Vj are quadratic and W > 0 is gen-

eral then κ̃1,1
N (T ) ≤ C.

The proof of this statement is in section 6.

We now relate the definition of the Green-Kubo (14) and (15) to the vari-
ance of the energy-energy correlations function (2).

Consider the infinite volume dynamics on Z
d under the infinite volume

canonical Gibbs measure with temperature T > 0. The expectation is de-
noted by ET . Fix t > 0 and assume that the following sum makes sense

Di,j
T (t) =

∑

x∈Zd

xixjET [ (Ex(t) − T )(E0(0) − T ) ] =
∑

x∈Zd

xixjS(x, t). (23)

If x 6= 0, by space and time invariance of the dynamics, we have

ET [(Ex(t) − T )(E0(0) − T )] = −1

2
ET [ (Ex(t) − Ex(0)) (E0(t) − E0(0)) ] (24)

By definition of the current, we have for any y ∈ Z
d:

Ey(t) − Ey(0) =
d
∑

k=1

(Jy−ek ,y([0, t]) − Jy,y+ek
([0, t])) (25)
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By two discrete integration by parts one obtains

Di,j
T (t) =

∑

x∈Zd

ET

[

Jx,x+ei([0, t])J0,ej ([0, t])
]

(26)

so that the thermal conductivity is equal to the space-time correlations of
the total current

κi,j(T ) = δ0(i− j) lim
t→∞

1

2T 2t

∑

x∈Zd

ET

[

Jx,x+ei([0, t])J0,ej ([0, t])
]

(27)

Of course this derivation is only formal even for fixed time t > 0. The
problem is to define the infinite volume dynamics and to show S(x, t) has
a sufficiently fast decay in x. For the purely Hamiltonian dynamics, it is
a challenging problem. For the stochastic dynamics it seems less difficult
but remains technical. To avoid these difficulties we adopt a finite volume
limit procedure starting from (3). This explains the definitions (14) and (15).

Consider now the closed dynamics on Z
d
N starting from the microcanonical

state. The rest of the section is devoted to the proof of the following formula

1

2T 2t

1

Nd
EN,E









∑

x∈Zd
N

Jx,x+e1
([0, t])





2



= (2T 2tNd)−1
EN,E









∑

x∈Zd
N

∫ t

0
jax,x+e1

(s)ds





2

+
γ

d
+
ON
Nd

(28)

and an identical formula in the canonical case (with EN,E substituted by
EN,T ).

The term γ/d in (28) is the direct contribution of the stochastic dynamics
to the thermal conductivity. In the microcaconical case we actually prove
that is is equal to γ/d only for the harmonic case. A complete proof of
(28) for anharmonic interaction demands an extension of the equivalence
of ensembles estimates proven in section 7. In the grancanonical case this
problem does not appear.

Starting in the microcanonical case, remark that the first term on the
RHS of (28) can be written as

(2T 2tNd)−1
EN,E









∑

x∈Zd
N

∫ t

0
jax,x+e1

(s)ds





2



=
1

T 2

∫ ∞

0

(

1 − s

t

)+
∑

x∈Zd
N

EN,E

(

jax,x+e1
(s)ja0,e1

(0)
)

ds

(29)
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If γ = 0, which corresponds to the purely Hamiltonian system, as N
and then t goes to infinity, and if one can prove that the current-current
correlation function has a sufficiently fast decay, then one recovers the usual
Green-Kubo formula (3).

To prove (29) one uses space and time translation invariance of the dy-
namics

(2T 2tNd)−1
EN,E





[

∑

x

∫ t

0
jax,x+e1

(s)ds

]2




= (2T 2tNd)−1
∑

x,y

∫ t

0
ds

∫ t

0
du EN,E

(

jax,x+e1
(s) jay,y+e1

(u)
)

= (T 2tNd)−1
∑

x,y

∫ t

0
ds

∫ s

0
du EN,E

(

jax,x+e1
(s) jay,y+e1

(u)
)

= (T 2tNd)−1
∑

x,y

∫ t

0
ds

∫ s

0
du EN,E

(

jax−y,x−y+e1
(s− u) ja0,e1

(0)
)

=
1

T 2

∫ ∞

0

(

1 − s

t

)+
∑

x

EN,E

(

jax,x+e1
(s)ja0,e1

(0)
)

ds

We now give the proof of (28). Because of the periodic boundary condi-
tions, since js if a gradient (cf. (13)), the corresponding terms cancel, and
we can write

∑

x Jx,x+e1
([0, t]) =

∫ t
0

∑

x j
a
x,x+e1

(s) ds+
∑

xMx,x+e1
(t)

=
∫ t
0 Je1

(s) ds+ Me1
(t)

(30)

so that

(tNd)−1
EN,E





[

∑

x

Jx,x+e1
([0, t])

]2




= (tNd)−1
EN,E

(

[∫ t

0
Je1

(s)ds

]2
)

+ (tNd)−1
EN,E

(

M
2
e1

(t)
)

+ 2(tNd)−1
EN,E

([∫ t

0
Je1

(s) ds

]

Me1
(t)

)

(31)

The third term on the RHS of (31) is shown to be zero by a time reversal
argument and the second term on the RHS of (31) gives in the limit a
contribution equal to γ/d.

To see the first claim let us denote by {ω(s)}0≤s≤t the process
{(px(s),qx(s)); x ∈ Z

d
N , 0 ≤ s ≤ t} arising in (6) or in (7) for the one-

dimensional case. The reversed process {ω∗
s}0≤s≤t is defined as ω∗

s = ωt−s.
Under the microcanonical measure, the time reversed process is still Markov
with generator −A + γS. The total current Jt(ω·) =

∑

x Jx,x+e1
([0, t]) is
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a functional of {ωs}0≤s≤t. By (6-7), we have in fact that Jt(·) is an anti-
symmetric functional of {ωs}0≤s≤t, meaning

Jt({ω∗
s}0≤s≤t) = −Jt({ωs}0≤s≤t) (32)

In fact, similarly to (8), we have

Js(ω
∗
· ) =

∫ s

0
(Je1

)∗(ω∗(v))dv + M
∗
e1

(s), 0 ≤ s ≤ t (33)

where (M∗
e1

(s))0≤s≤t is a martingale with respect to the natural filtration
of (ω∗

s)0≤s≤t and (Je1
)∗ =

∑

x(ja)∗x,x+e1
is equal to −Je1

= −∑x j
a
x,x+e1

.
We have then by time reversal

EN,E[Jt(ω·)Je1
(ω(t))] = −EN,E[Jt(ω

∗
· )Je1

(ω∗(0))]

= −EN,E

[(∫ t

0
(Je1

)∗(ω∗(s))ds + M
∗(t)

)

Je1
(ω∗(0))

]

= −EN,E

[(∫ t

0
Je1

∗(ω∗(s))ds

)

Je1
(ω∗(0))

]

(34)

where the last equality follows from the martingale property of M∗. Recall
now that (Je1

)∗ = −Je1
. By variables change s→ t− s in the time integral,

we get

EN,E[Jt(ω·)Je1
(ω(t))] = EN,E

[(∫ t

0
Je1

(ω(s))ds

)

Je1
(ω(t))

]

(35)

It follows that

EN,E

[(∫ t

0
Je1

(ω(s))ds

)

Me1
(t)

]

= EN,E

[∫ t

0
Je1

(ω(s))Me1
(s)ds

]

=

∫ t

0
ds EN,E

[

Je1
(ω(s))

(

Js(ω·) −
∫ s

0
Je1

(ω(v))dv

)]

= 0

(36)

For the second term on the RHS of (31) we have

(tNd)−1
EN,E

(

M
2
e1

(t)
)

=
γ

(d− 1)Nd

∑

x

∑

i,j

〈

(

Xi,j
x,x+e1

(p2
x/2)

)2
〉

N,E

=
γ

(d− 1)Nd

∑

x

∑

i6=j

〈

(

pjxp
i
x+e1

− pixp
j
x+e1

)2
〉

N,E

=
2γ

(d− 1)Nd

∑

x

∑

i6=j

〈

(pjxp
i
x+e1

)2
〉

N,E

− 2γ

(d− 1)Nd

∑

x

∑

i6=j

〈

(pixp
i
x+e1

pjxp
j
x+e1

)
〉

N,E
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Thanks to the equivalence of ensembles (cf. lemma 7), this last quantity is
equal to

2γ
T 2

d
+N−dON (37)

where ON remains bounded as N → ∞. The calculation in d = 1 is similar.
The contribution of the martingale term for the conductivity is hence γ/d
and we have shown (28). Notice this is the only point where we have used
the equivalence of ensembles results of section 7 that we have proven only
in the harmonic case. We conjecture these are true also for the anharmonic
cases.

Observe that all the arguments above between (30) and (37) apply di-
rectly also to the canonical definition of the Green-Kubo but without the
small error in N (because for the canonical measure momentums px are
independently distributed and the equivalence of ensembles approximations
are in fact equalities). Therefore we have the similar formula to (28):

1

2T 2t

∑

x

EN,T (Jx,x+e1
([0, t])J0,e1

([0, t]))

= (2T 2Ndt)−1
EN,T





[

∑

x

∫ t

0
jax,x+e1

(s)ds

]2


+
γ

d

(38)

In the next sections we will consider the (α, ν)-harmonic case and we will
compute explicitly the limit (as N → ∞ and then t → ∞) of the two first
term on the RHS of (31).

4. Correlation function of the energy current in the
harmonic case

We consider the (α, ν)-harmonic case (16). We recall that Je1
=
∑

x jx,x+e1
.

Because of the periodic boundary conditions, and being jsx,x+e1
a spatial gra-

dient (cf. (13)), we have that Je1
=
∑

x j
a
x,x+e1

. We are interested in the
decay of the correlation function:

C1,1(t) = lim
N→∞

1

Nd
EN,E(Je1

(t)Je1
(0)) = lim

N→∞

∑

x

EN,E(j
a
0,e1

(0)jax,x+e1
(t))

(39)
where EN,E is the expectation starting with the microcanonical distribution
defined above.

For λ > 0, let uλ,N be the solution of the Poisson equation

λuλ,N − Luλ,N = −
∑

x

jax,x+e1

given explicitely in lemma 2 of section 5. By lemma 1, we can write the
Laplace transform of C1,1(t) as

∫ ∞

0
dte−λtC1,1(t) dt = lim

N→∞

〈

ja0,e1
uλ,N

〉

N,E
(40)
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Substituting in (40) the explicit form of uλ,N given in lemma 2, we have:

−
〈

ja0,e1
uλ,N

〉

N,E
=
α2

2γ

∑

x,y

gλ,N (x− y) 〈(qe1
− q0) · (pe1

+ p0)(px · qy)〉
N,E

=
α2

2γ

∑

x,y

gλ,N (x− y) 〈(qe1
· p0 − q0 · pe1

)(px · qy)〉
N,E

+
α2

2γ

∑

x,y

gλ,N (x− y) 〈(qe1
· pe1

− q0 · p0)(px · qy)〉
N,E

(41)

Observe that the last term on the RHS of (41) is null by the translation
invariance property. So we have (using again the translation invariance and
the antisymmetry of gλ,N )

−
〈

ja0,e1
uλ,N

〉

N,e
=
α2

2γ

∑

x,y

gλ,N (x − y) 〈(qe1
− q−e1

) · p0)(px · qy)〉
N,e

Define

KN (q) = NdE − 1

2

∑

x

qx · (νI − α∆)qx

In the unpinned case ν = 0, conditionally to the positions configuration q,

the law of p is µq = µN
d√
2KN (q)

(defined in lemma 6), meaning the uniform

measure on the surface

{

(px)x∈Zd
N

;
1

2

∑

x

p2
x = KN (q);

∑

x

px = 0

}

By using properties (i),(ii) and (iii) of lemma 6, one has for x 6= 0,

〈((qe1
− qe1

) · p0)(px · qy)〉
N,E

=
∑

i,j

〈

µq

(

pi0p
j
x

)

(qie1
− qi−e1

)qjy
〉

N,E

=
∑

i

〈

µq

(

pi0p
i
x

)

(qie1
− qi−e1

)qiy
〉

N,E

= −
d
∑

i=1

〈

2KN (q)

dNd(Nd − 1)
(qie1

− qi−e1
)qiy

〉

N,E

= − 1

Nd − 1

d
∑

i=1

〈

(pi0)
2(qie1

− qi−e1
)qiy
〉

N,E

(42)
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For x = 0, one gets

〈((qe1
− qe1

) · p0)(p0 · qy)〉
N,E

=
∑

i,j

〈

µq

(

pi0p
j
0

)

(qie1
− qi−e1

)qjy

〉

N,E

=
d
∑

i=1

〈

µq

(

pi0p
i
0

)

(qie1
− qi−e1

)qiy
〉

N,E

=

d
∑

i=1

〈

(

pi0
)2

(qie1
− qi−e1

)qiy

〉

N,E

(43)

In the pinned case ν > 0, conditionally to the positions configuration q,

the law of p is λq = λN
d√
2KN (q)

(defined in lemma 5), meaning the uniform

measure on the surface
{

(px)x∈Zd
N

;
1

2

∑

x

p2
x = KN (q)

}

We proceed in a similar way and we observe that if x 6= 0, λq(pi0p
i
x) = 0.(cf.

ii) of lemma 5)
Since gλ,N is antisymmetric (see (64-65)) and such that

∑

z gλ,N (z) = 0,
one obtains easily in both cases (pinned and unpinned)

−
〈

ja0,e1
uλ,N

〉

N,e
= −α

2

2γ

∑

y

gλ,N (y)
∑

i

〈

(

pi0
)2

(qie1
− qi−e1

)qiy

〉

N,E

+
α2

2γ

1ν=0

Nd − 1

∑

x 6=0,y

gλ,N (y − x)
∑

i

〈

(

pi0
)2

(qie1
− qi−e1

)qiy

〉

N,E

= −
(

1 +
1ν=0

Nd − 1

)

α2

2γ

∑

y

gλ,N (y)
∑

i

〈

(

pi0
)2

(qie1
− qi−e1

)qiy

〉

N,E

.

(44)

Let ΓN (x), x ∈ Z
d
N , be the unique solution of

(νI − α∆)ΓN = δe1
− δ−e1

(45)

such that
∑

x∈Zd
N

ΓN (x) = 0.

By (iii) of lemma 7 and (77), we have
∣

∣

∣

∣

∣

−
〈

ja0,e1
uλ,N

〉

N,E
−
(

1 +
1ν=0

Nd − 1

)

α2E2

2γd

∑

y

gλ,N (y)ΓN (y)

∣

∣

∣

∣

∣

≤ C logN

Nd

∑

y

|gλ,N (y)| ≤ C logN

Nd/2

(

∑

x

(gλ,N (x))2

)1/2

≤ C ′ logN

λNd/2

(46)

Hence the last term of (46) goes to 0.
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Taking the limit as N → ∞ we obtain (see (80))
∫ ∞

0
e−λtC1,1(t) dt =

α2E2

2dγ

∑

z

gλ(z)Γ(z) (47)

where gλ are solutions of the same equations as gλ,N but on Z
d and Γ is the

solution of the same equation as ΓN but on Z
d.

Using Parseval relation and the explicit form of the Fourier transform of
gλ (cf. (74)) and Γ, one gets the following formula for the Laplace transform
of C1,1(t) for d ≥ 2:

α2E2

d

∫

[0,1]d
dk

(

sin2(2πk1)

ν + 4α
∑d

j=1 sin2(πkj)

)

1

λ+ 8γ
∑d

j=1 sin2(πkj)
(48)

By injectivity of Laplace tranform, C1,1(t) is given by:

C1,1(t) =
α2E2

d

∫

[0,1]d
dk

(

sin2(2πk1)

ν + 4α
∑d

j=1 sin2(πkj)

)

exp







−8γt
d
∑

j=1

sin2(πkj)







(49)
For the one dimensional case, the equation for gλ,N (resp. gλ) is different

(see (75) ) and we get the following integral representation of the correlation
function of the energy current:

C1,1(t) = αE2

∫ 1

0
dk cos2(πk) exp

{

−4γt

3
sin2(πk)(1 + 2 cos2(πk)

}

(50)

In any dimension, we have the following unified formula for C1,1(t)

C1,1(t) =
E2

4π2d

∫

[0,1]d
(∂k1ω(k))2e−tγψ(k)dk (51)

where ω(k) is defined by (18) and ψ(k) by (19). Observe that the same
formula holds if we replace EN,E by EN,T . In this last case, the situation is
simpler since we do not need equivalence of ensembles.

Standard analysis shows the behavior of C1,1(t) as t goes to infinity is
governed by the behavior of the function (∂k1ω(k))2 and ψ(k) around the
minimal value of ψ which is 0. In fact, ψ(k) = 0 if and only if k = 0 or
k = (1, . . . , 1). By symmetry, we can treat only the case k = 0. Around
k = 0, ψ(k) ∼ a|k|2 and (∂κ1ω(k))2 ∼ b(ν + |k|2)−1(k1)2 where a and b are
positive constants depending on ν and α. Essentially, C1,1(t) has the same
behavior as

∫

k∈[0,1]d
dk

(k1)2e−aγt|k|
2

ν + |k|2 =
1

td/2+1

∫

[0,
√
t]d
dk

(k1)2e−aγ|k|
2

ν + t−1|k|2 (52)

Hence, we have proved the following theorem
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Theorem 4. In the (α, ν)-harmonic case, the current-current time correla-
tion function C1,1(t) decays like

• C1,1(t) ∼ t−d/2 in the unpinned case (ν = 0)

• C1,1(t) ∼ t−d/2−1 in the pinned case (ν > 0)

5. Conductivity in the harmonic case

Lemma 1. Consider the (α, ν)-harmonic case. For any time t, the following
limit exists

C1,1(t) = lim
N→∞

1

Nd
EN,E(Je1

(t)Je1
(0)) (53)

and
∫ ∞

0
dte−λtC1,1(t) dt = lim

N→∞

〈

ja0,e1
uλ,N

〉

N,E
(54)

The same result holds with EN,E replaced by EN,T .

Proof. We only prove this lemma in the microcanonical setting. Let us define

fN (t) =
1

Nd
EN,E(Je1

(t)Je1
(0)) (55)

We first prove the sequence (fN )N is uniformly bounded. By Cauchy-
Schwarz and stationarity, we have

|fN(t)| ≤ 1
Nd

√

〈

J2
e1

(t)
〉

N,E

√

〈

J2
e1

(0)
〉

N,E

= 1
Nd

〈

J2
e1

〉

N,E

(56)

We now use symmetry properties of the microcanonical ensemble to show
this last term is bounded above by a constant independent of N .

N−d < J
2
e1
>N,E=

∑

x

< ja0,e1
jax,x+e1

>N,E

=
α2

4

∑

x

d
∑

i,j=1

〈

(qie1
− qi0)(q

j
x+e1

− qjx)(pie1
+ pi0)(p

j
x+e1

+ pjx

〉

N,E

In the unpinned case ν = 0, conditionally to the positions configuration q,

the law of p is µq = µN
d√
2KN (q)

(defined in lemma 6).

By using properties (i),(ii) and (iii) of lemma 6, one has

N−d < J2
e1
>N,E=

α2

4

d
∑

i=1

〈

(qie1
− qi0)(q

i
2e1

− qi−e1
− 3qie1

+ 3qi0)(p
i
0)

2
〉

N,E

(57)
By Cauchy-Schwarz inequality, the modulus of this last quantity is bounded
above by

α[8 < E2
0 >N,E +

1

2
< E2

e1
>N,E ] =

17

2
< E2

0 >N,E (58)

where the last equality is a consequence of the invariance by translation of

< · >N,E . Let (X1, . . . ,XNd) be a random vector with law λN
d√
NdE , meaning
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the uniform measure on the Nd-dimensional sphere of radius
√
NdE . The

vector of energies (Ex,x ∈ Z
d
N ) has the same law as (X2

1 , . . . ,X
2
Nd). By

lemma 4, E(X4
1 ) =< E2

0 >N,E is bounded above by a constant independant
of N . Hence there exists a positive constant C such that

|fN (t)| ≤ C (59)

Similarly, inequality (59) can be proved in the pinned case ν > 0. Let f(t)
be any limit point of the sequence (fN (t))N≥1 and choose a subsequence
(Nk)k≥0 such that (fNk

) converges to f (for the pointwise convergence topol-
ogy). By Lebesgue’s theorem, we have

lim
k→∞

∫ ∞

0
e−λtfNk

(t)dt =

∫ ∞

0
e−λtf(t)dt (60)

But we have that
∫ ∞

0
e−λtfN (t)dt = − < j0,e1

, uλ,N >N,E (61)

and we have seen in section 4 this last quantity converges as N goes to
infinity to

∫ ∞

0
e−λtf∞(t)dt (62)

where f∞ is given by (see (18-19) for the notations)

f∞(t) =
E2

4π2d

∫

[0,1]d
(∂k1ω(k))2e−tγψ(k)dk (63)

By injectivity of the Laplace transform, we get f(t) = f∞(t). Uniqueness of
limit points implies (fN (t))N≥1 converges to f∞(t) for any t. It follows also
we can inverse time integral and infinite volume limit in the left hand side
of (54) and the lemma is proved. �

Lemma 2. (Resolvent equation)

uλ,N = (λ− L)−1

(

−
∑

x

jax,x+e1

)

=
α

γ

∑

x,y

gλ,N (x − y)px · qy

where gλ,N (z) is the solution (such that
∑

z gλ,N (z) = 0) of the equation

2λ

γ
gλ,N (z) − 4∆gλ,N (z) = (δ(z + e1) − δ(z − e1)) (64)

for d ≥ 2, or

2λ

γ
gλ,N (z)− 1

3
∆ [4gλ,N (z) + gλ,N (z + 1) + gλ,N (z − 1)] = (δ(z+1)−δ(z−1))

(65)
for d = 1. Moreover, Auλ,N = 0 and Luλ,N = γSuλ,N .
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Proof. We only give the proof for the dimension d ≥ 2 since the proof for
the one dimensional case is similar. Let uλ,N = α

γ

∑

x,y gλ,N (x − y)px · qy.

The generator L is equal to the sum of the Liouville operator A and of the
noise operator γS. The action of A on uλ,N is null. Indeed, we have:

Auλ,N =
α

γ

∑

x

[(α∆−νI)qx]·
(

∑

y

gλ,N (x − y)qy

)

+
α

γ

∑

y,x

gλ,N (x−y)px ·py

(66)
Here, and in the sequel of the proof, sums indexed by x,y, z are indexed by
ZN and sums indexed by i, j, k, ℓ are indexed by {1, . . . , d}. Summation by
parts can be performed (without outcoming boundary terms since we are
on the torus) and we get

Auλ,N =
α

γ

∑

x

[(α∆− νI)gλ,N ](x−y)qxqy +
α

γ

∑

y,x

gλ,N (x−y)px ·py (67)

Remark now that the function δ(· − e1)− δ(·+ e1) is antisymmetric. Hence
gλ,N , and consequently ∆gλ,N , is still antisymmetric. We have therefore
Auλ,N which is of the form:

Auλ,N =
∑

x,y

{a1(x − y)px · py + a2(x − y)qx · qy} (68)

with a1, a2 antisymmetric. Using the antisymmetricity of a1 and a2, it is
easy to show that the last two sums are zero and hence Auλ,N = 0.

A simple computation shows that if ℓ ∈ {1, . . . , d} then

S(pℓx) =
1

2(d− 1)

∑

y

∑

i6=j,k
(Xi,j

y,y+ek
)2(pℓx)

=
2

2(d− 1)

∑

i6=ℓ,k
(Xi,ℓ

x,x+ek
)2(pℓx) +

2

2(d − 1)

∑

i6=ℓ,k
(Xi6=ℓ,k

x−ek ,x
)2(pℓx)

=
1

d− 1

∑

i6=ℓ,k

{

(pℓx+ek
− pℓx) − (pℓx − pℓx−ek

)
}

= 2∆(pℓx)

Since the action of S is only on the p’s, we have

γSuλ,N = α
∑

x,y

gλ,N (x − y)S(px) · qy

= 2α
∑

x,y

gλ,N (x − y)(∆px) · qy

= 2α
∑

x,y

(∆gλ,N )(x − y)px · qy
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where in the last line, we performed a summation by parts. Since gλ,N is
solution of (64), we have

λuλ,N − γSuλ,N =
α

2

∑

x

px · (qx+e1
− qx−e1

) = −
∑

x

jax,x+e1
(69)

�

Let us define the Fourier transform v̂(ξ), ξ ∈ Z
d
N , of the function v on Z

d
N

as

v̂(ξ) =
∑

z∈Zd
N

v(z) exp(2iπξ · z/N) (70)

The inverse transform is given by

v(z) =
1

Nd

∑

ξ∈Zd
N

v̂(ξ) exp(−2iπξ · z/N) (71)

On Z
d we define similarly:

v̂(k) =
∑

z∈Zd

v(z) exp(2iπk · z), k ∈ [0, 1]d (72)

and its inverse by

v(z) =

∫

[0,1]d
v̂(k) exp(−2iπk · z)

For λ > 0, the function gλ : Z
d → R is the solution on Z

d of the equation

2λ

γ
gλ(z) − 4∆gλ(z) = δ0(z + e1) − δ0(z + e1), d ≥ 2 (73)

2λ

γ
gλ(z) −

1

3
∆ (4gλ(z) + gλ(z + 1) + gλ(z − 1)) = δ0(z + 1) − δ0(z − 1)

d = 1

Then we have

ĝλ(k) =
−2iπ sin(2πk1)

2λ

γ
+ 16

∑d
j=1 sin2(πkj)

, if d ≥ 2 (74)

and

ĝλ(k) =
−2iπ sin(2πk)

2λ

γ
+

8

3
sin2(πk) (1 + 2 cos2(πk))

, if d = 1 (75)

Since gλ,N is the solution of the same equation as gλ but on Z
d
N , we have

the following formula for ĝλ,N :

ĝλ,N (ξ) = ĝλ(ξ/N) (76)
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The following bound follows easily from Parseval relation:

∑

x∈Zd
N

(gλ,N (x))2 ≤ γ2

λ2
(77)

Similarly, the function ΓN defined in (45) has Fourier transform given by

Γ̂N (ξ) = Γ̂(ξ/N) (78)

where

Γ̂(k) =
−2i sin(2πk1)

ν + 4α
∑d

j=1 sin2(πkj)
(79)

Let us denote by z∗ the conjugate of the complex number z and observe

that the function k ∈ [0, 1]d → ĝλ(k)
[

Γ̂(k)
]∗

∈ R
+ is continuous. Hence we

have the following convergence of Riemann sums

∑

y∈Zd
N

gλ,N (y)ΓN (y) =
1

Nd

∑

ξ∈Zd
N

ĝλ,N (ξ)[Γ̂N (ξ)]∗ (80)

−−−−→
N→∞

∫

[0,1]d
dkĝλ(k)[Γ̂(k)]∗ =

∑

y∈Zd

gλ(y)Γ(y)

The limits as λ → 0 of the above expressions give the values for the
conductivity (up to a multiplicative constant) when this is finite. If ν = 0
it diverges if d = 1 or 2.

6. Anharmonic case: bounds on the thermal conductivity

We consider in this section the general anharmonic case and we prove
theorem 3. Recall (38), then all we need to estimate is

(2T 2Nd+1)−1
EN,T





[

∑

x

∫ N

0
jax,x+e1

(s)ds

]2


 (81)

Let us define
∑

x j
a
x,x+e1

= Je1
, then we have the general bound ([16],

lemma 3.9)

EN,T

(

[

∫ N
0 Je1

(s)ds
]2
)

≤ 10N
〈

Je1
, (N−1 − L)−1Je1

〉

N,T

≤ 10N
〈

Je1
, (N−1 − γS)−1Je1

〉

N,T

(82)

Recall that S(px) = 2∆(px) if d ≥ 2 and S(px) =
1

6
∆(4px + px+1 + px−1)

if d = 1.

(N−1 − γS)−1
Je1

=

d
∑

j=1

∑

y

GN (x − y)pjxV
′
j (q

j
y+e1

− qjy) (83)
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where GN (z) is the solution of the resolvent equation


























N−1GN (z) − 2γ(∆GN )(z) = −1

2
[δ0(z) + δe1

(z)] , d ≥ 2

N−1GN (z) − γ

6
[4(∆GN )(z) + (∆GN )(z + 1) + (∆GN )(z − 1)]

= −1

2
[δ0(z) + δ1(z)] , d = 1

(84)
The left hand side of (82) is equal to

−5TNd+1
d
∑

j=i

∑

x

(GN (x) +GN (x + e1))
〈

V ′
j (q

j
x+e1

− qjx)V ′
j (q

j
e1

− qj0)
〉

N,T

(85)

• Pinned case

In the pinned case, the correlations
〈

V ′
j (q

j
x+e1

− qjx)V ′
j (q

j
e1

− qj0)
〉

N,T

decay exponentially in x
∣

∣

∣

∣

〈

V ′
j (q

j
x+e1

− qjx)V ′
j (q

j
e1

− qj0)
〉

N,T

∣

∣

∣

∣

≤ Ce−c|x| (86)

It follows that the previous expression is bounded by

CT 2tNd
∑

x

|GN (x) +GN (x + e1)|e−c|x|

Since GN is bounded in d ≥ 3, it follows that (81) is uniformly
bounded in N . In low dimensions, our estimate are to rough and we
obtain only diverging upper-bounds. Nevertheless, if Vj(r) = αjr

2

are quadratics and Wj are general but strictly positive then
〈

V ′
j (q

j
x+e1

− qjx)V ′
j (q

j
e1

− qj0)
〉

N,T

= αj

{

2 < qjxq
j
0 >N,T − < q

j
x−e1

q
j
0 >N,T − < q

j
x+e1

q
j
0 >N,T

}
(87)

As a function of x, this quantity is a Laplacian in the first direc-
tion and by integration by parts, the left-hand side of (81) is upper
bounded by

C
∑

x

|(∆GN )(x) + (∆GN )(x + e1)| e−c|x| (88)

By lemma 3, this quantity is uniformly bounded in N .

• Unpinned case

In the unpinned case, we assume that 0 < c ≤ V ′′
j (q) ≤ C < +∞.

We have (cf. [9], theorem 6.2, that can be proved in finite volume



24 GIADA BASILE, CÉDRIC BERNARDIN, AND STEFANO OLLA

uniformly)
∣

∣

∣

∣

〈

V ′
j (q

j
x+e1

− qjx)V ′
j (q

j
e1

− qj0)
〉

N,T

∣

∣

∣

∣

≤ C|x|−d (89)

In the one dimensional case, the random variables rx = qx+1−qx are
i.i.d. and < V ′(rx) >N,T = 0. Only the term corresponding to x = 0
remains in the sum of (85). By lemma 3, we get the upper bound

(GN (0) +GN (1))
〈

V ′(r20)
〉

N,T
≤ C

√
N (90)

For the unpinned two dimensional case, we obtain the upper
bound

C
∑

x∈Z2
N

|GN (x) +GN (x + e1)||x|−d

≤ C logN
∑

x∈Z2
N

|x|−2

∼ C(logN)2

(91)

For the case d ≥ 3, we use the first point of lemma 3, (89) and
the fact that

∑

x∈Zd
N

|x|−d ∼ logN (92)

Lemma 3. Let GN be the solution of the discrete equation (84). There
exists a constant C > 0 independent of N such that

• GN (x) ≤ C(|x|d−2 +N−1/2), d ≥ 3
• GN (x) ≤ C logN, d = 2

• GN (x) ≤ C
√
N, d = 1

• |GN (x + e1) +GN (x − e1) − 2GN (x)| ≤ C, d ≥ 1

Proof. In the proof, C is a constant independent of N but which can change
from line to line. We first treat the case d ≥ 3. We use Fourier’s transform
representation of GN :

GN (x) = − 1

2Nd

∑

k∈Zd
N

(1 + e2iπk
1/N )

e−2iπk·x/N

θN (k/N)
(93)

where θN (u) = N−1 + 8γ
∑d

j=1 sin2(πuj). GN can also be written in the
following form

GN (x) = −1

2
[FN (x) + FN (x− e1)] (94)

where

FN (x) =
1

Nd

∑

k∈Zd
N

e−2iπk·x/N

θN (k/N)
(95)
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Let us introduce the continuous Fourier’s transform representation of the
Green function F∞ on Z

d given by:

F∞(x) =

∫

[0,1]d

exp(2iπx · u)

θ(u)
du (96)

where θ(u) = 8γ
∑d

j=1 sin2(πuj). Remark that F∞ is well defined because
d ≥ 3. We have to prove there exists a constant C > 0 independent of N
such that

FN (x) ≤ C(|x|d−2 +N−1/2) (97)

Observe that by symmetries of FN , we can restrict our study to the case
x ∈ [0, N/2]d.

We want to show that FN (x) is well approximated by F∞(x). We have

FN (x) − F∞(x) = FN (x) − FN∞(x) + FN∞(x) − F∞(x) (98)

where

FN∞(x) =

∫

[0,1]d

exp(2iπx · u)

θN (u)
du (99)

For each k ∈ Z
d
N , we introduce the hypercube Qk =

∏d
j=1[k

j/N, (kj +

1)/N) and we divide [0, 1]d following the partition ∪k∈Zd
N
Qk. By using this

partition, we get

FN (x) − FN∞(x) =
∑

k∈Zd
N

∫

Qk

du
e2iπk·x/N − e2iπu·x

θN (k/N)

+
∫

Qk
due2iπu·x

(

1

θN (k/N)
− 1

θN (u)

) (100)

Remark that
∫

Qk

due2iπu·x =
e2iπk·x/N

Nd
ϕ(x/N) (101)

where

ϕ(u) =

d
∏

j=1

e2iπu
j

d
∏

j=1

sin(πuj)

(πuj)
(102)

It follows that the first term on the right hand side of (100) is equal to

(1 − ϕ(x/N))FN (x) (103)

so that

FN (x) =
FN∞(x)

ϕ(x/N)
+

1

ϕ(x/N)

∑

k∈Zd
N

∫

Qk

due2iπu·x
(

1

θN (k/N)
− 1

θN (u)

)

(104)
The next step consists to show that the second term on the right hand side
of (104) is small. In the sequel, C is a positive constant independent of N
but which can change from line to line. For each u ∈ Qk, we have

sin2(πuj) − sin2(πkj/N) = π sin(2πcj)(u
j − kj/N) (105)
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for some cj ∈ [kj/N, (kj + 1)/N). Consequently, we have

| sin2(πuj) − sin2(πkj/N)| ≤ C

N
| sin(πkj/N)| (106)

Moreover, there exists a positive constant C such that

∀k ∈ Z
d
N ,∀u ∈ Qk, θN (u) ≥ CθN (k/N) (107)

It follows that the modulus of the second term on the right hand side of
(104) is bounded by

C

|ϕ(x/N)|

d
∑

j=1

1

Nd

∑

k∈Zd
N

N−1| sin(πkj/N)|
θN (k/N)2

(108)

Since the modulus of the function ϕ(u) is bounded below by a positive
constant on [0, 1/2]d,this last term is of the same order as

N−1
d
∑

j=1

∫

[0,1]d

| sin(πuj)|
θN (u)2

du (109)

Elementary standard analysis shows that this term is of the same order as

N−1

∫ 1

0

rd

(N−1 + r2)2
dr (110)

For d ≥ 4, this term is clearly of order N−1. For d = 3, the change of
variables r = N−1/2v gives an integral of order N−1 logN . In conclusion,
we proved

FN (x) =
FN∞(x)

ϕ(x/N)
+O

(

logN

N

)

(111)

Moreover, it is not difficult to show that

|F∞(x) − FN∞(x)| ≤ CN−1/2 (112)

Since we have (cf. [14], theorem 4.5)

F∞(x) ≤ C|x|2−d (113)

we obtained the first point of the lemma.
For the 1 and 2-dimensional estimates, we have that |GN (x)| ≤ GN (0)

and by standard analysis, there exists a constant C > 0 independent of N
such that

GN (0) ≤ C

∫

[0,1/2]d
dk

1

N−1 +
∑d

j=1 sin2(πk)
(114)

By using the inequality sin2(πu) ≥ 4u2, one gets GN (0) is of same order as
∫

[0,1/2]d
dk

1

N−1 + |k|2 (115)

This last quantity is of order
√
N if d = 1 and logN if d = 2.
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Let us now prove the final statement. Assume d ≥ 2 (the case d = 1 can
be proved in a similar way). We have

|GN (x + e1) +GN (x − e1) − 2GN (x)|

=

∣

∣

∣

∣

∣

2

Nd

∑

k∈Zd
N

(1 + e2iπk
1/N ) sin2(πk1/N)

e−2iπk·x/N

θN (k/N)

∣

∣

∣

∣

∣

≤ 4

Nd

∑

k∈Zd
N

sin2(πk1/N)

θN (k/N)
≤ (2γ)−1

(116)

�

7. Appendix: Equivalence of ensembles

In this part, we establish a result of equivalence of ensembles for the micro-
canonical measure < · >N,E since it does not seem to appear in the literature.
The decomposition in normal modes permits to obtain easily the results we
need from the classical equivalence of ensemble for the uniform measure on
the sphere. This last result proved in [10] says that the expectation of a
local function in the microcanonical ensemble (the uniform measure on the

sphere of radius
√
k in this context) is equal to the expectation of the same

function in the canonical ensemble (the standard gaussian measure on R
∞)

with an error of order k−1. In fact, the equivalence of ensembles of Diaconis
and Freedman is expressed in terms of a very precise estimate of variation
distance between the microcanonical ensemble and the canonical ensemble.
In this paper, we need to consider equivalence of ensembles for unbounded
functions and to be self-contained we prove in the following lemma a slight
modification of estimates of [10].

Lemma 4. Let λn
rn1/2 be the uniform measure on the sphere

Sn
rn1/2 =

{

(x1, . . . ,xn) ∈ R
n;

n
∑

ℓ=1

x2
ℓ = nr2

}

of radius r and dimension n− 1 and λ∞r the Gaussian product measure with
mean 0 and variance r2. Let θ > 0 and φ a function on R

k such that

|φ(x1, . . . , xk)| ≤ C

(

k
∑

ℓ=1

x2
ℓ

)θ

, C > 0 (117)

There exists a constant C ′ (depending on C, θ, k, r) such that

lim sup
n→∞

n
∣

∣λn
rn1/2(φ) − λ∞r (φ)

∣

∣ ≤ C ′ (118)

Proof. This lemma is proved in [10] for φ positive bounded by 1. Without
loss of generality, we can assume r = 1 and we simplify the notations by
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denoting λn
rn1/2 with λn and λ∞r with λ∞. The law of (x1 + . . .+xk)

2 under

λn is n times a β[k/2, (n − k)/2] distribution and has density (cf [10])

f(u) = 1{0≤u≤n} ·
1

n

Γ(n/2)

Γ(k/2)Γ[(n − k)/2]

(

u

n

)(k/2)−1(

1 − u

n

)((n−k)/2)−1

(119)
On the other hand, the law of (x1 + . . .+ xk)

2 under λ∞ is χ2
k with density

(cf [10])

g(u) =
1

2k/2Γ(k/2)
e−u/2u(k/2)−1 (120)

With these notations, we have

|λn(φ) − λ∞(φ)| ≤ C

∫ ∞

0
uθ|f(u) − g(u)|du (121)

The RHS of the inequality above is equal to

2C

∫ ∞

0
uθ
(

f(u)

g(u)
− 1

)+

g(u)du + C

∫ ∞

0
uθ(g(u) − f(u))du (122)

In [10], it is proved 2

(

f(u)

g(u)
− 1

)+

≤ 2(k + 3)/(n − k − 3) as soon as k ∈
{1, . . . , n − 4}. The second term of (122) can be computed explicitely and
is equal to

Γ ((2θ + k)/2)

Γ(k/2)

[

2θ − nθΓ(n/2)

Γ(θ + n/2)

]

(123)

A Taylor expansion shows that this term is bounded by C ′/n for n large
enough. �

We recall here the following well known properties of the uniform measure
on the sphere.

Lemma 5. (Symmetry properties of the uniform measure on the sphere)
Let λkr be the uniform measure on the sphere

Skr =

{

(x1, . . . ,xk) ∈ (Rd)k;

k
∑

ℓ=1

x2
ℓ = r2

}

of radius r and dimension dk − 1.
i) λkr is invariant by any permutation of coordinates.
ii) Conditionaly to {x1, . . . ,xk}\{xi}, the law of xi has an even density
w.r.t. the Lebesgue measure on R

d.

In the same spirit, we have the following lemma.

Lemma 6. Let µkr be the uniform measure on the surface defined by

Mk
r =

{

(x1, . . . ,xk) ∈ (Rd)k;
k
∑

ℓ=1

x2
ℓ = r2;

k
∑

ℓ=1

xℓ = 0

}
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We have the following properties:
i) µkr is invariant by any permutation of the coordinates.
ii) If i 6= j ∈ {1, . . . , d} then for every h, ℓ ∈ {1, . . . , k} (distincts or not),

µkr(x
i
hx

j
ℓ) = 0.

iii) If h 6= ℓ ∈ {1, . . . , k} and i ∈ {1, . . . , d},

µkr (x
i
hx

i
ℓ) = − r2

dk(k − 1)
= −µ

k
r (x

2
h)

k − 1
= −µ

k
r (x

2
ℓ )

k − 1
(124)

Lemma 7. (Equivalence of ensembles)
Consider the (α, ν)-harmonic case. There exists a positive constant C =
C(d, E) such that:

i) If i 6= j,

∣

∣

∣

∣

∣

〈

(

p
j
0p

i
e1

)2
〉

N,E

− E2

d2

∣

∣

∣

∣

∣

≤ C

Nd

ii) If i 6= j,

∣

∣

∣

∣

〈

(pi0p
i
e1

p
j
0p

j
e1

)
〉

N,E

∣

∣

∣

∣

≤ C

Nd

iii) For any i and any y ∈ Z
d
N , we have

∣

∣

∣

∣

∣

〈

qjy(qj−e1
− qje1

)(pj0)
2
〉

N,E

−
(E
d

)2

ΓN (y)

∣

∣

∣

∣

∣

≤ ClogN

Nd

Proof. Let us treat only the unpinned case ν = 0. The pinned case is simi-
lar. We take the Fourier transform of the positions and of the momentums
(defined by (70)) and we define

q̃(ξ) = (1 − δ(ξ))ω(ξ)q̂(ξ), p̃(ξ) = N−d/2(1 − δ(ξ))p̂(ξ), ξ ∈ Z
N
d

(125)

where ω(ξ) = 2N−d/2
√

α
∑d

k=1 sin2(πξk/N) is the normalized dispersion

relation. The factor 1 − δ in the definition above is due to the condition
∑

x px =
∑

x qx = 0 assumed in the microcanonical state. Then the energy
can be written as

HN =
1

2

∑

ξ 6=0

{

|p̃(ξ)|2 + |q̃(ξ)|2
}

=
1

2

∑

ξ 6=0

{

Re2(p̃(ξ)) + Im2(p̃(ξ)) + Re2(q̃(ξ)) + Im2(q̃(ξ)
}

Since px,qx are real, Re(p̃),Re(q̃) are even and Im(p̃),Im(q̃) are odd:

Re(p̃)(ξ) = Re(p̃)(−ξ), Re(q̃)(ξ) = Re(q̃)(−ξ)
Im(p̃)(ξ) = −Im(p̃)(−ξ), Im(q̃)(ξ) = −Im(q̃)(−ξ) (126)

On Z
d
N\{0}, we define the relation ξ ∼ ξ′ if and only if ξ = −ξ′. Let U

d
N

be a class of representants for ∼ (Ud
N is of cardinal (Nd− 1)/2). With these
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notations and by using (126), we have

HN =
∑

ξ∈Ud
N

{

Re2(p̃(ξ)) + Im2(p̃(ξ)) + Re2(q̃(ξ)) + Im2(q̃(ξ)
}

(127)

It follows that in the microcanonical state, the random variables

((Rep̃)(ξ), (Imp̃)(ξ), (Req̃)(ξ),Imq̃)(ξ))ξ∈Ud
N

are distributed according to the uniform measure on the sphere of radius√
NdE (which is not true without the restriction on the set U

d
N ). The classi-

cal results of equivalence of ensembles for the uniform measure on the sphere
([10]) can be applied for these random variables.

i) By using inverse Fourier transform and (126), we have

〈

(

p
j
0p

i
e1

)2
〉

N,E

=
1

N2d

∑

ξ,ξ′,η,η′ 6=0

〈

p̃j(ξ)p̃j(ξ′)p̃i(η)p̃i(η′)
〉

N,E
e
−

2iπe1 · (η + η′)

N

(128)
It is easy to check by using (ii) of lemma 5 that the only terms in this sum
which are nonzero are only for ξ′ = −ξ and η = −η′. One gets hence

〈

(

p
j
0p

i
e1

)2
〉

N,E

=
1

N2d

∑

ξ,η 6=0

〈

∣

∣p̃j(ξ)
∣

∣

2 ∣
∣p̃i(η)

∣

∣

2
〉

N,E

(129)

Classical equivalence of ensembles estimates of [10] show that this last sum
is equal to (E/d)2 +O(N−d).

ii) Similary, one has
〈

(pi0p
i
e1

p
j
0p

j
e1

)
〉

N,E

=
1

N2d

∑

ξ,xi′,η,η′ 6=0

〈

p̃i(ξ)p̃i(ξ′)p̃j(η)p̃j(η′)
〉

N,E
exp

(

−2iπe1

N
· (ξ′ + η′)

)

(130)

It is easy to check by using (ii) of lemma 5 that the only terms in this sum
which are nonzero are for ξ′ = −ξ and η′ = −η. One gets hence

〈

(pi0p
i
e1

p
j
0p

j
e1

)
〉

N,E

=
1

N2d

∑

ξ,η 6=0

〈

∣

∣p̃i(ξ)
∣

∣

2 ∣
∣p̃j(η)

∣

∣

2
〉

N,E

exp

(

2iπe1

N
· (ξ + η)

)

(131)
Using classical equivalence of ensembles estimates ([10]), one obtains

〈

(pi0p
i
e1

p
j
0p

j
e1

)
〉

N,E

=
E2

d2







1

Nd

∑

ξ 6=0

e

2iπe1

N
·ξ







2

+O(N−d) = O(N−d) (132)
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iii) By using the symmetry properties, we have
〈

q̃j(ξ)q̃j(ξ′)p̃j(η)p̃j(η′)
〉

N,E
= 0

for ξ 6= −ξ′ or η 6= −η′. Hence one has
〈

qjxq
j
z(p

j
0)

2
〉

N,E

=
1

N3d

∑

ξ,ξ′,η,η′ 6=0

〈

q̃j(ξ)q̃j(ξ′)p̃j(η)p̃j(η′)
〉

N,E

exp (−2iπ(ξ · z + ξ′ · y)/N)

ω(ξ)ω(ξ′)

=
1

N3d

∑

ξ,η 6=0

〈

∣

∣q̃j(ξ)p̃i(η)
∣

∣

2
〉

N,E

exp (−2iπξ · (z − y)/N)

ω(ξ)2

=
1

N2d

∑

ξ 6=0

〈

∣

∣q̃j(ξ)p̃j(e1)
∣

∣

2
〉

N,E

exp (−2iπξ · (z − y)/N)

ω(ξ)2

Estimates of [10] give
∣

∣

∣

∣

∣

〈

(q̃j(ξ))2(p̃j(e1))
2
〉

N,E
−
(E
d

)2
∣

∣

∣

∣

∣

≤ C

Nd

It follows that
〈

qjy(qj−e1
− qje1

)(pj0)
2
〉

N,E

=
E2

dN2d

∑

ξ 6=0

e−2iπξ·(−e1−y)/N − e−2iπξ·(e1−y)/N

ω(ξ)2
+RN

where

|RN | ≤ CN−2d
∑

ξ 6=0

| sin(2πξ1/N)|
4α
∑d

k=1 sin2(πξk/N)

To obtain iii) observe that

1

N2d

∑

ξ 6=0

e−2iπξ·(−e1−y)/N − e−2iπξ·(e1−y)/N

ω(ξ)2
= ΓN (y)

and

N−2d
∑

ξ 6=0

| sin(2πξ1/N)|
4α
∑d

k=1 sin2(πξk/N)
∼











logN/N, d = 1

1/N, d = 2

1/Nd, d ≥ 3

�
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