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THERMAL CONDUCTIVITY FOR A MOMENTUM

CONSERVING MODEL

GIADA BASILE, CÉDRIC BERNARDIN, AND STEFANO OLLA

Abstract. We present here complete mathematical proofs of the re-
sults annouced in cond-mat/0509688. We introduce a model whose
thermal conductivity diverges in dimension 1 and 2, while it remains
finite in dimension 3. We consider a system of harmonic oscillators per-
turbed by a stochastic dynamics conserving momentum and energy. We
compute the finite-size thermal conductivity via Green-Kubo formula.
In the limit as the size N of the system goes to infinity, conductivity di-
verges like N in dimension 1 and like ln N in dimension 2. Conductivity
remains finite if d ≥ 3 or if a pinning (on site potential) is present.

1. Introduction

We consider a system of harmonic (linear) coupled oscillators where the
Hamiltonian dynamics are perturbed by a random exchange of momentum
between nearest neighbors atoms. The random exchange of momentum
conserves the total momentum and the total energy. We construct this noise
with a diffusion on the surface of constant kinetic energy and momentum.
Because of the conservation laws, this noise introduces a certain non-linearity
in the model.

We compute explicitly the conductivity κN of the finite closed system
of linear size N , by using Green-Kubo formula for the dynamics in the
microcanonical ensemble. We find that it has a finite explicit limit as N →
∞ in d ≥ 3 or in the pinned cases, while it diverges like N in the unpinned
1-dimensional case, and like logN in the unpinned 2-dimensional case.

We compute also the thermal conductivity of the open system in con-
tact with thermal reservoirs at different temperatures and we show that it
coincides with the Green-Kubo definition.

The main difficulty in the calculation is in the use of certain equivalence
of ensembles estimates that we prove separately in section 4.

Date: January 24, 2006.
Key words and phrases. Thermal conductivity, Green-Kubo formula, anomalous heat

transport, Fourier’s law, non-equilibrium systems.
Acknowledgements. We acknowledge the support of the ACI-NIM 168 Transport

Hors Equilibre of the Ministère de l’Education Nationale, France.

1
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2. The dynamics of the closed system

We consider the dynamics of the closed system of length N with periodic
boundary conditions. The Hamiltonian is given by

HN =
1

2

∑

x

[

p2
x

+ qx · (νI − α∆)qx

]

.

The atoms are labeled by x ∈ T
d
N , the d-dimensional discrete torus of length

N . We identify T
d
N = (Z/NZ)d, i.e. x = x + kNej for any j = 1, . . . , d and

k ∈ Z. We denote with ∇, ∇∗ and ∆ = ∇∗ · ∇ respectively the discrete
gradient, its adjoint and the discrete Laplacian on T

d
N . These are defined as

∇ej
f(x) = f(x + ej) − f(x) (1)

and

∇∗
ej
f(x) = f(x) − f(x− ej) (2)

{qx} are the displacements of the atoms from their equilibrium positions.
The parameter α > 0 is the strength of the interparticles springs, and ν ≥ 0
is the strength of the pinning (on-site potential).

We consider the stochastic dynamics corresponding to the Fokker-Planck
equation

∂P

∂t
= (−A+ γS)P = LP . (3)

where A is the usual Hamiltonian vector field

A =
∑

x

{px · ∂qx
+ [(α∆ − νI)qx] · ∂px

}

while S is the generator of the stochastic perturbation and γ > 0 is a
positive parameter that regulates its strength. The operator S acts only on
the momentums {px} and generates a diffusion on the surface of constant
kinetic energy and constant momentum. This is defined as follows. For every
nearest neighbor atoms x and z, consider the d − 1 dimensional surface of
constant kinetic energy and momentum

Se,p =

{

(px,pz) ∈ R
2d :

1

2

(

p2
x

+ p2
z

)

= e ; px + pz = p

}

.

The following vector fields are tangent to Se,p

Xi,j
x,z = (pj

z
− pj

x
)(∂pi

z

− ∂pi
x

) − (pi
z
− pi

x
)(∂

pj
z

− ∂
pj
x

).

so
∑d

i,j=1(X
i,j
x,z)

2 generates a diffusion on Se,p. In d ≥ 2 we define

S =
1

2(d − 1)

∑

x

d
∑

i,j,k

(

Xi,j
x,x+ek

)2

=
1

4(d − 1)

∑

x,z∈Td
N

‖x−z‖=1

∑

i,j

(

Xi,j
x,z

)2
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where e1, . . . , ed is canonical basis of Z
d.

Observe that this noise conserves the total momentum
∑

x
px and energy

HN , i.e.

S
∑

x

px = 0 , S HN = 0

In dimension 1, in order to conserve total momentum and total kinetic
energy, we have to consider a random exchange of momentum between three
consecutive atoms, and we define

S =
1

6

∑

x∈T1
N

(Yx)2

where

Yx = (px − px+1)∂px−1
+ (px+1 − px−1)∂px + (px−1 − px)∂px+1

which is vector field tangent to the surface of constant energy and momen-
tum of the three particles involved.

The Fokker-Planck equation (3) gives the time evolution of the probability
distribution P (q,p, t), given an initial distribution P (q,p, 0). It correspond
to the law at time t of the solution of the following stochastic differential
equations:

dqx = px dt

dpx = −(νI − α∆)qx dt+ 2γ∆px dt

+

√
γ

2
√
d− 1

∑

z:‖z−x‖=1

d
∑

i,j=1

(

Xi,j
x,zpx

)

dwi,j
x,z(t)

(4)

where {wi,j
x,y = wi,j

y,x; x,y ∈ T
d
N ; i, j = 1, . . . , d; ‖y − x‖ = 1} are indepen-

dent standard Wiener processes. In d = 1 the sde are:

dpx = −(νI − α∆)qx dt+
γ

6
∆(4px + px−1 + px+1)dt

+

√

γ

3

∑

k=−1,0,1

(Yx+kpx) dwx+k(t)
(5)

where here {wx(t), x = 1, . . . , N} are independent standard Wiener pro-
cesses.

Defining the energy of the atom x as

ex =
1

2
p2

x
+
α

4

∑

y:|y−x|=1

(qy − qx)2 +
ν

2
q2

x
,

the energy conservation law can be read locally as

ex(t) − ex(0) =
d
∑

k=1

(Jx−ek ,x(t) − Jx,x+ek
(t))
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where Jx,x+ek
(t) is the total energy current between x and x+ek up to time

t. This can be written as

Jx,x+ek
(t) =

∫ t

0
jx,x+ek

(s) ds+Mx,x+ek
(t) . (6)

In the above Mx,x+ek
(t) are martingales that can be written explicitly as

Ito stochastic integrals

Mx,x+ek
(t) =

√

γ

(d− 1)

∑

i,j

∫ t

0

(

Xi,j
x,x+ek

ex

)

(s) dwi,j
x,x+ek

(s) (7)

In d = 1 these martingales write explicitly as

Mx,x+1 =

√

γ

3

∫ t

0

∑

k=−1,0,1

(Yx+kex) dwx+k(t) (8)

The instantaneous energy currents jx,x+ek
satisfy the equation

Lex =
d
∑

k=1

(jx−ek,x − jx,x+ek
)

and it can be written as

jx,x+ek
= ja

x,x+ek
+ γjs

x,x+ek
. (9)

The first term in (9) is the Hamiltonian contribution to the energy current

ja
x,x+ek

= −α
2
(qx+ek

− qx) · (px+ek
+ px) (10)

while the noise contribution in d ≥ 2 is

γjs
x,x+ek

= −γ∇ek
p2

x
(11)

and in d = 1 is

γjsx,x+1 = − γ∇ϕ(px−1, px, px+1)

ϕ(px−1, px, px+1) =
1

6
[p2

x+1 + 4p2
x + p2

x−1 + px+1px−1 − 2px+1px − 2pxpx−1]

3. Green-Kubo formula

We define conductivity using the microcanonical version of the Green-
Kubo formula.

The microcanonical measure is usually defined as the uniform measure
on the energy surface defined by HN = Nde. Our dynamics conserve also
(
∑

x px)2 + ν (
∑

x
qx)2. Notice that the dynamics is invariant under the

change of coordinates p
′

x
= px−

∑

y
py and q

′

x
= qx−

∑

y
qy. Consequently,

without any lost of generality, we can fix
∑

x
px = 0 and

∑

x
qx = 0. So in
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the following we define as microcanonical measure the uniform probability
measure on the (N2d − 2d− 1)-dimensional sphere

{

HN = Nde;
∑

x

px = 0;
∑

x

qx = 0

}

We denote by < · >N the expectation with respect to the microcanonical
measure. The conductivity of the finite system in the direction e1 is defined
as

κ1,1
N = lim

t→∞

d

2e2t

∑

x

E (Jx,x+e1
(t)J0,e1

(t))

= lim
t→∞

d

2e2t

1

Nd
E





[

∑

x

Jx,x+e1
(t)

]2




(12)

where E is the expectation starting with the microcanonical distribution
defined above. We have used in (12) the translation invariance property of
the microcanonical measure of the dynamics. Notice that the prefactor d

2e2t
is justified because the compressibility

χN =
∑

x

(

〈exe0〉N − e2
)

∼
N→∞

e2

d
(13)

Theorem 1. If ν = 0, κ1,1
N diverges like N in dimension 1 and like logN

in dimension 2. In all other cases κ1,1
N converges to a finite limit κ1,1 given

by

κ1,1 = γ +
α2

2γ

∑

z

(g(z − e1) − g(z + e1)) Γ(0, z)

where Γ is the kernel of the operator (νI−α∆)−1 on Z
d and g is the solution

of (39) on Z
d if d ≥ 2 or of (40) if d = 1.

The rest of this section is devoted to the proof of this theorem. The
more technical computations are postponed to the appendix (section 5).
We begin by the following lemma where we compute (to the main order
in N) the conductivity of the finite system. Let uN be the solution of the
Poisson equation

LuN =
∑

x

ja
x,x+e1

given explicitely in lemma 5.

Lemma 1.

κ1,1
N = γ − d

e2
〈

ja0,e1
uN

〉

N
+
ON

Nd
(14)

where ON is bounded in N .
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Proof. Using the periodic conditions, we can write

∑

x

Jx,x+e1
(t) =

∫ t

0

∑

x

ja
x,x+e1

(s) ds+
∑

x

Mx,x+e1
(t)

=

∫ t

0
(LuN )(s) ds+

∑

x

Mx,x+e1
(t)

= uN (t) − uN (0) +
∑

x

∑

k

Nx,x+ek
(t) +

∑

x

Mx,x+e1
(t)

(15)

where the martingales Nx,x+ek
are given by the stochastic integrals

Nx,x+ek
= −

√

γ

(d− 1)

∑

x

∑

i,j

∫ t

0

(

Xi,j
x,x+ek

uN

)

(s) dwi,j
x,x+ek

(s) (16)

and in dimension 1 by

Nx,x+1 = −
√

γ

3

∑

x

1
∑

j=−1

(Yx+juN ) (s) dwx+j(s)

The first term of the RHS of (15) clearly goes to zero with t going to infinity
since it is bounded by

2t−1(E(u2
N (t)) + E(u2

N (0)) = 4t−1 < u2
N >N= O(t−1) (17)

Hence, we can forget the term uN (t) − uN (0) of the last formula. In order
to compute the expectation of the square of what is left, observe that

d−1
γ E

([

∑

x,k Nx,x+ek
(t)
]

[
∑

x
Mx,x+e1

(t)]
)

= −E

( [

∑

x

∑

k,i,j

∫ t
0

(

Xi,j
x,x+ek

uN

)

(s) dwi,j
x,x+ek

] [

∑

y

∑

l,r

∫ t
0

(

X l,r
y,y+e1

ey

)

(s) dwl,r
y,y+e1

] )

= −t∑
x

∑

i,j

〈(

Xi,j
x,x+e1

uN

)(

Xi,j
x,x+e1

ex

)〉

N
= t

∑

x

∑

i,j

〈

uN (Xi,j
x,x+e1

)2ex

〉

N
= 2t

∑

x

〈

uN∇e1
p2

x

〉

N
= 0

and a similar calculation is true in d = 1.
In particular, we have

lim
t→∞

E

([

∫ t

0

∑

x

ja
x,x+e1

(s) ds

][

∑

x

Mx,x+e1
(t)

])

= 0 (18)

Furthermore

1

t
E





[

∑

x

Mx,x+e1
(t)

]2


 =
γ

(d− 1)

∑

x

∑

i,j

〈

(

Xi,j
x,x+e1

(p2
x
/2)
)2
〉

N

=
γ

(d− 1)

∑

x

∑

i6=j

〈

(

pj
x
pi
x+e1

− pi
x
pj
x+e1

)2
〉

N

=
2γ

(d− 1)

∑

x

∑

i6=j

〈

(pj
x
pi
x+e1

)2
〉

N
− 2γ

(d− 1)

∑

x

∑

i6=j

〈

(pi
x
pi

x+e1
pj

x
p

j
x+e1

)
〉

N
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Thanks to the equivalence of ensembles (cf. lemma 4), this last quantity is
equal to

2γNd e
2

d
+ON (19)

where ON remains bounded as N → ∞. The calculation in d = 1 is similar.
Consequently the contribution to the conductivity given by the martingales
Mx,x+e1

is γ.
The last term is

1

t
E









∑

x,k

Nx,x+ek
(t)





2

 =
γ

(d− 1)

∑

x

∑

i,j,k

〈

(

Xi,j
x,x+ek

(uN )
)2
〉

N

= 2γ 〈(−S)uN , uN 〉N = 2 〈(−L)uN , uN 〉N

= −2

〈

∑

x

ja
x,x+e1

, uN

〉

= −2Nd
〈

ja0,e1
, uN

〉

N

So we have proved that

κ1,1
N = lim

t→∞

d

2e2t

∑

x

E (Jx,x+e1
(t)J0,e1

(t)) = γ − d

e2
〈

ja0,e1
uN

〉

N
+
ON

Nd
(20)

�

Substituting in (20) the explicit form of uN given in lemma 5, we have:

− d

e2
〈

ja0,e1
uN

〉

N
=

α2d

2γe2

∑

x,y

gN (x − y) 〈(qe1
− q0) · (pe1

+ p0)(px · qy)〉N

=
α2d

2γe2

∑

x,y

gN (x − y) 〈(qe1
· p0 − q0 · pe1

)(px · qy)〉N

+
α2d

2γe2

∑

x,y

gN (x − y) 〈(qe1
· pe1

− q0 · p0)(px · qy)〉N

(21)

Observe that the last term of the RHS of (21) is null by the translation
invariance symmetry. So we have (using again the translation invariance
and the antisymmetry of gN )

− d

e2
〈

ja0,e1
uN

〉

N
=

α2d

2γe2

∑

x,y

gN (x − y) 〈(qe1
− q−e1

) · p0)(px · qy)〉N

Define

KN (q) = Nde− 1

2

∑

x

qx · (νI − α∆)qx

and remark that conditionally to the positions configuration q, the law of

p is µq = µNd√
2KN (q)

(defined in lemma 3), meaning the uniform measure on
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the surface
{

(px)
x∈Td

N
;

1

2

∑

x

p2
x

= KN (q);
∑

x

px = 0

}

By using properties (i),(ii) and (iii) of lemma 3, one has for x 6= 0,

〈((qe1
− qe1

) · p0)(px · qy)〉N =
∑

i,j

〈

µq

(

pi
0p

j
x

)

(qi
e1

− qi
−e1

)qj
y

〉

N

=
∑

i

〈

µq

(

pi
0p

i
x

)

(qi
e1

− qi
−e1

)qi
y

〉

N

= −
d
∑

i=1

〈

2KN (q)

dNd(Nd − 1)
(qi

e1
− qi

−e1
)qi

y

〉

N

= − 1

Nd − 1

d
∑

i=1

〈

(pi
0)

2(qi
e1

− qi
−e1

)qi
y

〉

N

(22)

For x = 0, one gets

〈((qe1
− qe1

) · p0)(p0 · qy)〉N =
∑

i,j

〈

µq

(

pi
0p

j
0

)

(qi
e1

− qi
−e1

)qj
y

〉

N

=

d
∑

i=1

〈

µq

(

pi
0p

i
0

)

(qi
e1

− qi
−e1

)qi
y

〉

N

=
d
∑

i=1

〈

(

pi
0

)2
(qi

e1
− qi

−e1
)qi

y

〉

N

(23)

Since gN is antisymmetric (see (39-40) and such that
∑

z
gN (z) = 0, one

obtains easily

− d

e2
〈

ja0,e1
uN

〉

N
= − α2d

2γe2

∑

y

gN (y)
∑

i

〈

(

pi
0

)2
(qi

e1
− qi

−e1
)qi

y

〉

N

+
α2d

2γe2
1

Nd − 1

∑

x 6=0,y

gN (y − x)
∑

i

〈

(

pi
0

)2
(qi

e1
− qi

−e1
)qi

y

〉

N

= −
(

1 +
1

Nd − 1

)

α2d

2γe2

∑

y

gN (y)
∑

i

〈

(

pi
0

)2
(qi

e1
− qi

−e1
)qi

y

〉

N

(24)

We first prove that in the case d = 1 and ν = 0 this last quantity grows
like N .

Let GN (z) the function on TN solution of the equation

∆ (4GN (z) +GN (z + 1) +GN (z − 1)) = −δ(z) +N−1 (25)

and normalized such that
∑

z GN (z) = 0. We shows in appendix 5 that GN

behaves basically as the Green function of (−∆) on TN as N → ∞ and that
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gN (z) = 3 (GN (z + 1) −GN (z − 1)). We use the notation rx = qx+1 − qx.
Translation invariance and symmetry properties of GN give

−
∑

y

gN (y)
〈

p2
0(q1 − q−1) qy

〉

N

= −3
∑

y

GN (y)
〈

p2
0(q1 − q−1)(qy−1 − qy+1)

〉

N

= 3
∑

y

GN (y)
〈

p2
0(r0 + r−1)(ry + ry−1)

〉

N

(26)

Remark that in the microcanonical state, conditionally to the momentums
configuration p, r is distributed according to the uniform measure on the
surface

{

(rx)x∈TN
; α

∑

x

r2x = 2Ne−
∑

x

p2
x;

∑

x

rx = 0

}

It is easy to prove that | < p2
0r

2
0 >N − e2

α | ≤ C/N (the proof is similar to
lemma 4 (i)). Consequently, by a similar argument as used for equation
(24), we obtain

3
∑

y

GN (y)
〈

p2
0(r1 + r0)(ry + ry−1)

〉

N

= 3
∑

y

(GN (y + 1) + 2GN (y) +GN (y − 1))
〈

p2
0ryr0

〉

N

= 3(1 +
1

N − 1
) (GN (1) + 2GN (0) +GN (−1))

〈

p2
0r

2
0

〉

N

It is easy to prove that | < p2
0r

2
0 >N − e2

α | ≤ C/N (the proof is similar to
lemma 4 (i)). Since GN (0) and GN (1) have order N , we have obtained

κN = γ +
3α

γ
(GN (0) +GN (1)) +ON (1) (27)

where ON (1) remains finite as N → ∞.
We now deal with the cases d ≥ 2 or ν > 0. Let

ΓN (x) = (νI − α∆)−1 (x)

By (iii) of lemma 4 and by lemma 6, we have



10 GIADA BASILE, CÉDRIC BERNARDIN, AND STEFANO OLLA

∣

∣

∣

∣

∣

− d

e2
〈

ja0,e1
uN

〉

N
− α2

2γ

∑

x

(gN (x − e1) − gN (x + e1)) ΓN (x)

∣

∣

∣

∣

∣

≤ CΓN(0)

Nd

∑

x

|gN (x − e1) − gN (x + e1)| ≤
CΓN(0)

Nd/2

(

∑

x

(∇e1
gN (x))2

)1/2

≤ C ′ΓN (0)

Nd/2

(28)

In lemma 7, we prove that ΓN (0) ∼ logN if d = 2 and ν = 0, while it stay
bounded in the cases d ≥ 3 or ν > 0. If d = 1, ν = 0, this result is still
valid but of minor interest since ΓN (0) is of order N . It explains why we
considered this case separately. Hence, if d ≥ 2 or ν > 0, the last term of
(28) goes to 0. And finally we have the equation

κ1,1
N = γ +

α2

2γ

∑

x

(gN (x− e1) − gN (x + e1)) ΓN (x) + oN (1) (29)

A simple Fourier analysis (see lemma 8 below) shows that, if ν = 0 (i.e. the
unpinned case), (29) diverges like like logN in dimension 2. In all other

cases κ1,1
N converge to a finite limit κ1,1 given by

κ1,1 = γ +
α2

2γ

∑

z

(gN (z − e1) − gN (z + e1)) Γ(0, z)

= γ +
α2

2γ

∑

z

g(z) (Γ(0, z + e1) − Γ(0, z − e1))

(30)

Observe that this expression diverges for γ → 0, as expected since deter-
ministic harmonic oscillators have infinite conductivity [4].

4. Equivalence of ensembles

In this part, we establish a result of equivalence of ensembles for the
microcanonical measure < · >N since it does not seem to appear in the
literature. The decomposition in normal modes permits to obtain easily the
results we need from the classical equivalence of ensemble for the uniform
measure on the sphere. This last result proved in [3] says that the expecta-
tion of a local function in the microcanonical ensemble (the uniform measure

on the sphere of radius
√
k in this context) is equal to the expectation of the

same function in the canonical ensemble (the standard gaussian measure on
R
∞) with an error of order k−1. We recall first the following well known

properties of the uniform measure on the sphere.
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Lemma 2. (Symmetry properties of the uniform measure on the sphere)
Let λk

r be the uniform measure on the sphere

Sk
r =

{

(x1, . . . ,xk) ∈ (Rd)k;

k
∑

ℓ=1

x2
ℓ = r2

}

of radius r and dimension dk − 1.
i) λk

r is invariant by any permutation of coordinates.
ii) Conditionaly to {x1, . . . ,xk}\{xi}, the law of xi has an even density
w.r.t. the Lebesgue measure on R

d.

In the same spirit, we have the following lemma.

Lemma 3. Let µk
r be the uniform measure on the surface defined by

Mk
r =

{

(x1, . . . ,xk) ∈ (Rd)k;

k
∑

ℓ=1

x2
ℓ = r2;

k
∑

ℓ=1

xℓ = 0

}

We have the following properties:
i) µk

r is invariant by any permutation of the coordinates.
ii) If i 6= j ∈ {1, . . . , d} then for every h, ℓ ∈ {1, . . . , k} (distincts or not),

µk
r(x

i
hx

j
ℓ) = 0.

iii) If h 6= ℓ ∈ {1, . . . , k} and i ∈ {1, . . . , d},

µk
r(x

i
hx

i
ℓ) = − r2

dk(k − 1)
= −µ

k
r((x

i
h)2)

k − 1
= −µ

k
r ((x

i
ℓ)

2)

k − 1
(31)

Lemma 4. (Equivalence of ensembles)
There exists a positive constant C = C(d, e) such that:

i) If i 6= j,

∣

∣

∣

∣

〈

(

p
j
0p

i
e1

)2
〉

− e2

d2

∣

∣

∣

∣

≤ C

Nd

ii) If i 6= j,
∣

∣

∣

〈

(pi
0p

i
e1

p
j
0p

j
e1

)
〉

N

∣

∣

∣ ≤
C

Nd

iii) For any i and any x ∈ T
d
N ,
∣

∣

∣

〈

qi
x
qi

0(p
i
0)

2
〉

N
−
(

e
d

)2
ΓN (x)

∣

∣

∣ ≤ CΓN (0)
Nd

Proof. We take the Fourier transform of the positions and of the momentums
(defined by (47)) and we define

q̃(ξ) = (1 − δ(ξ))ω(ξ)q̂(ξ), p̃(ξ) = N−d/2(1 − δ(ξ))p̂(ξ), ξ ∈ T
N
d

where ω(ξ) = N−d/2
√

ν + 4α
∑d

k=1 sin2(πξk/N) is the dispersion relation.

The factor 1 − δ in the definition above is due to the condition
∑

x
px =

∑

x
qx = 0 assumed in the microcanonical state. Then the energy can be

written as

HN =
1

2

∑

ξ 6=0

{

|p̃(ξ)|2 + |q̃(ξ)|2
}

=
1

2

∑

ξ 6=0

{

Re2(p̃(ξ)) + Im2(p̃(ξ)) + Re2(q̃(ξ)) + Im2(q̃(ξ)
}
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Since px,qx are real, Re(p̃),Re(q̃) are even and Im(p̃),Im(q̃) are odd:

Re(p̃)(ξ) = Re(p̃)(−ξ), Re(q̃)(ξ) = Re(q̃)(−ξ)
Im(p̃)(ξ) = −Im(p̃)(−ξ), Im(q̃)(ξ) = −Im(q̃)(−ξ) (32)

On T
d
N\{0}, we define the relation ξ ∼ ξ′ if and only if ξ = −ξ′. Let U

d
N

be a class of representants for ∼ (Ud
N is of cardinal (Nd − 1)/2). With these

notations and by using (32), we have

HN =
∑

ξ∈Ud
N

{

Re2(p̃(ξ)) + Im2(p̃(ξ)) + Re2(q̃(ξ)) + Im2(q̃(ξ)
}

(33)

It follows that in the microcanonical state, the random variables

((Rep̃)(ξ), (Imp̃)(ξ), (Req̃)(ξ),Imq̃)(ξ))ξ∈Ud
N

are distributed according to the uniform measure on the sphere of radius√
Nde (which is not true without the restriction on the set U

d
N ). The classi-

cal results of equivalence of ensembles for the uniform measure on the sphere
([3]) can be applied for these random variables.

i) By using inverse Fourier transform and (32), we have

〈

(

p
j
0p

i
e1

)2
〉

N

=
1

N2d

∑

ξ,ξ′,η,η′ 6=0

〈

p̃j(ξ)p̃j(ξ′)p̃i(η)p̃i(η′)
〉

N
e
−

2iπe1 · (η + η′)

N

(34)
It is easy to check by using (ii) of lemma 2 that the only terms in this sum
which are nonzero are only for ξ′ = −ξ and η = −η′. One gets hence

〈

(

p
j
0p

i
e1

)2
〉

N

=
1

N2d

∑

ξ,η 6=0

〈

∣

∣p̃j(ξ)
∣

∣

2 ∣
∣p̃i(η)

∣

∣

2
〉

N
(35)

Classical equivalence of ensembles estimates of [3] show that this last sum
is equal to (e/d)2 +O(N−d).

ii) Similary, one has
〈

(pi
0p

i
e1

p
j
0p

j
e1

)
〉

N

=
1

N2d

∑

ξ,xi′,η,η′ 6=0

〈

p̃i(ξ)p̃i(ξ′)p̃j(η)p̃j(η′)
〉

N
exp

(

−2iπe1

N
· (ξ′ + η′)

) (36)

It is easy to check by using (ii) of lemma 2 that the only terms in this sum
which are nonzero are only for ξ′ = −ξ and η′ = −η. One gets hence

〈

(pi
0p

i
e1

p
j
0p

j
e1

)
〉

N
=

1

N2d

∑

ξ,η 6=0

〈

∣

∣p̃i(ξ)
∣

∣

2 ∣
∣p̃j(η)

∣

∣

2
〉

N
exp

(

2iπe1

N
· (ξ + η)

)

(37)



THERMAL CONDUCTIVITY 13

Using classical equivalence of ensembles estimates ([3]), one obtains

〈

(pi
0p

i
e1

p
j
0p

j
e1

)
〉

N
=
e2

d2







1

Nd

∑

ξ 6=0

e

2iπe1

N
·ξ







2

+O(N−d) = O(N−d) (38)

iii) By using the symmetry properties of the measure (
〈

q̃(ξ)iq̃(ξ′)ip̃i(η)p̃i(η′)
〉

N
=

0 for ξ 6= −ξ′ or η 6= −η′), one has

〈

qi
x
qi
0(p

i
0)

2
〉

N

=
1

N3d

∑

ξ,ξ′,ηη′ 6=0

〈

q̃(ξ)iq̃(ξ′)ip̃i(η)p̃i(η′)
〉

N

exp (−2iπξ · x/N)

ω(ξ)ω(ξ′)

=
1

N3d

∑

ξ,η

〈

∣

∣q̃(ξ)j p̃i(η)
∣

∣

2
〉

N

exp (−2iπξ · x/N)

ω(ξ)2

=
1

N2d

∑

ξ

〈

∣

∣q̃(ξ)jp̃i(e1)
∣

∣

2
〉

N

exp (−2iπξ · x/N)

ω(ξ)2

Estimates of [3] give
∣

∣

∣

∣

〈

(q̃(ξ)i)2(p̃i
0)

2
〉

N
−
( e

d

)2
∣

∣

∣

∣

≤ C

Nd

and one obtains easily (iii). �

5. Appendix

Lemma 5. (Poisson equation)

uN = L−1

(

∑

x

ja
x,x+e1

)

=
α

γ

∑

x,y

gN (x − y)px · qy

where gN (z) is the solution (such that
∑

z
gN (z) = 0) of the equation

4∆gN (z) = (δ(z − e1) − δ(z + e1)) (39)

for d ≥ 2, or

1

3
∆ [4gN (z) + gN (z + 1) + gN (z − 1)] = (δ(z − 1) − δ(z + 1)) (40)

for d = 1.
Moreover, AuN = 0 and LuN = γSuN .

Proof. We give the proof for the dimension d ≥ 2 since the proof for the
one dimensional case is similar. Let uN = α

γ

∑

x,y gN (x − y)px · qy. The



14 GIADA BASILE, CÉDRIC BERNARDIN, AND STEFANO OLLA

generator L is equal to the sum of the Liouville operator A and of the noise
operator γS. The action of A on uN is null. Indeed, we have:

AuN =
α

γ

∑

x

[(α∆ − νI)qx] ·
(

∑

y

gN (x− y)qy

)

+
α

γ

∑

y,x

gN (x − y)px · py

(41)
Here, and in the sequel of the proof, sums indexed by x,y, z are indexed by
TN and sums indexed by i, j, k, ℓ are indexed by {1, . . . , d}. Integration by
parts can be performed (without outcoming boundary terms since we are
on the torus) and we get

AuN =
α

γ

∑

x

[(α∆ − νI)gN ](x − y)qxqy +
α

γ

∑

y,x

gN (x − y)px · py (42)

Remark now that the function δ(· − e1)− δ(·+ e1) is antisymmetric. Hence
gN , and consequently ∆gN , is still antisymmetric. We have therefore AuN

which is of the form:

AuN =
∑

x,y

{a1(x− y)px · py + a2(x − y)qx · qy} (43)

with a1, a2 antisymmetric. Using the antisymmetricity of a1 and a2, it is
easy to show that the last two sums are zero and hence AuN = 0.

A simple computation shows that if ℓ ∈ {1, . . . , d} then

S(pℓ
x
) =

1

2(d− 1)

∑

y

∑

i6=j,k

(Xi,j
y,y+ek

)2(pℓ
x
)

=
2

2(d− 1)

∑

i6=ℓ,k

(Xi,ℓ
x,x+ek

)2(pℓ
x
) +

2

2(d − 1)

∑

i6=ℓ,k

(Xi6=ℓ,k
x−ek ,x)2(pℓ

x
)

=
1

d− 1

∑

i6=ℓ,k

{

(pℓ
x+ek

− pℓ
x
) − (pℓ

x
− pℓ

x−ek
)
}

= 2∆(pℓ
x
)

Since the action of S is only on the p’s, we have

γSuN = α
∑

x,y

gN (x − y)S(px) · qy

= 2α
∑

x,y

gN (x − y)(∆px) · qy

= 2α
∑

x,y

(∆gN )(x − y)px · qy
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where in the last line, we performed an integration by parts. Since gN is
solution of (39), we have

γSuN = −α
2

∑

x

px · (qx+e1
− qx−e1

) =
∑

x

ja
x,x+e1

(44)

�

Lemma 6. In any dimension d, we have the uniform bound in N :
∑

x∈Td
N

(∇⋆
e1
gN )2(x) ≤ C(d) (45)

If d = 1 then gN = 3[GN (x + 1) − GN (x − 1)] where GN is the solution of
(25) and

lim
N→∞

N−1[GN (0) +GN (1)] =
1

2π2
(46)

Proof. Let us define the Fourier transform v̂(ξ), ξ ∈ T
d
N of the function v

on T
d
N as

v̂(ξ) =
∑

z∈Td
N

v(z) exp(2iπξ · z/N) (47)

The inverse transform is given by

v(z) =
1

Nd

∑

ξ∈Td
N

v̂(ξ) exp(−2iπξ · z/N) (48)

A simple computation shows that the Fourier transform ĝN of the function
gN is given by

ĝN (ξ) = − i

8

(1 − δ0(ξ)) sin
(

2πξ1/N
)

[

∑d
k=1 sin2 (πξk/N)

] , if d ≥ 2 (49)

and by

ĝN (ξ) = −3i

4

(1 − δ0(ξ)) sin (2πξ/N)

[2 + cos (2πξ/N)] sin2(πξ/N)
, if d = 1 (50)

Using Parseval’s relation and standard analysis, one obtains the first part
of the lemma.
The Fourier transform ĜN of GN is given by

ĜN (ξ) =
1 − δ(ξ)

8 sin2

(

πξ

N

)(

2 + cos(
2πξ

N
)

)
(51)
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Using the inverse transform and elementar trigonometric properties, one
gets

N−1 [GN (0) +GN (1)] =
1

4N2

∑

ξ 6=0

cos2

(

πξ

N

)

sin2

(

πξ

N

)(

1 + cos2

(

πξ

N

))
(52)

This last quantity converges with N and its limit is given by

lim
N→∞

N−1

∫ 1/2

N−1

cos2 (πu)

sin2 (πu) (1 + cos2 (πu))
du =

1

2π2
(53)

�

Lemma 7. Let ΓN be the kernel of the operator (νI −α∆)−1 on T
d
N . Then

we have
ΓN (0) is of order N if d = 1, ν = 0.
ΓN (0) is of order logN if d = 2, ν = 0.
ΓN (0) is of order 1 if d ≥ 3 or ν = 0.

Proof. We have

Γ̂N (ξ) = (1 − δ(ξ))

(

ν + 4α
d
∑

k=1

sin2(πξk/N)

)−1

(54)

so that

ΓN (0) =
1

Nd

∑

ξ 6=0

1

ν + 4α
∑d

k=1 sin2(πξk/N)
(55)

Standard analysis gives the result. �

Lemma 8.
∑

x
[gN (x − e1) − gN (x + e1)] ΓN (x) diverges like N if d =

1, ν = 0, like logN if d = 2, ν = 0 and converges in all other cases to a
finite limit given by

∑

z

(g(z − e1) − g(z + e1)) (z)Γ(z)

where g and Γ are defined just after (30).

Proof.
∑

x
[gN (x− e1) − gN (x + e1)] ΓN (x) is equal to

1

4Nd

∑

ξ∈Td
N
\{0}

sin2
(

2πξ1/N
)

[

∑d
k=1 sin2 (πξk/N)

] [

ν + 4α
∑d

k=1 sin2 (πξk/N)
], if d ≥ 2

(56)
and to

6

N

∑

ξ∈T1
N
−{0}

cos2 (πξ/N)

[2 + cos (2πξ/N)]
[

ν + 4α sin2 (πξ/N)
], if d = 1 (57)

Trigonometric manipulations and standard analysis give the result by
letting N going to infinity. �
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6. Open system

We consider now the open case where the finite system is in contact with
2 heat baths at different temperatures Tℓ and Tr. We model these external
thermal baths with Ornstein-Uhlenbeck processes at given temperatures.
Let ΞN = {1, . . . , N} × T

d−1
N . Hence ΞN is a box of (Zd)N of length N

with periodic boundary conditions in any direction different from the first
direction. Atoms are now labeled by x ∈ ΞN and the dynamics is generated
by the operator

L = A+ γS +Bℓ +Br

where A and S are defined as before (with the laplacian ∆ taken with
Neumann boundary conditions), while Bℓ and Br are the contributions of
the heat baths defined by

Bℓ =
1

2

∑

x∈ΞN

δ1(x1)
(

Tℓ∂
2
px

− px · ∂px

)

Br =
1

2

∑

x∈ΞN

δN (x1)
(

Tr∂
2
px

− px · ∂px

)

.

If Tℓ = Tr = T the centered gaussian product measure of variance T is
the unique stationary state. When Tℓ 6= Tr, this system has still a unique
stationary measure, but it cannot be computed explicitly. Let us denote the
expectation with respect to this stationary measure with < · >ss,N . The
conductivity of this finite system can be defined as

κss
N =

N 〈jx,x+e1
〉ss,N

Tℓ − Tr
.

We prove that

κss
N ∼

N→∞
κ1,1

N .

This is a consequence of a decomposition of the energy current in a space
derivative plus a time derivative. In order to keep notations simple, let us
consider the case d = 1. Define the functions

hx =
α

γ

∑

z

g(z) px+zqx

and

φx =
α

2γ

∑

z≥1

g(z)





z
∑

y≥1

ψz
x+y + α(qx−z−1qx − qx−zqx−1)





+
α

2
(px−1 + px)qx + γϕ(px−1, px, px+1)

where
ψz

x = px−zpx + qx−z(α∆ − νI)qx.

Then by explicit calculation one can write

jx,x+1 = −∇φx + Lhx . (58)
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It follows that < jx,x+1 >ss,N= −∇ < φx >ss,N . By stationarity, this
expected current is constant in x, so

N < jx,x+1 >ss,N=
∑

x

< jx,x+1 >ss,N

=< φ1 >ss,N − < φN >ss,N .

By the thermalization due to the heat baths, one can show that < φ1 >ss,N

∼< φ1 >N,Tℓ
(where < · >N,Tℓ

(resp. < · >N,Tr) is the grand-canonical
measure at temperature Tℓ (resp. Tr)) and < φN >ss,N ∼ < φN >N,Tr . A
simple checking shows that

< φ1 >N,Tℓ
− < φN >N,Tr∼ κ1,1

N (Tℓ − Tr) (59)

This argument can be made rigorous by a proper localization of the functions
h and φ and an entropy production argument [2]. A decomposition similar
to (58) is valid also in d ≥ 2. One can use (58) directly in the Green-Kubo
formula (12), obtaining the same result as above, by noticing that in the
periodic case

∑

x ∇φx = 0 and that
∑

x hx = L−1
(
∑

x
ja
x,x+e1

)

.
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7. formulaire

Some formulas we use:

Spx = 2∆px d ≥ 2 (60)

Spx =
1

6
∆ (4px + px+1 + px−1) d = 1 (61)

Sex = Sp
2
x
/2 = ∆px d ≥ 2 (62)

Sex = Sp2
x/2 =

1

6
∆
(

4p2
x + p2

x+1 + p2
x−1

)

d = 1 (63)
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